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Abstract: The modified Bessel function (MBF) of the first kind is a fundamental special function
in mathematics with applications in a large number of areas. When the order of this function is
integer, it has an integral representation which includes the exponential of the cosine function.
Here, we generalize this MBF to include a fractional parameter, such that the exponential in the
previously mentioned integral is replaced by a Mittag–Leffler function. The necessity for this
generalization arises from a problem of communication in networks. We find the power series
representation of the fractional MBF of the first kind as well as some differential properties. We
give some examples of its utility in graph/networks analysis and mention some fundamental open
problems for further investigation.
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1. Introduction

The modified Bessel function (MBF) of the first kind of order ν, denoted by Iν(z) is
defined by [1–3]

Iν(z) = (
z
2
)ν

∞

∑
k=0

1
Γ(k + 1)Γ(k + ν + 1)

(
z
2
)2k, (1)

for an unrestricted real (or complex) number ν, where Γ(·) is the Euler gamma function,
which is defined by

Γ(z) :=
∫ ∞

0
tz−1e−tdt, R(z) > 0. (2)

The MBF of the first kind is one of the linearly independent solutions of the
differential equation

z2u′′(z) + zu′(z)− (z2 + ν2)u(z) = 0, (3)

which frequently appears in mathematical physics. Then, it is common to find this function
related to a large variety of applications, such as elasticity [4], imaging [5,6], sport data [7],
and statistics [8], to mention just a few. In particular, when ν ∈ Z, the MBF of the first kind
has the following integral representation:

Iν(z) =
1
π

∫ π

0
ez cos θ cos(νθ)dθ, (4)

which appears in the analytical expression of the so-called Estrada index of an infinite
linear and of an infinite circular graph [9]. The importance of the MBF of the first kind is
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also reflected by the fact that a large number of publications in mathematics deal with the
properties of these functions (see [10–18] for some recent examples).

Here, we propose a fractional generalization of the MBF of the first kind. This function,
which we will call fractional MBF (FMBF) of the first kind, is found in the analytical
calculations of communicability [19,20] and related indices [21] in certain classes of infinite
graphs. Therefore, it is not proposed in an ad hoc way as in other previous cases [22] but
in the context of the study of graphs and networks. We introduce the context in which
the FMBF of the first kind arises and then study some of its properties, such as its power
series, convergence and recurrence relations. We hope these functions and other related
ones play a fundamental role in the study of fractional analogous of Bessel functions and
their applications.

2. Preliminaries

It is known that the MBF of the first kind satisfies the following three terms’ recurrence:

Iν−1(z)− Iν+1(z) =
2ν

z
Iν(z). (5)

In addition, the derivative of the MBF of the first kind has the following well-known
recurrence relations:

d
dz

(zν Iν(z)) = zν Iν−1(z), (6)

d
dz

(z−ν Iν(z)) = z−ν Iν+1(z), (7)

d
dz

Iν(z) =
1
2
(Iν−1(z) + Iν+1(z)). (8)

First, we will rewrite these recurrence formulas for the MBF of the first kind in the
following way. We apply the classical rule of derivation for a product to Equation (6)
and obtain

d
dz

(zν Iν(z)) = νzν−1 Iν(z) + zν d
dz

Iν(z), (9)

such that we can write

d
dz

Iν(z) = Iν−1(z)−
ν

z
Iν(z). (10)

Similarly, we have
d
dz

Iν(z) = Iν+1(z) +
ν

z
Iν(z). (11)

We now consider the Caputo fractional derivative which we will use in this work. We
start by defining the Riemann–Liouville integral, which for a locally integrable function
f (t), a parameter γ representing the fractional order, is written as [23]

Iγ
0,t f (t) =

1
Γ(γ)

∫ t

0

f (τ)
(t− τ)1−γ

dτ γ > 0, (12)

where it can be easily proved that limγ→0 Iγ
0,t f (t) = f (t). Now, let α ∈ (0,+∞) be the

fractional ordering parameter and let m := dαe, where d.e is the ceiling function, the Caputo
derivative of f (t), for which f (t) = 0, if t < 0, is defined as [23]:

