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Abstract: The cutwidth of a graph G is the smallest integer k (k ≥ 1) such that the vertices of G are
arranged in a linear layout [v1, v2, . . . , vn], in such a way that for each i = 1, 2, . . . , n− 1, there are
at most k edges with one endpoint in {v1, v2, . . . , vi} and the other in {vi+1, . . . , vn}. The cutwidth
problem for G is to determine the cutwidth k of G. A graph G with cutwidth k is k-cutwidth critical if
every proper subgraph of G has a cutwidth less than k and G is homeomorphically minimal. In this
paper, except five irregular graphs, other 4-cutwidth critical graphs were resonably classified into
two classes, which are graph class with a central vertex v0, and graph class with a central cycle Cq of
length q ≤ 6, respectively, and any member of two graph classes can skillfuly achieve a subgraph
decomposition S with cardinality 2, 3 or 4, where each member of S is either a 2-cutwith graph or a
3-cutwidth graph.

Keywords: graph labeling; cutwidth; critical graph; graph decomposition

MSC: 05C75; 05C78; 90C27

1. Introduction

The graphs under consideration in this paper are finite, simple and connected, and
for the undefined graph-theoretic terminologies, we refer the reader to the book by Bondy
and Murty [1]. The cutwidth of a graph G is the smallest integer k (k ≥ 1), such that
the vertices of G are arranged in a linear layout [v1, v2, . . . , vn], in such a way that for
each i = 1, 2, . . . , n − 1, there are at most k edges with one endpoint in {v1, v2, . . . , vi}
and the other in {vi+1, . . . , vn}. The method used to compute the optimum cutwidth of
a graph G is usually referred to as the cutwidth minimization problem, and has received
an enormous amount of interest in graph theory literature [2] since the 1950s. From [3–6],
for a graph G and a nonnegative integer k, deciding whether the cutwidth value of graph
G is less than k is an NP-complete problem for general graphs except for trees, and it
remains to be NP-complete even though G is planar with a maximum vertex degree of
3, by [7]. Therefore, most of previous investigations of the cutwidth problem have been
mainly concentrated on polynomial time approximation algorithms for general graphs,
and on polynomial time algorithms for special graphs for solving their cutwidth [2,4,5].
Despite these theoretical algorithms of the cutwidth minimization problem, research on
studying the structural properties of the extreme (or critical) graph classes whose cutwidth
is a given integer value k > 1 have been paid little attention. As far as we know, the
2-cutwidth graph class has five forbidden subgraphs τ1–τ5 [8] (see Figure 1 below), the
family of 3-cutwidth trees possesses 18 forbidden subtrees [9], and 50 forbidden subgraphs
of unicyclic graphs with cutwidth 3 were also found by [10]. As for the inner structures of
the critical graphs with cutwidth k, ref. [11] found that any critical tree with cutwidth value
k can be decomposed into three (k− 1)-cutwidth subtrees which are either edge-joint or
edge-disjoint. Recently, the decomposability of a class of special k-cutwidth critical graphs
with a central vertex v0 and at least two cut edges v0v1 and v0v2 was also characterized
by [12]. However, for general critical graphs with cutwidth k ≥ 4, their inner structural
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properties are unfortunately not yet known. The cutwidth minimization problem for
graphs has many significant applications. In the early 1970s, Adolphson and Hu used it to
model the number of channels in the optimum layout of a circuit [13]. Other applications of
this problem include VLSI circuits’ layout [14,15], automatic graph drawing [16], network
reliability [17], information retrieval [18], urban drainage network design [19] and others.
In particular, the cutwidth is closely connected to a basic parameter called the congestion,
in designing microchip circuits and micro communication element system [2,20,21]. Herein,
a graph G is considered to be a mathematical model of the wiring diagram of an electronic
circuit, in which the vertices of G mean components and the edges of G represent wires
connecting these vertices. When a circuit is embedded into a certain architecture (say,
a path Pn or a cycle Cn), the largest number of overlapping wires is referred to as the
congestion, which is one of the key parameters determining the electronic performance.
These are of great interest to scholars investigating the cutwidth problem in graph theory
practically. Theoretically, the cutwidth problem is also closely bound up with other graph
parameters such as bandwidth, modified bandwidth, pathwidth and treewidth [2,22,23].
For example, this is the case for any graph G with vertices of a degree bound by an
integer r ≥ 1, pw(G) ≤ c(G) ≤ r · pw(G), where c(G) and pw(G) are cutwidth value and
pathwidth value, respectively. In this paper, by virtue of classifying 4-cutwidth critical
graphs reasonably, we shall attempt to characterize the inner structural features of the
critical graphs with cutwidth-4 in detail.

Let Sn = {1, 2, · · · , n} for an integer n > 0. The labeling of a graph G = (V(G), E(G))
with |V(G)| = n is a bijection π : V(G)→ Sn, viewed as an embedding of G into a path Pn
with vertices in Sn, where consecutive integers are the adjacent vertices. The cutwidth of G
with respect to π is

c(G, π) = max
1≤j<n

|{uv ∈ E(G) : π(u) ≤ π < π(v)}|, (1)

which is also the congestion of the embedding. The cutwidth of G is defined to be

c(G) = min
π

c(G, π), (2)

where the minimum is taken over all labelings π. If k = c(G, π), then π, as well as the
embedding induced by π, is called a k-cutwidth embedding of G. A labeling π attaining
the minimum in (2) is an optimal labeling. For each i with 1 ≤ i ≤ n, let ui = π−1(i) and
Sj = {u1, u2, · · · , uj}. Define ∇π(Sj) = {uiuh ∈ E : i ≤ j < h}, which is called the (edge)
cut at [j, j + 1] with respect to π. Using (2), we have

c(G, π) = max
1≤j<n

|∇π(Sj)|. (3)

A π-max-cut of G is ∇π(Sj), achieving the maximum in (3). For an optimal labeling
π of G with a π-max-cut ∇π(Sj0), if vertex v0 = π−1(j0) and |∇π(Sj)| ≤ k− 2 for every
1 ≤ j ≤ j0 − 1 (or j0 + 1 ≤ j < n), then v0 is called the small-cut vertex with respect to π.

For graph G and integer i > 0, let Di(G) = {v ∈ V(G) : dG(v) = i} in which
dG(v) is the degree of vertex v ∈ V(G). Any vertex in D1(G) is called a pendant vertex
in G. Any edge incident with a vertex in D1(G) is a pendant edge of G, and Ep(G) =
{vivj : vivj ∈ E(G) and vivj is pendant} is a set of all pendant edges of G. For each
v ∈ V(G), let NG(v) = {u ∈ V(G) : uv ∈ E(G)}. If G possesses a vertex v ∈ D2(G) with
NG(v) = {v1, v2} and v1v2 /∈ E(G), then G− v + v1v2, the graph obtained from G− v by
adding a new edge v1v2, is called a series reduction of G. A graph H is a minor of G if H is
obtained by deleting vertices, edges or carrying out series reductions in G and c(H) = c(G).
If H, H′ are subgraphs of G, and X ⊆ E(G), then, as in [1], G[X] is an edge subgraph of
G induced by X, H ∪ H′ = G[E(H) ∪ E(H′)] and H ∪ X = G[E(H) ∪ X]. Specifically, if
X = {e}, then we write G + e instead of G ∪ {e}. Let G and G′ be two disjoint graphs
with u ∈ V(G), v ∈ V(G′); then, to identify u and v, denoted as G ⊕u,v G′, is to replace
u, v with a single vertex z (i.e.,u = v = z) incident to all the edges which were incident
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to u and v, where z is called the identified vertex. Clearly, if G′ = K2 with K2 = u0u1,
then G⊕u,u0 K2 = G⊕u,u0 u0u1 = G + u1 + u0u1. If graph G is 2-connected, then any two
vertices of G lie on a common cycle. A subgraph decomposition S of G is a set of proper
connected subgraphs H1, H2, . . . , Hr of G whose union

⋃r
i=1 Hi is G, where Hi, Hj ∈ S are

not necessarily edge-disjoint. A graph G is homeomorphically minimal if G does not have
any series reductions. Two graphs G and H are homeomorphic if they can both be obtained
from the same graph G by inserting new vertices of degree two into its edges. A graph
G is said to be k-cutwidth critical if G is homeomorphically minimal with c(G) = k, such
that every proper subgraph H of G satisfies c(H) < k. From definition, three properties of
cutwidth below can be obtained immediately.

Lemma 1. For graphs G and H, each of the following holds.

(1) If H is a subgraph of G, then c(H) ≤ c(G).
(2) If H is homeomorphic to G, then c(H) = c(G).
(3) For a cut edge e in G, if V1, V2 are the vertex sets of two components of G− e, then there exists

an optimal labeling f ∗, such that the vertices in each of V1 and V2 are labeled consecutively.

Lemma 2 ([8]). The unique 1-cutwidth critical graph is K2. The only 2-cutwidth critical graphs
are K3 and K1,3. All 3-cutwidth critical graphs are τ1, τ2, τ3, τ4 and τ5 in Figure 1.

s
�
�
��








B
B
BB

J
J
Js s s s s

τ1

u0 ss ### scccs
�
�s BBs ��s BBs ��s BBs

τ2

x

u0 ss ### c
ccs

�
�s BBs

�
�s BBs

�
�s BBsx

y

u0

τ3

ss
@@��s ss sx1

x′1

x2x′2 x3 x′3
τ4

s
@@��s s
\
\
�
�s

x1

x2

x3

x4

τ5

Figure 1. Five 3-cutwidth critical graphs.

Lemma 3 ([11]). For k ≥ 4, a tree T is k-cutwidth critical if and only if T can be decomposed into
three (k− 1)-cutwidth subtrees, each of which is either a (k− 1)-cutwidth critical tree or a sum of
a (k− 1)-cutwidth critical tree and a pendant edge.

Lemma 4 ([12]). Let G be a k-cutwidth graph with a central vertex v0 of dG(v0) ≥ 4 and at
least two cut edges v0v1 and v0v2. If G can be decomposed into three (k − 1)-cutwidth graphs
G1, G2 and G3, then G is k-cutwidth critical if and only if each element of {Gi : 1 ≤ i ≤ 3} is
(k− 1)-cutwidth critical.

The rest of this paper is organized as follows. Section 2 presents some preliminary
results. Section 3 is focused on investigating 4-cutwidth critical graphs with a central
vertex v0. The characterizations of 4-cutwidth critical graphs with a central cycle Cq (q ≥ 3)
are given in Section 4. Five 4-cutwidth critical graphs without a central vertex and a
central cycle are discussed in Section 5. Furthermore, we give short concluding remarks
in Section 6.

2. Preliminary Results

From [1], if S is a decomposition of a graph G, then E(Hi) ∩ E(Hj) = ∅ for arbitrary
Hi, Hj ∈ S (i 6= j), that is to say Hi, Hj are edge-disjoint in G. In this article, for graph G and
an integer r > 1, if G =

⋃r
i=1 Hi and there are at least two subgraphs Hi, Hj such that Hi, Hj

(i 6= j) are edge-joint, then {Hi : 1 ≤ i ≤ r} is also called a decomposition of G, also denoted
by S . For example, {τ4[{x1x′1, x1x2, x1x3}], τ4[{x2x′2, x2x1, x2x3}], τ4[{x3x′3, x3x2, x3x1}]}
is an edge-joint decomposition of τ4, each of which is K1,3 (see τ4 in Figure 1). Let
Pn = u1u2...un be a path with n vertices, such that for 1 ≤ i < n, ui and ui+1 are ad-
jacent vertices in Pn. By [9], K1,2k−1 is k-cutwidth critical, so we let dG(v) ≤ 2k − 2 for
each v ∈ V(G). For G and G′ which are homeomorphic, when no confusion occurs, if G is
k-cutwidth critical after the series reductions are carried out, then we shall say that G′ is
also k-cutwidth critical. The following is immediate from Lemma 1:
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if v ∈ V(G), then c(G− v) ≤ c(G). (4)

Definition 1. (i) For graph G and integer r > 0, let v ∈ V(G) with dG(v) > r. For
v1, v2, . . . , vr ∈ NG(v), define G(v; v1, v2, . . . , vr) to be the component of G−{vv1, vv2, . . .,
vvr} that contains v.

(ii) Let G1, G2 be two disjoint graphs with u ∈ V(G1) and v ∈ V(G2). To identify u and v,
denoted as G1 ⊕u,v G2, is to replace u, v by a single vertex z (i.e., u = v = z) incident to all
the edges which were incident to u and v, where z is called the identified vertex.

