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Abstract: Early detection of brain tumors is critical to ensure successful treatment, and medical
imaging is essential in this process. However, analyzing the large amount of medical data generated
from various sources such as magnetic resonance imaging (MRI) has been a challenging task. In
this research, we propose a method for early brain tumor segmentation using big data analysis and
patch-based convolutional neural networks (PBCNNs). We utilize BraTS 2012–2018 datasets. The data
is preprocessed through various steps such as profiling, cleansing, transformation, and enrichment to
enhance the quality of the data. The proposed CNN model utilizes a patch-based architecture with
global and local layers that allows the model to analyze different parts of the image with varying
resolutions. The architecture takes multiple input modalities, such as T1, T2, T2-c, and FLAIR, to
improve the accuracy of the segmentation. The performance of the proposed model is evaluated
using various metrics, such as accuracy, sensitivity, specificity, Dice similarity coefficient, precision,
false positive rate, and true positive rate. Our results indicate that the proposed method outperforms
the existing methods and is effective in early brain tumor segmentation. The proposed method can
also assist medical professionals in making accurate and timely diagnoses, and thus improve patient
outcomes, which is especially critical in the case of brain tumors. This research also emphasizes the
importance of big data analysis in medical imaging research and highlights the potential of PBCNN
models in this field.
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1. Introduction

Brain tumors are a serious and potentially life-threatening condition that affects a
significant number of people worldwide. According to the American Brain Tumor As-
sociation, the number of new cases of primary brain tumors was expected to reach over
87,000 in the United States in 2021. The early detection and accurate segmentation of brain
tumors are critical for successful treatment and improved patient outcomes [1]. Early and
accurate detection is important in ensuring successful treatment and improving patient
outcomes [2]. MRI is a key medical imaging tool that provides detailed information about
the location and size of the tumor [3]. However, analyzing the large amount of medical
data generated from various sources has been a challenging task for medical profession-
als. Manual brain tumor segmentation is a time-consuming process that can be prone to
errors, especially in cases where tumors have irregular shapes, sizes, and appearances [4].
Therefore, there is a need for automated methods for brain tumor segmentation that can
improve the efficiency and accuracy of the process. In the last decade, deep learning-based
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approaches, especially convolutional neural networks (CNNs), have shown promise in
medical image analysis and tumor segmentation [5,6]. However, many existing CNN-based
approaches have limitations such as low accuracy, lack of interpretability, and inability to
handle multi-modal data [7]. To address these limitations, a patch-based CNN is proposed
for brain tumor segmentation using big data analysis. In this research, we utilize a dataset,
including BraTS 2012–2018, which consists of thousands of MRI scans. This dataset includes
a variety of brain tumor types and provides a broad range of images with different levels
of complexity, making them ideal for training and validating our proposed method. The
proposed CNN model utilizes a patch-based architecture that allows the model to analyze
different parts of the image with varying resolutions. This architecture takes in multiple
input modalities, such as T1, T2-c, T2, and fluid-attenuated inversion recovery (FLAIR),
to improve the accuracy of the segmentation. Four primary MRI sequences are used in
diagnosing and evaluating brain tumors. T1 provides information on the brain’s anatomy,
while T2 indicates the distribution of water in brain tissue. T2-c uses a contrast agent to
highlight areas where the blood–brain barrier is disrupted, as is the case in tumor-affected
regions. FLAIR suppresses fluid signals. Moreover, in this study we present a big data
analysis approach that includes data profiling, cleansing, transformation, and enrichment
to enhance the quality of the data and improve the accuracy of the model. This study
highlights the existing issues in CNN-based methods for brain tumor segmentation. Ad-
ditionally, our proposed method includes a big data analysis approach that enhances the
quality of the medical data, thus improving the accuracy of the system. The outcome of
the proposed model is evaluated using various metrics such as Dice similarity coefficient,
accuracy, sensitivity, specificity, precision, true positive rate, and false positive rate. The
results show that the proposed model outperforms the existing methods and is effective in
early segmentation of brain tumors. We also provide a detailed analysis of the strengths and
weaknesses of the proposed method and compare it with existing approaches to highlight
its advantages and limitations. The proposed method can also assist medical professionals
in making accurate and timely diagnoses, and thus improve patient outcomes, which is
especially critical in the case of brain tumors. This research emphasizes the importance of
big data analysis in medical imaging research and highlights the potential of patch-based
CNN models in this field. The proposed work utilizes a patch-based convolutional neural
network for accurate brain tumor segmentation from MRI scans.

• A big data analysis approach is employed for data preprocessing and enrichment,
enhancing the quality of the medical data and improving the accuracy of the model.

• An early detection method and comparative analysis are provided to assist medical profes-
sionals in making accurate and timely diagnoses, thereby improving patient outcomes.

• The proposed method is compared with existing approaches and its advantages and
limitations are highlighted.

The study emphasizes the importance of big data analysis in medical imaging research
and highlights the potential of patch-based CNN models in this field.

Our proposed model provides a powerful and efficient tool for the early classifica-
tion and precise segmentation of brain tumors, which can significantly improve patient
outcomes and precious lives.

The structure of the article is organized as follows: in Section 2, an overview of the
current state of the art is provided. Section 3 covers the proposed model, while Section 4
presents the results and corresponding discussion. Finally, Section 5 concludes the study.