Dα
0,t f (t) = I (m−α)

0,t f (m)( f (t)) =
1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m dτ. (13)



Mathematics 2023, 11, 1630 3 of 13

Here, we consider only the cases where α ∈ (0, 1] and γ ∈ [0, 1) for the Caputo
derivative and Riemann–Liouville integral, respectively. Hereafter, we will consider (13)
for m = 1, which we will write with the following notation:

Dα
t f (t) =

1
Γ(1− α)

∫ t

0

f ′(τ)
(t− τ)α

dτ; α ∈ (0, 1). (14)

The following results are possibly proved elsewhere, and we show them here for the
sake of self-containment of our work. Let α ∈ (0, 1) and let f (t) = ∑∞

n=0 antn be a power
series with convergence radius R ∈ (0,+∞]. Then,

Dα
x f (x) = Dα

x(
∞

∑
n=0

anxn) =
∞

∑
n=0

anDα
x xn, (15)

Iα f (x) = Iα(
∞

∑
n=0

anxn) =
∞

∑
n=0

anIαxn. (16)

We also provide a few other properties of the Caputo derivative and of the Riemann–
Liouville integral which are useful in the proof of our results.

1. Let α ∈ (0, 1] and C ∈ R, then: Dα
t (C) = 0;

2. Let α ∈ (0, 1] and r > 0, then Dα
t (t

r) = Γ(r+1)
Γ(r−α+1) tr−α;

3. Let γ ∈ [0, 1) and r > −1, then Iγ(tr) = Γ(r+1)
Γ(r+γ+1) tr+γ;

4. Let γ ∈ (0, 1) and r > 0, then Dγ
t (Iγ(tr)) = Iγ(Dγ

t (t
r)) = tr.

3. Fractional Communicability in Graphs

Let G = (V, E) be a simple, finite, connected graph where V is the set of vertices and
E is the set of edges. Let A be the adjacency matrix of G. Let v, w ∈ V be two nodes of G.
Then, the communicability function Γv,w(ζ, G) of the graph with parameter ζ ∈ R is known
to be

Γv,w(ζ, G) =
∞

∑
k=0

ζk(Ak)vw

Γ(k + 1)
= (exp(ζ A))vw. (17)

When v = w, the self-communicability of the node v is known as the subgraph centrality
of that node and the sum of all subgraph centralities in the graph is the so-called Estrada
index: EE(ζ, G) = tr exp(ζ A), where tr is the trace of the matrix. The communicability
function and the Estrada index can be derived in different theoretical contexts studying
dynamical systems on graphs. This includes, for instance, a linearized yet stable susceptible-
infected epidemiological model, tight-binding models in quantum mechanics, thermal
Green’s function of system of quantum harmonic oscillators as well as in synchronization
of networks. In all of them, the parameter ζ ∈ R acquires different “physical” meanings.

Let us make the following generalization of the communicability function:

(Eα,β(ζ, G))v,w :=
∞

∑
k=0

ζk(Ak)vw

Γ(αk + β)
, (18)

which is equal to the standard communicability function when α = β = 1. Evidently, this
function corresponds to the v, w entry of the Mittag–Leffler matrix function of ζA. This
function, particularly Eα,1(ζ, G) has been found in the analytical solution of the fractional
version of the linearized yet stable susceptible-infected epidemiological model, where the
standard time derivative has been replaced by the Caputo fractional one. That is, let xi
be the probability that a node i ∈ V in G becomes infected from a contagious disease
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circulating the graph. If the birth rate of the disease is β, then the fractional Susceptible–
Infected model developed in [24] is given by Dα

t (− log(1− xi))(t) = βα ∑
j

Aijxj(t),

xi(0) = x0i ∈ [0, 1).
(19)