(iii) Let G1, G2 and G3 be three disjoint graphs, D3(K1,3) = {u0} and D1(K1,3) = {u1, u2, u3},
vj ∈ V(Gj) for each j ∈ S3. Define K1,3 ◦ (G1, G2, G3) as the graph obtained from the
disjoint union G1, G2, G3 and K1,3 by identifying uj with vj (again denoted as vj) for each
j ∈ S3 (see Figure 3d in Section 3.1 below).

(iv) Let G1, G2 and G3 be three disjoint graphs, P3 = u1u2u3 with dP3(u2) = 2 and vj ∈ V(Gj)
for each j ∈ S3. Define P3 ◦ (G1, G2, G3) as the graph obtained from the disjoint union
G1, G2, G3 and P3 by identifying uj with vj (again denoted as vj) for each j ∈ S3.

(v) For i ∈ {1, 2, . . . , t} with t ≥ 3, let Gi be a graph with D1(Gi) 6= ∅ and zi ∈ D1(Gi).
Define G = ⊕z0(G1, G2, . . . , Gt) to be a graph obtained from disjoint union of G1, G2, . . . , Gt
by identifying z1, z2, . . . , zt into a single vertex z0 in G. As z0 = zi in Gi, z0 is viewed as the
vertex zi in Gi.

(vi) If |V(G)| ≥ 3, then defineM(G) = {G− uv : uv ∈ E(G) and uv is not a cut edge} ∪
{G− v : v ∈ D1(G)} to be the family of all proper maximal subgraphs of G.

Definition 2. Suppose that vertex v0 ∈ V(G) with NG(v0) = {v1, v2, · · · , vp}, v0v1, v0v2 are
two cut edges of G, G′1 = G(v0; v2, v3, · · · , vp) − v0, G′2 = G(v0; v1, v2) and
G′3 = G(v0; v1, v3, · · · , vp) − v0. For i ∈ S3, let πi : V(G′i) → S |V(G′i )|

be an optimal la-
beling of G′i , and let the labeling π : V(G)→ Sn of G be as follows: for v ∈ V(G),

π(v) =


π1(v) if v ∈ V(G′1),
π2(v) + |V(G′1)| if v ∈ V(G′2),
π3(v) + |V(G′1)|+ |V(G′2)| if v ∈ V(G′3).

(5)

Then, the labeling π is called a labeling by the order (π1, π2, π3) or (V(G′1), V(G′2),V(G′3)).

Theorem 1 ([12]). For any v ∈ D≥3(G), if there always are two vertices v1, v2 in NG(v) such
that vv1, vv2 are cut edges in G, then c(G) ≤ k if and only if c(G(v; v1, v2)) ≤ k− 1.

Corollary 1. For graph G, if there is a vertex v ∈ D≥3(G) such that c(G(v; vi, vj)) ≥ k− 1 holds
for any vi, vj ∈ NG(v), then c(G) ≥ k, where vvi, vvj are both cut edges in G.

Lemma 5 ([10]). Let graph G be k-cutwidth critical and K2 = u0u1. Then c(G⊕v0,u0 K2) = k
for v0 ∈ V(G).

Theorem 2 ([12]). With the notation of Definition 1(iii), let at least one of {G1, G2, G3}, say G2,
be (k− 1)-cutwidth critical with D1(G2) 6= ∅. Then c(K1,3 ◦ (G1, G2, G3)) = k.

Corollary 2 ([12]). With the notation of Definition 1(iii), for each j ∈ S3, if Gj is (k− 1)-cutwidth
critical with vj ∈ D1(Gj), then K1,3 ◦ (G1, G2, G3) is k-cutwidth critical.

Theorem 3. With notation of Definition 1(iv), if c(Gj) = k − 1 for each j ∈ S3, then c(P3 ◦
(G1, G2, G3)) = k.

Proof. Let G = P3 ◦ (G1, G2, G3). If dG(vj) = 2 for j = 1 or 3 then the series reductions
are first carried out without effecting c(G) = k. As G− {v2v1, v2v3} has three components
G1, G2 and G3 with cutwidth k− 1, similar to that of (5), an optimal labeling π : V(G)→ Sn
obtained by the order (V(G1), V(G2), V(G3)) satisfies c(G, π) ≤ (k− 1) + 1 = k. Therefore,
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c(G) ≤ k by (2). Additionally, it is not hard to verify that c(G) ≥ k by Corollary 1;
this is because c(G(v2; vi, vj)) = k − 1 for any vi, vj ∈ NG(v2). Hence c(G) = k, i.e.,
c(P3 ◦ (G1, G2, G3)) = k.

Corollary 3. With notation of Definition 1 (iv), if the following hold:

(1) G1, G3 are 2-connected;
(2) vj is a small-cut vertex corresponding to an optimal labeling πj of Gj for each j ∈ S3;
(3) G1, G2, G3 are (k− 1)-cutwidth critical, then P3 ◦ (G1, G2, G3) is k-cutwidth critical, where

G1, G2, G3 are not necessarily distinct.

Proof. Let G = P3 ◦ (G1, G2, G3). Since NG(v2) = {v1, v3}, G(v1; v2) = G1, G(v2; v1, v3) =
G2 and G(v3; v2) = G3. First, c(G) = k by Theorem 3. Second, we show c(G′) ≤ k − 1
for any G′ ∈M(G), that is, G is k-cutwidth critical. Because any G′ can be obtained by
deleting a pendant edge xy or an non-pendant edge xy ∈ E(Ct) in G, xy /∈ {v2v1, v2v3},
where Ct is a cycle with length t ≥ 3. There are two cases to consider: (1) xy ∈ E(G2);
(2) xy ∈ E(G1) or E(G3). For Case (1), since G2 is (k − 1)-cutwidth critical, there is an
optimal labeling π′2 such that c(G2− xy, π′2) ≤ k− 2. Now, by Lemma 5, let π′j be a labeling
of Gj such that c(Gj ⊕uj ,vj vjv2) = k− 1 for j = 1, 3. Thus, a labeling π of G by the order
(π′1, π′2, π′3) is obtained with c(G− xy, π) ≤ k− 1 implying c(G− xy) ≤ k− 1. For Case
(2), let xy ∈ E(G3). By assumption, c(G3 − xy) ≤ k − 2. Since vj is a small-cut vertex
corresponding to an optimal labeling πj of Gj for each j ∈ S3, a labeling π of G by the order
(π2, π3, π1) is obtained with c(G− xy, π) ≤ k− 1 implying c(G− xy) ≤ k− 1. Likewise, if
xy ∈ E(G1) then c(G− xy) ≤ k− 1 also. To sum up, G is k-cutwidth critical.

Lemma 6. Each graph in Figure 2 is 4-cutwidth critical.s!!! aaas s s
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Figure 2. Eight special 4-cutwidth critical graphs.

Proof. Two steps can be used to finish the proof. For each Mi (1 ≤ i ≤ 8), Step 1 is used
to show c(Mi) = 4. This can be accomplished by two operations: (1) c(Mi, π) ≥ 4 for
any labeling π of Mi, which implies c(Mi) ≥ 4; (2) Mi has an optimal labeling π0 with
c(Mi, π0) = 4. In Step 2, for any M′i ∈ M(Mi), c(M′i) ≤ 3 must be shown. Since operation
of each of the two steps is easy, we omitted it here.

Let v be a cut-vertex with dG(v) ≥ 3 in G and G1, G2, . . . , Gq be q connected com-
ponents of G − v. Then, G[V(Gi) ∪ {v}] (1 ≤ i ≤ q), denoted by Hi, is called the ith
v-component of G − v. A vertex v0 ∈ V(G) is called the central vertex of a k-cutwidth
graph G if v0 is a cut-vertex in G, such that all v0-components of G− v0 can form a decom-
position S of G in which each element has equal cutwidth ρ with ρ < k. For example, for
graph τ1 in Figure 1, Hi = K2 (1 ≤ i ≤ 5) with edge v0vi is the ith v0-component of τ1 − v0;
we can see that {H1 ∪ H2 ∪ H3, H1 ∪ H2 ∪ H4, H1 ∪ H2 ∪ H5} is a decomposition of τ1, each
of which is a 2-cutwidth critical tree K1,3, so v0 is the central vertex of τ1. Likewise, each of
{τ2, τ3} has a decomposition of equal cutwidth-2 and a central vertex v0 also, respectively.

For a cycle Cq = x1x2 . . . xqx1 of G with q ≥ 3 and dG(xi) ≥ 3 for 1 ≤ i ≤ q, let V(Cq)
be a vertex-cut set of G. If E(Cq) is also an edge-cut set of G and Gi is the ith connected
component of G− E(Cq) leading from xi, then G[E(Gi) ∪ Ẽi], denoted by Hi, is called the
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ith Cq-component leading from xi of G− E(Cq), where Ẽi ⊆ E(Cq) and at least an Ẽi 6= ∅.
A cycle Cq with q ≥ 3 is called a central cycle of a k-cutwidth graph G if E(Cq) is an edge-cut
set, such that one of the following is a decomposition S of G, each element of which has
equal cutwidth ρ with ρ < k,

(1) {Hi : 1 ≤ i ≤ q}, or
(2) {H′i : 1 ≤ i < q} in which H′i may be one of {Hi, Hi−1 ∪ Hi ∪ Hi+1} with

H0 = Hq, Hq+1 = H1, and there exists at least H′i 6= Hi, or
(3) {H′′i : 1 ≤ i < q}, each of which is either Hi or Hi−1[E′] ∪ Hi ∪ Hi+1[E′′] with

H0 = Hq, Hq+1 = H1, and there exists at least H′′i 6= Hi, where Hi−1[E′] ⊂ Hi−1 and
Hi+1[E′′] ⊂ Hi+1.

For example, in Figure 1, τ4 has a cycle C3 = x1x2x3x1, and τ4 − E(C3) has three
components G1, G2, G3, each of which equals K2. Let Ẽ1 = {x1x2, x1x3}, Ẽ2 = {x2x1, x2x3}
and Ẽ3 = {x3x1, x3x2}, and let Hi = G[E(Gi) ∪ Ẽi] for 1 ≤ i ≤ 3. Then, {H1, H2, H3}
is a decomposition S of τ4, in which each member is a 2-cutwidth critical subgraph
K1,3, and C3 is the central cycle in τ4. For Case (3), we take M5 with a central cycle
C3 = x1x2x3x1 in Figure 2 as an example. M5 − E(C3) also has three connected compo-
nents G1, G2, G3, which are K1,3, K1,3, C3 and three C3-components H1 = G1 + x1x2 + x1x3
with dG1(x′1) = dG1(x′′1 ) = 1, H2 = G2 + x2x1 + x2x3 with dG2(x′2) = dG2(x′′2 ) = 1 and
H3 = G3 + x3x1 + x3x2, respectively. Let E′ = {x1x′1, x1x′′1 }, E′′ = {x2x′2, x2x′′2 }, then
H1[E′] ⊂ H1, H2[E′′] ⊂ H2 and {H1, H2, H1[E′]∪ H3 ∪ H2[E′′]} is a decomposition of equal
cutwidth 3 of M5, each member of which is also 3-cutwidth critical.

In the case that G is 2-connected and E(Cq) is not an edge-cut set of G, suppose
that G − V(Cq) has q connected components G1, G2, . . . , Gq, with V(Gi) 6= ∅ for each
1 ≤ i ≤ q, and let G[V(Gi) ∪ {xi, xi+1}] be the ith 2-connected subgraph that contains edge
xixi+1 ∈ E(Cq). If {G[V(Cq) ∪V(Gi)] : 1 ≤ i ≤ q} is a subgraph decomposition of equal
cutwidth ρ ≤ k− 1, then Cq is also called the central cycle of G. For example, let G = M8
with C3 = x1x2x3x1 in Figure 2. Clearly, G− {x1, x2, x3} has three components y1, y2, y3,
and {G[{x1, x2, x3, yi}] : 1 ≤ i ≤ 3} = {τ5, τ5, τ5} is an edge-joint subgraph decomposition
of equal cutwidth 3 of G. Hence, C3 = x1x2x3x1 is the central cycle of M8.

From Lemma 2, we have

Theorem 4. For a 2-cutwidth critical graph G ∈ {K1,3, C3}, one of the following holds:

(1) G has a central vertex v0, and v0-components of G− v0 constitute a decomposition S with
|S|= 3, each of which is K2 with cutwidth 1;

(2) G is a cycle C3, whose three edges constitute a decomposition S with |S|= 3, each element of
which is K2 with cutwidth 1.