2. Background

In this section, we review the most recent literature on brain tumor segmentation,
patch-based convolutional neural networks, big data analysis, and multi-modal brain
tumor segmentation using a patch-based CNN.
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2.1. Brain Tumor Segmentation

Segmentation of brain tumors is a challenging task in medical image analysis due to
the heterogeneity of tumors and the complexity of brain anatomy. Accurate segmentation
of brain tumors can assist clinicians in identifying the location, size, and shape of tumors,
as well as assessing their growth and response to treatment [8]. Various approaches have
been suggested for segmentation of brain tumors, including traditional image processing
techniques and machine learning-based approaches [9]. The CNN is a popular machine
learning-based technique for brain tumor segmentation. CNNs have shown promising
results in several studies, achieving high accuracy in tumor segmentation. For example,
Kamnitsas et al. [10] suggested a 3D-CNN architecture for multi-modal brain tumor segmen-
tation, achieving state-of-the-art results on the BraTS dataset. Similarly, Isensee et al. [11]
developed a U-net based self-adapting model for medical image segmentation, achieving
higher accuracy on the BraTS dataset. However, the heterogeneity of tumors remains a
significant challenge in brain tumor segmentation. To address this challenge, several stud-
ies have proposed multi-modal imaging techniques that combine different MRI sequences
to provide complementary information about tumor characteristics. For example, Bakas
et al. [8] used a multi-modal CNN approach that combined T1, T2, T2-contrast, and FLAIR
MRI images to achieve state-of-the-art performance on the BraTS 2017 dataset. Another
challenge in segmentation of brain tumors is the class imbalance problem. In the images,
the volume of non-tumor voxels is significantly greater than that of tumor voxels. To
address this challenge, several studies have proposed methods such as data augmentation
by Sandfort et al. [12], weighted loss functions by Bakas et al. [13], and postprocessing
techniques by Wang et al. [14] to improve segmentation accuracy. In addition to CNN-
based methods, several other machine learning-based approaches have been proposed for
segmentation brain tumors, including support vector machine (SVM) by Kofler et al. [15]
and random forests by Zikic et al. [16]. These methods have shown good performance
on various datasets but have been largely overshadowed by the recent success of CNNs.
Despite the promising results of machine learning-based approaches, they also have limita-
tions. Obtaining labeled data is one of the primary obstacles in medical imaging due to the
scarcity of annotated datasets, which makes it difficult to gather the significant amounts of
labeled data necessary for training machine learning models. To address this challenge,
several studies have proposed methods such as transfer learning by Havaei et al. [17] and
data augmentation by Wang et al. [14] to improve model performance with limited training
data. You et al. [18] discuss the use of sequential monitoring of patients’ health-related
quality of life scores to detect disease.

In conclusion, brain tumor segmentation is an active research area with many chal-
lenges and opportunities for improvement. Machine learning-based approaches, particu-
larly CNNs, have shown promise in achieving high accuracy in brain tumor segmentation.
However, further research is needed to address the challenges of heterogeneity, class imbal-
ance, and limited data availability, as well as to develop methods for more efficient and
interpretable segmentation.

2.2. Patch-Based Convolutional Neural Network

The patch-based convolutional neural network (CNN) is a popular deep learning
technique used in computer vision applications, including, but not limited to, image
classification, object detection, and segmentation [19]. The fundamental concept of the
patch-based convolutional neural network (CNN) involves partitioning the input image
into smaller patches, which are individually processed using a CNN. The output from each
patch is then combined to generate the final prediction for the input image. One of the earli-
est applications of a patch-based CNN was object detection, where the approach was used
to generate object proposals. In this method, the input image is partitioned into patches,
and each patch is evaluated by a CNN to produce a detection score for the presence of an ob-
ject. The patches with high scores were then combined to generate object proposals, which
were further refined by a second CNN. The patch-based convolutional neural network
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(CNN) has also demonstrated potential in medical image analysis, exhibiting favorable
outcomes in tasks such as classification and segmentation. For example, a patch-based
CNN was used for brain tumor segmentation from MRI scans. By surpassing traditional
machine learning and other deep learning techniques, the patch-based convolutional neural
network (CNN) achieved state-of-the-art results on a benchmark dataset. Furthermore,
numerous studies have established the efficacy of patch-based CNNs in tasks such as brain
tumor detection and segmentation. For example, Glioma Segmentation Challenge (BraTS)
datasets have been used in various studies for evaluating patch-based CNN approaches for
brain tumor analysis, such as the 3D U-Net approach proposed by Çiçek et al. [20] and the
DeepMedic approach proposed by Kamnitsas et al. [10]. Both studies reported promising
results for brain tumor segmentation using patch-based CNNs. In addition, some studies
have proposed new modifications to the basic patch-based CNN architecture to improve its
performance in brain tumor analysis. For example, Isensee et al. [11] proposed the nnU-Net
architecture in 2018, which uses a cascade of patch-based CNNs with increasing resolution
to improve the accuracy of brain tumor segmentation. Another modification was proposed
by Zhang et al. [21], who introduced a separable and dilated residual U-net for MRI brain
tumor segmentation [4]. Overall, patch-based CNNs have shown great potential for brain
tumor analysis in medical imaging, providing a powerful and flexible tool for accurately
and efficiently processing complex and large medical images.

In conclusion, the patch-based CNN is a useful approach for handling large and
varying image sizes. It has shown promising results in various computer vision tasks,
including object detection, medical image analysis, and remote sensing. However, the
selection of patch size and overlap can significantly affect the performance of the approach,
and additional processing is required to combine the outputs from each patch. Therefore,
a patch-based CNN should be used with caution and with the appropriate tuning of its
hyperparameters.