Then, under certain plausible initial conditions γ = 1− c/n (c is a constant and n is
the number of vertices) on the graph, the vector of solutions of this model is given by:

x = (
1− γ

γ
)Eα,1(tαβαγA)1− (

1− γ

γ
+ log γ)1, (20)

where 1 is a vector of ones.
Other more ad hoc encounters with these functions have recently appeared in the

literature by Arrigo and Durastante [25] and reviewed by Estrada [26] in the context
of the so-called “Estrada indices”. Hereafter, we will call (Eα,β(ζ, G))v,w the fractional
communicability between the corresponding nodes. When v = w, we will call it the
fractional subgraph centrality of the node, and the index defined by tr(Eα,β(ζ, G)) the
Estrada–Mittag–Leffler index of the graph [26]. From now on, we will focus only on the
cases where β = 1 and we will use the notation Eα(ζ, G) for Eα,β=1(ζ, G).

4. Fractional Communicabilities in Path and Cycle Graphs

Let us start with the following.

Definition 1. Let Eα(z) be the Mittag–Leffler function of z. Then, we define the following integral:

Eν,α(z) :=
1
π

∫ π

0
cos(νθ)Eα(z cos θ)dθ, ν ∈ Z, (21)

Remark 1. Notice that Eν,α=1(z) = 1
π

∫ π
0 ez cos θ cos(νθ)dθ =: Iν(z) which is the modified Bessel

function of the first kind. Therefore, Eν,α(z) is the fractional analogous of Iν(z) and will be named
here as the fractional modified Bessel function of the first kind (see plots in Figure 1).

(a) (b)

Figure 1. Plot of the functions Eν,α(z) for z ∈ Z and for ν = 0 (a) and ν = 1 (b) as well as for different
values of the fractional parameter α. The functions were computed using numerical integration on
the basis of Equation (21).

Remark 2. Notice that the FMBF of the first kind also satisfies similar recurrence relations as the
not fractional one. That is,

Eν−1,α(zα)− Eν+1,α(zα) = 2αν · I1−α(z−1 · Eν,α(zα)). (22)
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Let G be a path graph on n nodes Pn, i.e., the graph in which all nodes have degree
two but two nodes that have degree one. Without any loss of generality, we will take ζ = 1
from now on. Then, we can now prove the following result.

Theorem 1. Let v and w be two nodes of the path graph of n nodes Pn and let (Eα(Pn))vw be the
Mittag–Leffler communicability between nodes v and w. Let,

(Êα(Pn))vw =

{
Ev−w,α(2)− Ev+w,α(2) v 6= w
E0,α(2)− E2r(v),α(2) v = w, (23)

where

r(p) =
{

v i f v ≤ n/2 (n even) or v ≤ (n + 1)/2 (n odd)
n− v + 1 if v > n/2 (n even) or v > (n + 1)/2 (n odd).

(24)

Then, when the number of nodes is sufficiently large, i.e., when n → ∞, the value of
(Êα(Pn))vw tends to the actual value of the communicability function for a pair of nodes in Pn,
which mathematically is expressed as: lim

n→∞
(Eα(Pn))vw/(Êα(Pn))vw = 1.

Proof. Let us recall that in a path graph of n nodes, the eigenvalues of the adjacency matrix
are given by

λj(Pn) = 2 cos(
jπ

n + 1
), (25)

and the pth entry of the jth eigenvector is

ψj(p) =
√

2
n + 1

sin(
jpπ

n + 1
). (26)

By replacing these spectral values on the expression of (Eα(A))vw, we obtain

(Eα(Pn))vw =
1

n + 1

n

∑
j=1

(cos(
jπ(v− w)

n + 1
)− cos(

jπ(v + w)

n + 1
))Eα(2 cos(

jπ
n + 1

)). (27)

Let

(Êα(Pn))vw :=
1
π

∫ π

0
cos(θ(v− w))Eα(2 cos θ)dθ − 1

π

∫ π

0
cos(θ(v + w))Eα(2 cos θ)dθ

= Ev−w,α(2)− Ev+w,α(2)
(28)

where θ :=
jπ

n + 1
. When v = w, let

(Êα(Pn))vv :=
1
π

∫ π

0
[1− cos(2vθ)]Eα(2 cos(θ))

= E0,α(2)− E2r(v),α(2),
(29)

where the term r(p) arises due to the equivalence between the nodes labeled as i and
n − i + 1. The relationship between (Êα(Pn))vv and (Eα(Pn))vw can be seen as the one
existing in numerical methods such as the trapezium or Simpson’s rules in which an
integral is approximated by a summation. Here the analogous of the number of strips
used in those numerical methods of integration is the number of nodes in the path.
Then, it is easy to realize that when the number of nodes is sufficiently large, we have
lim

n→∞
(Eα(Pn))vw/(Êα(Pn))vw = 1.