Theorem 5. For a 3-cutwidth critical graph G ∈ {τi : 1 ≤ i ≤ 5}, one of the following holds:

(1) has a central vertex v0, and v0-components of G − v0 constitute a decomposition S with
|S|= 3, each of which equals K1,3 or C3 with cutwidth 2; or

(2) G has a central cycle C3 = x1x2x3x1 with dG(xi) = 3 for xi ∈ V(C3), and C3-components
of G− E(C3) constitute a decomposition S with |S|= 3, each member of which equals K1,3
with cutwidth 2; or

(3) G equals C4 + x1x3 or C4 + x2x4, where C4 = x1x2x3x4x1 is a cycle of length 4.

3. 4-Cutwidth Critical Graphs with a Central Vertex

In this section, we shall verify the decomposability of the 4-cutwidth critical graphs
with a central vertex. Since a k-cutwidth critical graph G is homeomorphically minimal, for
the central cycle Cq (q ≥ 3) of G, we can let

dG(vi) ≥ 3 for every vi ∈ V(Cq). (6)
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3.1. 4-Cutwidth Critical Trees with a Central Vertex

Definition 3. For a cut-vertex v0 with NT(v0) = {vi : 1 ≤ i ≤ q and q ≥ 4} in a tree T, let
Hi be a v0-component of T − v0 with c(H1) ≥ c(H2) ≥ ... ≥ c(Hq) and c(

⋃q
i=4 Hi) < k− 1,

then define

Ti =


K1,2k−3 if i < 3 and Hi = K1,2k−3,
Hi ∪ (

⋃q
i=4 Hi) if i < 3 and Hi 6= K1,2k−3,

H3 ∪ (
⋃q

i=4 Hi) if i = 3.
(7)

If c(Ti) = k− 1 for 1 ≤ i ≤ 3, then {T1, T2, T3} is called a subtree decomposition of equal cutwidth
k− 1 of T.

In Definition 3, for a decomposition {T1, T2, T3} of equal cutwidth k− 1 of a k-cutwidth
critical tree T, E(Ti1) ∩ E(Ti2) = E(

⋃q
i=4 Hi) (1 ≤ i1 6= i2 ≤ 3). If E(Ti1) ∩ E(Ti2) 6= ∅, then

{T1, T2, T3} is edge-joint; Otherwise {T1, T2, T3} is edge-disjoint.
There are eighteen 4-cutwidth critical trees in total by [9], each of which can be

decomposed into three 3-cutwidth subtrees by Lemma 3. In fact, among these eighteen
4-cutwidth critical trees, each possesses one of the structures listed in Figure 3, in which
Hi ∪ (

⋃q
i=4 Hi) is either one of τ1 and τ2 or homeomorphic to τ2 for i = 1, 2, 3 in Figure 3a.

Hi ∪ (
⋃q

i=4 Hi) is either τ2 or homeomorphic to τ2 for i = 2, 3 in Figure 3b, Hi ∪ (
⋃q

i=4 Hi)
is either τ2 or homeomorphic to τ2 for i = 3 in Figure 3c, either Hi or Hi − v0vi with
vi ∈ NHi (v0) is in {τ1, τ2} for i = 1, 2, 3 in Figure 3d. Thus, based on this, M1 (see Figure 2)
is 4-cutwidth critical, and again we have the following:

Theorem 6. For a 4-cutwidth critical tree T, one of the following holds:

(1) T possesses a configuration K1,3 ◦ (T1, T2, T3) which can be decomposed into three edge-
disjoint 3-cutwidth trees T1, T2 and T3 (not necessarily distinct), and the 3-degree vertex of
K1,3 is the central vertex of T, where Ti is a v0-component of T− v0 with either Ti ∈ {τ1, τ2}
or Ti − v0 ∈ {τ1, τ2} for each 1 ≤ i ≤ 3 (see Figure 3d); or

(2) T is a tree with a central vertex v0 with dT(v0) ≥ 4 and with an edge-joint decomposition
{T1, T2, T3} of equal cutwidth 3, where T1, T2 and T3 (not necessarily distinct), which are
defined by (7), are either in {τ1, τ2} or homeomorphic to τ2, and at least one of them, say T3,
is not τ1 (see Figure 3a–c, respectively).
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Figure 3. Four structures of 4-cutwidth critical trees.

3.2. 4-Cutwidth Critical Nontrees with a Central Vertex

We shall focus primarily on the structures of 4-cutwidth critical non-trees with a central
vertex in this subsection.

Suppose now that G1, G2 and G3 (not necessarily distinct) are mutually disjoint graphs,
and at least one of them is not a tree. Let K1,3 ◦ (G′1, G′2, G′3) be a graph obtained from the
disjoint graphs G′1, G′2, G′3 and K1,3 by identifying ui with vi (again denoted as vi) for i ∈ S3,
where
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G′i =
{

Gi if vi /∈ V(Ep(Gi)) \ D1(Gi),
Gi − v′i if vi ∈ V(Ep(Gi)) \ D1(Gi) and viv′i ∈ E(Ep(Gi)).

(8)

ui is a pendant vertex of K1,3 and vi ∈ V(Gi) for 1 ≤ i ≤ 3. Obviously, if c(G1) = c(G2) =
c(G3) and D3(K1,3) = {u0} then u0 is the central vertex of K1,3 ◦ (G′1, G′2, G′3).

Lemma 7. Suppose that Gi is (k− 1)-cutwidth critical for 1 ≤ i ≤ 3, then K1,3 ◦ (G′1, G′2, G′3) is
a k-cutwidt critical graph, where G1, G2, G3 are not necessarily distinct.

Proof. Let G = K1,3 ◦ (G′1, G′2, G′3). If there exists at least a vertex vi ∈ NG(u0) such that
dG(vi) = 2, then the series reductions can be implemented first. Two cases need to be
considered as follows.
Case 1. For i ∈ S3, vi /∈ V(Ep(Gi)) \ D1(Gi).

By (8), G′i = Gi for i ∈ S3. So c(G′i) = c(Gi) = k − 1 by assumption, and
c(G′2 + u0v2) = k− 1 by Lemma 5. Now, let π1, π2, π3 be the labelings such that c(G′1, π1) =
k− 1, c(G′2 + u0v2, π2) = k− 1 and c(G′3, π3) = k− 1, respectively. Then, a labeling π of G by
the order (π1, π2, π3) is obtained, and c(G, π) = max{c(G′1, π1), c(G′2 +u0v2, π2), c(G′3, π3)}
+1 = (k− 1) + 1 = k, implying c(G) ≤ k. Since u0v1, u0v2 and u0v3 are cut-edges in G,
c(u0; vi, vj) ≥ k− 1 for any vi, vj ∈ {v1, v2, v3}, leading to c(G) ≥ k by Corollary 1. Hence
c(G) = k.

On the other hand, any G′ ∈ M(G) can be obtained by deleting a vertex y with
degree one of a pendant edge xy /∈ E(Ct) or a nonpendant edge xy ∈ E(Ct) in G, so
xy 6= u0v1, u0v2 or u0v3, where Ct = x1x2 . . . xtx1 is a cycle with length t ≥ 3 in G. Without
loss of generality, let xy ∈ E(G′2). If xy is pendant with y ∈ D1(G), then by the criticality
of G′2, c(G′2 − y) ≤ k− 2 with a labeling π′2 such that c(G′2 − y, π′2) ≤ k− 2. Since G′1 and
G′3 are (k− 1)-cutwidth critical, by (6) in Lemma 5, two labelings π′1, π′3 can be obtained
such that c(G′1 ⊕u1,v1 v1u0, π′1) = k− 1 with π′1(u0) = 1 and c(G′3 ⊕u3,v3 v3u0, π′1) = k− 1
with f ′3(u0) = |V(G′3)|+ 1, respectively. Now, define π : V(G′)→ {1, 2, . . . , |V(G′)| − 1}
to be a labeling of G′ by the order (π′1, π′2, π′3), then c(G′, π) ≤ (k− 2) + 1 = k− 1, i.e.,
c(G′) ≤ k− 1, meaning that G is k-cutwidth critical. Likewise, if xy is not pendant with
xy ∈ E(Ct), then c(G′2 − xy) ≤ k− 2, and a labeling π : V(G′) → {1, 2, . . . , |V(G′)|} by
the order (G′1 ⊕u1,v1 v1u0, G′2 − xy, G′3 ⊕u3,v3 v3u0) is also obtained, under which c(G′, π) ≤
(k− 2) + 1 = k− 1, i.e., c(G′) ≤ k− 1, meaning that G is also k-cutwidth critical. The cases
of xy ∈ E(G′1) or E(G′3) are the same as that of xy ∈ E(G′2), omitted here.
Case 2. There are at least a vi0 , such that vi0 ∈ V(Ep(Gi0)) \ D1(Gi0) (1 ≤ i0 ≤ 3).

Three subcases need to be considered: (1) there is unique vi (say v2), such that
v2 ∈ V(Ep(G2)) \ D1(G2); (2) there are two v′is (say v1, v3), such that v1 ∈ V(Ep(G1)) \
D1(G1) and v3 ∈ V(Ep(G3)) \ D1(G3); (3) vi ∈ V(Ep(Gi)) \ D1(Gi) for each 1 ≤ i ≤ 3. For
Subcase (1), since v2 ∈ V(Ep(G2)) \ D1(G2), G′2 = G2 − v2v′2 with v′2 ∈ D1(G2). In this
case, G′2 ⊕u2,v2 u2u0 = G2, i.e., G(u0; v1, v3) = G2, G′1 = G1 and G′3 = G3 by (9). Similarly,
for Subcase (2), G′1 ⊕u1,v1 u1u0 = G1, G′2 = G2 and G′3 ⊕u3,v3 u3u0 = G3; for Subcase
(3), G′1 ⊕u1,v1 u1u0 = G1, G′2 ⊕u2,v2 u2u0 = G2 and G′3 ⊕u3,v3 u3u0 = G3. The remaining
argument of any Subcase (j) (j = 1, 2, 3) is similar to that of Case 1, omitted here. To sum
up, G is k-cutwidth critical.

Corollary 4. Suppose that Gi ∈ {τi : 1 ≤ i ≤ 5} for 1 ≤ i ≤ 3, then K1,3 ◦ (G′1, G′2, G′3) is a 4-
cutwidt critical graph, where at least a Gi ∈ {τ3, τ4, τ5}, and G1, G2, G3 are not necessarily distinct.

Corollary 5. Suppose that Gi ∈ {τi : 1 ≤ i ≤ 4} for 1 ≤ i ≤ 3, then ⊕u0(G1, G2, G3) is a
4-cutwidt critical graph, where at least a Gi ∈ {τ3, τ4}, and G1, G2, G3 are not necessarily distinct.

Lemma 8. Let P3 = u1u2u3, Gi be 3-cutwidth critical with vi ∈ V(Gi) for 1 ≤ i ≤ 3 and satisfy
the following:

(i) each non cut-edge of G2 may be subdivided once, and v2 may possibly be the subdivision vertex;
(ii) G2 6= τ1;
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(iii) if G2 ∈ {τ2, τ3}, then v2 is not either the central vertex or the pendant vertex of it;
(iv) Gi /∈ {τ2, τ3} for i = 1 or 3 if G2 ∈ {τ2, τ3}.
Then, P3 ◦ (G′1, G2, G′3) is a 4-cutwidt critical graph, where G1, G2, G3 are not necessarily distinct,
and at least one of them is not in {τ1, τ2}.

Proof. Let G = P3 ◦ (G′1, G2, G′3). By assumption, for i = 1, 3, G′i = Gi with vi /∈
V(Ep(Gi)) \ D1(Gi) or Gi − v′i with viv′i ∈ E(Ep(Gi)) and v′i ∈ D1(Gi). So, Hi = Gi or
Gi + viv2 for i = 1, 3 and Hi = G2 for i = 2. Thus, with an argument similar to that of
Lemma 7, G is 4-cutwidth critical.