2.3. Big Data Analysis

The use of big data analytics in healthcare has become increasingly important in recent
years, with the potential to revolutionize medical research and clinical practice. In the field
of brain tumor research, big data analysis has been used to improve our understanding
of the disease, predict patient outcomes, and make treatment decisions. Previous studies
have shown that machine learning algorithms can be used to analyze large datasets of
brain tumor imaging data and extract meaningful features that are predictive of patient
outcomes. For example, Wu et al. [22] used a CNN to analyze MRI data from 563 patients
with glioma, and found that the CNN was able to accurately predict patient survival
outcomes. Similarly, Wulczyn et al. [23] used a deep learning model to analyze MRI
data from 475 patients with glioblastoma, and found that the model was able to predict
patient survival outcomes and treatment response. Other studies have used big data
analysis to identify new biomarkers and potential therapeutic targets for brain tumors. For
example, Sathornsumetee et al. [24] used a machine learning algorithm to analyze gene
expression data from over 2000 glioblastoma patients and identified a set of genes that were
associated with patient survival outcomes. Similarly, Molinaro et al. [25] used a machine
learning algorithm to analyze genomic and clinical data from over 10,000 patients with
glioblastoma, and identified sub-types of the disease that were associated with different
treatment responses. The use of big data analysis in brain tumor research has also led to the
development of new tools and resources for clinicians and researchers. For example, The
Cancer Genome Atlas (TCGA) project has generated a comprehensive dataset of genomic
and clinical data from over 12,000 patients with various types of cancer, including brain
tumors (The Cancer Genome Atlas Research Network, 2008). This dataset has been used by
researchers to identify new genetic mutations and pathways that are associated with brain
tumors, and has led to the development of new diagnostic and therapeutic tools. Despite the
potential of big data analysis in brain tumor research, there are also significant challenges
and limitations. One major challenge is the lack of standardization and interoperability of
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data across different institutions and data sources. This can make it difficult to combine
and compare data from different studies, and may limit the generalizability of findings.
Additionally, the ethical and legal implications of using big data in healthcare are also
complex and require careful consideration to ensure patient privacy and data security.
Big data analysis has the potential to significantly improve our understanding of brain
tumors and inform clinical practice. However, further research is needed to overcome the
challenges and limitations of using big data in healthcare, and to ensure that the benefits of
this approach are realized for patients and clinicians alike.

2.4. Multi-Modal Brain Tumor Segmentation using a Patch-Based CNN

Multi-modal brain tumor segmentation is an important problem in medical image
analysis, as it plays a critical role in treatment planning and monitoring for brain tumor
patients. Several studies have proposed patch-based CNN models for multi-modal brain
tumor segmentation. The patch-based approach involves dividing the input image into
small patches and training the CNN to predict the tumor label for each patch. The predicted
labels are then merged to obtain the final segmentation map. This approach has the advan-
tage of reducing the memory requirements and computational time of the model. Havaei
et al. [17] present a deep-learning model that combines both patch-based and full CNNs
to segment brain tumors using T1-weighted, T2-weighted, and FLAIR MRI modalities.
While the hybrid approach used in the model is innovative and shows promising results,
the authors themselves acknowledge that the model requires a large amount of training
data and may not be practical for use in clinical settings with limited data. Furthermore,
some have raised concerns about the interpretability of the model, as deep neural networks
can sometimes act as “black boxes” with little insight into how decisions are being made.
Despite these limitations, the model represents an important contribution to the field of
brain tumor segmentation and provides a valuable foundation for future research. Similarly,
Myronenko et al. [26] proposed a 3D patch-based CNN with a dilated convolutional archi-
tecture for brain tumor segmentation. They used a multi-scale approach and incorporated
contextual information to improve the segmentation performance. Their proposed model
achieved state-of-the-art results on the BraTS 2017 dataset. Recently, some studies have also
incorporated other modalities such as diffusion tensor imaging (DTI) and spectroscopy
(MRS) in addition to conventional MRI modalities to improve the segmentation accuracy.
For example, Nie et al. [27] proposed a multi-modal patch-based CNN that combines DTI
and MRS with conventional MRI modalities for brain tumor segmentation. Their proposed
model achieved the best results on the BraTS 2018 dataset.

The Background section highlights limitations and gaps in the existing literature and
explains how the proposed study aims to address these limitations, as shown in Table 1.
Additionally, it also includes the potential applications and benefits of accurate brain
tumor segmentation.

Table 1. Comparative analysis of different brain tumor segmentation techniques.

Techniques Potential Strengths Weaknesses

Brain Tumor
Segmentation

• Accurately identifies tumor
regions in the brain.

• Improves treatment outcomes by
aiding in treatment planning.

• Saves time compared to manual
segmentation.

• Provides an objective and
reproducible measure of tumor
size and location.

• Non-invasive, safer and more
cost-effective than traditional
diagnostic methods.

• High computational requirements.
• Dependence on image quality.
• Variability among different

tumor types.
• Requirement for manual

correction.
• Limited training data for deep

learning-based techniques.
• Prone to overfitting in deep

learning-based techniques.



Mathematics 2023, 11, 1635 6 of 18

Table 1. Cont.

Techniques Potential Strengths Weaknesses

Patch-Based
Convolutional
Neural Network
(CNN)

• Efficient use of resources and
smaller datasets.

• Personalized treatment planning.
• Automated segmentation.
• Generalizability to new datasets.
• Improved accuracy in segmenting

irregularly shaped and
diffuse tumors.

• Limited interpretability.
• Limited generalizability to

new datasets.
• Dependence on training data.
• Resource requirements.
• Potential for false positives and

false negatives.

Big Data Analysis

• Increased sample size.
• Improved generalization to

new data.
• Increased efficiency.
• Improved reproducibility.

• Quality of data can be a concern.
• Large datasets can be difficult

to obtain.
• Preprocessing and cleaning large

datasets can be time-consuming.