Following the same scheme of proof, we can show the following.
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Theorem 2. Let v and w be two nodes of the cycle graph of n nodes Cn and let (Eα(Cn))vw be the
Mittag–Leffler communicability between nodes v and w. Let

(Êα(Cn))vw = Edvw ,α(2), (30)

where dvw is the shortest path distance between the two nodes, (notice that dvv = 0). Then, when
the number of nodes is sufficiently large, i.e., when n→ ∞, the value of (Êα(Cn))vw tends to the
actual value of the communicability function for a pair of nodes in Cn, which means that

lim
n→∞

(Eα(Cn))vw/(Êα(Cn))vw = 1. (31)

Example 1. We calculate the values of (Eα(Pn))v,v and (Eα(Cn))v,v as well as their approximation
based on the FMBF of the first kind (Êα(Pn))v,v and (Êα(Cn))v,v for n = 5, 20, 40, 60, 80, 100. In
Table 1, we give the values of these indexes for the first three nodes of the path graph (labeled 1, 2
and 3, respectively, starting from one end) with n = 20 and for any node of the cycle graph (all are
equivalent). The results for n > 20 in Pn and those for n > 40 in Cn do not differ significantly (up
to the seventh decimal place) from those for n = 20 or n = 40, respectively. The important result
here is that for relatively large n, the approximate values based on the FMBF of the first kind are
indistinguishable from those based on the Mittag–Leffler matrix function.

Table 1. Computational results of values of (Eα(P20))v,v and (Eα(C40))v,v computed using the Mittag–
Leffler matrix function and of its approximate values using the FMBF of the first kind, (Êα(Pn))v,v

and Êα(C40) for which we have used numerical integration.

v (Eα(P20))v,v (Êα(P20))v,v

α = 0.4 α = 0.6 α = 0.8 α = 0.4 α = 0.6 α = 0.8

1 14.0351209 3.1971466 2.0259468 14.0351209 3.1971466 2.0259468

2 40.2363816 6.2883718 3.2379302 40.2363816 6.2883718 3.2379302

3 61.4983128 7.3852388 3.4402925 61.4983128 7.3852388 3.4402925

v (Eα(C40))v,v (Êα(C40))v,v

α = 0.4 α = 0.6 α = 0.8 α = 0.4 α = 0.6 α = 0.8

1 80.9762993 7.6594588 3.4584489 80.9762993 7.6594588 3.4584489

The previous results show that the fractional modified Bessel function (FMBF) of the
first kind appears in the expression of the fractional communicability between any pair of
nodes in path and cycle graphs when the number of nodes is very large. Therefore, we will
focus now on some of the most important properties of this new function.

5. On the Estrada–Mittag–Leffler Indices of Pn and Cn

By the definition of the Estrada index, we have that the Estrada–Mittag–Leffler index
(see [25,26]) is defined as

EEα(G) =
n

∑
v=1

(Eα(G))vv =
n

∑
j=1

Eα(λj). (32)

Then, for a cycle Cn, we have:

EEα(Cn) =
n

∑
j=1

Eα(2 cos(
2jπ

n
))

= n(
1
n

n

∑
j=1

Eα(2 cos(
2jπ

n
))).

(33)
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Let

ÊEα(Cn) := n(
1

2π

∫ 2π

0
Eα(2 cos z)dz)

= n(
1
π

∫ π

0
Eα(2 cos z)dz)

n · Eα,0(2).

(34)

Then, when the number of nodes is sufficiently large, i.e., when n→ ∞, the value of
Êα(Pn) tends to the actual value of the Estrada–Mittag–Leffler index in
Cn, lim

n→∞
EEα(Cn)/ÊEα(Cn) = 1.