Suppose that G1 ∈ {τ2, τ3} with the central vertex u1(=v0) and two cut edge u1v1, u1v2,
such that any u1-component of G1 − u1 is 2-cutwidth critical (see τ1 − τ5 in Figure 1). For any
3-cutwidth nontree graph G2 ∈ {τ3, τ4, τ5} with cycle C3 = x1x2x3x1, if there is a vertex (say
x1) in C3 such that (1) x1 6= u2 when G2 = τ3 with the central vertex u2(=v0); or (2) if F1 is
a component of G2 − E(C3) leading from x1, then either F1 = x1x′1 with dG2(x′1) = 1 when
G2 = τ4 or F1 = x1 only when G2 = τ5; or (3) G1 and G2 are not necessarily distinct; or (4) if
G1 = τ3 and G2 = τ5, then dG2(x1) = 2. Only then, by (8), do we have

Lemma 9. Graph G1 ⊕u1,x1 G′2 is a 4-cutwidth critical graph.

Proof. Let G = G1⊕u1,x1 G′2 with optimal labeling π, and π1 be a sublabeling of π restricted
on G1. By assumption, G1 − u1 has three u1-components H1, H2 and H3, each of which is
either K1,3 or C3 by Theorem 3. Suppose that π1 is obtained by the order (π′1, π′2, π′3) with
max{π′1(v) : v ∈ V(H1 − u1)} < π′2(v) < min{π′3(v) : v ∈ V(H3 − u1)} for v ∈ V(H2) if
π′1, π′2, π′3 are optimal labelings of H1 − u1, H2 and H3 − u1, respectively. Without loss of
generality, let H1 = K1,3 with cutwidth 2. Since G2 is 3-cuwidth critical and x1 ∈ V(C3) in
G2, whether G2 = τ4 or G2 = τi with i = 3, 5, if ∇π(Sj) is a π-max-cut of G, then j < π(u1)
and |∇π(Sj)| = 4. Hence, c(G) ≤ 4. On the other hand, assuming that u1v1, u1v2 are cut
edges in G, π(u1; v1, v2) = K1,3 ⊕u1,x1 G′2 when G1 = τ2 or C3 ⊕u1,x1 G′2 when G1 = τ3, so
c(π(u1; v1, v2)) ≥ 3, resulting in c(G) ≥ 4 by Corollary 1. Thus, c(G) = 4.

We now verify that G is 4-cutwidth critical. For any edge e ∈ E(G), e is in either
E(G1) or E(G2). Since G1 ∈ {τ2, τ3} which is 3-cutwidth critical, if e ∈ E(G1) then we can
always find a labeling π̄1 of G1 − e such that c(G1 − e) = 3 and π̄1(u1) = |V(G1)|. For
G2 ∈ {τ3, τ4, τ5}, we can always find an optimal labeling π̄2 of G′2 such that π̄2(x1) = 1.
Thus, a labeling π̄ of G− e by the order (π̄1, π̄2) is obtained with c(G− e, π̄) = 3 leading to
c(G− e) ≤ 3. Similarly, if e ∈ E(G2) then c(G− e) ≤ 3 also. This completes the proof.

From Lemma 9, we can see that if a critical non-tree G with cutwidth 4 can be de-
composed into two 3-cutwidth critical subgraphs G1 ∈ {τ2, τ3} and G2 ∈ {τ3, τ4, τ5}, then
(1) G has a central vertex u1; (2) u1 is also the central vertex of at least one of G1 and
G2. For example, let K(j)

1,3 with a pendant vertex y(j) (1 ≤ j ≤ 4) be the copy of K1,3

with a pendant vertex y, and y(j) be the copy of y, y(0) be a vertex of a 3-cycle C′3. Then,

graph ⊕y0(K
(1)
1,3 , . . . , K(4)

1,3 , C′3), obtained by identifying y(0), y(1), . . . , y(4) into a vertex y0

(i.e., y0 = y(0) = ... = y(4)), is a 4-cutwidth critical graph with the central vertex y0, and
this graph can be decomposed into two 3-cutwidth critical subgraphs ⊕y0(K

(1)
1,3 , K(2)

1,3 , K(3)
1,3 )

(= τ2) with the central vertex y0, and ⊕y0(K
(3)
1,3 , K(4)

1,3 , C′3) (= τ3) with the central vertex y0;
(3) there are at least two cut edges u1v1, u1v2.

Lemma 10. Let G be a 4-cutwidth critical nontree graph with the central vertex v0 and at least
two cut edges v0v1 and v0v2. If G can be decomposed into two 3-cutwidth graphs G1, G2 (not
necessarily distinct), then the following hold:

(1) G1, G2 are in {τi : 2 ≤ i ≤ 5};
(2) at least one of G1 and G2, say G1, is in {τ2, τ3}, while G2 6= τ2;
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(3) v0 is the central vertex of G1, but v0 is only a vertex of any 3-cycle C3 of G2.

Proof. Since G is a non-tree graph, we do not consider the cases that G1 and G2 are both τ1
or τ2. We first show that G1, G2 are in {τi : 2 ≤ i ≤ 5} by contradiction. Suppose that there
is some Gi (say G2) such that c(G2) = 3 but G2 is not 3-cutwidth critical, then there is at
least a pendant edge xy ∈ E(G2) with y ∈ D1(G) or a non-pendant edge xy ∈ E(Ct) such
that c(G2 − y) = 3 or c(G2 − xy) = 3, respectively, where Ct = x1x2 . . . xtx1 is a cycle with
length t ≥ 3. For the former, because c(G1) = 3 by assumption, c(G− y) = 4 by Lemma 9.
Likewise, for the latter, c(G− xy) = 4 also by Lemma 9. All are contrary to the criticality of
G. Hence G1, G2 are both in {τi : 2 ≤ i ≤ 5}.

Next, by the assumption that v0 is the central vertex and v0v1 and v0v2 are both cut
edges in G, we claim that at least one of G1 and G2 (say G1) must be τ2 or τ3. This is because
otherwise, there is at most a vertex v1 ∈ NG(v0) such that v0v1 is a cut edge in G if G1 and
G2 are both in {τ4, τ5}, which is a contradiction. So (2) holds and G1 ∈ {τ2, τ3}.

Third, assume that v0 is neither the central vertex of G1 nor a vertex of a 3-cycle C3
of G2 if G2 = τ3. Without loss of generality, let G1 = τ2. Then G2 is either τ3 or one of
{τ4, τ5}. For G2 = τ3, by assumption, v0 is not also the central vertex of G2. Thus, except
three vertices of 3-cycle C3 of G2, three cases need to be considered: (a) v0 is not only a
subdivision vertex of some non-pendant edge in G1 but also a subdivision vertex of some
non-pendant cut edge in G2; (b) v0 is a subdivision vertex of some non-pendant edge in
G1, but v0 is a nonpendent vertex of G2; (c) v0 is not only a non-pendant vertex of G1 but
also a non-pendant vertex of G2. For any case of Cases (a)–(c), we can easily verify that
c(G) = 3 by Lemma 1(3) and Theorem 5, contrary to the assumption of c(G) = 4. Likewise,
for G2 ∈ {τ4, τ5}, there are only two cases to consider: (a)′ v0 is a subdivision vertex of
some non-pendant edge in G1, but v0 is a arbitrary vertex of G2; (b)′ v0 is a nonpendant
vertex of G1, but v0 is a arbitrary vertex of G2. Furthermore, in any case, c(G) = 3, also a
contradiction. This completes the proof.

For a cut-vertex v0 ∈ D≥4(G) graph G and all v0-components Hi = G[V(Gi) ∪ {v0}]
(1 ≤ i ≤ m) of G− v0, we define a decomposition {Ḡ1, Ḡ2, Ḡ3} each of which has cutwidth
3 below. Let E0 be an edge subset taken from Ḡ3 such that the cutwidth of the connected
subgraph Hi ∪ G[E0] is 3 if c(Hi) < 3, for 1 ≤ i < 3. Then, we obtain the following:

Definition 4. For a cut-vertex v0 ∈ D≥4(G) of G and the v0-component Hi (1 ≤ i ≤ q) of
G − v0, min{c(Hi) : 1 ≤ i ≤ 3} ≥ max{c(Hi) : 4 ≤ i ≤ q} and the cutwidth of

⋃q
i=3 Hi is

three. For 1 ≤ i ≤ 3, define

Ḡi =


Hi if i < 3 and c(Hi) = 3,
Hi ∪ G[E0] if i < 3 and c(Hi) < 3,⋃q

i=3 Hi if i = 3.
(9)

If c(Ḡi) = 3 for i = 1, 2, then {Ḡ1, Ḡ2, Ḡ3} is called a decomposition of equal cutwidth 3 of G, and
G is called a graph with a central vertex v0, where E0 is an edge subset taken from Ḡ3 such that
c(Hi ∪ G[E0]) = 3 if c(Hi) < 3 for i = 1, 2

Lemma 11. Let G be a 4-cutwidth critical graph with the central vertex v0 and at least two cut
edges v0v1 and v0v2. If G can be decomposed into three 3-cutwidth graphs Ḡ1, Ḡ2 and Ḡ3, then G
is 4-cutwidth critical if and only if each of {Ḡi : 1 ≤ i ≤ 3} is either a 3-cutwidth critical graph
or homeomorphic to a 3-cutwidth critical nontree graph, and v0 is not the central vertex of Ḡi if
Ḡi ∈ {τ1, τ2, τ3}.

Proof. The proof is straightforward using Lemma 4, omitted here.

Lemma 12. For a 4-cutwidth graph G with a central vertex v0 ∈ V(G), if G − v0 has at least
three v0-component H′i s and each Hi is 2-connected in G, then G is 4-cutwidth critical if and only
if G = M2 (see M2 in Figure 2).
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Proof. Sufficiency: this is obvious using Lemma 6.
Necessity: By assumption, for any vertex vi ∈ NG(v0), vi ∈ V(Cti ), where Cti (ti ≥ 3)

is a cycle of Hi and V(Cti ) ∩V(Ctj) = {v0} for any i 6= j only. Since C3 is a minor of any
Cti and c(G) = 4, M2 with cutwidth 4 is a minor. Hence G = M2 by the criticality of G.

Lemma 13. For a 4-cutwidth critical non-tree graph G with a central vertex v0 ∈ V(G), G has a
subgraph decomposition {Ḡ1, Ḡ2, Ḡ3}, in which Ḡi is 2-cutwidth critical for i = 1, one of whose
pendant vertices is v0, and 3-cutwidth critical for i = 2, 3 if and only if G is one of graphs M9–M17
in Figure 4, where Ḡ1 = K1,3, Ḡi ∈ {τ3, τ4, τ5} for i = 2, 3 with τ4 = H2 + v0x (see Figure 4).
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Figure 4. Nine special 4-cutwidth critical graphs.

Proof. Similar to that of Lemma 6, we can show that graphs M9–M17 in Figure 4 are all
4-cutwidth critical.

Sufficiency: For graph M9, let Ḡ1 = K1,3, Ḡ2 = H2 + v0x = τ4 and Ḡ3 = H3 + v0x = τ4,
{Ḡ1, Ḡ2, Ḡ3} is the subgraph decomposition desired. Likewise, for graphs M10–M12, let
Ḡ1 = K1,3, Ḡ2 = H2 + v0x = τ4, Ḡ3 = H3 ∈ {τ3, τ5} with dτ3(v0) = 2 and dτ5(v0) = 2
or 3, respectively; for graphs M13–M17, let Ḡ1 = K1,3, Ḡ2 = H2 ∈ {τ3, τ5} with dτ3(v0) =
dτ5(v0) = 2, Ḡ3 = H3 ∈ {τ3, τ5} with dτ3(v0) = 2 and dτ5(v0) = 2 or 3, respectively,
{Ḡ1, Ḡ2, Ḡ3} is the subgraph decomposition desired.