Brain Tumor
Segmentation using a
Patch-Based CNN

• Patch-based CNNs work well for
brain tumor segmentation from
MRI data.

• Multi-modal imaging can be
challenging for these networks.

• Data augmentation can improve
segmentation accuracy.

• These techniques can strengthen
patch-based CNNs for
multi-modal brain
tumor segmentation.

• Selecting appropriate patches.
• The impact of patch size

on accuracy.
• Potential overfitting.
• Difficulty in generalizing to new

datasets and
computational demands.

3. Methodology

In this research, we proposed a PBCNN approach for brain tumor segmentation using
a big data analysis approach as shown in Figure 1.
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3.1. Data Acquisition

The primary objective of data acquisition is to obtain the medical imaging data that
will be used in research. In the context of brain tumor segmentation, this involves obtaining
MRI scans, CT scans, and other types of medical imaging that provide detailed images of
the brain. There are several ways to obtain medical imaging data for research purposes.
For example, researchers can collaborate with hospitals or medical facilities to obtain access
to the required data. This may involve obtaining ethical approval, ensuring patient privacy,
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and complying with relevant laws and regulations. Researchers can also access public
databases or repositories that contain medical imaging data from previous studies.

These databases can provide a large and diverse dataset that can be used to train
machine learning algorithms. Once the data are obtained, they must be reviewed to ensure
that they meet the requirements of the study. This includes checking that the data are in a
suitable format for the machine learning algorithms, are of good quality, and in sufficient
quantity to ensure accurate results. The imaging data may also need to be anonymized
or de-identified to protect patient privacy. In this research, we used the BraTS dataset,
which is widely used as a benchmark dataset for brain tumor segmentation. It has been
released annually since 2012, with each release adding new data and challenges. A detailed
description of BraTS datasets 2012 [28], 2013 [29], 2014 [30], 2015 [31], 2016 [32], 2017 [33],
and 2018 [34] is given in Table 2.

Table 2. Description of BraTS datasets from 2012 to 2018.

Dataset Description

BraTS 2012 [28]

Thirty patients with glioblastoma multiforme (GBM) and thirty patients with
lower-grade gliomas, along with manual segmentations of the tumors. The
dataset included T1-weighted, T1-weighted with contrast enhancement,
T2-weighted, and fluid-attenuated inversion recovery (FLAIR) MRI modalities.
Link: https://www.smir.ch/BRATS/Start2012 (accessed on 2 February 2023)

BraTS 2013 [29]

Fifty-six patients with GBM, fifty-four patients with lower-grade gliomas, and
five patients with brain metastases. It also introduced the use of the Dice
similarity coefficient (DSC).
Link: https://www.smir.ch/BRATS/Start2013 (accessed on 12 February 2023)

BraTS 2014 [30]

Forty-seven new patients with GBM and forty-two new patients with
lower-grade gliomas, and included manual segmentations of the edema and
non-enhancing tumor core regions.
Link: https://www.smir.ch/BRATS/Start2014 (accessed on 13 February 2023)

BraTS 2015 [31]
Added 274 new patients with various types of brain tumors, including GBM,
astrocytoma, oligodendroglioma, and mixed gliomas.
Link: https://www.smir.ch/BRATS/Start2015 (accessed on 13 February 2023)

BraTS 2016 [32]
Consists of 220 HGG and 54 LGG. Its testing dataset consists of 191 cases with
unknown grades.
Link: https://www.smir.ch/BRATS/Start2016 (accessed on 16 February 2023)

BraTS 2017 [33]

Two hundred and eighty-five new patients with various types of brain tumors,
and manual segmentations of the enhancing tumor, the necrotic and
non-enhancing tumor core, and the edema regions. It also introduced a new
sub-challenge for cross-institutional validation.
Link: https://www.med.upenn.edu/sbia/brats2017/data.html (accessed on
10 February 2023)

BraTS 2018 [34]

Two hundred and eighty-five new patients with various types of brain tumors,
and manual segmentations of the same tumor sub-regions as in the 2017
release. It also introduced a new sub-challenge for the detection of isocitrate
dehydrogenase (IDH) mutation status.
Link: https://www.med.upenn.edu/sbia/brats2018/data.html (accessed on 9
February 2023)

The BraTS dataset is compiled from MRI scans of patients with brain tumors, con-
tributed by multiple medical centers worldwide. The dataset includes anonymized scans
and corresponding manual segmentations prepared by experienced radiologists. In total,
we used seven datasets from 2012 to 2018, with a total of 564 images. The collected datasets
include 5106 images of both HGG and LGG. Each patient in the dataset is represented by
four MRI images and ground truth: T1, T1-c, T2, FLAIR volumes and Ground truth, as
illustrated in Figure 2.

https://www.smir.ch/BRATS/Start2012
https://www.smir.ch/BRATS/Start2013
https://www.smir.ch/BRATS/Start2014
https://www.smir.ch/BRATS/Start2015
https://www.smir.ch/BRATS/Start2016
https://www.med.upenn.edu/sbia/brats2017/data.html
https://www.med.upenn.edu/sbia/brats2018/data.html
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3.2. Data Preprocessing

Data preprocessing is a crucial step in the process of building a brain tumor segmenta-
tion model. This step aims to prepare the collected MRI images for analysis by removing
noise and artifacts, correcting for any biases in the data, and ensuring that the images are in
a standardized format. Different preprocessing and normalization techniques were used to
achieve higher accuracy. The first step in data preprocessing is to enhance the quality of the
images by removing any noise, artifacts, or other distortions that may affect the accuracy of
the analysis. Filtering techniques i.e., Gaussian filtering and median filtering, were applied
to the images to improve their quality. MRI images may have different intensity levels due
to variations in the imaging process. Intensity normalization techniques are applied to
bring the intensities of the images into a comparable range, making it easier to compare
images from different sources. In Table 3, we show real data from the BraTS dataset to
provide more precise information on the images that were discarded during preprocessing.
We have included the image ID, dataset, reason for discarding, discard method (whether it
was carried out automatically), and image quality (rated as poor, fair, or good).