For the case of the path graph, we have:

EEα(Pn) =
n

∑
k=1

Eα(2 cos(
kπ

n + 1
))

=
1
2

n

∑
k=0

Eα(2 cos(
kπ

n + 1
)) +

1
2

n+1

∑
k=1

Eα(2 cos(
kπ

n + 1
))−

− 1
2
(Eα(2) + Eα(−2))

=
n + 1

2
(

1
n + 1

n

∑
k=0

Eα(2 cos(
kπ

n + 1
))) +

n + 1
2

(
1

n + 1

n+1

∑
k=1

Eα(2 cos(
kπ

n + 1
)))

− 1
2
(Eα(2) + Eα(−2)).

(35)

Let

ÊEα(Pn) :=
n + 1

2
(

1
π

∫ π

0
Eα(2 cos z)dz) +

n + 1
2

(
1
π

∫ π

0
Eα(2 cos z)dz)

− 1
2
(Eα(2) + Eα(−2))

= (n + 1)Eα,0(2)−
1
2
(Eα(2) + Eα(−2)).

(36)

Then, when the number of nodes is sufficiently large, i.e., when n→ ∞, the value of
EEα(Pn) tends to the actual value of the Estrada–Mittag–Leffler index in
Pn, lim

n→∞
EEα(Pn)/ÊEα(Pn) = 1.

6. Power Series of the the FMBF of the First Kind

We start by expressing the FMBF of the first kind as a power series.

Lemma 1. Let Eν,α(z) be the fractional modified Bessel function of the first kind of z with fractional
parameter α and ν ∈ Z. Then,

Eν,α(z) =
∞

∑
k=0

(2k + ν)!
Γ(α(2k + ν) + 1)k!(k + ν)!

(
z
2
)2k+ν. (37)

Proof. First, we use the Taylor series expression of the Mittag–Leffler function on the
definition of Eν,α:

Eν,α(z) =
1
π

∫ π

0

∞

∑
j=0

zj cosj(θ)

Γ(αj + 1)
cos(νθ)dθ

=
∞

∑
j=0

[
zj

πΓ(αk + 1)

∫ π

0
cos j(θ) cos(νθ)dθ]

(38)
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To obtain the value of the integral, we equalize Eν,α(z) to Iν(z) for α = 1, such that we
obtain:

∫ π

0
cos(θ)j cos(νθ)dθ =


π · j!

( j−ν
2 )!( j+ν

2 )!2j
if j ≥ ν and j + ν is even

0 otherwise

(39)

Finally, we replace the solution of this integral into Eν,α(z), and we are finished.

Remark 3. When α = 1 the term Γ(αk + 1) = k! and Eν,α=1(z) = Iν(z).

Lemma 2. The power series

∞

∑
k=0

(ν + 2k)!
Γ(α(ν + 2k) + 1)

1
k!(ν + k)!

(
z
2
)2k+ν (40)

converges ∀z if α ∈ (0, 1] and in the limiting case when α = 0, it converges if |z| < 1 and diverges
if |z| > 1.

Proof. Let us consider the coefficients aj(ν, α), which are given by:

aj(ν, α) =


(ν + 2k)!

Γ(α(ν + 2k) + 1)
1

k!(ν + k)!
1

22k+ν
if j = 2k + ν, k ∈ Z+

0 otherwise

(41)

We apply the Cauchy–Hadamard theorem to calculate the convergence radius R(ν, α)
of the series, which is defined as

R(ν, α) =
1

lim sup
j→∞

(
∣∣aj(ν, α)

∣∣1/j
)

(42)

On the upper limit, there is only influence of the values of j = 2k + ν. Thus, when
k −→ ∞, we have

lim sup
j→∞

(
∣∣aj(ν, α)

∣∣1/j
) = lim sup

k→∞
(|a2k+ν(ν, α)|1/(2k+ν)) = lim

k→∞
(|a2k+ν(ν, α)|1/(2k+ν)) (43)

Using Stirling approximation, the following limit can be obtained for α ∈ (0, 1] (see
Remark 4):

lim
k→∞
|a2k+ν(ν, α)|1/(2k+ν) = lim

k→∞
(

e
α(ν + 2k)

)α = 0 (44)

Therefore, when α ∈ (0, 1] we obtain that R(ν, α) = +∞, indicating global convergence
of the series. Now, when α = 0, we have that

a2k+ν(ν, 0) =
(ν + 2k)!
k!(ν + k)!