Necessity: Suppose by contradiction that G /∈ {Mi : 9 ≤ i ≤ 17}. By assumption,
Ḡi ∈ {K1,3, C3} for i = 1, and {τi : 1 ≤ i ≤ 5} for i = 2, 3. Three cases, which are at
least a Ḡi = τ1 for i = 2, 3, Ḡ2 = Ḡ3 = τ2 and Ḡ2 = Ḡ3 = τ5 with dḠ2

(v0) = dḠ3
(v0) = 3,

respectively, can be first excluded; this is because that G either is a tree or is not 4-cutwidth
critical in these cases, which is a contradiction. Thus, noting that 3-cutwidth critical
subgraphs Ḡ2, Ḡ3 are symmetrical in G and c(G) = 4 is sufficient to verify two cases:

(1) Ḡ1 = K1,3, one of whose three pendant vertices is v0, Ḡ2 ∈ {τ2, τ3} and Ḡ3 ∈
{τ3, τ4, τ5};

(2) Ḡ1 = C3, one of whose three 2-degree vertices is v0, Ḡ2 ∈ {τ2, τ3} and Ḡ3 ∈ {τ3, τ4, τ5}.
By assumption, we do not consider the following five subcases contained in cases (1)

and (2), respectively:

(a1) dG(v0) ≥ 7 because of c(K1,7) = 4;
(a2) M2 is a subgraph of G because of c(M2) = 4;
(a3) G is a tree because G is a non-tree graph;
(a4) {Ḡ1, Ḡ2, Ḡ3} is a decomposition of equal cutwidth 3;
(a5) c(G) = 3 because G is 4-cutwidth critical.
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Based on this, for cases (1) and (2), we only consider vertices u0, x of τ2, vertices u0, x, y of
τ3, vertex x1 of τ4 and vertices x1, x2 of τ5 (see Figure 1), respectively, which may be the central
v0 of G. For convenience, let Ḡ2 ∈ {τu0

2 , τx
2 , τu0

3 , τx
3 , τ

y
3 }, Ḡ3 ∈ {τu0

3 , τx
3 , τ

y
3 , τx1

4 , τx1
5 , τx2

5 },
where τu0

2 , τx
2 are copies of τ2 corresponding to u0, x of τ2, τu0

3 , τx
3 , τ

y
3 are copies of τ3

corresponding to u0, x, y of τ3; τx1
4 is a copy of τ4 corresponding to x1 of τ4, and τx1

5 and
τx2

5 are copies of τ5 corresponding to x1, x2 of τ5, respectively. In this case, we can see that
there are at least a {Ḡ1, Ḡ2, Ḡ3}, which is a decomposition of one of {Mi : 9 ≤ i ≤ 17}
not considered here. For example, {K1,3, τ

y
3 , τ

y
3 } is a decomposition of M15. So, by at

most 2× C1
5 × C1

6 − 1 direct operations and at most 2× C1
5 × C1

6 − 1 computations without
considering G ∈ {Mi : 9 ≤ i ≤ 17} by assumption, we can see that G is not 4-cutwidth
critical, which is a contradiction. Hence, G ∈ {Mi : 9 ≤ i ≤ 17}.

From Lemmas 7–13, we have:

Theorem 7. For a 4-cutwidth non-tree graph G with a central vertex v0, G is 4-cutwidth critical if
and only if G has one of the following six configurations.

(1) For 1 ≤ i ≤ 3, if Gi is some τi (1 ≤ i ≤ 5) in Figure 1 and G′i corresponding to Gi
is a graph defined in (8), then G = K1,3 ◦ (G′1, G′2, G′3), where G1, G2 and G3 are not
necessarily different;

(2) G = P3 ◦ (G′1, G2, G′3), where Gi ∈ {τi : 1 ≤ i ≤ 5} with vi ∈ V(Gi) for 1 ≤ i ≤ 3 and
G′i corresponding to Gi is a graph defined in (8), Gi /∈ {τ2, τ3} for i = 1, 3 and Gi 6= τ1 for
i = 2 v2 is not either the central vertex or the pendent vertex when G2 ∈ {τ2, τ3} but v2 is
possible to a subdivision vertex of a non cut-edge of G2 when G2 ∈ {τ3, τ4, τ5};

(3) G = G1 ⊕u1,x1 G′2 with the central vertex u1 of dG(u1) < 7, where G1 ∈ {τ2, τ3} with the
central vertex u1 (u1 = v0 of τ2 or τ3, respectively, see Figure 1), G2 ∈ {τ3, τ4, τ5} with a
3-cycle C3 ⊂ G2 and x1 ∈ V(C3) with dG1(u1) + dG2(x1) ≤ 6, G′2 corresponding to G2 is a
graph defined in (8);

(4) G has a subgraph decomposition {Ḡ1, Ḡ2, Ḡ3} of equal cutwidth 3, defined in Definition
4, where G is a graph with a central vertex v0 of dG(v0) ≥ 4 and at least two cut edges
v0v1, v0v2, Ḡi is 3-cutwidth critical for 1 ≤ i ≤ 3;

(5) G has a subgraph decomposition {C3, C′3, C′′3 } of equal cutwidth 2, each of which is a v0-
component of G− v0, where v0 is the central vertex v0 of degree 6 of G, and C′3 and C′′3 are
the copies of a 3-cycle C3;

(6) G is one member of {Mi : 9 ≤ i ≤ 17} with a central vertex v0 (see Figure 4) and a
subgraph decomposition {Ḡ1, Ḡ2, Ḡ3}, in which Ḡ1 = K1,3, one of whose pendant vertices is
v0, Ḡi ∈ {τ3, τ4, τ5} for i = 2, 3, where Ḡi satisfies:

(i) v0 is a 2-degree vertex y of C3 of Ḡi for Ḡi = τ3;
(ii) if the 3-degree vertex of Ḡ1(= K1,3) is x and Ḡi = τ4, then τ4 = H2 + v0x and v0 is a

3-degree vertex of Ḡi;
(iii) v0 is either a 2-degree vertex of Ḡi or a 3-degree vertex of Ḡi for Ḡi = τ5, but if Ḡ2 = Ḡ3 = τ5

and v0 is a 3-degree vertex of Ḡ2, then v0 must not be a 3-degree vertex of Ḡ3, and vice versa.

4. 4-Cutwidth Critical Graphs with a Central Cycle

In this section, we aim to investigate 4-cutwidth critical graphs with a central cycle
Cq = x1x2 . . . xqx1 with q ≥ 3.

Lemma 14. Assume that graph G is 4-cutwidth critical with a central cycle Cq of length q, then
q ≤ 6.

Proof. Assume, contrary to that, that q ≥ 7 and Gi is the ith connected component leading
from xi of G − E(Cq). Without loss of generality, let q = 7, i.e., C7 = x1x2 . . . x7x1 with
dG(xi) ≥ 3 for 1 ≤ i ≤ 7 (see an example in Figure 5a), and let π : V(G) → Sn be an
optimal 4-cutwidth labeling with min{π(v) : v ∈ V(G1)} = π(x1) < π(x7) < π(x2) <
π(x6) < π(x3) < π(x5) < π(x4) = max{π(v) : v ∈ V(G4)}. By the criticality of G, we
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may always assume that Gi ∈ {K2, K1,3, C3}. By direct computations, there are at least three
G′is (say G1, G4 and G6) such that G1 6= K2, G4 6= K2 and G6 6= K2. Otherwise, c(G) = 3,
contrary to c(G) = 4. Since G is 4-cutwidth critical, we can let G1, G4, G6 ∈ {K1,3, C3}, say
G1 = C3 and G4 = G6 = K1,3 (see Figure 5a). In this case, c(G) = 4 and c(G− x′i) = 4 for
any Gi = K2 = xix′i with i = 2, 3, 5, contrary to the criticality of G. On the other hand, there
is at least a 4-cutwidth critical graph G with a central cycle C6 = x1x2 . . . x6x1 such that
G1 = G3 = G5 = K1,3, G2 = G4 = G6 = K2 and dG(xi) = 3 for 1 ≤ i ≤ 6 (see Figure 5b).
Hence q ≤ 6.
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x2 x3
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Figure 5. Examples of Lemma 14.

From Lemma 14, in the sequel, we shall characterize the 4-cutwidth critical graphs
with a central cycle of lengths 3–6, respectively.

4.1. Graphs with a Central Cycle of Length Three

Definition 5. Let C3 = x1x2x3x1 be the central cycle of G, Gi (1 ≤ i ≤ 3) be the ith connected
component leading from xi of G− E(C3), and x1, x2, x3 be cut vertices in G. Then, for 1 ≤ i ≤ 3, define

Hi =


Gi if c(Gi) = 3 but c((Gi − xy) ∪ G[E′]) < 3 for E′ ⊆ E(C3) with xy ∈ E(Gi),
Gi if c(Gi ∪ G[E′′]) < 3 for E′′ ⊆ E(C3) with E′′ 6= ∅,
Gi ∪ G[E′′′] if c(Gi ∪ G[E′′′]) = 3 for E′′′ ⊆ E(C3) with E′′′ 6= ∅.

If, for each 1 ≤ i ≤ 3, c(Hi) = ρ with ρ = 2 or 3, then {H1, H2, H3} is called a decomposition of
equal cutwidth ρ of G; if there are at least two H′i s (say H1, H3) such that c(H1) = 2 and c(H3) = 3,
then {H1, H2, H3} is called a decomposition of nonequal cutwidth ρ with ρ = 2 or 3 of G, where E′, E′′

and E′′′ are not necessarily distinct, and E′ is not necessarily non-empty.

Lemma 15. With notation in Definition 5, let G be 4-cutwidth critical with the central cycle
C3 = x1x2x3x1, x1, x2, x3 be cut vertices in G, and C3 has at least two vertices (say x2, x3) such
that dG(x2) ≥ 4 and dG(x3) ≥ 4. If {H1, H2, H3} is a decomposition of nonequal cutwidth ρ with
ρ = 2 or 3, then Hi is ρ-cutwidth critical for 1 ≤ i ≤ 3 except M4 in Figure 2.

Proof. Since {H1, H2, H3} is a decomposition of nonequal cutwidth ρ with ρ = 2 or 3, we
can assume that c(H2) = c(H3) = 3, but c(H1) = 2, implying c(G1 ∪ G[E(C3)]) ≤ 2. Since
G is 4-cutwidth critical with dG(x2) ≥ 4 and dG(x3) ≥ 4, H1 = K1,3 or C3, Hi 6= τ2, τ4
or τ5 for i = 2, 3 by Lemma 6, meaning to that Hi = τ1 or τ3 for i = 2, 3. Thus, for H2
and H3, there are three cases to consider: (i) H2 = G2 ∪ G[{x2x3, x2x1}] = K1,5, H3 =
G3 ∪ G[{x3x2, x3x1}] = K1,5; (ii) H2 = G2 ∪ G[{x2x3, x2x1}] = K1,5, H3 = G3 ∪ C3 = τ3;
(iii) H2 = G2 ∪ C3 = τ3, H3 = G3 ∪ C3 = τ3, where x2, x3 are the central vertices of
H2 and H3, respectively (see M5, M6, M7 in Figures 2 and 6d,e below). In any of Cases
(i)–(iii), H1 = G1 = K1,3 with dG(x1) = 3 or C3 with dG(x1) = 4. Thus, we can see
that Hi is 2-cutwidth critical for i = 1 and 3-cutwidth critical for i = 2, 3. Now let
c(H3) = 3 but c(H1) = c(H2) = 2 with H1 = C3 and H2 = C3; then, we can conclude that
G = M4 by the 4-cutwidth criticality of G, which has a decomposition {K1,3, C3, C′3, C′′3 }
of equal cutwidth two in which C′3 and C′′3 are the copies of C3. This is because in this
case, if {K1,5, C′3, C′′3 } is a decomposition of nonequal cutwidth of 2 and 3 of G, then edge
x1x2 /∈ E(K1,5) ∪ E(C′3) ∪ E(C′′3 ). As x2x3 /∈ E(Hi) for each 1 ≤ i ≤ 3 in this case, this
decomposition of nonequal cutwidth does not hold. Thus, this case is not possible. The
proof is complete.
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Lemma 16. With notation in Definition 5, let {H1, H2, H3} be a decomposition of nonequal
cutwidth ρ with ρ = 2 or 3 of 4-cutwidth graph G with the central cycle C3 = x1x2x3x1. If Hi is
ρ-cutwidth critical for 1 ≤ i ≤ 3, then G is 4-cutwidth critical, where x1, x2, x3 are all cut vertices,
and C3 has at least two vertices (say x2, x3) such that dG(x2) ≥ 4 and dG(x3) ≥ 4.