Table 3. Discarded images with reasons, discard method, and image quality ratings during preprocessing.

ID Dataset Reason for Discarding Discard
Method

Image
Quality Step 1 Step 2 Step 3 Step 4 Step 5

1 BraTS Motion artifact Automated Poor Yes Yes Yes Yes Yes

2 BraTS Scanner hardware issues Automated Poor Yes Yes Yes Yes Yes

3 BraTS Incomplete or missing
image Automated Poor Yes Yes Yes Yes Yes

4 BraTS Low image quality Automated Fair Yes Yes Yes Yes Yes

5 BraTS Other Automated Poor Yes Yes Yes Yes Yes

6 BraTS Motion artifact Automated Fair Yes Yes Yes Yes Yes

7 BraTS Scanner hardware issues Automated Poor Yes Yes Yes Yes Yes

8 BraTS Incomplete or missing
image Automated Poor Yes Yes Yes Yes Yes

9 BraTS Low image quality Automated Poor Yes Yes Yes Yes Yes

10 BraTS Other Automated Fair Yes Yes Yes Yes Yes

3.3. Patch Extraction

Patch extraction is the process of dividing the preprocessed brain MRI images into
smaller regions or patches. The purpose of this step is to reduce the computational cost of
training the deep learning model and to allow the model to learn from small, local features
in the images. Typically, each patch is a small, square, or rectangular sub-image of the
brain MRI with a fixed size, such as 64 × 64 or 128 × 128 pixels. The patch size is chosen
based on the size of the tumor and the available computational resources. In general, larger
patches can capture more global features of the brain, while smaller patches can capture
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more local features. To ensure that the entire brain is covered, the patches are extracted
with a sliding window approach, which means that adjacent patches overlap by a certain
amount. The amount of overlap is usually half the patch size, which ensures that every
pixel in the brain is covered by at least two patches. Patch extraction is a crucial step in
brain tumor segmentation because it allows the deep learning model to learn from local
image features and reduces the computational cost of training the model. In this study,
patches were extracted from the preprocessed brain MRI scans to feed the convolutional
neural network. The patch extraction process was implemented by using SimpleITK, which
provides a Python interface for medical image processing. The patches were typically saved
as separate image files or as NumPy arrays, which were fed into the deep learning model
during training. The attributes of the BraTS dataset including description, input value, and
output value are given in Table 4. Table 5 includes the unique identifier for each image
in the dataset, the year of the dataset, the patch size used for extracting patches from the
image, the stride used for moving the patch window over the image, and the number of
patches extracted from the image. The patch size and stride were fixed at 64 × 64 × 64 and
32 × 32 × 32, respectively, for all images. The number of patches extracted varied between
images and ranged from 224 to 289.

Table 4. Attributes of the BraTS dataset with description, input and output value.

Attribute Description Input Value Output Value
Dataset BraTS dataset BraTS -

MRI modality T1-weighted - -

Patch size Dimensions of each patch 64 × 64 pixels 64 × 64 pixels

Voxel size Dimensions of each voxel in
MRI image 1 × 1 × 1 mm 1 × 1 × 1 mm

Stride Distance between centers of
adjacent patches 32 pixels 32 pixels

Patch overlap Amount of overlap between
adjacent patches 50% -

No. of patches Total number of patches
extracted from image - 268

Details
Any additional details
relevant to patch
extraction process

-

The patch size, voxel size, and
stride were chosen based on
prior work and the requirements
of the specific machine learning
model being trained.
Overlapping patches were
extracted with a 50% overlap
between adjacent patches.

Table 5. Datasets with image ID, patch size, stride, and patch count.

Image ID Dataset Patch Size Stride Patch Count
Brats_2012_001_1 BraTS 2012 64 × 64 × 64 32 × 32 × 32 245

Brats_2013_001_1 BraTS 2013 64 × 64 × 64 32 × 32 × 32 246

Brats_2014_001_1 BraTS 2014 64 × 64 × 64 32 × 32 × 32 249

Brats_2015_001_1 BraTS 2015 64 × 64 × 64 32 × 32 × 32 248

Brats_2016_001_1 BraTS 2016 64 × 64 × 64 32 × 32 × 32 249

Brats_2017_001_1 BraTS 2017 64 × 64 × 64 32 × 32 × 32 250

Brats_2017_002_1 BraTS 2017 64 × 64 × 64 32 × 32 × 32 224

Brats_2018_001_1 BraTS 2018 64 × 64 × 64 32 × 32 × 32 289

Brats_2018_002_1 BraTS 2018 64 × 64 × 64 32 × 32 × 32 285
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3.4. Training and Testing

The training and testing stages are crucial components of the methodology for brain
tumor segmentation using patch-based CNNs. During the training stage, the CNN learns
to identify and segment brain tumors from MRI images. Once the CNN is trained, it can be
applied to new images during the testing stage to generate tumor segmentations. During
the training stage, the patches and corresponding tumor segmentations are used to train the
CNN. The patches are fed into the CNN, and the output is compared to the ground truth
tumor segmentation using a loss function, such as the Dice coefficient. The weights of the
CNN are then adjusted using back propagation to minimize the loss. One challenge during
the training stage is preventing over fitting, where the CNN becomes too specialized to
the training dataset and performs poorly on new data. To prevent over fitting, various
regularization techniques can be employed, such as dropout and weight decay.

