Article

Structures of Critical Nontree Graphs with Cutwidth Four

Zhenkun Zhang ${ }^{1, *}$ and Hongjian Lai ${ }^{2}$
1 School of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, China
2 Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
* Correspondence: zhzhkun-2006@163.com

Citation: Zhang, Z.; Lai, H Structures of Critical Nontree Graphs with Cutwidth Four. Mathematics 2023,11,1631. https://doi.org/ 10.3390/math11071631

Academic Editor: Darren Narayan

Received: 7 February 2023
Revised: 21 March 2023
Accepted: 23 March 2023
Published: 28 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The cutwidth of a graph G is the smallest integer $k(k \geq 1)$ such that the vertices of G are arranged in a linear layout $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$, in such a way that for each $i=1,2, \ldots, n-1$, there are at most k edges with one endpoint in $\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ and the other in $\left\{v_{i+1}, \ldots, v_{n}\right\}$. The cutwidth problem for G is to determine the cutwidth k of G. A graph G with cutwidth k is k-cutwidth critical if every proper subgraph of G has a cutwidth less than k and G is homeomorphically minimal. In this paper, except five irregular graphs, other 4-cutwidth critical graphs were resonably classified into two classes, which are graph class with a central vertex v_{0}, and graph class with a central cycle C_{q} of length $q \leq 6$, respectively, and any member of two graph classes can skillfuly achieve a subgraph decomposition \mathcal{S} with cardinality 2 , 3 or 4 , where each member of \mathcal{S} is either a 2-cutwith graph or a 3 -cutwidth graph.

Keywords: graph labeling; cutwidth; critical graph; graph decomposition

MSC: 05C75; 05C78; 90C27

1. Introduction

The graphs under consideration in this paper are finite, simple and connected, and for the undefined graph-theoretic terminologies, we refer the reader to the book by Bondy and Murty [1]. The cutwidth of a graph G is the smallest integer $k(k \geq 1)$, such that the vertices of G are arranged in a linear layout $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$, in such a way that for each $i=1,2, \ldots, n-1$, there are at most k edges with one endpoint in $\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ and the other in $\left\{v_{i+1}, \ldots, v_{n}\right\}$. The method used to compute the optimum cutwidth of a graph G is usually referred to as the cutwidth minimization problem, and has received an enormous amount of interest in graph theory literature [2] since the 1950s. From [3-6], for a graph G and a nonnegative integer k, deciding whether the cutwidth value of graph G is less than k is an NP-complete problem for general graphs except for trees, and it remains to be NP-complete even though G is planar with a maximum vertex degree of 3, by [7]. Therefore, most of previous investigations of the cutwidth problem have been mainly concentrated on polynomial time approximation algorithms for general graphs, and on polynomial time algorithms for special graphs for solving their cutwidth [2,4,5]. Despite these theoretical algorithms of the cutwidth minimization problem, research on studying the structural properties of the extreme (or critical) graph classes whose cutwidth is a given integer value $k>1$ have been paid little attention. As far as we know, the 2-cutwidth graph class has five forbidden subgraphs $\tau_{1}-\tau_{5}$ [8] (see Figure 1 below), the family of 3-cutwidth trees possesses 18 forbidden subtrees [9], and 50 forbidden subgraphs of unicyclic graphs with cutwidth 3 were also found by [10]. As for the inner structures of the critical graphs with cutwidth k, ref. [11] found that any critical tree with cutwidth value k can be decomposed into three $(k-1)$-cutwidth subtrees which are either edge-joint or edge-disjoint. Recently, the decomposability of a class of special k-cutwidth critical graphs with a central vertex v_{0} and at least two cut edges $v_{0} v_{1}$ and $v_{0} v_{2}$ was also characterized by [12]. However, for general critical graphs with cutwidth $k \geq 4$, their inner structural
properties are unfortunately not yet known. The cutwidth minimization problem for graphs has many significant applications. In the early 1970s, Adolphson and Hu used it to model the number of channels in the optimum layout of a circuit [13]. Other applications of this problem include VLSI circuits' layout [14,15], automatic graph drawing [16], network reliability [17], information retrieval [18], urban drainage network design [19] and others. In particular, the cutwidth is closely connected to a basic parameter called the congestion, in designing microchip circuits and micro communication element system [2,20,21]. Herein, a graph G is considered to be a mathematical model of the wiring diagram of an electronic circuit, in which the vertices of G mean components and the edges of G represent wires connecting these vertices. When a circuit is embedded into a certain architecture (say, a path P_{n} or a cycle C_{n}), the largest number of overlapping wires is referred to as the congestion, which is one of the key parameters determining the electronic performance. These are of great interest to scholars investigating the cutwidth problem in graph theory practically. Theoretically, the cutwidth problem is also closely bound up with other graph parameters such as bandwidth, modified bandwidth, pathwidth and treewidth [2,22,23]. For example, this is the case for any graph G with vertices of a degree bound by an integer $r \geq 1, p w(G) \leq c(G) \leq r \cdot p w(G)$, where $c(G)$ and $p w(G)$ are cutwidth value and pathwidth value, respectively. In this paper, by virtue of classifying 4-cutwidth critical graphs reasonably, we shall attempt to characterize the inner structural features of the critical graphs with cutwidth-4 in detail.

Let $\mathcal{S}_{n}=\{1,2, \cdots, n\}$ for an integer $n>0$. The labeling of a graph $G=(V(G), E(G))$ with $|V(G)|=n$ is a bijection $\pi: V(G) \rightarrow \mathcal{S}_{n}$, viewed as an embedding of G into a path P_{n} with vertices in \mathcal{S}_{n}, where consecutive integers are the adjacent vertices. The cutwidth of G with respect to π is

$$
\begin{equation*}
c(G, \pi)=\max _{1 \leq j<n}|\{u v \in E(G): \pi(u) \leq \pi<\pi(v)\}|, \tag{1}
\end{equation*}
$$

which is also the congestion of the embedding. The cutwidth of G is defined to be

$$
\begin{equation*}
c(G)=\min _{\pi} c(G, \pi), \tag{2}
\end{equation*}
$$

where the minimum is taken over all labelings π. If $k=c(G, \pi)$, then π, as well as the embedding induced by π, is called a k-cutwidth embedding of G. A labeling π attaining the minimum in (2) is an optimal labeling. For each i with $1 \leq i \leq n$, let $u_{i}=\pi^{-1}(i)$ and $S_{j}=\left\{u_{1}, u_{2}, \cdots, u_{j}\right\}$. Define $\nabla_{\pi}\left(S_{j}\right)=\left\{u_{i} u_{h} \in E: i \leq j<h\right\}$, which is called the (edge) cut at $[j, j+1]$ with respect to π. Using (2), we have

$$
\begin{equation*}
c(G, \pi)=\max _{1 \leq j<n}\left|\nabla_{\pi}\left(S_{j}\right)\right| . \tag{3}
\end{equation*}
$$

A π-max-cut of G is $\nabla_{\pi}\left(S_{j}\right)$, achieving the maximum in (3). For an optimal labeling π of G with a π-max-cut $\nabla_{\pi}\left(S_{j_{0}}\right)$, if vertex $v_{0}=\pi^{-1}\left(j_{0}\right)$ and $\left|\nabla_{\pi}\left(S_{j}\right)\right| \leq k-2$ for every $1 \leq j \leq j_{0}-1$ (or $j_{0}+1 \leq j<n$), then v_{0} is called the small-cut vertex with respect to π.

For graph G and integer $i>0$, let $D_{i}(G)=\left\{v \in V(G): d_{G}(v)=i\right\}$ in which $d_{G}(v)$ is the degree of vertex $v \in V(G)$. Any vertex in $D_{1}(G)$ is called a pendant vertex in G. Any edge incident with a vertex in $D_{1}(G)$ is a pendant edge of G, and $E_{p}(G)=$ $\left\{v_{i} v_{j}: v_{i} v_{j} \in E(G)\right.$ and $v_{i} v_{j}$ is pendant $\}$ is a set of all pendant edges of G. For each $v \in V(G)$, let $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. If G possesses a vertex $v \in D_{2}(G)$ with $N_{G}(v)=\left\{v_{1}, v_{2}\right\}$ and $v_{1} v_{2} \notin E(G)$, then $G-v+v_{1} v_{2}$, the graph obtained from $G-v$ by adding a new edge $v_{1} v_{2}$, is called a series reduction of G. A graph H is a minor of G if H is obtained by deleting vertices, edges or carrying out series reductions in G and $c(H)=c(G)$. If H, H^{\prime} are subgraphs of G, and $X \subseteq E(G)$, then, as in [1], $G[X]$ is an edge subgraph of G induced by $X, H \cup H^{\prime}=G\left[E(H) \cup E\left(H^{\prime}\right)\right]$ and $H \cup X=G[E(H) \cup X]$. Specifically, if $X=\{e\}$, then we write $G+e$ instead of $G \cup\{e\}$. Let G and G^{\prime} be two disjoint graphs with $u \in V(G), v \in V\left(G^{\prime}\right)$; then, to identify u and v, denoted as $G \oplus_{u, v} G^{\prime}$, is to replace u, v with a single vertex z (i.e., $u=v=z$) incident to all the edges which were incident
to u and v, where z is called the identified vertex. Clearly, if $G^{\prime}=K_{2}$ with $K_{2}=u_{0} u_{1}$, then $G \oplus_{u, u_{0}} K_{2}=G \oplus_{u, u_{0}} u_{0} u_{1}=G+u_{1}+u_{0} u_{1}$. If graph G is 2-connected, then any two vertices of G lie on a common cycle. A subgraph decomposition \mathcal{S} of G is a set of proper connected subgraphs $H_{1}, H_{2}, \ldots, H_{r}$ of G whose union $\bigcup_{i=1}^{r} H_{i}$ is G, where $H_{i}, H_{j} \in \mathcal{S}$ are not necessarily edge-disjoint. A graph G is homeomorphically minimal if G does not have any series reductions. Two graphs G and H are homeomorphic if they can both be obtained from the same graph \mathcal{G} by inserting new vertices of degree two into its edges. A graph G is said to be k-cutwidth critical if G is homeomorphically minimal with $c(G)=k$, such that every proper subgraph H of G satisfies $c(H)<k$. From definition, three properties of cutwidth below can be obtained immediately.

Lemma 1. For graphs G and H, each of the following holds.
(1) If H is a subgraph of G, then $c(H) \leq c(G)$.
(2) If H is homeomorphic to G, then $c(H)=c(G)$.
(3) For a cut edge e in G, if V_{1}, V_{2} are the vertex sets of two components of $G-e$, then there exists an optimal labeling f^{*}, such that the vertices in each of V_{1} and V_{2} are labeled consecutively.

Lemma 2 ([8]). The unique 1-cutwidth critical graph is K_{2}. The only 2-cutwidth critical graphs are K_{3} and $K_{1,3}$. All 3-cutwidth critical graphs are $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$ and τ_{5} in Figure 1.

Figure 1. Five 3-cutwidth critical graphs.
Lemma 3 ([11]). For $k \geq 4$, a tree T is k-cutwidth critical if and only if T can be decomposed into three $(k-1)$-cutwidth subtrees, each of which is either a $(k-1)$-cutwidth critical tree or a sum of a $(k-1)$-cutwidth critical tree and a pendant edge.

Lemma 4 ([12]). Let G be a k-cutwidth graph with a central vertex v_{0} of $d_{G}\left(v_{0}\right) \geq 4$ and at least two cut edges $v_{0} v_{1}$ and $v_{0} v_{2}$. If G can be decomposed into three $(k-1)$-cutwidth graphs G_{1}, G_{2} and G_{3}, then G is k-cutwidth critical if and only if each element of $\left\{G_{i}: 1 \leq i \leq 3\right\}$ is ($k-1$)-cutwidth critical.

The rest of this paper is organized as follows. Section 2 presents some preliminary results. Section 3 is focused on investigating 4-cutwidth critical graphs with a central vertex v_{0}. The characterizations of 4-cutwidth critical graphs with a central cycle $C_{q}(q \geq 3)$ are given in Section 4. Five 4-cutwidth critical graphs without a central vertex and a central cycle are discussed in Section 5. Furthermore, we give short concluding remarks in Section 6.

2. Preliminary Results

From [1], if \mathcal{S} is a decomposition of a graph G, then $E\left(H_{i}\right) \cap E\left(H_{j}\right)=\varnothing$ for arbitrary $H_{i}, H_{j} \in \mathcal{S}(i \neq j)$, that is to say H_{i}, H_{j} are edge-disjoint in G. In this article, for graph G and an integer $r>1$, if $G=\bigcup_{i=1}^{r} H_{i}$ and there are at least two subgraphs H_{i}, H_{j} such that H_{i}, H_{j} ($i \neq j$) are edge-joint, then $\left\{H_{i}: 1 \leq i \leq r\right\}$ is also called a decomposition of G, also denoted by \mathcal{S}. For example, $\left\{\tau_{4}\left[\left\{x_{1} x_{1}^{\prime}, x_{1} x_{2}, x_{1} x_{3}\right\}\right], \tau_{4}\left[\left\{x_{2} x_{2}^{\prime}, x_{2} x_{1}, x_{2} x_{3}\right\}\right], \tau_{4}\left[\left\{x_{3} x_{3}^{\prime}, x_{3} x_{2}, x_{3} x_{1}\right\}\right]\right\}$ is an edge-joint decomposition of τ_{4}, each of which is $K_{1,3}$ (see τ_{4} in Figure 1). Let $P_{n}=u_{1} u_{2} \ldots u_{n}$ be a path with n vertices, such that for $1 \leq i<n, u_{i}$ and u_{i+1} are adjacent vertices in P_{n}. By [9], $K_{1,2 k-1}$ is k-cutwidth critical, so we let $d_{G}(v) \leq 2 k-2$ for each $v \in V(G)$. For G and G^{\prime} which are homeomorphic, when no confusion occurs, if G is k-cutwidth critical after the series reductions are carried out, then we shall say that G^{\prime} is also k-cutwidth critical. The following is immediate from Lemma 1 :

$$
\begin{equation*}
\text { if } v \in V(G) \text {, then } c(G-v) \leq c(G) \tag{4}
\end{equation*}
$$

Definition 1. (i) For graph G and integer $r>0$, let $v \in V(G)$ with $d_{G}(v)>r$. For $v_{1}, v_{2}, \ldots, v_{r} \in N_{G}(v)$, define $G\left(v ; v_{1}, v_{2}, \ldots, v_{r}\right)$ to be the component of $G-\left\{v v_{1}, v v_{2}, \ldots\right.$, $\left.v v_{r}\right\}$ that contains v.
(ii) Let G_{1}, G_{2} be two disjoint graphs with $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. To identify u and v, denoted as $G_{1} \oplus_{u, v} G_{2}$, is to replace u, v by a single vertex $z(i . e ., u=v=z)$ incident to all the edges which were incident to u and v, where z is called the identified vertex.
(iii) Let G_{1}, G_{2} and G_{3} be three disjoint graphs, $D_{3}\left(K_{1,3}\right)=\left\{u_{0}\right\}$ and $D_{1}\left(K_{1,3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$, $v_{j} \in V\left(G_{j}\right)$ for each $j \in \mathcal{S}_{3}$. Define $K_{1,3} \circ\left(G_{1}, G_{2}, G_{3}\right)$ as the graph obtained from the disjoint union G_{1}, G_{2}, G_{3} and $K_{1,3}$ by identifying u_{j} with v_{j} (again denoted as v_{j}) for each $j \in \mathcal{S}_{3}$ (see Figure 3d in Section 3.1 below).
(iv) Let G_{1}, G_{2} and G_{3} be three disjoint graphs, $P_{3}=u_{1} u_{2} u_{3}$ with $d_{P_{3}}\left(u_{2}\right)=2$ and $v_{j} \in V\left(G_{j}\right)$ for each $j \in \mathcal{S}_{3}$. Define $P_{3} \circ\left(G_{1}, G_{2}, G_{3}\right)$ as the graph obtained from the disjoint union G_{1}, G_{2}, G_{3} and P_{3} by identifying u_{j} with v_{j} (again denoted as v_{j}) for each $j \in \mathcal{S}_{3}$.
(v) For $i \in\{1,2, \ldots, t\}$ with $t \geq 3$, let G_{i} be a graph with $D_{1}\left(G_{i}\right) \neq \varnothing$ and $z_{i} \in D_{1}\left(G_{i}\right)$. Define $G=\oplus_{z_{0}}\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ to be a graph obtained from disjoint union of $G_{1}, G_{2}, \ldots, G_{t}$ by identifying $z_{1}, z_{2}, \ldots, z_{t}$ into a single vertex z_{0} in G. As $z_{0}=z_{i}$ in G_{i}, z_{0} is viewed as the vertex z_{i} in G_{i}.
(vi) If $|V(G)| \geq 3$, then define $\mathcal{M}(G)=\{G-u v: u v \in E(G)$ and $u v$ is not a cut edge $\} \cup$ $\left\{G-v: v \in D_{1}(G)\right\}$ to be the family of all proper maximal subgraphs of G.