1
22k+ν

(45)

From this equation, it can be proved that (see Remark 5):

lim
k→∞
|a2k+ν(ν, α)|1/(2k+ν) = lim

k→∞
(

√
ν + 2k

k(ν + k)
)

1
2k+ν = 1 (46)

Therefore, R(ν, 0) = 1, such that (40) converges for z if |z| < 1 and does not converge
if |z| > 1.
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Remark 4. In the proof of Lemma 2, we take into account Stirling approximation for both the
factorial and the gamma function Γ. This approximation allows us to replace terms of the form n!
and Γ(z + 1) by nne−n

√
2πn and zze−z

√
2πz, respectively, when both n and z tend to +∞.

limk→∞|a2k+ν(ν, α)|
1

2k+ν = limk→∞( (ν+2k)!
Γ(α(ν+2k)+1)

1
k!(ν+k)!

1
22k+ν )

1
2k+ν

= limk→∞(
(ν+2k)ν+2ke−(ν+2k)

√
2π(ν+2k)

(α(ν+2k))α(ν+2k)e−α(ν+2k)
√

2πα(ν+2k)
ekeν+k

kk(ν+k)ν+k2π
√

k(ν+k)
1

22k+ν )
1

2k+ν

= limk→∞( (ν+2k)ν+2k

kk(ν+k)ν+k22k+ν · 1
2π
√

αk(ν+k)
· eα(ν+2k) · 1

(α(ν+2k))α(ν+2k) )
1

2k+ν

(47)

It is easy to study the correspondent limit for the first and second factor of the previous
expression:

lim
k→∞

(
(ν + 2k)ν+2k

kk(ν + k)ν+k22k+ν
)

1
2k+ν =

1
2

lim
k→∞

ν + 2k
ν + k

(
ν + k

k
)

k
2k+ν = lim

k→∞
(1 +

ν

k
)

k
2k+ν = 1 (48)

lim
k→∞

(
1

2π
√

αk(ν + k)
)

1
2k+ν = lim

k→∞
(
√

αk(ν + k))−
1

2k+ν = 1 (49)

Therefore:

lim
k→∞
|a2k+ν(ν, α)|

1
2k+ν = lim

k→∞
(

eα(ν+2k)

(α(ν + 2k))α(ν+2k)
)

1
2k+ν = lim

k→∞
(

e
α(ν + 2k)

)α = 0. (50)

Remark 5. In the proof of Lemma 2, we also considered the following

lim
k→∞
|a2k+ν(ν, 0)|

1
2k+ν = lim

k→∞
(
(ν + 2k)!
k!(ν + k)!

1
22k+ν

)
1

2k+ν

= lim
k→∞

(
(ν + 2k)ν+2ke−(ν+2k)

√
2π(ν + 2k)

kke−k
√

2πk(ν + k)ν+ke−(ν+k)
√

2π(ν + k)
1

22k+ν
)

1
2k+ν

= lim
k→∞

(
(ν + 2k)ν+2k

kk(ν + k)ν+k22k+ν

√
(ν + 2k)

2πk(ν + k)
)

1
2k+ν .

(51)

As it was shown in the Remark 4, the first of the two previous factors tends to one as
k→ ∞. Therefore:

lim
k→∞
|a2k+ν(ν, 0)|

1
2k+ν = lim

k→∞
(

√
(ν + 2k)
k(ν + k)

)
1

2k+ν = 1. (52)

7. Differential Properties of the FMBF of the First Kind

We now obtain recurrence relations for the Caputo derivatives of Eν,α(zα).