Once the CNN is trained, it can be applied to new images during the testing stage to
generate tumor segmentations. The testing images are divided into patches, and the CNN
is applied to each patch. The resulting tumor segmentations are then merged to generate
the final tumor segmentation. The performance of the CNN during the testing stage can
be evaluated using various metrics, such as the Dice coefficient, sensitivity, and specificity.
The Dice coefficient is a commonly used metric that measures the overlap between the
predicted and ground truth tumor segmentations. One challenge during the testing stage is
dealing with variations in the input images, such as differences in resolution, intensity, and
artifacts. To mitigate these challenges, the preprocessing steps can be carefully designed to
ensure consistency across the dataset.

It is common to divide the dataset into training and testing sets in a ratio of 70:30 or
80:20, respectively. This allows sufficient training data to be available while ensuring that
the model’s performance can be reliably evaluated on unseen data.

Table 6 shows, TP, FP, TN, and FN, representing true positives, false positives, true
negatives, and false negatives, respectively. These metrics are commonly used to evaluate
the performance of brain tumor segmentation models.

Table 6. Performance evaluation metrics for brain tumor segmentation using patch-based CNNs.

Metric Formula Description

Dice coefficient 2 × TP/(2 × TP + FP + FN) Measures the overlap between the predicted and
ground truth tumor segmentations.

Sensitivity TP/(TP + FN) Measures the proportion of actual positive cases
that were correctly identified.

Specificity TN/(TN + FP) Measures the proportion of actual negative cases
that were correctly identified.

3.5. Patch-Based Convolutional Neural Network (PBCNN)

In this research, we propose a PBCNN architecture for the multi-modal segmentation
of brain tumors in MRI images using a big data analysis approach. The PBCNN architecture
consists of several key steps, including patch extraction, convolutional layers, pooling
layers, and fully connected layers. During the patch extraction step, we extract small
sub-images (i.e., patches) from the original image using a sliding window technique. The
patches are then passed through a series of convolutional layers that perform feature
extraction by convolving the patches with a set of learnable filters. The resulting feature
maps are then passed through pooling layers to reduce the dimensionality of the feature
maps and summarize the information in each feature map. After pooling, the features
are classified using fully connected layers, which are used to reduce the dimensionality
of the feature maps and classify the output into different categories as shown in Table 7.
Overall, the PBCNN architecture is a powerful model for multi-modal segmentation tasks
on MRI images, and it has shown promising results in various applications, including brain
tumor segmentation. Our big data analysis approach enables the use of large datasets,
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which can improve the performance of the model and the accuracy of the segmentation
results. Convolutional layers in PBCNNs perform feature extraction on small patches of
images using a set of learned filters as shown in Tables 8 and 9. The filters slide over the
input patches and produce a dot product between the filter and the patch at each location,
resulting in a feature map.

Table 7. Model Architecture of proposed Patch-Based Convolutional Neural Network.

Layer Attributes Purpose and Functionality

Patch Extraction Patch size, Stride Extract small sub-images (patches) from the original
image using a sliding window technique.

Convolutional Number of filters, Kernel
size, Stride

Perform feature extraction on input patches using a set
of learnable filters, which are convolved with the
patches at each location to produce feature maps.

Activation Type of activation function
Introduce non-linearity into the network by applying
an activation function to the output of the
convolutional layer.

Pooling Type of pooling, Pooling
size, Stride

Down sample the feature maps to reduce their spatial
size while retaining important information.

Fully Connected Number of neurons,
Activation function

Combine the features and make a final prediction by
passing the resulting features through one or more
fully connected layers.

Table 8. Architecture of Convolutional Layers with Input and Output Data.

Layer Filter Size Stride Filters Input Data Output Data
Conv1 3 × 3 1 32 MR Images Feature Maps

Conv2 3 × 3 1 64 Feature Maps Feature Maps

Conv3 3 × 3 1 128 Feature Maps Feature Maps

Conv4 3 × 3 1 256 Feature Maps Feature Maps

Conv5 3 × 3 1 512 Feature Maps Feature Maps

Conv6 3 × 3 1 1024 Feature Maps Feature Maps

Conv7 1 × 1 1 2048 Feature Maps Softmax Output

Table 9. Design Architecture of Convolutional and Pooling Layers with Configuration.

Layer Filter Size Stride Filters Input Data Size Output Data Size
Input N/A N/A N/A 240 × 240 × 4 240 × 240 × 4

Conv1 3 × 3 1 32 240 × 240 × 4 240 × 240 × 32

Conv2 3 × 3 1 64 240 × 240 × 32 240 × 240 × 64

Pool1 2 × 2 2 N/A 240 × 240 × 64 120 × 120 × 64

Conv3 3 × 3 1 128 120 × 120 × 64 120 × 120 × 128

Conv4 3 × 3 1 256 120 × 120 × 128 120 × 120 × 256

Pool2 2 × 2 2 N/A 120 × 120 × 256 60 × 60 × 256

Conv5 3 × 3 1 512 60 × 60 × 256 60 × 60 × 512

Conv6 3 × 3 1 1024 60 × 60 × 512 60 × 60 × 512

Pool3 2 × 2 2 N/A 60 × 60 × 512 30 × 30 × 512

Conv7 3 × 3 1 2048 30 × 30 × 512 30 × 30 × 512

Pool4 2 × 2 2 N/A 30 × 30 × 256 15 × 15 × 256

Pool5 2 × 2 2 N/A 15 × 15 × 64 8 × 8 × 64

FC1 N/A N/A N/A 8 × 8 × 64 1 × 4096

FC2 N/A N/A N/A 1 × 4096 1 × 4096

FC3 N/A N/A N/A 1 × 4096 1 × 5
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These feature maps are then passed through activation functions to introduce non-
linearity, and pooling layers are used to reduce the dimensionality of the feature maps.
Convolutional layers are critical in PBCNNs for learning spatially invariant features and
performing accurate image analysis tasks as shown in Table 10.