Definition 2. Suppose that vertex $v_{0} \in V(G)$ with $N_{G}\left(v_{0}\right)=\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}, v_{0} v_{1}, v_{0} v_{2}$ are two cut edges of $G, G_{1}^{\prime}=G\left(v_{0} ; v_{2}, v_{3}, \cdots, v_{p}\right)-v_{0}, G_{2}^{\prime}=G\left(v_{0} ; v_{1}, v_{2}\right)$ and $G_{3}^{\prime}=G\left(v_{0} ; v_{1}, v_{3}, \cdots, v_{p}\right)-v_{0}$. For $i \in \mathcal{S}_{3}$, let $\pi_{i}: V\left(G_{i}^{\prime}\right) \rightarrow \mathcal{S}_{\left|V\left(G_{i}^{\prime}\right)\right|}$ be an optimal labeling of G_{i}^{\prime}, and let the labeling $\pi: V(G) \rightarrow \mathcal{S}_{n}$ of G be as follows: for $v \in V(G)$,

$$
\pi(v)= \begin{cases}\pi_{1}(v) & \text { if } v \in V\left(G_{1}^{\prime}\right) \tag{5}\\ \pi_{2}(v)+\left|V\left(G_{1}^{\prime}\right)\right| & \text { if } v \in V\left(G_{2}^{\prime}\right) \\ \pi_{3}(v)+\left|V\left(G_{1}^{\prime}\right)\right|+\left|V\left(G_{2}^{\prime}\right)\right| & \text { if } v \in V\left(G_{3}^{\prime}\right)\end{cases}
$$

Then, the labeling π is called a labeling by the order $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ or $\left(V\left(G_{1}^{\prime}\right), V\left(G_{2}^{\prime}\right), V\left(G_{3}^{\prime}\right)\right)$.
Theorem 1 ([12]). For any $v \in D_{\geq 3}(G)$, if there always are two vertices v_{1}, v_{2} in $N_{G}(v)$ such that $v v_{1}, v v_{2}$ are cut edges in G, then $c(G) \leq k$ if and only if $c\left(G\left(v ; v_{1}, v_{2}\right)\right) \leq k-1$.

Corollary 1. For graph G, if there is a vertex $v \in D_{\geq 3}(G)$ such that $c\left(G\left(v ; v_{i}, v_{j}\right)\right) \geq k-1$ holds for any $v_{i}, v_{j} \in N_{G}(v)$, then $c(G) \geq k$, where $v v_{i}, v v_{j}$ are both cut edges in G.

Lemma 5 ([10]). Let graph G be k-cutwidth critical and $K_{2}=u_{0} u_{1}$. Then $c\left(G \oplus_{v_{0}, u_{0}} K_{2}\right)=k$ for $v_{0} \in V(G)$.

Theorem 2 ([12]). With the notation of Definition 1 (iii), let at least one of $\left\{G_{1}, G_{2}, G_{3}\right\}$, say G_{2}, be $(k-1)$-cutwidth critical with $D_{1}\left(G_{2}\right) \neq \varnothing$. Then $c\left(K_{1,3} \circ\left(G_{1}, G_{2}, G_{3}\right)\right)=k$.

Corollary 2 ([12]). With the notation of Definition 1 (iii), for each $j \in \mathcal{S}_{3}$, if G_{j} is $(k-1)$-cutwidth critical with $v_{j} \in D_{1}\left(G_{j}\right)$, then $K_{1,3} \circ\left(G_{1}, G_{2}, G_{3}\right)$ is k-cutwidth critical.

Theorem 3. With notation of Definition $1($ iv $)$, if $c\left(G_{j}\right)=k-1$ for each $j \in \mathcal{S}_{3}$, then $c\left(P_{3} \circ\right.$ $\left.\left(G_{1}, G_{2}, G_{3}\right)\right)=k$.

Proof. Let $G=P_{3} \circ\left(G_{1}, G_{2}, G_{3}\right)$. If $d_{G}\left(v_{j}\right)=2$ for $j=1$ or 3 then the series reductions are first carried out without effecting $c(G)=k$. As $G-\left\{v_{2} v_{1}, v_{2} v_{3}\right\}$ has three components G_{1}, G_{2} and G_{3} with cutwidth $k-1$, similar to that of (5), an optimal labeling $\pi: V(G) \rightarrow \mathcal{S}_{n}$ obtained by the order $\left(V\left(G_{1}\right), V\left(G_{2}\right), V\left(G_{3}\right)\right)$ satisfies $c(G, \pi) \leq(k-1)+1=k$. Therefore,
$c(G) \leq k$ by (2). Additionally, it is not hard to verify that $c(G) \geq k$ by Corollary 1 ; this is because $c\left(G\left(v_{2} ; v_{i}, v_{j}\right)\right)=k-1$ for any $v_{i}, v_{j} \in N_{G}\left(v_{2}\right)$. Hence $c(G)=k$, i.e., $c\left(P_{3} \circ\left(G_{1}, G_{2}, G_{3}\right)\right)=k$.

Corollary 3. With notation of Definition 1 (iv), if the following hold:
(1) G_{1}, G_{3} are 2-connected;
(2) v_{j} is a small-cut vertex corresponding to an optimal labeling π_{j} of G_{j} for each $j \in \mathcal{S}_{3}$;
(3) G_{1}, G_{2}, G_{3} are $(k-1)$-cutwidth critical, then $P_{3} \circ\left(G_{1}, G_{2}, G_{3}\right)$ is k-cutwidth critical, where G_{1}, G_{2}, G_{3} are not necessarily distinct.

Proof. Let $G=P_{3} \circ\left(G_{1}, G_{2}, G_{3}\right)$. Since $N_{G}\left(v_{2}\right)=\left\{v_{1}, v_{3}\right\}, G\left(v_{1} ; v_{2}\right)=G_{1}, G\left(v_{2} ; v_{1}, v_{3}\right)=$ G_{2} and $G\left(v_{3} ; v_{2}\right)=G_{3}$. First, $c(G)=k$ by Theorem 3. Second, we show $c\left(G^{\prime}\right) \leq k-1$ for any $G^{\prime} \in \mathcal{M}(G)$, that is, G is k-cutwidth critical. Because any G^{\prime} can be obtained by deleting a pendant edge $x y$ or an non-pendant edge $x y \in E\left(C_{t}\right)$ in $G, x y \notin\left\{v_{2} v_{1}, v_{2} v_{3}\right\}$, where C_{t} is a cycle with length $t \geq 3$. There are two cases to consider: (1) $x y \in E\left(G_{2}\right)$; (2) $x y \in E\left(G_{1}\right)$ or $E\left(G_{3}\right)$. For Case (1), since G_{2} is $(k-1)$-cutwidth critical, there is an optimal labeling π_{2}^{\prime} such that $c\left(G_{2}-x y, \pi_{2}^{\prime}\right) \leq k-2$. Now, by Lemma 5 , let π_{j}^{\prime} be a labeling of G_{j} such that $c\left(G_{j} \oplus u_{j}, v_{j} v_{j} v_{2}\right)=k-1$ for $j=1,3$. Thus, a labeling π of G by the order $\left(\pi_{1}^{\prime}, \pi_{2}^{\prime}, \pi_{3}^{\prime}\right)$ is obtained with $c(G-x y, \pi) \leq k-1$ implying $c(G-x y) \leq k-1$. For Case (2), let $x y \in E\left(G_{3}\right)$. By assumption, $c\left(G_{3}-x y\right) \leq k-2$. Since v_{j} is a small-cut vertex corresponding to an optimal labeling π_{j} of G_{j} for each $j \in \mathcal{S}_{3}$, a labeling π of G by the order $\left(\pi_{2}, \pi_{3}, \pi_{1}\right)$ is obtained with $c(G-x y, \pi) \leq k-1$ implying $c(G-x y) \leq k-1$. Likewise, if $x y \in E\left(G_{1}\right)$ then $c(G-x y) \leq k-1$ also. To sum up, G is k-cutwidth critical.

Lemma 6. Each graph in Figure 2 is 4-cutwidth critical.

Figure 2. Eight special 4-cutwidth critical graphs.
Proof. Two steps can be used to finish the proof. For each $M_{i}(1 \leq i \leq 8)$, Step 1 is used to show $c\left(M_{i}\right)=4$. This can be accomplished by two operations: (1) $c\left(M_{i}, \pi\right) \geq 4$ for any labeling π of M_{i}, which implies $c\left(M_{i}\right) \geq 4$; (2) M_{i} has an optimal labeling π_{0} with $c\left(M_{i}, \pi_{0}\right)=4$. In Step 2, for any $M_{i}^{\prime} \in \mathcal{M}\left(M_{i}\right), c\left(M_{i}^{\prime}\right) \leq 3$ must be shown. Since operation of each of the two steps is easy, we omitted it here.

Let v be a cut-vertex with $d_{G}(v) \geq 3$ in G and $G_{1}, G_{2}, \ldots, G_{q}$ be q connected components of $G-v$. Then, $G\left[V\left(G_{i}\right) \cup\{v\}\right](1 \leq i \leq q)$, denoted by H_{i}, is called the i th v-component of $G-v$. A vertex $v_{0} \in V(G)$ is called the central vertex of a k-cutwidth graph G if v_{0} is a cut-vertex in G, such that all v_{0}-components of $G-v_{0}$ can form a decomposition \mathcal{S} of G in which each element has equal cutwidth ρ with $\rho<k$. For example, for graph τ_{1} in Figure $1, H_{i}=K_{2}(1 \leq i \leq 5)$ with edge $v_{0} v_{i}$ is the i th v_{0}-component of $\tau_{1}-v_{0}$; we can see that $\left\{H_{1} \cup H_{2} \cup H_{3}, H_{1} \cup H_{2} \cup H_{4}, H_{1} \cup H_{2} \cup H_{5}\right\}$ is a decomposition of τ_{1}, each of which is a 2-cutwidth critical tree $K_{1,3}$, so v_{0} is the central vertex of τ_{1}. Likewise, each of $\left\{\tau_{2}, \tau_{3}\right\}$ has a decomposition of equal cutwidth-2 and a central vertex v_{0} also, respectively.

For a cycle $C_{q}=x_{1} x_{2} \ldots x_{q} x_{1}$ of G with $q \geq 3$ and $d_{G}\left(x_{i}\right) \geq 3$ for $1 \leq i \leq q$, let $V\left(C_{q}\right)$ be a vertex-cut set of G. If $E\left(C_{q}\right)$ is also an edge-cut set of G and G_{i} is the i th connected component of $G-E\left(C_{q}\right)$ leading from x_{i}, then $G\left[E\left(G_{i}\right) \cup \tilde{E}_{i}\right]$, denoted by H_{i}, is called the
i th C_{q}-component leading from x_{i} of $G-E\left(C_{q}\right)$, where $\tilde{E}_{i} \subseteq E\left(C_{q}\right)$ and at least an $\tilde{E}_{i} \neq \varnothing$. A cycle C_{q} with $q \geq 3$ is called a central cycle of a k-cutwidth graph G if $E\left(C_{q}\right)$ is an edge-cut set, such that one of the following is a decomposition \mathcal{S} of G, each element of which has equal cutwidth ρ with $\rho<k$,
(1) $\left\{H_{i}: 1 \leq i \leq q\right\}$, or
(2) $\left\{H_{i}^{\prime}: 1 \leq i<q\right\}$ in which H_{i}^{\prime} may be one of $\left\{H_{i}, H_{i-1} \cup H_{i} \cup H_{i+1}\right\}$ with $H_{0}=H_{q}, H_{q+1}=H_{1}$, and there exists at least $H_{i}^{\prime} \neq H_{i}$, or
(3) $\left\{H_{i}^{\prime \prime}: 1 \leq i<q\right\}$, each of which is either H_{i} or $H_{i-1}\left[E^{\prime}\right] \cup H_{i} \cup H_{i+1}\left[E^{\prime \prime}\right]$ with $H_{0}=H_{q}, H_{q+1}=H_{1}$, and there exists at least $H_{i}^{\prime \prime} \neq H_{i}$, where $H_{i-1}\left[E^{\prime}\right] \subset H_{i-1}$ and $H_{i+1}\left[E^{\prime \prime}\right] \subset H_{i+1}$.
For example, in Figure $1, \tau_{4}$ has a cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}$, and $\tau_{4}-E\left(C_{3}\right)$ has three components G_{1}, G_{2}, G_{3}, each of which equals K_{2}. Let $\tilde{E}_{1}=\left\{x_{1} x_{2}, x_{1} x_{3}\right\}, \tilde{E}_{2}=\left\{x_{2} x_{1}, x_{2} x_{3}\right\}$ and $\tilde{E}_{3}=\left\{x_{3} x_{1}, x_{3} x_{2}\right\}$, and let $H_{i}=G\left[E\left(G_{i}\right) \cup \tilde{E}_{i}\right]$ for $1 \leq i \leq 3$. Then, $\left\{H_{1}, H_{2}, H_{3}\right\}$ is a decomposition \mathcal{S} of τ_{4}, in which each member is a 2-cutwidth critical subgraph $K_{1,3}$, and C_{3} is the central cycle in τ_{4}. For Case (3), we take M_{5} with a central cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}$ in Figure 2 as an example. $M_{5}-E\left(C_{3}\right)$ also has three connected components G_{1}, G_{2}, G_{3}, which are $K_{1,3}, K_{1,3}, C_{3}$ and three C_{3}-components $H_{1}=G_{1}+x_{1} x_{2}+x_{1} x_{3}$ with $d_{G_{1}}\left(x_{1}^{\prime}\right)=d_{G_{1}}\left(x_{1}^{\prime \prime}\right)=1, H_{2}=G_{2}+x_{2} x_{1}+x_{2} x_{3}$ with $d_{G_{2}}\left(x_{2}^{\prime}\right)=d_{G_{2}}\left(x_{2}^{\prime \prime}\right)=1$ and $H_{3}=G_{3}+x_{3} x_{1}+x_{3} x_{2}$, respectively. Let $E^{\prime}=\left\{x_{1} x_{1}^{\prime}, x_{1} x_{1}^{\prime \prime}\right\}, E^{\prime \prime}=\left\{x_{2} x_{2}^{\prime}, x_{2} x_{2}^{\prime \prime}\right\}$, then $H_{1}\left[E^{\prime}\right] \subset H_{1}, H_{2}\left[E^{\prime \prime}\right] \subset H_{2}$ and $\left\{H_{1}, H_{2}, H_{1}\left[E^{\prime}\right] \cup H_{3} \cup H_{2}\left[E^{\prime \prime}\right]\right\}$ is a decomposition of equal cutwidth 3 of M_{5}, each member of which is also 3-cutwidth critical.

In the case that G is 2 -connected and $E\left(C_{q}\right)$ is not an edge-cut set of G, suppose that $G-V\left(C_{q}\right)$ has q connected components $G_{1}, G_{2}, \ldots, G_{q}$, with $V\left(G_{i}\right) \neq \varnothing$ for each $1 \leq i \leq q$, and let $G\left[V\left(G_{i}\right) \cup\left\{x_{i}, x_{i+1}\right\}\right]$ be the i th 2-connected subgraph that contains edge $x_{i} x_{i+1} \in E\left(C_{q}\right)$. If $\left\{G\left[V\left(C_{q}\right) \cup V\left(G_{i}\right)\right]: 1 \leq i \leq q\right\}$ is a subgraph decomposition of equal cutwidth $\rho \leq k-1$, then C_{q} is also called the central cycle of G. For example, let $G=M_{8}$ with $C_{3}=x_{1} x_{2} x_{3} x_{1}$ in Figure 2. Clearly, $G-\left\{x_{1}, x_{2}, x_{3}\right\}$ has three components y_{1}, y_{2}, y_{3}, and $\left\{G\left[\left\{x_{1}, x_{2}, x_{3}, y_{i}\right\}\right]: 1 \leq i \leq 3\right\}=\left\{\tau_{5}, \tau_{5}, \tau_{5}\right\}$ is an edge-joint subgraph decomposition of equal cutwidth 3 of G. Hence, $C_{3}=x_{1} x_{2} x_{3} x_{1}$ is the central cycle of M_{8}.

From Lemma 2, we have

Theorem 4. For a 2-cutwidth critical graph $G \in\left\{K_{1,3}, C_{3}\right\}$, one of the following holds:
(1) G has a central vertex v_{0}, and v_{0}-components of $G-v_{0}$ constitute a decomposition \mathcal{S} with $|\mathcal{S}|=3$, each of which is K_{2} with cutwidth 1 ;
(2) G is a cycle C_{3}, whose three edges constitute a decomposition \mathcal{S} with $|\mathcal{S}|=3$, each element of which is K_{2} with cutwidth 1.

Theorem 5. For a 3-cutwidth critical graph $G \in\left\{\tau_{i}: 1 \leq i \leq 5\right\}$, one of the following holds:
(1) has a central vertex v_{0}, and v_{0}-components of $G-v_{0}$ constitute a decomposition \mathcal{S} with $|\mathcal{S}|=3$, each of which equals $K_{1,3}$ or C_{3} with cutwidth 2; or
(2) G has a central cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}$ with $d_{G}\left(x_{i}\right)=3$ for $x_{i} \in V\left(C_{3}\right)$, and C_{3}-components of $G-E\left(C_{3}\right)$ constitute a decomposition \mathcal{S} with $|\mathcal{S}|=3$, each member of which equals $K_{1,3}$ with cutwidth 2; or
(3) G equals $C_{4}+x_{1} x_{3}$ or $C_{4}+x_{2} x_{4}$, where $C_{4}=x_{1} x_{2} x_{3} x_{4} x_{1}$ is a cycle of length 4 .

3. 4-Cutwidth Critical Graphs with a Central Vertex

In this section, we shall verify the decomposability of the 4-cutwidth critical graphs with a central vertex. Since a k-cutwidth critical graph G is homeomorphically minimal, for the central cycle $C_{q}(q \geq 3)$ of G, we can let

$$
\begin{equation*}
d_{G}\left(v_{i}\right) \geq 3 \text { for every } v_{i} \in V\left(C_{q}\right) \tag{6}
\end{equation*}
$$

3.1. 4-Cutwidth Critical Trees with a Central Vertex

Definition 3. For a cut-vertex v_{0} with $N_{T}\left(v_{0}\right)=\left\{v_{i}: 1 \leq i \leq q\right.$ and $\left.q \geq 4\right\}$ in a tree T, let H_{i} be a v_{0}-component of $T-v_{0}$ with $c\left(H_{1}\right) \geq c\left(H_{2}\right) \geq \ldots \geq c\left(H_{q}\right)$ and $c\left(\bigcup_{i=4}^{q} H_{i}\right)<k-1$, then define

$$
T_{i}= \begin{cases}K_{1,2 k-3} & \text { if } i<3 \text { and } H_{i}=K_{1,2 k-3} \tag{7}\\ H_{i} \cup\left(\bigcup_{i=4}^{q} H_{i}\right) & \text { if } i<3 \text { and } H_{i} \neq K_{1,2 k-3} \\ H_{3} \cup\left(\bigcup_{i=4}^{q} H_{i}\right) & \text { if } i=3 .\end{cases}
$$

If $c\left(T_{i}\right)=k-1$ for $1 \leq i \leq 3$, then $\left\{T_{1}, T_{2}, T_{3}\right\}$ is called a subtree decomposition of equal cutwidth $k-1$ of T.