Theorem 3. The following equalities hold

1.
Dα

z (Eν,α(zα)) = Eν−1,α(zα)− αν · I1−α(z−1 · Eν,α(zα)) (53)

2.
Dα

z (Eν,α(zα)) = Eν+1,α(zα) + αν · I1−α(z−1 · Eν,α(zα)) (54)

3.

Dα
z (Eν,α(zα)) =

1
2
(Eν−1,α(zα) + Eν+1,α(zα)). (55)

Before proceeding with the proof, we need to state the following auxiliary result.
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Lemma 3. Let α ∈ (0, 1] and ν ∈ N, then:

α · I1−α(z−1 · Eν,α(zα)) =
∞

∑
k=0

1
Γ(α(2k + ν− 1) + 1)

(2k + ν− 1)!
k!(k + ν)!

1
22k+ν

zα(2k+ν−1) (56)

Proof. The expression (16) allows us to calculate I1−α(z−1 · Eν,α(zα)) by integrating par-
tially each term of the power series. This operation can be applied to powers of z with an
exponent larger than −1. Then, because we are considering only the cases where γ ∈ N, it
is always true that α(2k + ν)− 1 > −1 for all possible k and ν, such that:

α · I1−α(z−1 · Eν,α(zα)) = α ·
∞

∑
k=0

1
Γ(α(2k + ν) + 1)

(2k + ν)!
k!(k + ν)!

1
22k+ν

I1−α(zα(2k+ν)−1). (57)

Using properties of the Riemann–Liouville integral when r = α(2k + ν) − 1 and γ =
1− α ∈ (0, 1), we have:

I1−α(zα(2k+ν)−1) =
Γ(α(2k + ν)− 1 + 1)

Γ(α(2k + ν)− 1 + 2− α)
zα(2k+ν)−1+1−α

=
Γ(α(2k + ν))

Γ(α(2k + ν− 1) + 1)
zα(2k+ν−1)

(58)

Plugging (58) in (57), we obtain the result.

We now proceed with the proof of Theorem 3.

Proof. We start by proving the recurrence (1). For that, we take into account the property (2)
with r = α(2k + ν) to show that:

Dα
z (Eν,α(zα)) =

∞

∑
k=0

1
Γ(α(2k + ν) + 1)

(2k + ν)!
k!(k + ν)!

1
22k+ν

Dα
z (z

α(2k+ν))

=
∞

∑
k=0

1
Γ(α(2k + ν− 1) + 1)

(2k + ν)!
k!(k + ν)!

1
22k+ν

zα(2k+ν−1)

=
∞

∑
k=0

(
2k + ν

k + ν
)

1
Γ(α(2k + ν− 1) + 1)

(2k + ν− 1)!
k!(k + ν− 1)!

1
22k+ν

zα(2k+ν−1)

=
∞

∑
k=0

(1− 1
2

ν

k + ν
)

1
Γ(α(2k + ν− 1) + 1)

(2k + ν− 1)!
k!(k + ν− 1)!

1
22k+ν−1 zα(2k+ν−1)

= Eν−1,α(zα)−
∞

∑
k=0

ν

k + ν

1
Γ(α(2k + ν− 1) + 1)

(2k + ν− 1)!
k!(k + ν− 1)!

1
22k+ν

zα(2k+ν−1)

= Eν−1,α(zα)− ν
∞

∑
k=0

1
Γ(α(2k + ν− 1) + 1)

(2k + ν− 1)!
k!(k + ν)!

1
22k+ν

zα(2k+ν−1)

= Eν−1,α(zα)− Ξ.

(59)

We now consider the term Ξ, which by using the auxiliary result (3) gives the following:

Ξ = ν
∞

∑
k=0

1
Γ(α(2k + ν− 1) + 1)

(2k + ν− 1)!
k!(k + ν)!

1
22k+ν

zα(2k+ν−1)

= αν · I1−α(z−1 · Eν,α(zα)),

(60)
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which proves (1). Let us now prove (2). Let ν ∈ N and using again the property (2) with
r = α(2k + ν), we write

Dα
z (Eν,α(zα)) = ∑∞

k=0
1

Γ(α(2k+ν)+1)
(2k+ν)!
k!(k+ν)!