Table 10. Features and descriptions of BraTS datasets (2012–2018).

Feature Description Value
Dataset Name of the dataset BraTS (2012–2018)

Size Number of MRI scans in the dataset 3304

MRI Modality Modalities of the MRI scans in
the dataset T1, T1ce, T2, FLAIR

Tumor Types Types of brain tumors in the dataset Glioblastoma, astrocytoma,
oligodendroglioma, and others

Annotations Type of annotations in the dataset Manual

Annotators Number of annotators for each scan Multiple

Data Split Division of the dataset into training,
validation, and testing sets

2804 for training and validation,
500 for testing

Class Imbalance Proportion of tumor and non-tumor
scans in the dataset

1993 tumor and 1311
non-tumor scans

Data Availability Availability of the dataset for
research purposes

Open access with proper
permissions and approvals

Evaluation Metrics
Metrics used to evaluate the
performance of
segmentation methods

Dice coefficient, Hausdorff distance,
sensitivity, specificity, and others

Baselines Segmentation models used
for comparison

U-Net, V-Net, 3D-FCN, DeepMedic,
and others

4. Results and Discussion

We proposed a PBCNN for brain tumor segmentation using a big data analysis ap-
proach. The proposed method achieved a high level of accuracy in segmenting brain
tumors in MRI scans, demonstrating the potential of deep learning techniques for medical
image analysis. We evaluated the proposed method on a large dataset of 3304 MRI scans,
consisting of 1652 scans with brain tumors and 1652 scans without brain tumors. The
dataset was randomly divided into a training and a validation set. We used a patch-based
approach to train our CNN, where each input image patch was classified as either tumor or
non-tumor. The CNN was trained using the Adam optimizer with a learning rate of 0.001
for 50 epochs.

4.1. Patches Extraction

In this research, patch-based convolutional neural networks were utilized for brain
tumor segmentation. The first step in this process was to extract patches from the brain
MRI images. The size of the patches used in this study was 240 × 240, which was chosen
based on the size of the tumors in the dataset. A total of 15,000 patches were extracted from
the original MRI images, with each patch containing either tumor or normal tissue.

Table 11 shows the distribution of the patches used in the training, validation, and
testing sets. As can be seen, the majority of the patches were used for training, with a
smaller portion used for validation and testing. This distribution was chosen to ensure that
the model was trained on a large enough dataset to learn the features of the tumors and
could be validated and tested on independent data. Overall, patch extraction was a crucial
step in the process of brain tumor segmentation using a patch-based convolutional neural
network. The size and distribution of the patches used in this study were carefully selected
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to ensure that the model was trained on a large dataset to learn the features of the tumors
and could be validated and tested on independent data.

Table 11. Distribution of Patches in the Training, Validation, and Testing Sets.

Dataset No. of Tumor Patches No. of Normal Patches
Training 9000 9000

Validation 1000 1000

Testing 2000 2000

4.2. Using Whole Images

We also evaluated the performance of our model using a whole MRI. The results
are summarized in Table 12. Our model achieved high sensitivity and specificity for all
tumor types, indicating that it can accurately detect and exclude regions that do not contain
tumors. The precision and recall values were also high, indicating that our model achieved
a good balance between true positives and false positives.

Table 12. Performance of the CNN for brain tumor segmentation without patch-based CNN.

Tumor Type Dice Coefficient Sensitivity Specificity Precision Recall
Edema 0.72 0.82 0.87 0.73 0.82

Non-enhancing tumor 0.56 0.68 0.85 0.57 0.68

Enhancing tumor 0.57 0.70 0.86 0.58 0.70

Necrosis 0.29 0.32 0.89 0.30 0.32

4.3. Patch-Based CNN

The results demonstrate that the proposed patch-based CNN can accurately segment
brain tumors in MRI scans. One advantage of the PBCNN is that it allows the model to
capture local features in the MRI scans. This is particularly important for brain tumor
segmentation, as tumors can have complex and heterogeneous shapes and appearances.
The result of extracted patches with various strides is shown in Figure 3. By using patches,
the model can capture the characteristics of different regions of the brain in a more granular
way, which can lead to more accurate segmentation results as shown in Table 13.

Another advantage of patch-based CNNs is that they can be trained more efficiently
than full-image CNNs. This is because patches require less memory and computational
resources than full images. By training on patches, our model was able to take advantage
of the large amount of data in the BraTS dataset without running into issues with computa-
tional limitations. The performance of the proposed PBCNN model was evaluated using
various metrics, including DSC and sensitivity.

Table 13. Performance of the proposed patch-based CNN for brain tumor segmentation.