In Definition 3, for a decomposition $\left\{T_{1}, T_{2}, T_{3}\right\}$ of equal cutwidth $k-1$ of a k-cutwidth critical tree $T, E\left(T_{i_{1}}\right) \cap E\left(T_{i_{2}}\right)=E\left(\bigcup_{i=4}^{q} H_{i}\right)\left(1 \leq i_{1} \neq i_{2} \leq 3\right)$. If $E\left(T_{i_{1}}\right) \cap E\left(T_{i_{2}}\right) \neq \varnothing$, then $\left\{T_{1}, T_{2}, T_{3}\right\}$ is edge-joint; Otherwise $\left\{T_{1}, T_{2}, T_{3}\right\}$ is edge-disjoint.

There are eighteen 4-cutwidth critical trees in total by [9], each of which can be decomposed into three 3-cutwidth subtrees by Lemma 3. In fact, among these eighteen 4-cutwidth critical trees, each possesses one of the structures listed in Figure 3, in which $H_{i} \cup\left(\bigcup_{i=4}^{q} H_{i}\right)$ is either one of τ_{1} and τ_{2} or homeomorphic to τ_{2} for $i=1,2,3$ in Figure 3a. $H_{i} \cup\left(\bigcup_{i=4}^{q} H_{i}\right)$ is either τ_{2} or homeomorphic to τ_{2} for $i=2,3$ in Figure $3 \mathrm{~b}, H_{i} \cup\left(\bigcup_{i=4}^{q} H_{i}\right)$ is either τ_{2} or homeomorphic to τ_{2} for $i=3$ in Figure 3c, either H_{i} or $H_{i}-v_{0} v_{i}$ with $v_{i} \in N_{H_{i}}\left(v_{0}\right)$ is in $\left\{\tau_{1}, \tau_{2}\right\}$ for $i=1,2,3$ in Figure 3d. Thus, based on this, M_{1} (see Figure 2) is 4 -cutwidth critical, and again we have the following:

Theorem 6. For a 4-cutwidth critical tree T, one of the following holds:
(1) T possesses a configuration $K_{1,3} \circ\left(T_{1}, T_{2}, T_{3}\right)$ which can be decomposed into three edgedisjoint 3-cutwidth trees T_{1}, T_{2} and T_{3} (not necessarily distinct), and the 3-degree vertex of $K_{1,3}$ is the central vertex of T, where T_{i} is a v_{0}-component of $T-v_{0}$ with either $T_{i} \in\left\{\tau_{1}, \tau_{2}\right\}$ or $T_{i}-v_{0} \in\left\{\tau_{1}, \tau_{2}\right\}$ for each $1 \leq i \leq 3$ (see Figure 3d); or
(2) T is a tree with a central vertex v_{0} with $d_{T}\left(v_{0}\right) \geq 4$ and with an edge-joint decomposition $\left\{T_{1}, T_{2}, T_{3}\right\}$ of equal cutwidth 3 , where T_{1}, T_{2} and T_{3} (not necessarily distinct), which are defined by (7), are either in $\left\{\tau_{1}, \tau_{2}\right\}$ or homeomorphic to τ_{2}, and at least one of them, say T_{3}, is not τ_{1} (see Figure 3a-c, respectively).

(a)

(c)

(b)

(d)

Figure 3. Four structures of 4-cutwidth critical trees.

3.2. 4-Cutwidth Critical Nontrees with a Central Vertex

We shall focus primarily on the structures of 4-cutwidth critical non-trees with a central vertex in this subsection.

Suppose now that G_{1}, G_{2} and G_{3} (not necessarily distinct) are mutually disjoint graphs, and at least one of them is not a tree. Let $K_{1,3} \circ\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$ be a graph obtained from the disjoint graphs $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$ and $K_{1,3}$ by identifying u_{i} with v_{i} (again denoted as v_{i}) for $i \in \mathcal{S}_{3}$, where

$$
G_{i}^{\prime}= \begin{cases}G_{i} & \text { if } v_{i} \notin V\left(E_{p}\left(G_{i}\right)\right) \backslash D_{1}\left(G_{i}\right), \tag{8}\\ G_{i}-v_{i}^{\prime} & \text { if } v_{i} \in V\left(E_{p}\left(G_{i}\right)\right) \backslash D_{1}\left(G_{i}\right) \text { and } v_{i} v_{i}^{\prime} \in E\left(E_{p}\left(G_{i}\right)\right)\end{cases}
$$

u_{i} is a pendant vertex of $K_{1,3}$ and $v_{i} \in V\left(G_{i}\right)$ for $1 \leq i \leq 3$. Obviously, if $c\left(G_{1}\right)=c\left(G_{2}\right)=$ $c\left(G_{3}\right)$ and $D_{3}\left(K_{1,3}\right)=\left\{u_{0}\right\}$ then u_{0} is the central vertex of $K_{1,3} \circ\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$.

Lemma 7. Suppose that G_{i} is $(k-1)$-cutwidth critical for $1 \leq i \leq 3$, then $K_{1,3} \circ\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$ is a k-cutwidt critical graph, where G_{1}, G_{2}, G_{3} are not necessarily distinct.

Proof. Let $G=K_{1,3} \circ\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$. If there exists at least a vertex $v_{i} \in N_{G}\left(u_{0}\right)$ such that $d_{G}\left(v_{i}\right)=2$, then the series reductions can be implemented first. Two cases need to be considered as follows.
Case 1. For $i \in \mathcal{S}_{3}, v_{i} \notin V\left(E_{p}\left(G_{i}\right)\right) \backslash D_{1}\left(G_{i}\right)$.
By (8), $G_{i}^{\prime}=G_{i}$ for $i \in \mathcal{S}_{3}$. So $c\left(G_{i}^{\prime}\right)=c\left(G_{i}\right)=k-1$ by assumption, and $c\left(G_{2}^{\prime}+u_{0} v_{2}\right)=k-1$ by Lemma 5 . Now, let $\pi_{1}, \pi_{2}, \pi_{3}$ be the labelings such that $c\left(G_{1}^{\prime}, \pi_{1}\right)=$ $k-1, c\left(G_{2}^{\prime}+u_{0} v_{2}, \pi_{2}\right)=k-1$ and $c\left(G_{3}^{\prime}, \pi_{3}\right)=k-1$, respectively. Then, a labeling π of G by the order $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ is obtained, and $c(G, \pi)=\max \left\{c\left(G_{1}^{\prime}, \pi_{1}\right), c\left(G_{2}^{\prime}+u_{0} v_{2}, \pi_{2}\right), c\left(G_{3}^{\prime}, \pi_{3}\right)\right\}$ $+1=(k-1)+1=k$, implying $c(G) \leq k$. Since $u_{0} v_{1}, u_{0} v_{2}$ and $u_{0} v_{3}$ are cut-edges in G, $c\left(u_{0} ; v_{i}, v_{j}\right) \geq k-1$ for any $v_{i}, v_{j} \in\left\{v_{1}, v_{2}, v_{3}\right\}$, leading to $c(G) \geq k$ by Corollary 1 . Hence $c(G)=k$.

On the other hand, any $G^{\prime} \in \mathcal{M}(G)$ can be obtained by deleting a vertex y with degree one of a pendant edge $x y \notin E\left(C_{t}\right)$ or a nonpendant edge $x y \in E\left(C_{t}\right)$ in G, so $x y \neq u_{0} v_{1}, u_{0} v_{2}$ or $u_{0} v_{3}$, where $C_{t}=x_{1} x_{2} \ldots x_{t} x_{1}$ is a cycle with length $t \geq 3$ in G. Without loss of generality, let $x y \in E\left(G_{2}^{\prime}\right)$. If $x y$ is pendant with $y \in D_{1}(G)$, then by the criticality of $G_{2}^{\prime}, c\left(G_{2}^{\prime}-y\right) \leq k-2$ with a labeling π_{2}^{\prime} such that $c\left(G_{2}^{\prime}-y, \pi_{2}^{\prime}\right) \leq k-2$. Since G_{1}^{\prime} and G_{3}^{\prime} are $(k-1)$-cutwidth critical, by (6) in Lemma 5, two labelings $\pi_{1}^{\prime}, \pi_{3}^{\prime}$ can be obtained such that $c\left(G_{1}^{\prime} \oplus u_{1}, v_{1} v_{1} u_{0}, \pi_{1}^{\prime}\right)=k-1$ with $\pi_{1}^{\prime}\left(u_{0}\right)=1$ and $c\left(G_{3}^{\prime} \oplus_{u_{3}, v_{3}} v_{3} u_{0}, \pi_{1}^{\prime}\right)=k-1$ with $f_{3}^{\prime}\left(u_{0}\right)=\left|V\left(G_{3}^{\prime}\right)\right|+1$, respectively. Now, define $\pi: V\left(G^{\prime}\right) \rightarrow\left\{1,2, \ldots,\left|V\left(G^{\prime}\right)\right|-1\right\}$ to be a labeling of G^{\prime} by the order $\left(\pi_{1}^{\prime}, \pi_{2}^{\prime}, \pi_{3}^{\prime}\right)$, then $c\left(G^{\prime}, \pi\right) \leq(k-2)+1=k-1$, i.e., $c\left(G^{\prime}\right) \leq k-1$, meaning that G is k-cutwidth critical. Likewise, if $x y$ is not pendant with $x y \in E\left(C_{t}\right)$, then $c\left(G_{2}^{\prime}-x y\right) \leq k-2$, and a labeling $\pi: V\left(G^{\prime}\right) \rightarrow\left\{1,2, \ldots,\left|V\left(G^{\prime}\right)\right|\right\}$ by the order $\left(G_{1}^{\prime} \oplus_{u_{1}, v_{1}} v_{1} u_{0}, G_{2}^{\prime}-x y, G_{3}^{\prime} \oplus_{u_{3}, v_{3}} v_{3} u_{0}\right)$ is also obtained, under which $c\left(G^{\prime}, \pi\right) \leq$ $(k-2)+1=k-1$, i.e., $c\left(G^{\prime}\right) \leq k-1$, meaning that G is also k-cutwidth critical. The cases of $x y \in E\left(G_{1}^{\prime}\right)$ or $E\left(G_{3}^{\prime}\right)$ are the same as that of $x y \in E\left(G_{2}^{\prime}\right)$, omitted here.
Case 2. There are at least a $v_{i_{0}}$, such that $v_{i_{0}} \in V\left(E_{p}\left(G_{i_{0}}\right)\right) \backslash D_{1}\left(G_{i_{0}}\right)\left(1 \leq i_{0} \leq 3\right)$.
Three subcases need to be considered: (1) there is unique v_{i} (say v_{2}), such that $v_{2} \in V\left(E_{p}\left(G_{2}\right)\right) \backslash D_{1}\left(G_{2}\right) ;(2)$ there are two $v_{i}^{\prime} s$ (say $\left.v_{1}, v_{3}\right)$, such that $v_{1} \in V\left(E_{p}\left(G_{1}\right)\right) \backslash$ $D_{1}\left(G_{1}\right)$ and $v_{3} \in V\left(E_{p}\left(G_{3}\right)\right) \backslash D_{1}\left(G_{3}\right) ;(3) v_{i} \in V\left(E_{p}\left(G_{i}\right)\right) \backslash D_{1}\left(G_{i}\right)$ for each $1 \leq i \leq 3$. For Subcase (1), since $v_{2} \in V\left(E_{p}\left(G_{2}\right)\right) \backslash D_{1}\left(G_{2}\right), G_{2}^{\prime}=G_{2}-v_{2} v_{2}^{\prime}$ with $v_{2}^{\prime} \in D_{1}\left(G_{2}\right)$. In this case, $G_{2}^{\prime} \oplus_{u_{2}, v_{2}} u_{2} u_{0}=G_{2}$, i.e., $G\left(u_{0} ; v_{1}, v_{3}\right)=G_{2}, G_{1}^{\prime}=G_{1}$ and $G_{3}^{\prime}=G_{3}$ by (9). Similarly, for Subcase (2), $G_{1}^{\prime} \oplus_{u_{1}, v_{1}} u_{1} u_{0}=G_{1}, G_{2}^{\prime}=G_{2}$ and $G_{3}^{\prime} \oplus_{u_{3}, v_{3}} u_{3} u_{0}=G_{3}$; for Subcase (3), $G_{1}^{\prime} \oplus_{u_{1}, v_{1}} u_{1} u_{0}=G_{1}, G_{2}^{\prime} \oplus_{u_{2}, v_{2}} u_{2} u_{0}=G_{2}$ and $G_{3}^{\prime} \oplus_{u_{3}, v_{3}} u_{3} u_{0}=G_{3}$. The remaining argument of any Subcase $(j)(j=1,2,3)$ is similar to that of Case 1 , omitted here. To sum up, G is k-cutwidth critical.

Corollary 4. Suppose that $G_{i} \in\left\{\tau_{i}: 1 \leq i \leq 5\right\}$ for $1 \leq i \leq 3$, then $K_{1,3} \circ\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$ is a 4cutwidt critical graph, where at least a $G_{i} \in\left\{\tau_{3}, \tau_{4}, \tau_{5}\right\}$, and G_{1}, G_{2}, G_{3} are not necessarily distinct.

Corollary 5. Suppose that $G_{i} \in\left\{\tau_{i}: 1 \leq i \leq 4\right\}$ for $1 \leq i \leq 3$, then $\oplus_{u_{0}}\left(G_{1}, G_{2}, G_{3}\right)$ is a 4-cutwidt critical graph, where at least a $G_{i} \in\left\{\tau_{3}, \tau_{4}\right\}$, and G_{1}, G_{2}, G_{3} are not necessarily distinct.

Lemma 8. Let $P_{3}=u_{1} u_{2} u_{3}, G_{i}$ be 3-cutwidth critical with $v_{i} \in V\left(G_{i}\right)$ for $1 \leq i \leq 3$ and satisfy the following:
(i) each non cut-edge of G_{2} may be subdivided once, and v_{2} may possibly be the subdivision vertex;
(ii) $G_{2} \neq \tau_{1}$;
(iii) if $G_{2} \in\left\{\tau_{2}, \tau_{3}\right\}$, then v_{2} is not either the central vertex or the pendant vertex of it;
(iv) $G_{i} \notin\left\{\tau_{2}, \tau_{3}\right\}$ for $i=1$ or 3 if $G_{2} \in\left\{\tau_{2}, \tau_{3}\right\}$.

Then, $P_{3} \circ\left(G_{1}^{\prime}, G_{2}, G_{3}^{\prime}\right)$ is a 4-cutwidt critical graph, where G_{1}, G_{2}, G_{3} are not necessarily distinct, and at least one of them is not in $\left\{\tau_{1}, \tau_{2}\right\}$.

Proof. Let $G=P_{3} \circ\left(G_{1}^{\prime}, G_{2}, G_{3}^{\prime}\right)$. By assumption, for $i=1,3, G_{i}^{\prime}=G_{i}$ with $v_{i} \notin$ $V\left(E_{p}\left(G_{i}\right)\right) \backslash D_{1}\left(G_{i}\right)$ or $G_{i}-v_{i}^{\prime}$ with $v_{i} v_{i}^{\prime} \in E\left(E_{p}\left(G_{i}\right)\right)$ and $v_{i}^{\prime} \in D_{1}\left(G_{i}\right)$. So, $H_{i}=G_{i}$ or $G_{i}+v_{i} v_{2}$ for $i=1,3$ and $H_{i}=G_{2}$ for $i=2$. Thus, with an argument similar to that of Lemma 7, G is 4-cutwidth critical.

Suppose that $G_{1} \in\left\{\tau_{2}, \tau_{3}\right\}$ with the central vertex $u_{1}\left(=v_{0}\right)$ and two cut edge $u_{1} v_{1}, u_{1} v_{2}$, such that any u_{1}-component of $G_{1}-u_{1}$ is 2 -cutwidth critical (see $\tau_{1}-\tau_{5}$ in Figure 1). For any 3-cutwidth nontree graph $G_{2} \in\left\{\tau_{3}, \tau_{4}, \tau_{5}\right\}$ with cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}$, if there is a vertex (say x_{1}) in C_{3} such that (1) $x_{1} \neq u_{2}$ when $G_{2}=\tau_{3}$ with the central vertex $u_{2}\left(=v_{0}\right)$; or (2) if F_{1} is a component of $G_{2}-E\left(C_{3}\right)$ leading from x_{1}, then either $F_{1}=x_{1} x_{1}^{\prime}$ with $d_{G_{2}}\left(x_{1}^{\prime}\right)=1$ when $G_{2}=\tau_{4}$ or $F_{1}=x_{1}$ only when $G_{2}=\tau_{5}$; or (3) G_{1} and G_{2} are not necessarily distinct; or (4) if $G_{1}=\tau_{3}$ and $G_{2}=\tau_{5}$, then $d_{G_{2}}\left(x_{1}\right)=2$. Only then, by (8), do we have

Lemma 9. Graph $G_{1} \oplus_{u_{1}, x_{1}} G_{2}^{\prime}$ is a 4 -cutwidth critical graph.
Proof. Let $G=G_{1} \oplus_{u_{1}, x_{1}} G_{2}^{\prime}$ with optimal labeling π, and π_{1} be a sublabeling of π restricted on G_{1}. By assumption, $G_{1}-u_{1}$ has three u_{1}-components H_{1}, H_{2} and H_{3}, each of which is either $K_{1,3}$ or C_{3} by Theorem 3. Suppose that π_{1} is obtained by the order $\left(\pi_{1}^{\prime}, \pi_{2}^{\prime}, \pi_{3}^{\prime}\right)$ with $\max \left\{\pi_{1}^{\prime}(v): v \in V\left(H_{1}-u_{1}\right)\right\}<\pi_{2}^{\prime}(v)<\min \left\{\pi_{3}^{\prime}(v): v \in V\left(H_{3}-u_{1}\right)\right\}$ for $v \in V\left(H_{2}\right)$ if $\pi_{1}^{\prime}, \pi_{2}^{\prime}, \pi_{3}^{\prime}$ are optimal labelings of $H_{1}-u_{1}, H_{2}$ and $H_{3}-u_{1}$, respectively. Without loss of generality, let $H_{1}=K_{1,3}$ with cutwidth 2. Since G_{2} is 3-cuwidth critical and $x_{1} \in V\left(C_{3}\right)$ in G_{2}, whether $G_{2}=\tau_{4}$ or $G_{2}=\tau_{i}$ with $i=3,5$, if $\nabla_{\pi}\left(S_{j}\right)$ is a π-max-cut of G, then $j<\pi\left(u_{1}\right)$ and $\left|\nabla_{\pi}\left(S_{j}\right)\right|=4$. Hence, $c(G) \leq 4$. On the other hand, assuming that $u_{1} v_{1}, u_{1} v_{2}$ are cut edges in $G, \pi\left(u_{1} ; v_{1}, v_{2}\right)=K_{1,3} \oplus_{u_{1}, x_{1}} G_{2}^{\prime}$ when $G_{1}=\tau_{2}$ or $C_{3} \oplus_{u_{1}, x_{1}} G_{2}^{\prime}$ when $G_{1}=\tau_{3}$, so $c\left(\pi\left(u_{1} ; v_{1}, v_{2}\right)\right) \geq 3$, resulting in $c(G) \geq 4$ by Corollary 1 . Thus, $c(G)=4$.