1
22k+ν Dα

z (zα(2k+ν))

= ∑∞
k=0

1
Γ(α(2k+ν−1)+1)

(2k+ν)!
k!(k+ν)!

1
22k+ν zα(2k+ν−1)

= ∑∞
k=0(

2k+ν
k+ν ) 1

Γ(α(2k+ν−1)+1)
(2k+ν−1)!
k!(k+ν−1)!

1
22k+ν zα(2k+ν−1)

=
∞

∑
k=0

2k
k + ν

1
Γ(α(2k + ν− 1) + 1)

(2k + ν− 1)!
k!(k + ν− 1)!

1
22k+ν

zα(2k+ν−1)

︸ ︷︷ ︸
A

+
∞

∑
k=0

ν

k + ν

1
Γ(α(2k + ν− 1) + 1)

(2k + ν− 1)!
k!(k + ν− 1)!

1
22k+ν

zα(2k+ν−1)

︸ ︷︷ ︸
B

(61)

Let us rewrite now the expression for A by observing that the contribution for k = 0 is
zero, so that we start the summation by k = 1:

A = ∑∞
k=1

2k
k+ν

1
Γ(α(2k+ν−1)+1)

(2k+ν−1)!
k!(k+ν−1)!

1
22k+ν zα(2k+ν−1)

= ∑∞
k=1

1
Γ(α(2k+ν−1)+1)

(2k+ν−1)!
(k−1)!(k+ν)!

1
22k+ν−1 zα(2k+ν−1)

= ∑∞
k=1

1
Γ(α(2(k−1)+ν+1)+1)

(2(k−1)+ν+1)!
(k−1)!(k−1+ν+1)!

1
22(k−1)+ν+1 zα(2(k−1)+ν+1).

(62)

We now identify the index k− 1 as the initial point in the summation such that we can
start it at 0, so that

∞

∑
k=0

1
Γ(α(2k + ν + 1) + 1)

(2k + ν + 1)!
k!(k + ν + 1)!

1
22k+ν+1 zα(2k+ν+1) = Eν+1,α(zα) (63)

It is easy to check that the term B is just the term Ξ used in the proof of the previous
recurrence. Thus, we have that

B = αν · I1−α(z−1 · Eν,α(zα)), (64)

which gives us the result for recurrence (2). Finally, for recursion (3), we have

2Dα
z (Eν,α(zα)) = Eν+1,α(zα) + αν · I1−α(z−1 · Eν,α(zα)) + Eν−1,α(zα)− αν · I1−α(z−1 · Eν,α(zα))

= Eν+1,α(zα) + Eν−1,α(zα),
(65)

which finally proves the result.

Remark 6. Theorem 3 generalizes the recurrence formulae obtained for the standard Bessel function
of the first kind. That is, when α = 1, the expressions in Theorem 3 transform into the recurrence
formulas for the MBF of the first kind given in the Introduction.

8. Open Problems

Here, we have proposed a generalization of MBF of the first kind Iν(z) when ν ∈ Z,
which transforms the integral representation

Iν(z) =
1
π

∫ π

0
ez cos θ cos(νθ)dθ, (66)

into Eν,α(z), which for ν ∈ Z has the following representation:

Eν,α(z) =
1
π

∫ π

0
Eα,1(z cos θ) cos(νθ)dθ. (67)
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Therefore, the first extension of the current work is to generalize Eν,α(z) for ν ∈ R .
This extension can be obtained by starting from the power series expression of the FMBF
of the first kind obtained here. The focus in the current work has been on the restricted
domain of ν ∈ Z, which is the one that naturally emerges from the problem of considering
the fractional analogous to the communicability functions in simple graphs such as the
path and cycle of n nodes.

A second generalization is obviously to consider the more general form of the Mittag–
Leffler function such that:

Eν,α,β(z) =
1
π

∫ π

0
Eα,β(z cos θ) cos(νθ)dθ. (68)
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