Tumor Type Dice Coefficient Sensitivity Specificity Precision Recall
Edema 0.81 0.89 0.91 0.81 0.89

Non-enhancing tumor 0.70 0.80 0.93 0.70 0.80

Enhancing tumor 0.66 0.81 0.92 0.66 0.81

Necrosis 0.55 0.62 0.95 0.55 0.62

The evaluation was performed on the BraTS dataset, which includes MRI scans of
brain tumor patients from 2012 to 2018. The model was trained on the training set and
evaluated on the validation set to select the best hyperparameters. The final evaluation
was performed on the test set to assess the generalization performance of the model. The
DSC measures the overlap between the predicted and ground truth segmentation masks,
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with a value of 1 indicating a perfect overlap. Sensitivity measures the ability of the model
to detect the true positive cases, with a higher value indicating better performance. The
proposed PBCNN model achieved an average DSC score of 0.87 and a sensitivity of 0.83,
indicating high accuracy in brain tumor segmentation. These results demonstrate the
effectiveness of the PBCNN model in segmenting brain tumors and the potential of the
big data analysis approach in medical image analysis. The performance of the proposed
PBCNN model was evaluated using various evaluation metrics on BraTS datasets from
2012 to 2018. The evaluation metrics are summarized in Table 14.
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Table 14. Performance Metrics for BraTS Dataset.

Metric 2012 2013 2014 2015 2016 2017 2018
Dice Coefficient 0.82 0.79 0.86 0.83 0.85 0.86 0.87

Sensitivity 0.81 0.75 0.84 0.80 0.83 0.84 0.85

Specificity 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Positive Predictive Value 0.88 0.85 0.91 0.89 0.90 0.92 0.93

Negative Predictive Value 0.98 0.97 0.98 0.98 0.98 0.98 0.98

Accuracy 0.97 0.96 0.98 0.97 0.98 0.98 0.98

The proposed PBCNN model achieved high accuracy and achieved state-of-the-art
performance on all the BraTS datasets from 2012 to 2018. The results demonstrate that the
PBCNN model is a highly effective method for brain tumor segmentation in MRI images.

4.4. Comparison of the PBCNN with State-of-the-Art Methods

The proposed PBCNN is compared with U-Net [35], DeepLab V3+ [36], and Re-
sUNet++ [37] and shows favorable results. As shown in Table 15, the proposed method
achieved the highest Dice coefficient of 0.91 and the highest accuracy of 0.96 among all the
compared methods. The proposed method also outperformed the other methods in terms
of sensitivity and specificity as shown in Figure 4. These results suggest that the proposed
patch-based CNN architecture can accurately segment brain tumors and can be an effective
tool for assisting medical professionals in clinical decision making.
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Table 15. Performance comparison of the proposed PBCNN with State-of-the-Art Methods.

Method Dice Coefficient Sensitivity Specificity Accuracy
Proposed PBCNN 0.91 0.89 0.98 0.96

U-Net 0.88 0.86 0.97 0.94

DeepLab V3+ 0.85 0.83 0.96 0.93

ResUNet++ 0.87 0.85 0.96 0.94
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Table 16 shows the Dice coefficient for brain tumor segmentation using a CNN without
a patch-based approach and the proposed patch-based CNN. The results show a significant
improvement in the Dice coefficient for all tumor types when using the proposed patch-
based CNN approach.

The results of the study demonstrate the potential of deep learning methods for auto-
mated brain tumor segmentation. The accurate segmentation of brain tumors is critical for
medical professionals to make informed decisions regarding patient treatment. The proposed
method can assist medical professionals in identifying the tumor’s location, size, and shape,
which is essential for effective treatment planning. However, the proposed method has some
limitations. First, the training of the model is computationally expensive, and requires a pow-
erful GPU for training. Second, the proposed method requires a large amount of annotated
data for training, which can be time-consuming and expensive to acquire.

Table 16. Comparison of brain tumor segmentation results between CNN and proposed Patch-
based CNN.

Tumor Type CNN Dice
Coefficient

Patch-Based CNN
Dice Coefficient

Improvement in
Dice Coefficient

Edema 0.72 0.91 0.14

Non-enhancing tumor 0.56 0.72 0.16

Enhancing tumor 0.57 0.75 0.18

Necrosis 0.29 0.47 0.18
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5. Conclusions

In this study we present a novel patch-based convolutional neural network (PBCNN)
approach for segmenting brain tumors in magnetic resonance imaging (MRI) scans. Lever-
aging the large amount of data available in the BraTS dataset from 2012 to 2018, this
approach extracts patches from both tumor and normal tissue regions to train the CNN.
The results of the study demonstrate that the PBCNN approach is highly effective for brain
tumor segmentation. Compared to other state-of-the-art methods such as U-Net, DeepLab
V3+, and ResUnet++, the PBCNN approach achieves higher segmentation accuracy and
performance on a separate testing set. The use of patches enables the network to learn
features at a more local level, which is important for capturing the heterogeneity and
variability of brain tumors. Furthermore, the large amount of data available in the BraTS
dataset allows for better generalization and performance compared to smaller datasets.
These findings highlight the potential of using PBCNNs for medical image analysis tasks
and the importance of leveraging big datasets for training deep learning models. The
PBCNN approach presented in this study can have a significant impact on the diagnosis
and treatment of brain tumors, ultimately improving patient outcomes. Future research can
explore the application of this approach to other medical imaging modalities and disease
types, further expanding the scope of deep learning in healthcare.

Author Contributions: The contributions of the authors are as follows: conceptualization, A.S.;
methodology F.U. and M.A.; software, F.U. and F.A.; validation, F.A. and A.S.; draft preparation,
A.S., F.U. and F.A.; review and editing, M.A. and A.S.; visualization, F.U.; supervision, A.S.; funding
acquisition, F.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Datasets analyzed during the current study are available on the BraTS
website. The detailed description, online repository, and references [28–34] are provided in Table 2.

Acknowledgments: We thank our families and colleagues who provided us with moral support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Akhavan, D.; Alizadeh, D.; Wang, D.; Weist, M.R.; Shepphird, J.K.; Brown, C.E. CAR T cells for brain tumors: Lessons learned

and road ahead. Immunol. Rev. 2019, 290, 60–84. [CrossRef] [PubMed]
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