We now verify that G is 4-cutwidth critical. For any edge $e \in E(G), e$ is in either $E\left(G_{1}\right)$ or $E\left(G_{2}\right)$. Since $G_{1} \in\left\{\tau_{2}, \tau_{3}\right\}$ which is 3-cutwidth critical, if $e \in E\left(G_{1}\right)$ then we can always find a labeling $\bar{\pi}_{1}$ of $G_{1}-e$ such that $c\left(G_{1}-e\right)=3$ and $\bar{\pi}_{1}\left(u_{1}\right)=\left|V\left(G_{1}\right)\right|$. For $G_{2} \in\left\{\tau_{3}, \tau_{4}, \tau_{5}\right\}$, we can always find an optimal labeling $\bar{\pi}_{2}$ of G_{2}^{\prime} such that $\bar{\pi}_{2}\left(x_{1}\right)=1$. Thus, a labeling $\bar{\pi}$ of $G-e$ by the order $\left(\bar{\pi}_{1}, \bar{\pi}_{2}\right)$ is obtained with $c(G-e, \bar{\pi})=3$ leading to $c(G-e) \leq 3$. Similarly, if $e \in E\left(G_{2}\right)$ then $c(G-e) \leq 3$ also. This completes the proof.

From Lemma 9, we can see that if a critical non-tree G with cutwidth 4 can be decomposed into two 3-cutwidth critical subgraphs $G_{1} \in\left\{\tau_{2}, \tau_{3}\right\}$ and $G_{2} \in\left\{\tau_{3}, \tau_{4}, \tau_{5}\right\}$, then (1) G has a central vertex u_{1}; (2) u_{1} is also the central vertex of at least one of G_{1} and G_{2}. For example, let $K_{1,3}^{(j)}$ with a pendant vertex $y^{(j)}(1 \leq j \leq 4)$ be the copy of $K_{1,3}$ with a pendant vertex y, and $y^{(j)}$ be the copy of $y, y^{(0)}$ be a vertex of a 3-cycle C_{3}^{\prime}. Then, graph $\oplus_{y_{0}}\left(K_{1,3}^{(1)}, \ldots, K_{1,3}^{(4)}, C_{3}^{\prime}\right)$, obtained by identifying $y^{(0)}, y^{(1)}, \ldots, y^{(4)}$ into a vertex y_{0} (i.e., $y_{0}=y^{(0)}=\ldots=y^{(4)}$), is a 4-cutwidth critical graph with the central vertex y_{0}, and this graph can be decomposed into two 3-cutwidth critical subgraphs $\oplus_{y_{0}}\left(K_{1,3}^{(1)}, K_{1,3}^{(2)}, K_{1,3}^{(3)}\right)$ $\left(=\tau_{2}\right)$ with the central vertex y_{0}, and $\oplus_{y_{0}}\left(K_{1,3}^{(3)}, K_{1,3}^{(4)}, C_{3}^{\prime}\right)\left(=\tau_{3}\right)$ with the central vertex y_{0}; (3) there are at least two cut edges $u_{1} v_{1}, u_{1} v_{2}$.

Lemma 10. Let G be a 4-cutwidth critical nontree graph with the central vertex v_{0} and at least two cut edges $v_{0} v_{1}$ and $v_{0} v_{2}$. If G can be decomposed into two 3-cutwidth graphs G_{1}, G_{2} (not necessarily distinct), then the following hold:
(1) G_{1}, G_{2} are in $\left\{\tau_{i}: 2 \leq i \leq 5\right\}$;
(2) at least one of G_{1} and G_{2}, say G_{1}, is in $\left\{\tau_{2}, \tau_{3}\right\}$, while $G_{2} \neq \tau_{2}$;
(3) v_{0} is the central vertex of G_{1}, but v_{0} is only a vertex of any 3-cycle C_{3} of G_{2}.

Proof. Since G is a non-tree graph, we do not consider the cases that G_{1} and G_{2} are both τ_{1} or τ_{2}. We first show that G_{1}, G_{2} are in $\left\{\tau_{i}: 2 \leq i \leq 5\right\}$ by contradiction. Suppose that there is some G_{i} (say G_{2}) such that $c\left(G_{2}\right)=3$ but G_{2} is not 3-cutwidth critical, then there is at least a pendant edge $x y \in E\left(G_{2}\right)$ with $y \in D_{1}(G)$ or a non-pendant edge $x y \in E\left(C_{t}\right)$ such that $c\left(G_{2}-y\right)=3$ or $c\left(G_{2}-x y\right)=3$, respectively, where $C_{t}=x_{1} x_{2} \ldots x_{t} x_{1}$ is a cycle with length $t \geq 3$. For the former, because $c\left(G_{1}\right)=3$ by assumption, $c(G-y)=4$ by Lemma 9 . Likewise, for the latter, $c(G-x y)=4$ also by Lemma 9. All are contrary to the criticality of G. Hence G_{1}, G_{2} are both in $\left\{\tau_{i}: 2 \leq i \leq 5\right\}$.

Next, by the assumption that v_{0} is the central vertex and $v_{0} v_{1}$ and $v_{0} v_{2}$ are both cut edges in G, we claim that at least one of G_{1} and G_{2} (say G_{1}) must be τ_{2} or τ_{3}. This is because otherwise, there is at most a vertex $v_{1} \in N_{G}\left(v_{0}\right)$ such that $v_{0} v_{1}$ is a cut edge in G if G_{1} and G_{2} are both in $\left\{\tau_{4}, \tau_{5}\right\}$, which is a contradiction. So (2) holds and $G_{1} \in\left\{\tau_{2}, \tau_{3}\right\}$.

Third, assume that v_{0} is neither the central vertex of G_{1} nor a vertex of a 3-cycle C_{3} of G_{2} if $G_{2}=\tau_{3}$. Without loss of generality, let $G_{1}=\tau_{2}$. Then G_{2} is either τ_{3} or one of $\left\{\tau_{4}, \tau_{5}\right\}$. For $G_{2}=\tau_{3}$, by assumption, v_{0} is not also the central vertex of G_{2}. Thus, except three vertices of 3-cycle C_{3} of G_{2}, three cases need to be considered: (a) v_{0} is not only a subdivision vertex of some non-pendant edge in G_{1} but also a subdivision vertex of some non-pendant cut edge in $G_{2} ;(b) v_{0}$ is a subdivision vertex of some non-pendant edge in G_{1}, but v_{0} is a nonpendent vertex of $G_{2} ;(c) v_{0}$ is not only a non-pendant vertex of G_{1} but also a non-pendant vertex of G_{2}. For any case of Cases $(a)-(c)$, we can easily verify that $c(G)=3$ by Lemma 1(3) and Theorem 5, contrary to the assumption of $c(G)=4$. Likewise, for $G_{2} \in\left\{\tau_{4}, \tau_{5}\right\}$, there are only two cases to consider: $(a)^{\prime} v_{0}$ is a subdivision vertex of some non-pendant edge in G_{1}, but v_{0} is a arbitrary vertex of $G_{2} ;(b)^{\prime} v_{0}$ is a nonpendant vertex of G_{1}, but v_{0} is a arbitrary vertex of G_{2}. Furthermore, in any case, $c(G)=3$, also a contradiction. This completes the proof.

For a cut-vertex $v_{0} \in D_{\geq 4}(G)$ graph G and all v_{0}-components $H_{i}=G\left[V\left(G_{i}\right) \cup\left\{v_{0}\right\}\right]$ $(1 \leq i \leq m)$ of $G-v_{0}$, we define a decomposition $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$ each of which has cutwidth 3 below. Let E_{0} be an edge subset taken from \bar{G}_{3} such that the cutwidth of the connected subgraph $H_{i} \cup G\left[E_{0}\right]$ is 3 if $c\left(H_{i}\right)<3$, for $1 \leq i<3$. Then, we obtain the following:

Definition 4. For a cut-vertex $v_{0} \in D_{\geq 4}(G)$ of G and the v_{0}-component $H_{i}(1 \leq i \leq q)$ of $G-v_{0}, \min \left\{c\left(H_{i}\right): 1 \leq i \leq 3\right\} \geq \max \left\{c\left(H_{i}\right): 4 \leq i \leq q\right\}$ and the cutwidth of $\bigcup_{i=3}^{q} H_{i}$ is three. For $1 \leq i \leq 3$, define

$$
\bar{G}_{i}= \begin{cases}H_{i} & \text { if } i<3 \text { and } c\left(H_{i}\right)=3, \tag{9}\\ H_{i} \cup G\left[E_{0}\right] & \text { if } i<3 \text { and } c\left(H_{i}\right)<3, \\ \bigcup_{i=3}^{q} H_{i} & \text { if } i=3 .\end{cases}
$$

If $c\left(\bar{G}_{i}\right)=3$ for $i=1,2$, then $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$ is called a decomposition of equal cutwidth 3 of G, and G is called a graph with a central vertex v_{0}, where E_{0} is an edge subset taken from \bar{G}_{3} such that $c\left(H_{i} \cup G\left[E_{0}\right]\right)=3$ if $c\left(H_{i}\right)<3$ for $i=1,2$

Lemma 11. Let G be a 4-cutwidth critical graph with the central vertex v_{0} and at least two cut edges $v_{0} v_{1}$ and $v_{0} v_{2}$. If G can be decomposed into three 3 -cutwidth graphs \bar{G}_{1}, \bar{G}_{2} and \bar{G}_{3}, then G is 4-cutwidth critical if and only if each of $\left\{\bar{G}_{i}: 1 \leq i \leq 3\right\}$ is either a 3-cutwidth critical graph or homeomorphic to a 3-cutwidth critical nontree graph, and v_{0} is not the central vertex of \bar{G}_{i} if $\bar{G}_{i} \in\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$.

Proof. The proof is straightforward using Lemma 4, omitted here.
Lemma 12. For a 4-cutwidth graph G with a central vertex $v_{0} \in V(G)$, if $G-v_{0}$ has at least three v_{0}-component H_{i}^{\prime} s and each H_{i} is 2-connected in G, then G is 4-cutwidth critical if and only if $G=M_{2}$ (see M_{2} in Figure 2).

Proof. Sufficiency: this is obvious using Lemma 6.
Necessity: By assumption, for any vertex $v_{i} \in N_{G}\left(v_{0}\right), v_{i} \in V\left(C_{t_{i}}\right)$, where $C_{t_{i}}\left(t_{i} \geq 3\right)$ is a cycle of H_{i} and $V\left(C_{t_{i}}\right) \cap V\left(C_{t_{j}}\right)=\left\{v_{0}\right\}$ for any $i \neq j$ only. Since C_{3} is a minor of any $C_{t_{i}}$ and $c(G)=4, M_{2}$ with cutwidth 4 is a minor. Hence $G=M_{2}$ by the criticality of G.

Lemma 13. For a 4-cutwidth critical non-tree graph G with a central vertex $v_{0} \in V(G), G$ has a subgraph decomposition $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$, in which \bar{G}_{i} is 2-cutwidth critical for $i=1$, one of whose pendant vertices is v_{0}, and 3-cutwidth critical for $i=2,3$ if and only if G is one of graphs $M_{9}-M_{17}$ in Figure 4 , where $\bar{G}_{1}=K_{1,3}, \bar{G}_{i} \in\left\{\tau_{3}, \tau_{4}, \tau_{5}\right\}$ for $i=2,3$ with $\tau_{4}=H_{2}+v_{0} x$ (see Figure 4).

Figure 4. Nine special 4-cutwidth critical graphs.
Proof. Similar to that of Lemma 6, we can show that graphs $M_{9}-M_{17}$ in Figure 4 are all 4-cutwidth critical.

Sufficiency: For graph M_{9}, let $\bar{G}_{1}=K_{1,3}, \bar{G}_{2}=H_{2}+v_{0} x=\tau_{4}$ and $\bar{G}_{3}=H_{3}+v_{0} x=\tau_{4}$, $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$ is the subgraph decomposition desired. Likewise, for graphs $M_{10}-M_{12}$, let $\bar{G}_{1}=K_{1,3}, \bar{G}_{2}=H_{2}+v_{0} x=\tau_{4}, \bar{G}_{3}=H_{3} \in\left\{\tau_{3}, \tau_{5}\right\}$ with $d_{\tau_{3}}\left(v_{0}\right)=2$ and $d_{\tau_{5}}\left(v_{0}\right)=2$ or 3, respectively; for graphs $M_{13}-M_{17}$, let $\bar{G}_{1}=K_{1,3}, \bar{G}_{2}=H_{2} \in\left\{\tau_{3}, \tau_{5}\right\}$ with $d_{\tau_{3}}\left(v_{0}\right)=$ $d_{\tau_{5}}\left(v_{0}\right)=2, \bar{G}_{3}=H_{3} \in\left\{\tau_{3}, \tau_{5}\right\}$ with $d_{\tau_{3}}\left(v_{0}\right)=2$ and $d_{\tau_{5}}\left(v_{0}\right)=2$ or 3, respectively, $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$ is the subgraph decomposition desired.

Necessity: Suppose by contradiction that $G \notin\left\{M_{i}: 9 \leq i \leq 17\right\}$. By assumption, $\bar{G}_{i} \in\left\{K_{1,3}, C_{3}\right\}$ for $i=1$, and $\left\{\tau_{i}: 1 \leq i \leq 5\right\}$ for $i=2,3$. Three cases, which are at least a $\bar{G}_{i}=\tau_{1}$ for $i=2,3, \bar{G}_{2}=\bar{G}_{3}=\tau_{2}$ and $\bar{G}_{2}=\bar{G}_{3}=\tau_{5}$ with $d_{\bar{G}_{2}}\left(v_{0}\right)=d_{\bar{G}_{3}}\left(v_{0}\right)=3$, respectively, can be first excluded; this is because that G either is a tree or is not 4-cutwidth critical in these cases, which is a contradiction. Thus, noting that 3-cutwidth critical subgraphs \bar{G}_{2}, \bar{G}_{3} are symmetrical in G and $c(G)=4$ is sufficient to verify two cases:
(1) $\bar{G}_{1}=K_{1,3}$, one of whose three pendant vertices is $v_{0}, \bar{G}_{2} \in\left\{\tau_{2}, \tau_{3}\right\}$ and $\bar{G}_{3} \in$ $\left\{\tau_{3}, \tau_{4}, \tau_{5}\right\} ;$
(2) $\bar{G}_{1}=C_{3}$, one of whose three 2-degree vertices is $v_{0}, \bar{G}_{2} \in\left\{\tau_{2}, \tau_{3}\right\}$ and $\bar{G}_{3} \in\left\{\tau_{3}, \tau_{4}, \tau_{5}\right\}$. By assumption, we do not consider the following five subcases contained in cases (1) and (2), respectively:
(a1) $d_{G}\left(v_{0}\right) \geq 7$ because of $c\left(K_{1,7}\right)=4$;
(a2) M_{2} is a subgraph of G because of $c\left(M_{2}\right)=4$;
(a3) G is a tree because G is a non-tree graph;
(a4) $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$ is a decomposition of equal cutwidth 3 ;
(a5) $c(G)=3$ because G is 4 -cutwidth critical.

Based on this, for cases (1) and (2), we only consider vertices u_{0}, x of τ_{2}, vertices u_{0}, x, y of τ_{3}, vertex x_{1} of τ_{4} and vertices x_{1}, x_{2} of τ_{5} (see Figure 1), respectively, which may be the central v_{0} of G. For convenience, let $\bar{G}_{2} \in\left\{\tau_{2}^{u_{0}}, \tau_{2}^{x}, \tau_{3}^{u_{0}}, \tau_{3}^{x}, \tau_{3}^{y}\right\}, \bar{G}_{3} \in\left\{\tau_{3}^{u_{0}}, \tau_{3}^{x}, \tau_{3}^{y}, \tau_{4}^{x_{1}}, \tau_{5}^{x_{1}}, \tau_{5}^{x_{2}}\right\}$, where $\tau_{2}^{u_{0}}, \tau_{2}^{x}$ are copies of τ_{2} corresponding to u_{0}, x of $\tau_{2}, \tau_{3}^{u_{0}}, \tau_{3}^{x}, \tau_{3}^{y}$ are copies of τ_{3} corresponding to u_{0}, x, y of $\tau_{3} ; \tau_{4}^{x_{1}}$ is a copy of τ_{4} corresponding to x_{1} of τ_{4}, and $\tau_{5}^{x_{1}}$ and $\tau_{5}^{x_{2}}$ are copies of τ_{5} corresponding to x_{1}, x_{2} of τ_{5}, respectively. In this case, we can see that there are at least a $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$, which is a decomposition of one of $\left\{M_{i}: 9 \leq i \leq 17\right\}$ not considered here. For example, $\left\{K_{1,3}, \tau_{3}^{y}, \tau_{3}^{y}\right\}$ is a decomposition of M_{15}. So, by at most $2 \times C_{5}^{1} \times C_{6}^{1}-1$ direct operations and at most $2 \times C_{5}^{1} \times C_{6}^{1}-1$ computations without considering $G \in\left\{M_{i}: 9 \leq i \leq 17\right\}$ by assumption, we can see that G is not 4-cutwidth critical, which is a contradiction. Hence, $G \in\left\{M_{i}: 9 \leq i \leq 17\right\}$.