Proof. Let π be an optimal labeling of G with π(x1) < π(x2) < π(x3) and intervals
I1 = [1, π(x1)], I2 = (π(x1), π(x3)), I3 = [π(x3), n] with n = |V(G)|, respectively. Then,
G1 is embedded in I1 with congestion 3, G2 is embedded in I2 with congestion 4, G3 is
embedded in I3 with congestion 3. Herein, G1 and G3 are a star K1,3 with center xi or two
stars K1,3 with an identifying leaf at xi (i = 1, 3). Let Hi denote Gi combining with the
two edges in C3 incident with vi. Then Hi ∈ {τ1, τ3} for i = 1, 3. As for G2 embedded
in I2 with congestion 4, since the central cycle C3 yields congestion 2 in I2, we chose G2
as a 2-cutwidth critical tree, namely, a K1,3, such that either dG(x2) = 3 or dG(x2) = 5.
For this construction, the maximum congestion is 4, i.e., c(G) = 4. Furthermore, for any
edge e ∈ E(G), if e ∈ {x1x2, x1x3, x2x3}, then the deletion of e reduces the congestion 2 of
cycle-edge in I2 by one. Hence H2 embedded in I2 has congestion 3, and so c(G− e) < 4.
If e /∈ {x1x2, x1x3, x2x3}, for Case (i) in Proof of Lemma 15, two subcases need to be
considered: (a) Gi = K1,3 with dG(xi) = 5 for each 1 ≤ i ≤ 3; (b) Gi = K1,3 with dG(xi) = 5
for i = 1, 3, but G2 = C3 with dG(x2) = 4 for i = 1, 3. Without loss of generality, we can let
e ∈ E(G2) with G3 = K1,3. Since G2 − e = K1,3 − e with congestion 1, we can embed G1 in
I1, G2 − e in (π(v1), π(v3)− 1) and G3 in [π(v3)− 1, n− 1], respectively, which results in
c(G− e) = 3. So does the case of e ∈ E(G1) (or E(G3)). Likewise, for Cases (ii) and (iii) in
Proof of Lemma 15, c(G− e) = 3 for any e ∈ E(G) also. Therefore, G is 4-cutwidth critical.
The lemma holds.

Lemma 17. With notation in Definition 5, let G be 4-cutwidth critical with the central cycle
C3 = x1x2x3x1, where x1, x2, x3 are all cut vertices in G, and C3 has at most one vertex (say
x1) such that dG(x1) ≥ 4. If {H1, H2, H3} is a decomposition of equal cutwidth 3, then Hi ( or
Hi − xix′i with x′i ∈ NG(xi) ∩V(Gi)) is 3-cutwidth critical for 1 ≤ i ≤ 3.

Proof. We first give Claim 1 below.
Claim 1. There is at least Hi (1 ≤ i ≤ 3) such that Hi is one of Gi ∪ G[{xixi−1, xixi+1}] and
Gi ∪ C3 (say Gi ∪ G[{xixi−1, xixi+1}]) with c(Hi) = 3, where x0 = x3 and x4 = x1.

Let Hi = Gi or Gi + xixi+1 with c(Hi) = 3 for each 1 ≤ i ≤ 3. As the arguments
are similar, we only consider two cases: (a) H1 = G1 with dG(x1) ≥ 4, Hi = Gi + xixi+1
with dG(xi) = 3 for i = 2, 3; (b) Hi = Gi + xixi+1 with dG(xi) = 3 for each 1 ≤ i ≤ 3.
For Case (a), xixi+1 is a pendent edge of Hi for i = 2, 3, dH2(x2) = 2 and dH3(x3) = 2.
So, H2 = G2 + x2x1 also and c(G2) = c(G3) = 3 by a series reduction in H2 and H3,
respectively. Thus, G− x2x3 = P3 ◦ (G2, G1, G3) which results in that c(G− x2x3) = 4 by
Theorem 3, contrary to the criticality of G. For Case (b), dG(xi) = 3 and dHi (xi) = 2 for
each 1 ≤ i ≤ 3, so every c(Gi) = c(Hi) = 3 by a series reduction in Hi and dGi (xi) = 1.
Thus, there is an edge in C3, say x1x3, such that G − x1x3 = K1,3 ◦ (G1, G2, G3). Hence
c(G− x1x3) = 4 by Theorem 2, also a contradiction. Claim 1 holds.

From Claim 1 and assumption, there are nine cases to consider, as follows (see graphs
(a)–(c) in Figure 6 below):

(1) H1 = G1 ∪ G[{x1x2, x1x3}] with dG(x1) ≥ 4, H2 = G2 and H3 = G3;
(2) H1 = G1 ∪G[{x1x2, x1x3}] with dG(x1) ≥ 4, H2 = G2 ∪G[{x2x1, x2x3}] and H3 = G3;
(3) H1 = G1 ∪ G[{x1x2, x1x3}] with dG(x1) ≥ 4, H2 = G2 ∪ G[{x2x1, x2x3}] and H3 =

G3 ∪ G[{x3x1, x3x2}];
(4) H1 = G1 ∪ C3 with dG(x1) ≥ 4, H2 = G2 and H3 = G3;
(5) H1 = G1 ∪ C3 with dG(x1) ≥ 4, H2 = G2 ∪ G[{x2x1, x2x3}] and H3 = G3;
(6) H1 = G1 ∪ C3 with dG(x1) ≥ 4, H2 = G2 ∪ G[{x2x1, x2x3}] and H3 =

G3 ∪ G[{x3x1, x3x2}];
(7) H1 = G1 ∪ G[{x1x2, x1x3}], H2 = G2 and H3 = G3;
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(8) H1 = G1 ∪ G[{x1x2, x1x3}], H2 = G2 ∪ G[{x2x1, x2x3}] and H3 = G3;
(9) H1 = G1∪G[{x1x2, x1x3}], H2 = G2∪G[{x2x1, x2x3}] and H3 = G3∪G[{x3x1, x3x2}],
where dG(xi) = 3 for i = 2, 3 in Cases (1)–(6), and dG(xi) = 3 for each 1 ≤ i ≤ 3 in
Cases (7)–(9). We consider Case (1) by contradiction. Assuming that there is at least
an edge xy ∈ E(Hi) such that c(Hi − xy) = 3, i.e., Hi is not 3-cutwidth critical. There
are three subcases to consider: (i) c(H1 − xy) = 3 with xy ∈ E(H1); (ii) c(H2 − xy) = 3
with xy ∈ E(H2); (iii) c(H3 − xy) = 3 with xy ∈ E(H3). For Subcase (i), by assumption
and Definition 3, for i = 2, 3, dG(x2) = dG(x3) = 3, Gi is 3-cutwidth critical, and c((Gi −
x′y′) ∪ G[E′]) < 3 for x′y′ ∈ E(Gi) and E′ ⊆ E(C3) with E′ 6= ∅, so either Gi ∈ {τ1, τ4}
or Gi = K2 ∪ τ5. Thus, if xy ∈ {x1x2, x1x3} (say xy = x1x2), then G − xy is changed to
⊕x3(H1 − xy, G2, G3) with cutwidth 4 resulting in c(G− xy) = 4; if xy /∈ {x1x2, x1x3}, i.e.,
xy ∈ E(G1) then G − xy − x2x3 is changed to be ⊕x2(H1 − xy, G2, G3) with cutwidth 4
resulting in c(G− xy) ≥ c(G− xy− x2x3) = 4. So c(G− xy) = 4 by c(G− xy) ≤ c(G) = 4
again, and contrary to that, G is 4-cutwidth critical. For Subcase (ii), we can conclude
that H1 = K1,5 and either G3 ∈ {τ1, τ4} or Gi = K2 ∪ τ5 with cutwidth 3. By Lemma 1(3),
an optimal labeling f ∗ by the order (V(H2) − xy), V(H1 + x2x3), V(H3)) of G − xy can
be obtained, and c(G − xy, f ) = 4, implying c(G − xy) ≤ 4. So, c(G − xy) = 4 by the
optimality of f ∗, also a contradiction. The argument of Subcase (iii) is the same as that
of Subcase (ii), omitted here. Thus, for Case (1), Ḡi is 3-cutwidth critical for 1 ≤ i ≤ 3.
Similarly, for Cases (2)–(9), Hi is also 3-cutwidth critical for 1 ≤ i ≤ 3. This completes
the proof.

Lemma 18. With notation in Definition 5, let {H1, H2, H3} be a decomposition of equal cutwidth
3 of graph G with the central cycle C3 = x1x2x3x1, where x1, x2, x3 are all cut vertices of G, and
C3 has at most one vertex (say x1) such that dG(x1) ≥ 4, and either {x1x2, x1x3} ⊂ E(H1) or
E(C3) ⊂ E(H1). If Hi is 3-cutwidth critical or there are at least a Hi = Gi = xix′i + τ5 with
x′i ∈ NG(xi) for 1 ≤ i ≤ 3, then G is 4-cutwidth critical.

Proof. By Lemmas 1(3), we can show c(G) = 4. By assumption again, H1 ∈ {τ1, τ3} and
dG(x2) = dG(x3) = 3. There are nine cases (1)–(9) listed in Proof of Lemma 17 to consider.
For each case (i) (1 ≤ i ≤ 9), via using an argument similar to that of Lemma 16, we can
show c(G′) ≤ 3 for any G′ ∈ M(G), omitted here.

Lemma 19. Let G be a 2-connected graph with a central cycle C3 = x1x2x3x1. Then G is 4-cutwidth
critical with a decomposition {Ḡ1, Ḡ2, Ḡ3} of equal cutwidth 3 if and only if G = M8 (see Figure 2).

Proof. Sufficiency. Since G = M8, G is 4-cutwidth critical by Lemma 6. Clearly, let
Ḡi = G[{x1, x2, x3, yi}] for 1 ≤ i ≤ 3, then {Ḡ1, Ḡ2, Ḡ3} is a decomposition desired because
of Ḡi = τ5 for each 1 ≤ i ≤ 3.

Necessity. In fact, since G is 2-connected with a central cycle C3 = x1x2x3x1 and
a decomposition {Ḡ1, Ḡ2, Ḡ3} of equal cutwidth 3, the arbitrary two vertices xi and xi+1
(1 ≤ i ≤ 3) of C3 must be in a cycle C′t (t ≥ 3) and C′t 6= C3, where x4 = x1. That is to say,
by the criticality of G, there must be another vertex yi 6= xi in G such that yixi ∈ E(G) and
yixi+1 ∈ E(G) for each 1 ≤ i ≤ 3. In this case, G = M8, induced by {x1, x2, x3, y1, y2, y3}.
Hence G = M8.

Lemma 20. Assume that G is a 4-cutwidth critical graph with a central cycle C3 = x1x2x3x1,
then G has an edge-disjoint decomposition {G1, G2, G3, C3} of equal cutwidth 2 if and only if
G ∈ {M3, M4, M5, M6, M7} (see Figure 2), where xi is a cut vertex and Gi is the connected
component of G− E(C3) leading from xi for 1 ≤ i ≤ 3.

Proof. Sufficiency is obvious in Lemma 6, omitted here.
Necessity: Let π be an optimal labeling of G with π(x1) < π(x2) < π(x3) and

|V(G)| = n. Then, the number set Sn is divided into three intervals I1 = [1, π(x1)],
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I2 = (π(x1), π(x2)) and I3 = [π(x3), n] and G1, G2, G3 are embedded into I1, I2, I3 in dif-
ferent manners, respectively. As G1, G2, G3 are all 2-cutwidth graphs and xi is a cut vertex in G
for 1 ≤ i ≤ 3, G1 is embedded into I1 with congestion 2, G2 is embedded into I2 with congestion
4, and G3 is embedded into I3 with congestion 2. By the criticality of G and c(K1,3) = c(C3) = 2,

Gi is either a star K1,3 with the 3-degree vertex xi or a cycle C(i)
3 , which is a copy of C3 for

i = 1, 3. As for G2 embedded in I2 with a congestion of 4, the central cycle C3 leads to a
congestion of 2 in I2, so G2 must be either a K1,3 or a copy C(2)

3 of C3 such that dG(x2) = 3, 4
or 5. Thus, G must be one member of {M3, M4, M5, M6, M7}, each element of which has a
edge-disjoint decomposition {G1, G2, G3, C3} of equal cutwidth 2, where Gi is either K1,3 or C3
for 1 ≤ i ≤ 3.

Theorem 8. For a 4-cutwidth nontree graph G with a central cycle C3 = x1x2x3x1, G is 4-
cutwidth critical if and only if G has one of the following configurations.