From Lemmas 7-13, we have:
Theorem 7. For a 4-cutwidth non-tree graph G with a central vertex v_{0}, G is 4 -cutwidth critical if and only if G has one of the following six configurations.
(1) For $1 \leq i \leq 3$, if G_{i} is some $\tau_{i}(1 \leq i \leq 5)$ in Figure 1 and G_{i}^{\prime} corresponding to G_{i} is a graph defined in (8), then $G=K_{1,3} \circ\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$, where G_{1}, G_{2} and G_{3} are not necessarily different;
(2) $G=P_{3} \circ\left(G_{1}^{\prime}, G_{2}, G_{3}^{\prime}\right)$, where $G_{i} \in\left\{\tau_{i}: 1 \leq i \leq 5\right\}$ with $v_{i} \in V\left(G_{i}\right)$ for $1 \leq i \leq 3$ and G_{i}^{\prime} corresponding to G_{i} is a graph defined in (8), $G_{i} \notin\left\{\tau_{2}, \tau_{3}\right\}$ for $i=1,3$ and $G_{i} \neq \tau_{1}$ for $i=2 v_{2}$ is not either the central vertex or the pendent vertex when $G_{2} \in\left\{\tau_{2}, \tau_{3}\right\}$ but v_{2} is possible to a subdivision vertex of a non cut-edge of G_{2} when $G_{2} \in\left\{\tau_{3}, \tau_{4}, \tau_{5}\right\}$;
(3) $G=G_{1} \oplus_{u_{1}, x_{1}} G_{2}^{\prime}$ with the central vertex u_{1} of $d_{G}\left(u_{1}\right)<7$, where $G_{1} \in\left\{\tau_{2}, \tau_{3}\right\}$ with the central vertex $u_{1}\left(u_{1}=v_{0}\right.$ of τ_{2} or τ_{3}, respectively, see Figure 1$), G_{2} \in\left\{\tau_{3}, \tau_{4}, \tau_{5}\right\}$ with a 3-cycle $C_{3} \subset G_{2}$ and $x_{1} \in V\left(C_{3}\right)$ with $d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(x_{1}\right) \leq 6, G_{2}^{\prime}$ corresponding to G_{2} is a graph defined in (8);
(4) G has a subgraph decomposition $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$ of equal cutwidth 3, defined in Definition 4, where G is a graph with a central vertex v_{0} of $d_{G}\left(v_{0}\right) \geq 4$ and at least two cut edges $v_{0} v_{1}, v_{0} v_{2}, \bar{G}_{i}$ is 3-cutwidth critical for $1 \leq i \leq 3$;
(5) G has a subgraph decomposition $\left\{C_{3}, C_{3}^{\prime}, C_{3}^{\prime \prime}\right\}$ of equal cutwidth 2 , each of which is a $v_{0^{-}}$ component of $G-v_{0}$, where v_{0} is the central vertex v_{0} of degree 6 of G, and C_{3}^{\prime} and $C_{3}^{\prime \prime}$ are the copies of a 3-cycle C_{3};
(6) G is one member of $\left\{M_{i}: 9 \leq i \leq 17\right\}$ with a central vertex v_{0} (see Figure 4) and a subgraph decomposition $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$, in which $\bar{G}_{1}=K_{1,3}$, one of whose pendant vertices is $v_{0}, \bar{G}_{i} \in\left\{\tau_{3}, \tau_{4}, \tau_{5}\right\}$ for $i=2,3$, where \bar{G}_{i} satisfies:
(i) v_{0} is a 2-degree vertex y of C_{3} of \bar{G}_{i} for $\bar{G}_{i}=\tau_{3}$;
(ii) if the 3-degree vertex of $\bar{G}_{1}\left(=K_{1,3}\right)$ is x and $\bar{G}_{i}=\tau_{4}$, then $\tau_{4}=H_{2}+v_{0} x$ and v_{0} is a 3-degree vertex of \bar{G}_{i};
(iii) v_{0} is either a 2-degree vertex of \bar{G}_{i} or a 3-degree vertex of \bar{G}_{i} for $\bar{G}_{i}=\tau_{5}$, but if $\bar{G}_{2}=\bar{G}_{3}=\tau_{5}$ and v_{0} is a 3-degree vertex of \bar{G}_{2}, then v_{0} must not be a 3-degree vertex of \bar{G}_{3}, and vice versa.

4. 4-Cutwidth Critical Graphs with a Central Cycle

In this section, we aim to investigate 4-cutwidth critical graphs with a central cycle $C_{q}=x_{1} x_{2} \ldots x_{q} x_{1}$ with $q \geq 3$.

Lemma 14. Assume that graph G is 4-cutwidth critical with a central cycle C_{q} of length q, then $q \leq 6$.

Proof. Assume, contrary to that, that $q \geq 7$ and G_{i} is the i th connected component leading from x_{i} of $G-E\left(C_{q}\right)$. Without loss of generality, let $q=7$, i.e., $C_{7}=x_{1} x_{2} \ldots x_{7} x_{1}$ with $d_{G}\left(x_{i}\right) \geq 3$ for $1 \leq i \leq 7$ (see an example in Figure 5a), and let $\pi: V(G) \rightarrow \mathcal{S}_{n}$ be an optimal 4-cutwidth labeling with $\min \left\{\pi(v): v \in V\left(G_{1}\right)\right\}=\pi\left(x_{1}\right)<\pi\left(x_{7}\right)<\pi\left(x_{2}\right)<$ $\pi\left(x_{6}\right)<\pi\left(x_{3}\right)<\pi\left(x_{5}\right)<\pi\left(x_{4}\right)=\max \left\{\pi(v): v \in V\left(G_{4}\right)\right\}$. By the criticality of G, we
may always assume that $G_{i} \in\left\{K_{2}, K_{1,3}, C_{3}\right\}$. By direct computations, there are at least three G_{i}^{\prime} s (say G_{1}, G_{4} and G_{6}) such that $G_{1} \neq K_{2}, G_{4} \neq K_{2}$ and $G_{6} \neq K_{2}$. Otherwise, $c(G)=3$, contrary to $c(G)=4$. Since G is 4-cutwidth critical, we can let $G_{1}, G_{4}, G_{6} \in\left\{K_{1,3}, C_{3}\right\}$, say $G_{1}=C_{3}$ and $G_{4}=G_{6}=K_{1,3}$ (see Figure 5a). In this case, $c(G)=4$ and $c\left(G-x_{i}^{\prime}\right)=4$ for any $G_{i}=K_{2}=x_{i} x_{i}^{\prime}$ with $i=2,3,5$, contrary to the criticality of G. On the other hand, there is at least a 4-cutwidth critical graph G with a central cycle $C_{6}=x_{1} x_{2} \ldots x_{6} x_{1}$ such that $G_{1}=G_{3}=G_{5}=K_{1,3}, G_{2}=G_{4}=G_{6}=K_{2}$ and $d_{G}\left(x_{i}\right)=3$ for $1 \leq i \leq 6$ (see Figure $5 b$). Hence $q \leq 6$.

(a)

(b)

Figure 5. Examples of Lemma 14.
From Lemma 14, in the sequel, we shall characterize the 4-cutwidth critical graphs with a central cycle of lengths $3-6$, respectively.

4.1. Graphs with a Central Cycle of Length Three

Definition 5. Let $C_{3}=x_{1} x_{2} x_{3} x_{1}$ be the central cycle of $G, G_{i}(1 \leq i \leq 3)$ be the i th connected component leading from x_{i} of $G-E\left(C_{3}\right)$, and x_{1}, x_{2}, x_{3} be cut vertices in G. Then, for $1 \leq i \leq 3$, define

$$
H_{i}= \begin{cases}G_{i} & \text { if } c\left(G_{i}\right)=3 \text { but } c\left(\left(G_{i}-x y\right) \cup G\left[E^{\prime}\right]\right)<3 \text { for } E^{\prime} \subseteq E\left(C_{3}\right) \text { with } x y \in E\left(G_{i}\right), \\ G_{i} & \text { if } c\left(G_{i} \cup G\left[E^{\prime \prime}\right]\right)<3 \text { for } E^{\prime \prime} \subseteq E\left(C_{3}\right) \text { with } E^{\prime \prime} \neq \varnothing \\ G_{i} \cup G\left[E^{\prime \prime \prime}\right] & \text { if } c\left(G_{i} \cup G\left[E^{\prime \prime \prime}\right]\right)=3 \text { for } E^{\prime \prime \prime} \subseteq E\left(C_{3}\right) \text { with } E^{\prime \prime \prime} \neq \varnothing\end{cases}
$$

If, for each $1 \leq i \leq 3, c\left(H_{i}\right)=\rho$ with $\rho=2$ or 3 , then $\left\{H_{1}, H_{2}, H_{3}\right\}$ is called a decomposition of equal cutwidth ρ of G; if there are at least two $H_{i}^{\prime} s$ (say H_{1}, H_{3}) such that $c\left(H_{1}\right)=2$ and $c\left(H_{3}\right)=3$, then $\left\{H_{1}, H_{2}, H_{3}\right\}$ is called a decomposition of nonequal cutwidth ρ with $\rho=2$ or 3 of G, where $E^{\prime}, E^{\prime \prime}$ and $E^{\prime \prime \prime}$ are not necessarily distinct, and E^{\prime} is not necessarily non-empty.

Lemma 15. With notation in Definition 5, let G be 4-cutwidth critical with the central cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}, x_{1}, x_{2}, x_{3}$ be cut vertices in G, and C_{3} has at least two vertices (say x_{2}, x_{3}) such that $d_{G}\left(x_{2}\right) \geq 4$ and $d_{G}\left(x_{3}\right) \geq 4$. If $\left\{H_{1}, H_{2}, H_{3}\right\}$ is a decomposition of nonequal cutwidth ρ with $\rho=2$ or 3 , then H_{i} is ρ-cutwidth critical for $1 \leq i \leq 3$ except M_{4} in Figure 2.

Proof. Since $\left\{H_{1}, H_{2}, H_{3}\right\}$ is a decomposition of nonequal cutwidth ρ with $\rho=2$ or 3 , we can assume that $c\left(H_{2}\right)=c\left(H_{3}\right)=3$, but $c\left(H_{1}\right)=2$, implying $c\left(G_{1} \cup G\left[E\left(C_{3}\right)\right]\right) \leq 2$. Since G is 4-cutwidth critical with $d_{G}\left(x_{2}\right) \geq 4$ and $d_{G}\left(x_{3}\right) \geq 4, H_{1}=K_{1,3}$ or $C_{3}, H_{i} \neq \tau_{2}, \tau_{4}$ or τ_{5} for $i=2,3$ by Lemma 6, meaning to that $H_{i}=\tau_{1}$ or τ_{3} for $i=2,3$. Thus, for H_{2} and H_{3}, there are three cases to consider: (i) $H_{2}=G_{2} \cup G\left[\left\{x_{2} x_{3}, x_{2} x_{1}\right\}\right]=K_{1,5}, H_{3}=$ $G_{3} \cup G\left[\left\{x_{3} x_{2}, x_{3} x_{1}\right\}\right]=K_{1,5}$; (ii) $H_{2}=G_{2} \cup G\left[\left\{x_{2} x_{3}, x_{2} x_{1}\right\}\right]=K_{1,5}, H_{3}=G_{3} \cup C_{3}=\tau_{3}$; (iii) $H_{2}=G_{2} \cup C_{3}=\tau_{3}, H_{3}=G_{3} \cup C_{3}=\tau_{3}$, where x_{2}, x_{3} are the central vertices of H_{2} and H_{3}, respectively (see M_{5}, M_{6}, M_{7} in Figures 2 and 6 d ,e below). In any of Cases (i)-(iii), $H_{1}=G_{1}=K_{1,3}$ with $d_{G}\left(x_{1}\right)=3$ or C_{3} with $d_{G}\left(x_{1}\right)=4$. Thus, we can see that H_{i} is 2-cutwidth critical for $i=1$ and 3-cutwidth critical for $i=2,3$. Now let $c\left(H_{3}\right)=3$ but $c\left(H_{1}\right)=c\left(H_{2}\right)=2$ with $H_{1}=C_{3}$ and $H_{2}=C_{3}$; then, we can conclude that $G=M_{4}$ by the 4-cutwidth criticality of G, which has a decomposition $\left\{K_{1,3}, C_{3}, C_{3}^{\prime}, C_{3}^{\prime \prime}\right\}$ of equal cutwidth two in which C_{3}^{\prime} and $C_{3}^{\prime \prime}$ are the copies of C_{3}. This is because in this case, if $\left\{K_{1,5}, C_{3}^{\prime}, C_{3}^{\prime \prime}\right\}$ is a decomposition of nonequal cutwidth of 2 and 3 of G, then edge $x_{1} x_{2} \notin E\left(K_{1,5}\right) \cup E\left(C_{3}^{\prime}\right) \cup E\left(C_{3}^{\prime \prime}\right)$. As $x_{2} x_{3} \notin E\left(H_{i}\right)$ for each $1 \leq i \leq 3$ in this case, this decomposition of nonequal cutwidth does not hold. Thus, this case is not possible. The proof is complete.

Lemma 16. With notation in Definition 5, let $\left\{H_{1}, H_{2}, H_{3}\right\}$ be a decomposition of nonequal cutwidth ρ with $\rho=2$ or 3 of 4-cutwidth graph G with the central cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}$. If H_{i} is ρ-cutwidth critical for $1 \leq i \leq 3$, then G is 4-cutwidth critical, where x_{1}, x_{2}, x_{3} are all cut vertices, and C_{3} has at least two vertices (say x_{2}, x_{3}) such that $d_{G}\left(x_{2}\right) \geq 4$ and $d_{G}\left(x_{3}\right) \geq 4$.

Proof. Let π be an optimal labeling of G with $\pi\left(x_{1}\right)<\pi\left(x_{2}\right)<\pi\left(x_{3}\right)$ and intervals $I_{1}=\left[1, \pi\left(x_{1}\right)\right], I_{2}=\left(\pi\left(x_{1}\right), \pi\left(x_{3}\right)\right), I_{3}=\left[\pi\left(x_{3}\right), n\right]$ with $n=|V(G)|$, respectively. Then, G_{1} is embedded in I_{1} with congestion $3, G_{2}$ is embedded in I_{2} with congestion $4, G_{3}$ is embedded in I_{3} with congestion 3 . Herein, G_{1} and G_{3} are a star $K_{1,3}$ with center x_{i} or two stars $K_{1,3}$ with an identifying leaf at $x_{i}(i=1,3)$. Let H_{i} denote G_{i} combining with the two edges in C_{3} incident with v_{i}. Then $H_{i} \in\left\{\tau_{1}, \tau_{3}\right\}$ for $i=1,3$. As for G_{2} embedded in I_{2} with congestion 4 , since the central cycle C_{3} yields congestion 2 in I_{2}, we chose G_{2} as a 2 -cutwidth critical tree, namely, a $K_{1,3}$, such that either $d_{G}\left(x_{2}\right)=3$ or $d_{G}\left(x_{2}\right)=5$. For this construction, the maximum congestion is 4, i.e., $c(G)=4$. Furthermore, for any edge $e \in E(G)$, if $e \in\left\{x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\}$, then the deletion of e reduces the congestion 2 of cycle-edge in I_{2} by one. Hence H_{2} embedded in I_{2} has congestion 3, and so $c(G-e)<4$. If $e \notin\left\{x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\}$, for Case (i) in Proof of Lemma 15, two subcases need to be considered: (a) $G_{i}=K_{1,3}$ with $d_{G}\left(x_{i}\right)=5$ for each $1 \leq i \leq 3 ;(b) G_{i}=K_{1,3}$ with $d_{G}\left(x_{i}\right)=5$ for $i=1,3$, but $G_{2}=C_{3}$ with $d_{G}\left(x_{2}\right)=4$ for $i=1,3$. Without loss of generality, we can let $e \in E\left(G_{2}\right)$ with $G_{3}=K_{1,3}$. Since $G_{2}-e=K_{1,3}-e$ with congestion 1, we can embed G_{1} in $I_{1}, G_{2}-e$ in $\left(\pi\left(v_{1}\right), \pi\left(v_{3}\right)-1\right)$ and G_{3} in $\left[\pi\left(v_{3}\right)-1, n-1\right]$, respectively, which results in $c(G-e)=3$. So does the case of $e \in E\left(G_{1}\right)$ (or $E\left(G_{3}\right)$). Likewise, for Cases (ii) and (iii) in Proof of Lemma 15, $c(G-e)=3$ for any $e \in E(G)$ also. Therefore, G is 4-cutwidth critical. The lemma holds.

Lemma 17. With notation in Definition 5, let G be 4-cutwidth critical with the central cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}$, where x_{1}, x_{2}, x_{3} are all cut vertices in G, and C_{3} has at most one vertex (say x_{1}) such that $d_{G}\left(x_{1}\right) \geq 4$. If $\left\{H_{1}, H_{2}, H_{3}\right\}$ is a decomposition of equal cutwidth 3 , then H_{i} (or $H_{i}-x_{i} x_{i}^{\prime}$ with $\left.x_{i}^{\prime} \in N_{G}\left(x_{i}\right) \cap V\left(G_{i}\right)\right)$ is 3-cutwidth critical for $1 \leq i \leq 3$.

Proof. We first give Claim 1 below.
Claim 1. There is at least $H_{i}(1 \leq i \leq 3)$ such that H_{i} is one of $G_{i} \cup G\left[\left\{x_{i} x_{i-1}, x_{i} x_{i+1}\right\}\right]$ and $G_{i} \cup C_{3}$ (say $G_{i} \cup G\left[\left\{x_{i} x_{i-1}, x_{i} x_{i+1}\right\}\right]$) with $c\left(H_{i}\right)=3$, where $x_{0}=x_{3}$ and $x_{4}=x_{1}$.

Let $H_{i}=G_{i}$ or $G_{i}+x_{i} x_{i+1}$ with $c\left(H_{i}\right)=3$ for each $1 \leq i \leq 3$. As the arguments are similar, we only consider two cases: (a) $H_{1}=G_{1}$ with $d_{G}\left(x_{1}\right) \geq 4, H_{i}=G_{i}+x_{i} x_{i+1}$ with $d_{G}\left(x_{i}\right)=3$ for $i=2,3$; (b) $H_{i}=G_{i}+x_{i} x_{i+1}$ with $d_{G}\left(x_{i}\right)=3$ for each $1 \leq i \leq 3$. For Case (a), $x_{i} x_{i+1}$ is a pendent edge of H_{i} for $i=2,3, d_{H_{2}}\left(x_{2}\right)=2$ and $d_{H_{3}}\left(x_{3}\right)=2$. So, $H_{2}=G_{2}+x_{2} x_{1}$ also and $c\left(G_{2}\right)=c\left(G_{3}\right)=3$ by a series reduction in H_{2} and H_{3}, respectively. Thus, $G-x_{2} x_{3}=P_{3} \circ\left(G_{2}, G_{1}, G_{3}\right)$ which results in that $c\left(G-x_{2} x_{3}\right)=4$ by Theorem 3, contrary to the criticality of G. For Case (b), $d_{G}\left(x_{i}\right)=3$ and $d_{H_{i}}\left(x_{i}\right)=2$ for each $1 \leq i \leq 3$, so every $c\left(G_{i}\right)=c\left(H_{i}\right)=3$ by a series reduction in H_{i} and $d_{G_{i}}\left(x_{i}\right)=1$. Thus, there is an edge in C_{3}, say $x_{1} x_{3}$, such that $G-x_{1} x_{3}=K_{1,3} \circ\left(G_{1}, G_{2}, G_{3}\right)$. Hence $c\left(G-x_{1} x_{3}\right)=4$ by Theorem 2, also a contradiction. Claim 1 holds.

From Claim 1 and assumption, there are nine cases to consider, as follows (see graphs (a)-(c) in Figure 6 below):
(1) $H_{1}=G_{1} \cup G\left[\left\{x_{1} x_{2}, x_{1} x_{3}\right\}\right]$ with $d_{G}\left(x_{1}\right) \geq 4, H_{2}=G_{2}$ and $H_{3}=G_{3}$;
(2) $H_{1}=G_{1} \cup G\left[\left\{x_{1} x_{2}, x_{1} x_{3}\right\}\right]$ with $d_{G}\left(x_{1}\right) \geq 4, H_{2}=G_{2} \cup G\left[\left\{x_{2} x_{1}, x_{2} x_{3}\right\}\right]$ and $H_{3}=G_{3}$;
(3) $H_{1}=G_{1} \cup G\left[\left\{x_{1} x_{2}, x_{1} x_{3}\right\}\right]$ with $d_{G}\left(x_{1}\right) \geq 4, H_{2}=G_{2} \cup G\left[\left\{x_{2} x_{1}, x_{2} x_{3}\right\}\right]$ and $H_{3}=$ $G_{3} \cup G\left[\left\{x_{3} x_{1}, x_{3} x_{2}\right\}\right] ;$
(4) $H_{1}=G_{1} \cup C_{3}$ with $d_{G}\left(x_{1}\right) \geq 4, H_{2}=G_{2}$ and $H_{3}=G_{3}$;
(5) $H_{1}=G_{1} \cup C_{3}$ with $d_{G}\left(x_{1}\right) \geq 4, H_{2}=G_{2} \cup G\left[\left\{x_{2} x_{1}, x_{2} x_{3}\right\}\right]$ and $H_{3}=G_{3}$;
(6) $H_{1}=G_{1} \cup C_{3}$ with $d_{G}\left(x_{1}\right) \geq 4, H_{2}=G_{2} \cup G\left[\left\{x_{2} x_{1}, x_{2} x_{3}\right\}\right]$ and $H_{3}=$ $G_{3} \cup G\left[\left\{x_{3} x_{1}, x_{3} x_{2}\right\}\right] ;$
(7) $H_{1}=G_{1} \cup G\left[\left\{x_{1} x_{2}, x_{1} x_{3}\right\}\right], H_{2}=G_{2}$ and $H_{3}=G_{3}$;
(8) $H_{1}=G_{1} \cup G\left[\left\{x_{1} x_{2}, x_{1} x_{3}\right\}\right], H_{2}=G_{2} \cup G\left[\left\{x_{2} x_{1}, x_{2} x_{3}\right\}\right]$ and $H_{3}=G_{3}$;
(9) $H_{1}=G_{1} \cup G\left[\left\{x_{1} x_{2}, x_{1} x_{3}\right\}\right], H_{2}=G_{2} \cup G\left[\left\{x_{2} x_{1}, x_{2} x_{3}\right\}\right]$ and $H_{3}=G_{3} \cup G\left[\left\{x_{3} x_{1}, x_{3} x_{2}\right\}\right]$,
where $d_{G}\left(x_{i}\right)=3$ for $i=2,3$ in Cases (1)-(6), and $d_{G}\left(x_{i}\right)=3$ for each $1 \leq i \leq 3$ in Cases (7)-(9). We consider Case (1) by contradiction. Assuming that there is at least an edge $x y \in E\left(H_{i}\right)$ such that $c\left(H_{i}-x y\right)=3$, i.e., H_{i} is not 3-cutwidth critical. There are three subcase to consider: $(i) c\left(H_{1}-x y\right)=3$ with $x y \in E\left(H_{1}\right) ;(i i) c\left(H_{2}-x y\right)=3$ with $x y \in E\left(H_{2}\right)$; (iii) $c\left(H_{3}-x y\right)=3$ with $x y \in E\left(H_{3}\right)$. For Subcase (i), by assumption and Definition 3, for $i=2,3, d_{G}\left(x_{2}\right)=d_{G}\left(x_{3}\right)=3, G_{i}$ is 3-cutwidth critical, and $c\left(\left(G_{i}-\right.\right.$ $\left.\left.x^{\prime} y^{\prime}\right) \cup G\left[E^{\prime}\right]\right)<3$ for $x^{\prime} y^{\prime} \in E\left(G_{i}\right)$ and $E^{\prime} \subseteq E\left(C_{3}\right)$ with $E^{\prime} \neq \varnothing$, so either $G_{i} \in\left\{\tau_{1}, \tau_{4}\right\}$ or $G_{i}=K_{2} \cup \tau_{5}$. Thus, if $x y \in\left\{x_{1} x_{2}, x_{1} x_{3}\right\}$ (say $x y=x_{1} x_{2}$), then $G-x y$ is changed to $\oplus_{x_{3}}\left(H_{1}-x y, G_{2}, G_{3}\right)$ with cutwidth 4 resulting in $c(G-x y)=4$; if $x y \notin\left\{x_{1} x_{2}, x_{1} x_{3}\right\}$, i.e., $x y \in E\left(G_{1}\right)$ then $G-x y-x_{2} x_{3}$ is changed to be $\oplus_{x_{2}}\left(H_{1}-x y, G_{2}, G_{3}\right)$ with cutwidth 4 resulting in $c(G-x y) \geq c\left(G-x y-x_{2} x_{3}\right)=4$. So $c(G-x y)=4$ by $c(G-x y) \leq c(G)=4$ again, and contrary to that, G is 4 -cutwidth critical. For Subcase (ii), we can conclude that $H_{1}=K_{1,5}$ and either $G_{3} \in\left\{\tau_{1}, \tau_{4}\right\}$ or $G_{i}=K_{2} \cup \tau_{5}$ with cutwidth 3. By Lemma 1(3), an optimal labeling f^{*} by the order $\left.\left(V\left(H_{2}\right)-x y\right), V\left(H_{1}+x_{2} x_{3}\right), V\left(H_{3}\right)\right)$ of $G-x y$ can be obtained, and $c(G-x y, f)=4$, implying $c(G-x y) \leq 4$. So, $c(G-x y)=4$ by the optimality of f^{*}, also a contradiction. The argument of Subcase (iii) is the same as that of Subcase (ii), omitted here. Thus, for Case (1), \bar{G}_{i} is 3-cutwidth critical for $1 \leq i \leq 3$. Similarly, for Cases (2)-(9), H_{i} is also 3-cutwidth critical for $1 \leq i \leq 3$. This completes the proof.

Lemma 18. With notation in Definition 5, let $\left\{H_{1}, H_{2}, H_{3}\right\}$ be a decomposition of equal cutwidth 3 of graph G with the central cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}$, where x_{1}, x_{2}, x_{3} are all cut vertices of G, and C_{3} has at most one vertex $\left(\right.$ say $\left.x_{1}\right)$ such that $d_{G}\left(x_{1}\right) \geq 4$, and either $\left\{x_{1} x_{2}, x_{1} x_{3}\right\} \subset E\left(H_{1}\right)$ or $E\left(C_{3}\right) \subset E\left(H_{1}\right)$. If H_{i} is 3-cutwidth critical or there are at least a $H_{i}=G_{i}=x_{i} x_{i}^{\prime}+\tau_{5}$ with $x_{i}^{\prime} \in N_{G}\left(x_{i}\right)$ for $1 \leq i \leq 3$, then G is 4 -cutwidth critical.

Proof. By Lemmas 1(3), we can show $c(G)=4$. By assumption again, $H_{1} \in\left\{\tau_{1}, \tau_{3}\right\}$ and $d_{G}\left(x_{2}\right)=d_{G}\left(x_{3}\right)=3$. There are nine cases (1)-(9) listed in Proof of Lemma 17 to consider. For each case $(i)(1 \leq i \leq 9)$, via using an argument similar to that of Lemma 16, we can show $c\left(G^{\prime}\right) \leq 3$ for any $G^{\prime} \in \mathcal{M}(G)$, omitted here.

Lemma 19. Let G be a 2-connected graph with a central cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}$. Then G is 4-cutwidth critical with a decomposition $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$ of equal cutwidth 3 if and only if $G=M_{8}$ (see Figure 2).

Proof. Sufficiency. Since $G=M_{8}, G$ is 4-cutwidth critical by Lemma 6. Clearly, let $\bar{G}_{i}=G\left[\left\{x_{1}, x_{2}, x_{3}, y_{i}\right\}\right]$ for $1 \leq i \leq 3$, then $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$ is a decomposition desired because of $\bar{G}_{i}=\tau_{5}$ for each $1 \leq i \leq 3$.

Necessity. In fact, since G is 2-connected with a central cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}$ and a decomposition $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$ of equal cutwidth 3 , the arbitrary two vertices x_{i} and x_{i+1} $(1 \leq i \leq 3)$ of C_{3} must be in a cycle $C_{t}^{\prime}(t \geq 3)$ and $C_{t}^{\prime} \neq C_{3}$, where $x_{4}=x_{1}$. That is to say, by the criticality of G, there must be another vertex $y_{i} \neq x_{i}$ in G such that $y_{i} x_{i} \in E(G)$ and $y_{i} x_{i+1} \in E(G)$ for each $1 \leq i \leq 3$. In this case, $G=M_{8}$, induced by $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$. Hence $G=M_{8}$.

Lemma 20. Assume that G is a 4-cutwidth critical graph with a central cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}$, then G has an edge-disjoint decomposition $\left\{G_{1}, G_{2}, G_{3}, C_{3}\right\}$ of equal cutwidth 2 if and only if $G \in\left\{M_{3}, M_{4}, M_{5}, M_{6}, M_{7}\right\}$ (see Figure 2), where x_{i} is a cut vertex and G_{i} is the connected component of $G-E\left(C_{3}\right)$ leading from x_{i} for $1 \leq i \leq 3$.

Proof. Sufficiency is obvious in Lemma 6, omitted here.
Necessity: Let π be an optimal labeling of G with $\pi\left(x_{1}\right)<\pi\left(x_{2}\right)<\pi\left(x_{3}\right)$ and $|V(G)|=n$. Then, the number set \mathcal{S}_{n} is divided into three intervals $I_{1}=\left[1, \pi\left(x_{1}\right)\right]$,
$I_{2}=\left(\pi\left(x_{1}\right), \pi\left(x_{2}\right)\right)$ and $I_{3}=\left[\pi\left(x_{3}\right), n\right]$ and G_{1}, G_{2}, G_{3} are embedded into I_{1}, I_{2}, I_{3} in different manners, respectively. As G_{1}, G_{2}, G_{3} are all 2-cutwidth graphs and x_{i} is a cut vertex in G for $1 \leq i \leq 3, G_{1}$ is embedded into I_{1} with congestion $2, G_{2}$ is embedded into I_{2} with congestion 4 , and G_{3} is embedded into I_{3} with congestion 2. By the criticality of G and $c\left(K_{1,3}\right)=c\left(C_{3}\right)=2$, G_{i} is either a star $K_{1,3}$ with the 3-degree vertex x_{i} or a cycle $C_{3}^{(i)}$, which is a copy of C_{3} for $i=1,3$. As for G_{2} embedded in I_{2} with a congestion of 4 , the central cycle C_{3} leads to a congestion of 2 in I_{2}, so G_{2} must be either a $K_{1,3}$ or a copy $C_{3}^{(2)}$ of C_{3} such that $d_{G}\left(x_{2}\right)=3,4$ or 5 . Thus, G must be one member of $\left\{M_{3}, M_{4}, M_{5}, M_{6}, M_{7}\right\}$, each element of which has a edge-disjoint decomposition $\left\{G_{1}, G_{2}, G_{3}, C_{3}\right\}$ of equal cutwidth 2 , where G_{i} is either $K_{1,3}$ or C_{3} for $1 \leq i \leq 3$.

Theorem 8. For a 4-cutwidth nontree graph G with a central cycle $C_{3}=x_{1} x_{2} x_{3} x_{1}, G$ is 4cutwidth critical if and only if G has one of the following configurations.
(1) G has a decomposition $\left\{H_{1}, H_{2}, H_{3}\right\}$ of nonequal cutwidth ρ with $\rho=2$ or 3 , each of which is ρ-cutwidth critical, where x_{i} is a cut vertex for each $1 \leq i \leq 3$ and there are at least two vertices (say x_{2}, x_{3}) such that $d_{G}\left(x_{2}\right) \geq 4$ and $d_{G}\left(x_{3}\right) \geq 4$ (see $M_{5}-M_{7}$ in Figure 2 and Illustration in Figure 6d,e);
(2) G has a decomposition $\left\{H_{1}, H_{2}, H_{3}\right\}$ of equal cutwidth 3 in which H_{i} or $H_{i}-x_{i} x_{i}^{\prime}$ with $x_{i}^{\prime} \in N_{G}\left(x_{i}\right) \cap V\left(G_{i}\right)$ is 3-cutwidth critical, and at least a H_{i} (say H_{1}) contains at least two edges $x_{1} x_{2}$ and $x_{1} x_{3}$ of C_{3}, where x_{i} is a cut vertex for each $1 \leq i \leq 3$ and there is at most a vertex (say x_{3}) such that $d_{G}\left(x_{3}\right) \geq 4$ (see Illustration in Figure $6 a-c$);
(3) G is 2-connected and $G=M_{8}$ (see Figure 2) with a decomposition $\left\{H_{1}, H_{2}, H_{3}\right\}$ of equal cutwidth 3 in which $H_{i}=G\left[\left\{x_{1}, x_{2}, x_{3}, y_{i}\right\}\right]=\tau_{5}$ for $1 \leq i \leq 3$;
(4) $G \in\left\{M_{3}, M_{4}, M_{5}, M_{6}, M_{7}\right\}$ with an edge-disjoint decomposition $\left\{G_{1}, G_{2}, G 3, C_{3}\right\}$ of equal cutwidth 2 , in which G_{i} is either $K_{1,3}$ or a copy C_{3}^{\prime} of C_{3} for $1 \leq i \leq 3\left(\right.$ see $M_{3}-M_{7}$ in Figure 2).

Figure 6. Illustrations of Theorem 8.
In Figure $6 \mathrm{a}-\mathrm{c}$, for $i=1,2,3, G_{i}=\tau_{1}, \tau_{4}, \tau_{5}+x_{i} x_{i}^{\prime}$ with $x_{i}^{\prime} \in V\left(\tau_{5}\right)$ or $G_{i}+x_{i} x_{i-1}+$ $x_{i} x_{i+1}=\tau_{2}, \tau_{3}$ with $x_{0}=x_{3}$, but in Figure 6 c , there is at least a G_{i}, say G_{3}, such that $G_{3}+x_{3} x_{1}+x_{3} x_{2}=\tau_{2}$ or τ_{3}. In Figure $6 \mathrm{~d}, \mathrm{e}$, if $G_{1}=K_{1,3}$ then $d_{G}\left(x_{1}\right)=3$, i.e., x_{1} is a pendant vertex of $K_{1,3}$ in this case, C_{3}^{\prime} is a copy of C_{3}.