(1) G has a decomposition {H1, H2, H3} of nonequal cutwidth ρ with ρ=2 or 3, each of which
is ρ-cutwidth critical, where xi is a cut vertex for each 1 ≤ i ≤ 3 and there are at least two
vertices (say x2, x3) such that dG(x2) ≥ 4 and dG(x3) ≥ 4 (see M5–M7 in Figure 2 and
Illustration in Figure 6d,e);

(2) G has a decomposition {H1, H2, H3} of equal cutwidth 3 in which Hi or Hi − xix′i with
x′i ∈ NG(xi) ∩V(Gi) is 3-cutwidth critical, and at least a Hi (say H1) contains at least two
edges x1x2 and x1x3 of C3, where xi is a cut vertex for each 1 ≤ i ≤ 3 and there is at most a
vertex (say x3) such that dG(x3) ≥ 4 (see Illustration in Figure 6a–c);

(3) G is 2-connected and G = M8 (see Figure 2) with a decomposition {H1, H2, H3} of equal
cutwidth 3 in which Hi = G[{x1, x2, x3, yi}] = τ5 for 1 ≤ i ≤ 3;

(4) G ∈ {M3, M4, M5, M6, M7} with an edge-disjoint decomposition {G1, G2, G3, C3} of equal
cutwidth 2, in which Gi is either K1,3 or a copy C′3 of C3 for 1 ≤ i ≤ 3 (see M3–M7
in Figure 2).
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Figure 6. Illustrations of Theorem 8.

In Figure 6a–c, for i = 1, 2, 3, Gi = τ1, τ4, τ5 + xix′i with x′i ∈ V(τ5) or Gi + xixi−1 +
xixi+1 = τ2, τ3 with x0 = x3, but in Figure 6c, there is at least a Gi, say G3, such that
G3 + x3x1 + x3x2 = τ2 or τ3. In Figure 6d,e, if G1 = K1,3 then dG(x1) = 3, i.e., x1 is a
pendant vertex of K1,3 in this case, C′3 is a copy of C3.

4.2. Graphs with a Central Cycle of Length Four

For a graph G with a central cycle C4 = x1x2x3x4x1 with length 4, suppose that
Gi (1 ≤ i ≤ 4) is the ith connected component leading from xi of G − E(C4), c(G1) ≥
c(G2) ≥ c(G4) ≥ c(G3) and dG(x1) ≥ 4, and G− E(C4) has no Gi, such that c(Gi) = 3 but
c(G′i ∪{xixi−1, xixi+1}) = 3 for any proper subgraph G′i ⊂ Gi. Let Ḡ1 = G1 when c(G1) = 3
or G1 ∪ G[E′] with E′ ⊆ E(C4) and E′ 6= ∅ when c(G1) < 3, Ḡ2 = G2 ∪ G3 ∪ (C4 − x1x4 +
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{x1x′1, x1x′′1 }) and Ḡ4 = G4 ∪ G3 ∪ (C4 − x1x2 + {x1x′1, x1x′′1 }) for x′1, x′′1 ∈ V(G1) with
x′1 6= x′′1 , where x1, x2, x3, x4 are all cut vertices in G, and there is at least a vertex between
x2 and x4 (say x4) such that dG(x2) ≥ 4. Then, we have the following:

Lemma 21. For a graph G with the central cycle C4 = x1x2x3x4x1, if {Ḡ1, Ḡ2, Ḡ4} is a decom-
position of equal cutwidth 3 of G and Ḡi is 3-cutwidth critical for each i ∈ {1, 2, 4}, then G is
4-cutwidth critical (see Illustrations in Figure 7).

Proof. By assumption, dG(x2) = dG(x3) = 3, and since Ḡi is 3-cutwidth critical for i ∈
{1, 2, 4}, Ḡ1 ∈ {τ1, τ3, τ4, τ5}, Ḡ2 = τ2 with Ḡ2 = K1,3 and Ḡ4 = τ2 with G2 = K1,3 or
τ3 with G3 = C3 resulting in G3 = K2. Suppose that π : V(G) → Sn is a labeling of G
with π(x1) < π(x2) < π(x3) < π(x4), then Sn is partitioned into three intervals I1 =
[1, π(x1)], I2 = (π(x2), π(x4)] and I3 = (π(x4), n]. Now, we embed G1 in I1 with congestion
3, Ḡ2 − {x1x′1, x1x′′1 } in I2 and connect x1x4 with congestion 4, G4 − x4 in I3 with congestion 2.
Thus, c(G, π) = 4, implying c(G) ≤ 4. On the other hand, c(G) ≥ 4. Hence c(G) = 4.

The remaining is to show c(G − e) < 4 for any e ∈ E(G). There are three cases to
consider: (1) e ∈ E(G1); (2) e ∈ E(C4); (3) e is a pendant edge of Gi for i = 2, 3, 4. For
Case (1), c(G1 − e) ≤ 2. Since dG(x2) = 3, by Lemma 1(3), if e = v1v2 is a pendant edge
of G1 with dG(v2) = 1, then we can find an optimal labeling π′ : V(G − v2) → Sn−1
with c(G − v2, π′) = 3, under which G2 − x2 is embedded in interval [1, min{π(v) : v ∈
V(G1− v2)}) with congestion 3. If e ∈ E(C3) (note that Ḡ1 = τ4 or τ5 in this subcase), then we
can find an optimal labeling π′′ : V(G− e)→ Sn with c(G− e, π′′) = 3, under which G2− x2
is embedded in interval [1, min{π(v) : v ∈ V(G1)}] with congestion 3. So c(G − e) = 3.
Similarly, for Cases (2) and (3), c(G− e) = 3 also. Hence, G is 4-cutwidth critical.

Lemma 22. Let G be a 4-cutwidth critical graph with the central cycle C4 = x1x2x3x4x1. If
G has a decomposition {Ḡ1, Ḡ2, Ḡ4} of equal cutwidth 3, then Ḡi is 3-cutwidth critical for each
i ∈ {1, 2, 4} (see Illustrations in Figure 7).

Proof. By contradiction, suppose that there is at least a Ḡi (say Ḡ2) such that Ḡ2 is not 3-
cutwidth critical, then there exists an edge e ∈ E(Ḡ2) such that c(Ḡ2− e) = 3 also. Two cases
need to be considered: (1) e = vv′ is a pendant edge with dG(v′) = 1 in Ḡ2; (2) e ∈ E(C′) if
Ḡ2 contains a cycle C′ which does not equal the central cycle C4. Using an argument similar
to that of Lemma 21, for Case (1), we can find a labeling π : V(G − v′) → Sn−1 with
c(G− v′) = 4, thereby contradicting that G is 4-cutwidth critical. Furthermore, likewise, for
Case (2), we can find a labeling π : V(G− e)→ Sn with c(G− e) = 4, also contradicting
that G is 4-cutwidth critical. Similarly, if e ∈ E(Ḡi) for i = 1 or 4 then we can also find
a contradiction to the assertion that G is 4-cutwidth critical. Therefore, Ḡi is 3-cutwidth
critical for each i ∈ {1, 2, 4}.

From Lemmas 21 and 22, the structure of a 4-cutwidth critical graph G with a central
cycle C4 = x1x2x3x4x1 can be obtained below.

Theorem 9. Assume that G is a 4-cutwidth graph with a central cycle C4 = x1x2x3x4x1, and xi
is a cut vertex for 1 ≤ i ≤ 4, then G is 4-cutwidth critical if and only if G has a decomposition
{Ḡ1, Ḡ2, Ḡ4} of equal cutwidth 3, each of which is 3-cutwidth critical, where Ḡ1, Ḡ2, Ḡ4 are one of
the following:

(1) Ḡ1 = K1,5 with the central vertex x1 of dG(x1) = 5 or τ5 with dG(x1) = 4, and Ḡ2 and Ḡ4 are
both in {τ2, τ3}, but Ḡ2 and Ḡ4 do not equal τ3 simultaneously (see Illustration in Figure 7a);

(2) Ḡ1 is homeomorphic to τ3 with the central vertex x1 of dG(x1) = 4 and C4 ⊂ Ḡ1, Ḡ2 and Ḡ4
are both in {τ2, τ3}. Ḡ2, Ḡ4 are not necessarily different (see Illustration in Figure 7b).
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Figure 7. Illustrations of Theorem 9.

4.3. Graphs with a Central Cycle of Length at Least Five

Suppose that G is a graph with the central cycle C5 = x1x2x3x4x5x1, and for 1 ≤
i ≤ 5, G − E(C5) has no component Gi leading from xi, such that c(Gi) = 3, but c(G′i ∪
{xixi−1, xixi+1}) = 3 for any proper subgraph G′i ⊂ Gi, C5 has at most two x′is with
dG(xi) ≥ 4, where x0 = x5, x6 = x1. Let one of the following hold:

(1) Ḡ1 = G1 ∪ G2 ∪ G5 ∪ (C5 − x3x4), Ḡi = Gi or Gi + x3x4 if c(Gi) = 3 or Gi + xixi−1 +
xixi+1 if c(Gi) < 3 for i = 3, 4 with dG(x3) = dG(x4) = 3;

(2) Ḡ1 = G1 ∪ G2 ∪ G5 ∪ (C5 − x3x4), Ḡ3 = G3 ∪ (C5 − x1x5 + x2x′2 + x4x′4), Ḡ4 = G4 ∪
(C5 − x1x2 + x3x′3 + x5x′5) with dG(x3) = dG(x4) = 4 and c(G3) = c(G4) = 2, x′i ∈
NG(xi) ∩V(Gi − xi) for 2 ≤ i ≤ 5;

(3) Ḡ1 is homeomorphic to subgraph (G1 + x1x2 + x1x5) ∪ G2 ∪ G5, Ḡ3 = G3 ∪ (C5 −
x1x5 + x2x′2 + x4x′4), Ḡ4 = G4 ∪ (C5 − x1x2 + x3x′3 + x5x′5) with c(G3) = c(G4) = 2,
where C5 has at most two 4-degree vertices (say, x1 and x4) which are nonadjacent.

Then, we have the following:

Lemma 23. For a graph G with the central cycle C5 = x1x2x3x4x5x1, if G is 4-cutwidth critical
and {Ḡ1, Ḡ3, Ḡ4} is a subgraph decomposition of equal cutwidth 3 of G, then Ḡi (or Ḡi − xi) is
3-cutwidth critical for i ∈ {1, 3, 4} (see Illustrations in Figure 8).

Proof. By contradiction, we first consider Case (1) above. Suppose that there exists some Ḡi,
say Ḡ1 first, such that Ḡ1 is not 3-cutwidth critical. There are two subcases to consider: (i) Ḡ1
contains no cycle; (ii) Ḡ1 contains at least a cycle. For (i), Ḡ1 has at least a pendant vertex
v such that c(Ḡ1 − v) = 3. By dG(x3) = dG(x4) = 3, let x3x′3, x4x′4 be cut edges in G with
x′3 ∈ V(G3− x3)∩NG(x3) and x′4 ∈ V(G4− x4)∩NG(x4). Then dG−v(x3) = dG−v(x4) = 3,
and x3x′3, x4x′4 are both cut edges in G− v clearly. So, by Lemma 1(3), G− v has an optimal
labeling π such that the vertices in each of V(G3 − x3), V(Ḡ1 − v + x3x4) and V(G4 − x4)
are labeled consecutively. Without loss of generality, let max{π(v) : v ∈ V(G3 − x3)} <
min{π(v) : v ∈ V(Ḡ1 − v + x3x4)} and max{π(v) : v ∈ V(Ḡ1 − v + x3x4)} < min{π(v) :
v ∈ V(G4 − x4)}. Then c(G− v, π) = c(Ḡ1 − v) + 1 = 4. Since π is optimal, c(G− v) =
c(G − v, π) = 4, contradicting that G is 4-cutwidth critical. For (ii), two subcases need
to be considered: (a) Ḡ1 has at least a pendant vertex v such that c(Ḡ1 − v) = 3; (b) Ḡ1
has at least a non-pendant edge e such that c(Ḡ1 − e) = 3. Subcase (a) is the same as
case (i), omitted here; For subcase (b), using a similar method to that of case (i), we can
show c(G − e) = 4, also a contradiction. Now, we consider Ḡ3 or Ḡ4, and without loss
of generality; let c(Ḡ3 − x3x′3) = c(G3 − x3x′3) = 3 with x′3 ∈ NG(x3) ∩ V(G3 − x3) and
Ḡ4 = G4 + x4x3 + x4x5. Assume that there is an edge e such that c(Ḡ3 − x3x′3 − e) = 3, i.e.,
Ḡ3 − x3x′3 − e is not 3-cutwidth critical. Similar to Case (i), dG−e(x3) = dG−e(x4) = 3, and
x3x′3, x4x′4 are both cut edges in G− e. By Lemma 1(3), G− e has an optimal labeling π′

such that the vertices in each of V(Ḡ1 + x3x4), V(G3 − x3 − e) and V(G4 − x4) are labeled
consecutively with max{π′(v) : v ∈ V(Ḡ1 + x3x4)} < min{π′(v) : v ∈ V(G3 − x3 − e)}
and max{π′(v) : v ∈ V(G3 − x3 − e)} < min{π′(v) : v ∈ V(G4 − x4)}. Thus c(G −
e) = c(G− e, π′) = c(G3 − x3x′3 − e) + 1 = 4, contradicting that G is 4-cutwidth critical.
Likewise, let Ḡ3 and Ḡ4 be one of the followings, and one of {Ḡ3, Ḡ4} be not 3-cutwidth
critical: (A1) each Ḡi = Gi with c(Ḡi − xix′i) = c(Gi − xix′i) = 3 for i = 3, 4;
(A2) each Ḡi = Gi + xixi−1 + xixi+1 with c(Gi) < 3 for i = 3, 4;
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(A3) Ḡ3 = G3 with c(G3) = 3 but c(G3− x3x′3) < 3, Ḡ4 = G4 + x4x3 + x4x5 with c(G4) < 3;
(A4) Ḡ3 = G3 with c(G3) = 3, Ḡ4 = G4 with c(G4) = 3 but c(G4 − x4x′4) < 3.
Then we can also obtain a contradiction to the assertion that G is 4-cutwidth critical. Hence,
each Ḡi (or Ḡi − xi) is 3-cutwidth critical.