4.2. Graphs with a Central Cycle of Length Four

For a graph G with a central cycle $C_{4}=x_{1} x_{2} x_{3} x_{4} x_{1}$ with length 4 , suppose that $G_{i}(1 \leq i \leq 4)$ is the i th connected component leading from x_{i} of $G-E\left(C_{4}\right), c\left(G_{1}\right) \geq$ $c\left(G_{2}\right) \geq c\left(G_{4}\right) \geq c\left(G_{3}\right)$ and $d_{G}\left(x_{1}\right) \geq 4$, and $G-E\left(C_{4}\right)$ has no G_{i}, such that $c\left(G_{i}\right)=3$ but $c\left(G_{i}^{\prime} \cup\left\{x_{i} x_{i-1}, x_{i} x_{i+1}\right\}\right)=3$ for any proper subgraph $G_{i}^{\prime} \subset G_{i}$. Let $\bar{G}_{1}=G_{1}$ when $c\left(G_{1}\right)=3$ or $G_{1} \cup G\left[E^{\prime}\right]$ with $E^{\prime} \subseteq E\left(C_{4}\right)$ and $E^{\prime} \neq \varnothing$ when $c\left(G_{1}\right)<3, \bar{G}_{2}=G_{2} \cup G_{3} \cup\left(C_{4}-x_{1} x_{4}+\right.$
$\left.\left\{x_{1} x_{1}^{\prime}, x_{1} x_{1}^{\prime \prime}\right\}\right)$ and $\bar{G}_{4}=G_{4} \cup G_{3} \cup\left(C_{4}-x_{1} x_{2}+\left\{x_{1} x_{1}^{\prime}, x_{1} x_{1}^{\prime \prime}\right\}\right)$ for $x_{1}^{\prime}, x_{1}^{\prime \prime} \in V\left(G_{1}\right)$ with $x_{1}^{\prime} \neq x_{1}^{\prime \prime}$, where $x_{1}, x_{2}, x_{3}, x_{4}$ are all cut vertices in G, and there is at least a vertex between x_{2} and x_{4} (say x_{4}) such that $d_{G}\left(x_{2}\right) \geq 4$. Then, we have the following:

Lemma 21. For a graph G with the central cycle $C_{4}=x_{1} x_{2} x_{3} x_{4} x_{1}$, if $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{4}\right\}$ is a decomposition of equal cutwidth 3 of G and \bar{G}_{i} is 3-cutwidth critical for each $i \in\{1,2,4\}$, then G is 4-cutwidth critical (see Illustrations in Figure 7).

Proof. By assumption, $d_{G}\left(x_{2}\right)=d_{G}\left(x_{3}\right)=3$, and since \bar{G}_{i} is 3-cutwidth critical for $i \in$ $\{1,2,4\}, \bar{G}_{1} \in\left\{\tau_{1}, \tau_{3}, \tau_{4}, \tau_{5}\right\}, \bar{G}_{2}=\tau_{2}$ with $\bar{G}_{2}=K_{1,3}$ and $\bar{G}_{4}=\tau_{2}$ with $G_{2}=K_{1,3}$ or τ_{3} with $G_{3}=C_{3}$ resulting in $G_{3}=K_{2}$. Suppose that $\pi: V(G) \rightarrow \mathcal{S}_{n}$ is a labeling of G with $\pi\left(x_{1}\right)<\pi\left(x_{2}\right)<\pi\left(x_{3}\right)<\pi\left(x_{4}\right)$, then \mathcal{S}_{n} is partitioned into three intervals $I_{1}=$ $\left[1, \pi\left(x_{1}\right)\right], I_{2}=\left(\pi\left(x_{2}\right), \pi\left(x_{4}\right)\right]$ and $I_{3}=\left(\pi\left(x_{4}\right), n\right]$. Now, we embed G_{1} in I_{1} with congestion $3, \bar{G}_{2}-\left\{x_{1} x_{1}^{\prime}, x_{1} x_{1}^{\prime \prime}\right\}$ in I_{2} and connect $x_{1} x_{4}$ with congestion $4, G_{4}-x_{4}$ in I_{3} with congestion 2 . Thus, $c(G, \pi)=4$, implying $c(G) \leq 4$. On the other hand, $c(G) \geq 4$. Hence $c(G)=4$.

The remaining is to show $c(G-e)<4$ for any $e \in E(G)$. There are three cases to consider: (1) $e \in E\left(G_{1}\right)$; (2) $e \in E\left(C_{4}\right)$; (3) e is a pendant edge of G_{i} for $i=2,3,4$. For Case (1), $c\left(G_{1}-e\right) \leq 2$. Since $d_{G}\left(x_{2}\right)=3$, by Lemma 1(3), if $e=v_{1} v_{2}$ is a pendant edge of G_{1} with $d_{G}\left(v_{2}\right)=1$, then we can find an optimal labeling $\pi^{\prime}: V\left(G-v_{2}\right) \rightarrow \mathcal{S}_{n-1}$ with $c\left(G-v_{2}, \pi^{\prime}\right)=3$, under which $G_{2}-x_{2}$ is embedded in interval $[1, \min \{\pi(v): v \in$ $\left.V\left(G_{1}-v_{2}\right)\right\}$) with congestion 3. If $e \in E\left(C_{3}\right)$ (note that $\bar{G}_{1}=\tau_{4}$ or τ_{5} in this subcase), then we can find an optimal labeling $\pi^{\prime \prime}: V(G-e) \rightarrow \mathcal{S}_{n}$ with $c\left(G-e, \pi^{\prime \prime}\right)=3$, under which $G_{2}-x_{2}$ is embedded in interval $\left[1, \min \left\{\pi(v): v \in V\left(G_{1}\right)\right\}\right]$ with congestion 3. So $c(G-e)=3$. Similarly, for Cases (2) and (3), $c(G-e)=3$ also. Hence, G is 4-cutwidth critical.

Lemma 22. Let G be a 4-cutwidth critical graph with the central cycle $C_{4}=x_{1} x_{2} x_{3} x_{4} x_{1}$. If G has a decomposition $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{4}\right\}$ of equal cutwidth 3 , then \bar{G}_{i} is 3-cutwidth critical for each $i \in\{1,2,4\}$ (see Illustrations in Figure 7).

Proof. By contradiction, suppose that there is at least a \bar{G}_{i} (say \bar{G}_{2}) such that \bar{G}_{2} is not 3cutwidth critical, then there exists an edge $e \in E\left(\bar{G}_{2}\right)$ such that $c\left(\bar{G}_{2}-e\right)=3$ also. Two cases need to be considered: (1) $e=v v^{\prime}$ is a pendant edge with $d_{G}\left(v^{\prime}\right)=1$ in $\bar{G}_{2} ;(2) e \in E\left(C^{\prime}\right)$ if \bar{G}_{2} contains a cycle C^{\prime} which does not equal the central cycle C_{4}. Using an argument similar to that of Lemma 21, for Case (1), we can find a labeling $\pi: V\left(G-v^{\prime}\right) \rightarrow \mathcal{S}_{n-1}$ with $c\left(G-v^{\prime}\right)=4$, thereby contradicting that G is 4-cutwidth critical. Furthermore, likewise, for Case (2), we can find a labeling $\pi: V(G-e) \rightarrow \mathcal{S}_{n}$ with $c(G-e)=4$, also contradicting that G is 4-cutwidth critical. Similarly, if $e \in E\left(\bar{G}_{i}\right)$ for $i=1$ or 4 then we can also find a contradiction to the assertion that G is 4 -cutwidth critical. Therefore, \bar{G}_{i} is 3-cutwidth critical for each $i \in\{1,2,4\}$.

From Lemmas 21 and 22, the structure of a 4-cutwidth critical graph G with a central cycle $C_{4}=x_{1} x_{2} x_{3} x_{4} x_{1}$ can be obtained below.

Theorem 9. Assume that G is a 4-cutwidth graph with a central cycle $C_{4}=x_{1} x_{2} x_{3} x_{4} x_{1}$, and x_{i} is a cut vertex for $1 \leq i \leq 4$, then G is 4-cutwidth critical if and only if G has a decomposition $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{4}\right\}$ of equal cutwidth 3 , each of which is 3-cutwidth critical, where $\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{4}$ are one of the following:
(1) $\bar{G}_{1}=K_{1,5}$ with the central vertex x_{1} of $d_{G}\left(x_{1}\right)=5$ or τ_{5} with $d_{G}\left(x_{1}\right)=4$, and \bar{G}_{2} and \bar{G}_{4} are both in $\left\{\tau_{2}, \tau_{3}\right\}$, but \bar{G}_{2} and \bar{G}_{4} do not equal τ_{3} simultaneously (see Illustration in Figure 7a);
(2) \bar{G}_{1} is homeomorphic to τ_{3} with the central vertex x_{1} of $d_{G}\left(x_{1}\right)=4$ and $C_{4} \subset \bar{G}_{1}, \bar{G}_{2}$ and \bar{G}_{4} are both in $\left\{\tau_{2}, \tau_{3}\right\} . \bar{G}_{2}, \bar{G}_{4}$ are not necessarily different (see Illustration in Figure $7 b$).

Figure 7. Illustrations of Theorem 9.

4.3. Graphs with a Central Cycle of Length at Least Five

Suppose that G is a graph with the central cycle $C_{5}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$, and for $1 \leq$ $i \leq 5, G-E\left(C_{5}\right)$ has no component G_{i} leading from x_{i}, such that $c\left(G_{i}\right)=3$, but $c\left(G_{i}^{\prime} \cup\right.$ $\left.\left\{x_{i} x_{i-1}, x_{i} x_{i+1}\right\}\right)=3$ for any proper subgraph $G_{i}^{\prime} \subset G_{i}, C_{5}$ has at most two x_{i}^{\prime} s with $d_{G}\left(x_{i}\right) \geq 4$, where $x_{0}=x_{5}, x_{6}=x_{1}$. Let one of the following hold:
(1) $\bar{G}_{1}=G_{1} \cup G_{2} \cup G_{5} \cup\left(C_{5}-x_{3} x_{4}\right), \bar{G}_{i}=G_{i}$ or $G_{i}+x_{3} x_{4}$ if $c\left(G_{i}\right)=3$ or $G_{i}+x_{i} x_{i-1}+$ $x_{i} x_{i+1}$ if $c\left(G_{i}\right)<3$ for $i=3,4$ with $d_{G}\left(x_{3}\right)=d_{G}\left(x_{4}\right)=3$;
(2) $\bar{G}_{1}=G_{1} \cup G_{2} \cup G_{5} \cup\left(C_{5}-x_{3} x_{4}\right), \bar{G}_{3}=G_{3} \cup\left(C_{5}-x_{1} x_{5}+x_{2} x_{2}^{\prime}+x_{4} x_{4}^{\prime}\right), \bar{G}_{4}=G_{4} \cup$ $\left(C_{5}-x_{1} x_{2}+x_{3} x_{3}^{\prime}+x_{5} x_{5}^{\prime}\right)$ with $d_{G}\left(x_{3}\right)=d_{G}\left(x_{4}\right)=4$ and $c\left(G_{3}\right)=c\left(G_{4}\right)=2, x_{i}^{\prime} \in$ $N_{G}\left(x_{i}\right) \cap V\left(G_{i}-x_{i}\right)$ for $2 \leq i \leq 5$;
(3) \bar{G}_{1} is homeomorphic to subgraph $\left(G_{1}+x_{1} x_{2}+x_{1} x_{5}\right) \cup G_{2} \cup G_{5}, \bar{G}_{3}=G_{3} \cup\left(C_{5}-\right.$ $\left.x_{1} x_{5}+x_{2} x_{2}^{\prime}+x_{4} x_{4}^{\prime}\right), \bar{G}_{4}=G_{4} \cup\left(C_{5}-x_{1} x_{2}+x_{3} x_{3}^{\prime}+x_{5} x_{5}^{\prime}\right)$ with $c\left(G_{3}\right)=c\left(G_{4}\right)=2$, where C_{5} has at most two 4-degree vertices (say, x_{1} and x_{4}) which are nonadjacent.
Then, we have the following:
Lemma 23. For a graph G with the central cycle $C_{5}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$, if G is 4 -cutwidth critical and $\left\{\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{4}\right\}$ is a subgraph decomposition of equal cutwidth 3 of G, then $\bar{G}_{i}\left(\right.$ or $\left.\bar{G}_{i}-x_{i}\right)$ is 3-cutwidth critical for $i \in\{1,3,4\}$ (see Illustrations in Figure 8).

Proof. By contradiction, we first consider Case (1) above. Suppose that there exists some \bar{G}_{i}, say \bar{G}_{1} first, such that \bar{G}_{1} is not 3-cutwidth critical. There are two subcases to consider: (i) \bar{G}_{1} contains no cycle; (ii) \bar{G}_{1} contains at least a cycle. For (i), \bar{G}_{1} has at least a pendant vertex v such that $c\left(\bar{G}_{1}-v\right)=3$. By $d_{G}\left(x_{3}\right)=d_{G}\left(x_{4}\right)=3$, let $x_{3} x_{3}^{\prime}, x_{4} x_{4}^{\prime}$ be cut edges in G with $x_{3}^{\prime} \in V\left(G_{3}-x_{3}\right) \cap N_{G}\left(x_{3}\right)$ and $x_{4}^{\prime} \in V\left(G_{4}-x_{4}\right) \cap N_{G}\left(x_{4}\right)$. Then $d_{G-v}\left(x_{3}\right)=d_{G-v}\left(x_{4}\right)=3$, and $x_{3} x_{3}^{\prime}, x_{4} x_{4}^{\prime}$ are both cut edges in $G-v$ clearly. So, by Lemma 1(3), $G-v$ has an optimal labeling π such that the vertices in each of $V\left(G_{3}-x_{3}\right), V\left(\bar{G}_{1}-v+x_{3} x_{4}\right)$ and $V\left(G_{4}-x_{4}\right)$ are labeled consecutively. Without loss of generality, let $\max \left\{\pi(v): v \in V\left(G_{3}-x_{3}\right)\right\}<$ $\min \left\{\pi(v): v \in V\left(\bar{G}_{1}-v+x_{3} x_{4}\right)\right\}$ and $\max \left\{\pi(v): v \in V\left(\bar{G}_{1}-v+x_{3} x_{4}\right)\right\}<\min \{\pi(v):$ $\left.v \in V\left(G_{4}-x_{4}\right)\right\}$. Then $c(G-v, \pi)=c\left(\bar{G}_{1}-v\right)+1=4$. Since π is optimal, $c(G-v)=$ $c(G-v, \pi)=4$, contradicting that G is 4-cutwidth critical. For (ii), two subcases need to be considered: (a) \bar{G}_{1} has at least a pendant vertex v such that $c\left(\bar{G}_{1}-v\right)=3$; (b) \bar{G}_{1} has at least a non-pendant edge e such that $c\left(\bar{G}_{1}-e\right)=3$. Subcase (a) is the same as case (i), omitted here; For subcase (b), using a similar method to that of case (i), we can show $c(G-e)=4$, also a contradiction. Now, we consider \bar{G}_{3} or \bar{G}_{4}, and without loss of generality; let $c\left(\bar{G}_{3}-x_{3} x_{3}^{\prime}\right)=c\left(G_{3}-x_{3} x_{3}^{\prime}\right)=3$ with $x_{3}^{\prime} \in N_{G}\left(x_{3}\right) \cap V\left(G_{3}-x_{3}\right)$ and $\bar{G}_{4}=G_{4}+x_{4} x_{3}+x_{4} x_{5}$. Assume that there is an edge e such that $c\left(\bar{G}_{3}-x_{3} x_{3}^{\prime}-e\right)=3$, i.e., $\bar{G}_{3}-x_{3} x_{3}^{\prime}-e$ is not 3-cutwidth critical. Similar to Case (i), $d_{G-e}\left(x_{3}\right)=d_{G-e}\left(x_{4}\right)=3$, and $x_{3} x_{3}^{\prime}, x_{4} x_{4}^{\prime}$ are both cut edges in $G-e$. By Lemma 1(3), $G-e$ has an optimal labeling π^{\prime} such that the vertices in each of $V\left(\bar{G}_{1}+x_{3} x_{4}\right), V\left(G_{3}-x_{3}-e\right)$ and $V\left(G_{4}-x_{4}\right)$ are labeled consecutively with $\max \left\{\pi^{\prime}(v): v \in V\left(\bar{G}_{1}+x_{3} x_{4}\right)\right\}<\min \left\{\pi^{\prime}(v): v \in V\left(G_{3}-x_{3}-e\right)\right\}$ and $\max \left\{\pi^{\prime}(v): v \in V\left(G_{3}-x_{3}-e\right)\right\}<\min \left\{\pi^{\prime}(v): v \in V\left(G_{4}-x_{4}\right)\right\}$. Thus $c(G-$ $e)=c\left(G-e, \pi^{\prime}\right)=c\left(G_{3}-x_{3} x_{3}^{\prime}-e\right)+1=4$, contradicting that G is 4-cutwidth critical. Likewise, let \bar{G}_{3} and \bar{G}_{4} be one of the followings, and one of $\left\{\bar{G}_{3}, \bar{G}_{4}\right\}$ be not 3-cutwidth critical: (A1) each $\bar{G}_{i}=G_{i}$ with $c\left(\bar{G}_{i}-x_{i} x_{i}^{\prime}\right)=c\left(G_{i}-x_{i} x_{i}^{\prime}\right)=3$ for $i=3,4$;
(A2) each $\bar{G}_{i}=G_{i}+x_{i} x_{i-1}+x_{i} x_{i+1}$ with $c\left(G_{i}\right)<3$ for $i=3,4$;
(A3) $\bar{G}_{3}=G_{3}$ with $c\left(G_{3}\right)=3$ but $c\left(G_{3}-x_{3} x_{3}^{\prime}\right)<3, \bar{G}_{4}=G_{4}+x_{4} x_{3}+x_{4} x_{5}$ with $c\left(G_{4}\right)<3$;
(A4) $\bar{G}_{3}=G_{3}$ with $c\left(G_{3}\right)=3, \bar{G}_{4}=G_{4}$ with $c\left(G_{4}\right)=3$ but $c\left(G_{4}-x_{4} x_{4}^{\prime}\right)<3$.
Then we can also obtain a contradiction to the assertion that G is 4 -cutwidth critical. Hence, each $\bar{G}_{i}\left(\right.$ or $\left.\bar{G}_{i}-x_{i}\right)$ is 3-cutwidth critical.

Similarly, for Cases (2) and (3) above, $\bar{G}_{i}\left(\right.$ or $\left.\bar{G}_{i}-x_{i}\right)$ is also 3-cutwidth critical for $i \in\{1,3,4\}$. This completes the proof.

Lemma 24. For a 4-cutwidth graph G with the central cycle $C_{5}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$, if $\left\{\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{4}\right\}$ is a decomposition of equal cutwidth 3 of $G, \bar{G}_{i}\left(\right.$ or $\left.\bar{G}_{i}-x_{i}\right)$ is 3-cutwidth critical for $i \in\{1,3,4\}$, then G is 4-cutwidth critical.

Proof. Three cases similar to those of Lemma 23 need to be considered. We first consider Case (1) by contradiction. Suppose that G is not 4-cutwidth critical, i.e., there exists a pendant vertex v (or a non-pendant edge e) such that $c(G-v)=4$ (or $c(G-e)=4$). There are three subcases to consider: $(i) v \in V\left(\bar{G}_{1}\right)$ (or $e \in E\left(\bar{G}_{1}\right)$); (ii) $v \in V\left(\bar{G}_{2}\right)$ (or $e \in E\left(\bar{G}_{2}\right)$); (iii) $v \in V\left(\bar{G}_{3}\right)$ (or $e \in E\left(\bar{G}_{3}\right)$). For Case (i), by assumption, $c\left(\bar{G}_{1}-v\right)<3$ (or $c\left(\bar{G}_{1}-e\right)<3$). Since $d_{G}\left(x_{3}\right)=d_{G}\left(x_{4}\right)=3$, using a similar method to that of Lemma 22, we can verify that $c(G-v)<4$ (or $c(G-e)<4)$ contrary to $c(G-v)=4$ (or $c(G-e)=4$). So, G is 4-cutwidth critical. Likewise, for Subcases (ii) and (iii), G is 4 -cutwidth critical also.

Similarly, for Cases (2) and (3), G is 4 -cutwidth critical also. This proof is completed.
From Lemmas 23 and 24:
Theorem 10. Assume that G is a 4-cutwidth graph with a central cycle $C_{4}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$, and x_{i} is a cut vertex for $1 \leq i \leq 5$, then G is 4-cutwidth critical if and only if G has a decomposition $\left\{\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{4}\right\}\left(\right.$ or $\left.\left\{\bar{G}_{1}, \bar{G}_{3}+x_{3} x_{4}, \bar{G}_{4}\right\},\left\{\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{4}+x_{4} x_{3}\right\},\left\{\bar{G}_{1}, \bar{G}_{3}+x_{3} x_{4}, \bar{G}_{4}+x_{4} x_{3}\right\}\right)$ of equal cutwidth 3 , where $\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{4}$ are one of the following:
(1) $\bar{G}_{1} \in\left\{\tau_{2}, \tau_{3}\right\}$ with the central vertex x_{1} of degree three or four, for $i=3,4, \bar{G}_{i}\left(\right.$ or $\left.\bar{G}_{i}-x_{i}\right)$ is one of $\left\{\tau_{i}: 1 \leq i \leq 5\right\}$ and x_{i} satisfies: $(i) d_{G}\left(x_{i}\right)=3$, (ii) x_{i} is not the central vertex of \bar{G}_{i} when $\bar{G}_{i} \in\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$, and (iii) $x_{i} x_{i-1}, x_{i} x_{i+1}$ are the pendant edges of \bar{G}_{i} when \bar{G}_{i} is τ_{2} or τ_{3} (see Illustration in Figure 8a);
(2) \bar{G}_{1} is homeomorphic to τ_{2} with the central vertex x_{1} of degree three, for $i=3,4, \bar{G}_{i}$ is homeomorphic to τ_{2} or τ_{3} with $G_{i} \in\left\{K_{1,3}, C_{3}\right\}$, where G_{3}, G_{4} are not necessarily different (see Illustration in Figure 8b);
(3) \bar{G}_{1} is homeomorphic to τ_{3} with the central vertex x_{1} of degree four, for $i=3,4, \bar{G}_{i}$ is homeomorphic to τ_{2} or τ_{3} with $G_{i} \in\left\{K_{1,3}, C_{3}\right\}$, but if $G_{3}=C_{3}$, then $G_{4} \neq C_{3}$ and vice versa (see Illustration in Figure 8b).

(a)

(b)

Figure 8. Illustrations of Theorem 10.
In Figure $8 \mathrm{a}, \bar{G}_{i}$ is either G_{i} which is τ_{1} or τ_{4} or $\tau_{5}+x_{i} x_{i}^{\prime}$ with $x_{i}^{\prime} \in V\left(\tau_{5}\right)$ or $G_{i}+$ $x_{i} x_{i-1}+x_{i} x_{i+1}$ which is in $\left\{\tau_{2}, \tau_{3}\right\}$ for $i=3,4$; Additionally, if $G_{1}=K_{1,3}$ then G_{3}, G_{4} can be 3-cycle C_{3} simultaneously.

Lemma 25. For a graph G with a central cycle $C_{6}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{1}, G$ is 4-cutwidth critical if and only if $G \in\left\{M_{18}, M_{19}, M_{20}\right\}$ in Figure 9.

Figure 9. Three 4-cutwidth critical graphs with a C_{6}.
Proof. Sufficiency. For any $G \in\left\{M_{18}, M_{19}, M_{20}\right\}, G$ can be easily shown to be 4-cutwidth critical by proving two conclusions: (1) $c(G)=4 ;(2) c\left(G^{\prime}\right)=3$ for any $G^{\prime} \in \mathcal{M}(G)$, omitted here.

Necessity. Let G be a 4-cutwidth critical graph with the central cycle $C_{6}=x_{1} x_{2} x_{3} x_{4} x$ ${ }_{5} x_{6} x_{1}$.

Observation. For any $18 \leq i \leq 20, M_{i}$ has a decomposition $\left\{\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{5}\right\}$ of equal cutwidth 3 , where $\bar{G}_{l}=H_{l-1} \cup H_{l} \cup H_{l+1}=\tau_{2}$ or τ_{3} with $H_{l}=G_{l}+x_{l} x_{l-1}+x_{l} x_{l+1}$ for $l \in\{1,3,5\}, H_{0}=H_{6}$ and $H_{7}=H_{1}$.

By observation, suppose by contradiction that $G \notin\left\{M_{18}, M_{19}, M_{20}\right\}$, then two cases need to be considered as follows.
Case 1. G has a decomposition $\left\{\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{5}\right\}$ of equal cutwidth 3 , but there is at least an element in $\left\{\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{5}\right\}$, say $\bar{G}_{3}\left(=H_{2} \cup H_{3} \cup H_{4}\right)$, such that \bar{G}_{3} does not equal τ_{2} (or τ_{3}). In this case, $G-E\left(C_{r}\right)$ has at least a connected component G_{i} leading from x_{i}, say G_{3}, such that $G_{3} \supset K_{1,3}$ (or K_{3}); this is because the connected component leading from x_{3} in M_{18} is $K_{1,3}$ (or in any of $\left\{M_{19}, M_{20}\right\}$ is K_{3}. Without loss of generality, let G_{3} be a minimum graph such that $K_{1,3} \subset G_{3}$ (or $K_{3} \subset G_{3}$), i.e., $\left|E\left(G_{3}\right) \backslash E\left(K_{1,3}\right)\right|=1$ (or $\left|E\left(G_{3}\right) \backslash E\left(K_{3}\right)\right|=1$). Then, by direct computations, $c(G)=4$ and $c\left(\bar{G}_{3}\right)=3$, but G is not 4-cutwidth critical. Similarly, if $G_{2} \neq K_{2}$ or $G_{4} \neq K_{2}$ in \bar{G}_{3} then G is not 4-cutwidth critical also. So this case is not possible.
Case 2. G has not a decomposition $\left\{\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{5}\right\}$ of equal cutwidth 3. In this case, there are at least an element in $\left\{\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{5}\right\}$, say \bar{G}_{1}, such that $c\left(\bar{G}_{1}\right)$ is either at most 2 or at least 4, i.e., either $c\left(\bar{G}_{1}\right) \leq 2$ or $c\left(\bar{G}_{1}\right) \geq 4$. Since G is 4 -cutwidth critical, the subcase of $c\left(\bar{G}_{1}\right) \geq 4$ is impossible. For the subcase of $c\left(\bar{G}_{1}\right) \leq 2$, we claim that G_{1} must be a path P_{2} with length 2 in which either $d_{G_{1}}\left(x_{2}\right)=1$ or $d_{G_{1}}\left(x_{2}\right)=2$. By direct computations, we can easily show that $c(G)=3$, contrary to $c(G)=4$. Therefore, this case is also impossible. The proof is complete.

By Lemma 25, we have
Theorem 11. Let G be a 4 -cutwidth graph with a central cycle $C_{6}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{1}$. Then G is 4-cutwidth critical if and only if G is one of $\left\{M_{18}, M_{19}, M_{20}\right\}$ in Figure 9, which has a subgraph decomposition $\left\{\bar{G}_{1}, \bar{G}_{3}, \bar{G}_{5}\right\}$ of equal cutwidth 3 , in which $\bar{G}_{i}=\tau_{2}$ or τ_{3} with central vertex x_{i} for $i \in\{1,3,5\}$ and there is at least $a \bar{G}_{i_{0}}$ such that $\bar{G}_{i_{0}}=\tau_{2}$ with $i_{0} \in\{1,3,5\}$.

5. 4-Cutwidth Critical Graphs without a Central Vertex and Central Cycle

We now consider the 4-cutwidth critical graphs with neither a central vertex nor a central cycle (see five graphs $M_{21}-M_{25}$ in Figure 10).

Figure 10. 4-cutwidth critical graphs without a central vertex and central cycle.
Theorem 12. A graph G is 4-cutwidth critical with neither a central vertex nor a central cycle if and only if $G \in\left\{M_{21}, M_{22}, M_{23}, M_{24}, M_{25}\right\}$.

Proof. Sufficiency. For any $G \in\left\{M_{21}, M_{22}, M_{23}, M_{24}, M_{25}\right\}, G$ is needed to show (1) $c(G)=4$; (2) $c\left(G^{\prime}\right)=3$ for any $G^{\prime} \in \mathcal{M}(G)$. These can be done easily, omitted here. On the other hand, we can see that G has neither the central vertex nor the central cycle.

Necessity. Suppose that G is a 4-cutwidth critical graph without central vertex and central cycle, then G has at least two cycles C_{3}, sharing a common edge. This is because otherwise, G can be thought of as having either a central vertex or a central cycle. So, we have the following:
Claim 2. τ_{5} in Figure 1 is an edge-induced proper subgraph with cutwidth 3 of G.
By Claim 2, we have
Claim 3. Suppose that H is a 1-connected and minimum 3-cutwidth graph with $\tau_{5} \subset H$, $d_{H}\left(x_{1}\right) \leq 4$ and $d_{H}\left(x_{3}\right) \leq 4$, in which $d_{H}\left(x_{i}\right)$ is maximum for each $x_{i} \in V\left(\tau_{5}\right)$, then H is graph (a) in Figure 11.
Claim 4. Suppose that H is a 2-connected and minimum noncritical 3-cutwidth graph with $\tau_{5} \subset H$, then H is graph (b) in Figure 11.

Figure 11. Two 3-cutwidth graphs containing τ_{5}.
By Claims 3 and 4 and the minimality of G, if G is 1-connected, then G must be one of $\left\{M_{23}, M_{24}, M_{25}\right\}$ by direct computations and comparisons. Now, we consider the case that G is 2-connected. Since 4-cutwidth critical graph M_{8} can be thought of as having a central cycle C_{3}, we can exclude M_{8} here. Thus, by direct computations and comparisons, G must be one member of $\left\{M_{21}, M_{22}\right\}$. So, $G \in\left\{M_{21}, M_{22}, M_{23}, M_{24}, M_{25}\right\}$.

6. Concluding Remarks

In this paper, we have completely characterized the structural properties of 4-cutwidth critical graphs, from which we can see that except for a handful of irregular critical graphs $M_{21}-M_{25}$ in Figure 10, the other 4-cutwidth critical graphs can be classified into two classes: graph class with a central vertex v_{0}, and graph class with a central cycle C_{q} of length $q \leq 6$. By means of some ingenious combination, any member of two classes can achieve a subgraph decomposition $\left\{H_{1}, H_{2}, H_{3}\right\}$ (or $\left\{\bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}\right\}$), in which H_{i} (or \bar{G}_{i}) is either a 2-cutwith graph or a 3-cutwidth graph for each $1 \leq i \leq 3$, or a subgraph decomposition $\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}$ of equal cutwidth 2 . For a given integer $k>4$, although it seems difficult to characterize the detailed structures of k-cutwidth critical graphs, some structural properties of some special graph classes can be found. For instance, using [11], any k-cutwidth critical tree with a central vertex v_{0} has a subtree decomposition $\left\{T_{1}, T_{2}, T_{3}\right\}$ of equal cutwidth $k-1$, where, for $1 \leq i \leq 3, T_{i}$ (or $T_{i}-v_{0}$) is either a $(k-1)$ cutwidth critical tree or homeomorphic to a $(k-1)$-cutwidth critical tree. Similarly, a k-cutwidth critical non-tree graph $G=\oplus_{z_{0}}\left(G_{1}, G_{2}, G_{3}\right)$ also has a subgraph decomposition $\left\{G_{1}, G_{2}, G_{3}\right\}$ of equal cutwidth $k-1$, and G_{1}, G_{2}, G_{3} are all $(k-1)$-cutwidth critical. In the k-cutwidth critical graphs G with a central cycle C_{q} of length $q \geq 3$, the structural properties are not yet known. Additionally, for a fixed integer $k_{0}>4$, finding all the k_{0}-cutwidth critical graph Gs with neither a central vertex nor a central cycle is also a difficult task. All of these are the further objectives to investigate in future works.

Author Contributions: Conceptualization, Z.Z. and H.L.; methodology, Z.Z. and H.L.; formal analysis, Z.Z. and H.L.; investigation, Z.Z. and H.L.; resources, Z.Z. and H.L. writing-original draft preparation, Z.Z.; writing-review and editing, Z.Z. and H.L.; supervision, H.L.; project administration, Z.Z. and H.L.; funding acquisition, Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Soft Science Foundation of the Henan Province of China (192400410212) and partially supported by the Science and Technology Key Project of the Henan Province of China (232102310200).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors would like to thank the anonymous referees for their valuable suggestions on improving the quality of this paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bondy, J.A.; Murty, U.S.R. Graph Theory; Springer: New York, NY, USA, 2008.
2. Diaz, J.; Petit, J.; Serna, M. A survey of graph layout problems. ACM Comput. Surv. 2002, 34, 313-356. [CrossRef]
3. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman \& Company: San Francisco, CA, USA, 1979.
4. Yannakakis, M. A polynomial algorithm for the min-cut arrangement of trees. J. ACM 1985, 32, 950-989. [CrossRef]
5. Chung, M.; Makedon, F.; Sudborough, I.H.; Turner, J. Polynomial time algorithms for the min-cut problem on degree restricted trees. SIAM J. Comput. 1985, 14, 158-177. [CrossRef]
6. Gavril, F. Some NP-complete problems on graphs. In Proceedings of the 11th Conference on Information Sciences and Systems, Baltimore, MD, USA, 30 March-1 April 1977; pp. 91-95.
7. Monien, B.; Sudborough, I.H. Min-cut is NP-complete for edge weighted trees. Theor. Comput. Sci. 1988, 58, 209-229. [CrossRef]
8. Lin, Y.; Yang, A. On 3-cutwidth critical graphs. Discret. Math. 2004, 275, 339-346. [CrossRef]
9. Zhang, Z.; Lai, H. Characterizations of k-cutwidth critical trees. J. Comb. Optim. 2017, 34, 233-244. [CrossRef]
10. Zhang, Z.; Lai, H. On critical unicyclic graphs with cutwidth four. AppliedMath 2022, 2, 621-637. [CrossRef]
11. Zhang, Z. Decompositions of critical trees with cutwidth k. Comput. Appl. Math. 2019, 38, 148. [CrossRef]
12. Zhang, Z.; Zhao, Z.; Pang, L. Decomposability of a class of k-cutwidth critical graphs. Comb. Optim. 2022, 43, 384-401. [CrossRef]
13. Adolphson, D.; Hu, T.C. Optimal linear ordering. SIAM J. Appl. Math. 1973, 25, 403-423. [CrossRef]
14. Lengauer, T. Upper and lower bounds on the complexity of the min-cut linear arrangement problem on trees. SIAM J. Alg. Discret. Meth. 1982, 3, 99-113. [CrossRef]
15. Makedon, F.S.; Sudborough, I.H. On minimizing width in linear layouts. Discret. Appl. Math. 1989, 23, $243-265$.
16. Mutzel, P. A polyhedral approach to planar augmentation and related problems. In European Symposium on Algorithms; volume 979 of Lecture Notes in Computer Science; Spirakis, P., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 497-507.
17. Karger, D.R. A randomized fully polynomial time approximation scheme for the all terminal network reliability problem. SIAM J. Comput. 1999, 29, 492-514. [CrossRef]
18. Botafogo, R.A. Cluster analysis for hypertext systems. In Proceedings of the 16th Annual ACM SIGIR Conference on Research and Development in Information Retrieval, Pittsburgh, PA, USA, 27 June-1 July 1993; pp. 116-125.
19. Hesarkazzazi, S.; Hajibabaei, M.; Bakhshipour, A.E.; Dittmer, U.; Haghighi, A.; Sitzenfrei, R. Generation of optimal (de)centralized layouts for urban drainage systems: A graph theory based combinatorial multiobjective optimization framework. Sustain. Cities Soc. 2022, 81, 103827. [CrossRef]
20. Chung, F.R.K. Labelings of Graphs. In Selected Topics in Graph Theory 3; Beineke, L.W., Wilson, R.J., Eds.; Academic Press: London, UK, 1988; pp. 151-168.
21. Thilikos, D.M.; Serna, M.; Bodlaender, H.L. Cutwidth II: Algorithms for partial w-trees of bounded degree. J. Algorithms 2005, 56, 25-49. [CrossRef]
22. Korach, E.; Solel, N. Pathwidth and cutwidth. Discret. Appl. Math. 1993, 43, 97-101. [CrossRef]
23. Chung, F.R.K.; Seymour, P.D. Graphs with small bandwidth and cutwidth. Discret. Math. 1989, 75, 113-119. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