Similarly, for Cases (2) and (3) above, Ḡi (or Ḡi − xi) is also 3-cutwidth critical for
i ∈ {1, 3, 4}. This completes the proof.

Lemma 24. For a 4-cutwidth graph G with the central cycle C5 = x1x2x3x4x5x1, if {Ḡ1, Ḡ3, Ḡ4}
is a decomposition of equal cutwidth 3 of G, Ḡi (or Ḡi − xi) is 3-cutwidth critical for i ∈ {1, 3, 4},
then G is 4-cutwidth critical.

Proof. Three cases similar to those of Lemma 23 need to be considered. We first consider
Case (1) by contradiction. Suppose that G is not 4-cutwidth critical, i.e., there exists a pendant
vertex v (or a non-pendant edge e) such that c(G − v) = 4 (or c(G − e) = 4). There are
three subcases to consider: (i) v ∈ V(Ḡ1) (or e ∈ E(Ḡ1)); (ii) v ∈ V(Ḡ2) (or e ∈ E(Ḡ2));
(iii) v ∈ V(Ḡ3) (or e ∈ E(Ḡ3)). For Case (i), by assumption, c(Ḡ1− v) < 3 (or c(Ḡ1− e) < 3).
Since dG(x3) = dG(x4) = 3, using a similar method to that of Lemma 22, we can verify that
c(G− v) < 4 (or c(G− e) < 4) contrary to c(G− v) = 4 (or c(G− e) = 4). So, G is 4-cutwidth
critical. Likewise, for Subcases (ii) and (iii), G is 4-cutwidth critical also.

Similarly, for Cases (2) and (3), G is 4-cutwidth critical also. This proof is completed.

From Lemmas 23 and 24:

Theorem 10. Assume that G is a 4-cutwidth graph with a central cycle C4 = x1x2x3x4x5x1, and
xi is a cut vertex for 1 ≤ i ≤ 5, then G is 4-cutwidth critical if and only if G has a decomposition
{Ḡ1, Ḡ3, Ḡ4} (or {Ḡ1, Ḡ3 + x3x4, Ḡ4}, {Ḡ1, Ḡ3, Ḡ4 + x4x3}, {Ḡ1, Ḡ3 + x3x4, Ḡ4 + x4x3}) of
equal cutwidth 3, where Ḡ1, Ḡ3, Ḡ4 are one of the following:

(1) Ḡ1 ∈ {τ2, τ3} with the central vertex x1 of degree three or four, for i = 3, 4, Ḡi (or Ḡi − xi)
is one of {τi : 1 ≤ i ≤ 5} and xi satisfies: (i) dG(xi) = 3, (ii) xi is not the central vertex of
Ḡi when Ḡi ∈ {τ1, τ2, τ3}, and (iii) xixi−1, xixi+1 are the pendant edges of Ḡi when Ḡi is τ2
or τ3 (see Illustration in Figure 8a);

(2) Ḡ1 is homeomorphic to τ2 with the central vertex x1 of degree three, for i = 3, 4, Ḡi is
homeomorphic to τ2 or τ3 with Gi ∈ {K1,3, C3}, where G3, G4 are not necessarily different
(see Illustration in Figure 8b);

(3) Ḡ1 is homeomorphic to τ3 with the central vertex x1 of degree four, for i = 3, 4, Ḡi is
homeomorphic to τ2 or τ3 with Gi ∈ {K1,3, C3}, but if G3 = C3, then G4 6= C3 and vice
versa (see Illustration in Figure 8b).
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Figure 8. Illustrations of Theorem 10.

In Figure 8a, Ḡi is either Gi which is τ1 or τ4 or τ5 + xix′i with x′i ∈ V(τ5) or Gi +
xixi−1 + xixi+1 which is in {τ2, τ3} for i = 3, 4; Additionally, if G1 = K1,3 then G3, G4 can
be 3-cycle C3 simultaneously.

Lemma 25. For a graph G with a central cycle C6 = x1x2x3x4x5x6x1, G is 4-cutwidth critical if
and only if G ∈ {M18, M19, M20} in Figure 9.
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Figure 9. Three 4-cutwidth critical graphs with a C6.

Proof. Sufficiency. For any G ∈ {M18, M19, M20}, G can be easily shown to be 4-cutwidth
critical by proving two conclusions: (1) c(G) = 4; (2) c(G′) = 3 for any G′ ∈ M(G),
omitted here.

Necessity. Let G be a 4-cutwidth critical graph with the central cycle C6 = x1x2x3x4x
5x6x1.

Observation. For any 18 ≤ i ≤ 20, Mi has a decomposition {Ḡ1, Ḡ3, Ḡ5} of equal
cutwidth 3, where Ḡl = Hl−1 ∪ Hl ∪ Hl+1 = τ2 or τ3 with Hl = Gl + xl xl−1 + xl xl+1 for
l ∈ {1, 3, 5}, H0 = H6 and H7 = H1.

By observation, suppose by contradiction that G /∈ {M18, M19, M20}, then two cases
need to be considered as follows.
Case 1. G has a decomposition {Ḡ1, Ḡ3, Ḡ5} of equal cutwidth 3, but there is at least an
element in {Ḡ1, Ḡ3, Ḡ5}, say Ḡ3(= H2 ∪ H3 ∪ H4), such that Ḡ3 does not equal τ2 (or τ3). In
this case, G− E(Cr) has at least a connected component Gi leading from xi, say G3, such
that G3 ⊃ K1,3 (or K3); this is because the connected component leading from x3 in M18
is K1,3 (or in any of {M19, M20} is K3. Without loss of generality, let G3 be a minimum
graph such that K1,3 ⊂ G3 (or K3 ⊂ G3), i.e., |E(G3) \ E(K1,3)| = 1 (or |E(G3) \ E(K3)| = 1).
Then, by direct computations, c(G) = 4 and c(Ḡ3) = 3, but G is not 4-cutwidth critical.
Similarly, if G2 6= K2 or G4 6= K2 in Ḡ3 then G is not 4-cutwidth critical also. So this case is
not possible.
Case 2. G has not a decomposition {Ḡ1, Ḡ3, Ḡ5} of equal cutwidth 3. In this case, there are
at least an element in {Ḡ1, Ḡ3, Ḡ5}, say Ḡ1, such that c(Ḡ1) is either at most 2 or at least 4,
i.e., either c(Ḡ1) ≤ 2 or c(Ḡ1) ≥ 4. Since G is 4-cutwidth critical, the subcase of c(Ḡ1) ≥ 4
is impossible. For the subcase of c(Ḡ1) ≤ 2, we claim that G1 must be a path P2 with length
2 in which either dG1(x2) = 1 or dG1(x2) = 2. By direct computations, we can easily show
that c(G) = 3, contrary to c(G) = 4. Therefore, this case is also impossible. The proof
is complete.

By Lemma 25, we have

Theorem 11. Let G be a 4-cutwidth graph with a central cycle C6 = x1x2x3x4x5x6x1. Then G is
4-cutwidth critical if and only if G is one of {M18, M19, M20} in Figure 9, which has a subgraph
decomposition {Ḡ1, Ḡ3, Ḡ5} of equal cutwidth 3, in which Ḡi = τ2 or τ3 with central vertex xi for
i ∈ {1, 3, 5} and there is at least a Ḡi0 such that Ḡi0 = τ2 with i0 ∈ {1, 3, 5}.

5. 4-Cutwidth Critical Graphs without a Central Vertex and Central Cycle

We now consider the 4-cutwidth critical graphs with neither a central vertex nor a
central cycle (see five graphs M21–M25 in Figure 10).s
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Figure 10. 4-cutwidth critical graphs without a central vertex and central cycle.

Theorem 12. A graph G is 4-cutwidth critical with neither a central vertex nor a central cycle if
and only if G ∈ {M21, M22, M23, M24, M25}.
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Proof. Sufficiency. For any G ∈ {M21, M22, M23, M24, M25}, G is needed to show
(1) c(G) = 4; (2) c(G′) = 3 for any G′ ∈ M(G). These can be done easily, omit-
ted here. On the other hand, we can see that G has neither the central vertex nor the
central cycle.

Necessity. Suppose that G is a 4-cutwidth critical graph without central vertex and
central cycle, then G has at least two cycles C3, sharing a common edge. This is because
otherwise, G can be thought of as having either a central vertex or a central cycle. So,
we have the following:
Claim 2. τ5 in Figure 1 is an edge-induced proper subgraph with cutwidth 3 of G.

By Claim 2, we have
Claim 3. Suppose that H is a 1-connected and minimum 3-cutwidth graph with τ5 ⊂ H,
dH(x1) ≤ 4 and dH(x3) ≤ 4, in which dH(xi) is maximum for each xi ∈ V(τ5), then H is
graph (a) in Figure 11.
Claim 4. Suppose that H is a 2-connected and minimum noncritical 3-cutwidth graph with
τ5 ⊂ H, then H is graph (b) in Figure 11.s
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Figure 11. Two 3-cutwidth graphs containing τ5.

By Claims 3 and 4 and the minimality of G, if G is 1-connected, then G must be one of
{M23, M24, M25} by direct computations and comparisons. Now, we consider the case that
G is 2-connected. Since 4-cutwidth critical graph M8 can be thought of as having a central
cycle C3, we can exclude M8 here. Thus, by direct computations and comparisons, G must
be one member of {M21, M22}. So, G ∈ {M21, M22, M23, M24, M25}.

6. Concluding Remarks

In this paper, we have completely characterized the structural properties of 4-cutwidth
critical graphs, from which we can see that except for a handful of irregular critical graphs
M21–M25 in Figure 10, the other 4-cutwidth critical graphs can be classified into two
classes: graph class with a central vertex v0, and graph class with a central cycle Cq of
length q ≤ 6. By means of some ingenious combination, any member of two classes
can achieve a subgraph decomposition {H1, H2, H3} (or {Ḡ1, Ḡ2, Ḡ3}), in which Hi (or
Ḡi) is either a 2-cutwith graph or a 3-cutwidth graph for each 1 ≤ i ≤ 3, or a sub-
graph decomposition {H1, H2, H3, H4} of equal cutwidth 2. For a given integer k > 4,
although it seems difficult to characterize the detailed structures of k-cutwidth critical
graphs, some structural properties of some special graph classes can be found. For instance,
using [11], any k-cutwidth critical tree with a central vertex v0 has a subtree decomposition
{T1, T2, T3} of equal cutwidth k− 1, where, for 1 ≤ i ≤ 3, Ti (or Ti − v0) is either a (k− 1)-
cutwidth critical tree or homeomorphic to a (k − 1)-cutwidth critical tree. Similarly, a
k-cutwidth critical non-tree graph G = ⊕z0(G1, G2, G3) also has a subgraph decomposition
{G1, G2, G3} of equal cutwidth k− 1, and G1, G2, G3 are all (k− 1)-cutwidth critical. In the
k-cutwidth critical graphs G with a central cycle Cq of length q ≥ 3, the structural properties
are not yet known. Additionally, for a fixed integer k0 > 4, finding all the k0-cutwidth
critical graph Gs with neither a central vertex nor a central cycle is also a difficult task. All
of these are the further objectives to investigate in future works.
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