
Citation: Paek, J.; Pollanen, M.;

Abdella, K. A Stochastic Weather

Model for Drought Derivatives in

Arid Regions: A Case Study in Qatar.

Mathematics 2023, 11, 1628. https://

doi.org/10.3390/math11071628

Academic Editors: Christos Floros,

Christos Kountzakis and

Konstantinos Gkillas

Received: 31 January 2023

Revised: 24 March 2023

Accepted: 24 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Stochastic Weather Model for Drought Derivatives in Arid
Regions: A Case Study in Qatar
Jayeong Paek †, Marco Pollanen * and Kenzu Abdella

Department of Mathematics, Trent University, Peterborough, ON K9L 0G2, Canada
* Correspondence: marcopollanen@trentu.ca
† Current address: Department of Statistics, Chonnam National University, Gwangju 61186, Republic of Korea.

Abstract: In this paper, we propose a stochastic weather model consisting of temperature, humid-
ity, and precipitation, which is used to calculate a reconnaissance drought index (RDI) in Qatar.
The temperature and humidity models include stochastic differential equations and utilize an ad-
justed Ornstein–Uhlenbeck (O–U) process. For the precipitation model, a first-order Markov chain is
used to differentiate between wet and dry days and the precipitation amount on wet days is deter-
mined by a probability distribution. Five different probability distributions were statistically tested
to obtain an appropriate precipitation amount. The evapotranspiration used in the RDI calculation
incorporates crop coefficient values, depends on the growth stages of the crops, and provides a crop-
specific and more realistic representation of the drought conditions. Five different evapotranspiration
formulations were investigated in order to obtain the most accurate RDI values. The calculated
RDI was used to assess the intensity of drought in Doha, Qatar, and could be used for the pricing
of financial drought derivatives, a form of weather derivative. These derivatives could be used by
agricultural producers to hedge against the economic effects of droughts.

Keywords: stochastic differential equations (SDEs); reconnaissance drought index (RDI);
Ornstein–Uhlenbeck (O–U) processes; Markov chains

MSC: 65C30; 00A69; 00A72

1. Introduction

The motivation for this paper was to develop stochastic weather models to simulate
weather for use in pricing financial drought derivatives [1], which are a form of weather
derivative designed to protect agricultural producers from the economic effects of drought.
In recent years, weather derivatives have become popular and effective tools for minimizing
financial losses associated with weather impacts in many industries including energy,
transportation, and agriculture. Before the use of weather derivatives, the most common
approach to reducing weather risks was the use of insurance contracts. As insurance
contracts are designed to pay out for specific weather events, which are mentioned in the
contracts, they are effective only when these events occur. Usually, the events are likely
disasters, such as typhoons or floods, which happen with low probability but cause big
losses. However, weather insurance is plagued by moral hazards, as it may not incentivize
policyholders to mitigate damages. Additionally, due to the potential for the high positive
spatial correlation of claims, it can be difficult for insurers to meet their obligations. Due to
the limitations of insurance contracts and the high variability of weather, weather derivatives
are becoming more popular than insurance contracts for hedging weather risks [2].

Weather derivatives are similar to traditional derivatives on financial assets, but as their
values are based on weather indices, there is no underlying traded asset to hedge against. This
means that risk-neutral pricing models cannot be applied. Thus, the main approach to pricing
them is to use Monte Carlo simulation. However, this presents difficulties due to limited
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quantities of historical data. There are three Monte Carlo approaches to modeling the price of
weather derivatives: historical burn analysis (HBA), index modeling, and daily modeling.

HBA, which is a classical method, uses historical price data to simulate future prices
with the assumption that historical weather data contain all characteristics to value future
prices of derivatives [3]. Therefore, we need to have the price of weather derivatives to
employ HBA. Instead, there is an approach to model index values that are directly related
to the price of weather derivatives. In this approach, a different model is required for each
index [4]. Another approach suggested by recent studies is daily modeling. We use weather
models that can simulate potential future weather data. This approach can lead to more
accurate results compared to the other two approaches because it utilizes weather data
directly to price weather derivatives [5].

Literature on weather derivatives has primarily focused on alternative models for
pricing weather risks [6–9]. However, while weather derivatives are often used to protect
agricultural producers from droughts, there is a basis risk in that weather does not perfectly
correlate with drought risks. Thus, our interest is to improve the use of stochastic weather
models to simulate drought indices, enabling the pricing of drought-specific derivatives to
better capture potential risks. Furthermore, in the literature, studies have not focused on
weather modeling in arid climates, where droughts are prevalent. Thus, in this paper, we
assess our stochastic weather models by calculating a reconnaissance drought index (RDI)
in Qatar for use in index-based weather derivatives. Modeling weather to calculate RDI
provides not only an opportunity to price drought derivatives but also could be used to
potentially understand the distribution of losses in traditional drought insurance contracts,
thus providing more accurate pricing.

Developing stochastic models to simulate realistic daily weather scenarios that pre-
serve the statistical characteristics of the historical weather data is very important to obtain
accurate prices of weather derivatives [2]. In this study, based on daily modeling, we
suggest stochastic weather models for temperature, humidity, and precipitation to decide
the prices of weather derivatives.

When it comes to discrete temperature modeling, an autoregressive (AR) model for
residuals was used to model daily temperature [10] as a discrete process. As an improved
autoregressive model, reference [11] suggested a k-lag autocorrelation model. The con-
tinuous processes for temperature models usually contain a mean-reverting term. Most
of the temperature models suggested for weather derivatives consider a mean-reverting
process. Reference [12] uses an O–U process for the temperature at Heathrow Airport in
the UK and concludes that it shows a good fit for modeling temperature. The study in [12]
proposes an adjusted O–U process pointing out the problem that the expected value of the
O–U process suggested in [13,14] does not approximately equal the mean that the process
should approach. In an early study of precipitation models, Reference [15,16] suggested a
Markov chain for modeling of precipitation occurrence. A first-order Markov chain is a
well-known and widely used model for precipitation occurrence [17–19]. A higher-order
Markov chain is also applied to model precipitation occurrence to overcome the problem
of the short memory length found in a first-order Markov chain model [20,21]. A Markov
chain model with jumps for precipitation data in Chongqing, China shows better results
for locations with frequent excess precipitation [22].

This paper is structured as follows. In Section 2, we describe the reconnaissance
drought index (RDI) as a measure of drought intensity, evapotranspiration, and crop
evapotranspiration used to calculate drought index values; we also propose stochastic
weather models for temperature, humidity, and precipitation. In Section 3, we calculate the
RDI values for four crops in Qatar, i.e., carrots, maize, tomatoes, and wheat, using historical
and simulated weather data. In Section 4, we discuss our conclusions and future work.
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2. Materials and Methods
2.1. Study Area and Data

In this study, daily weather data from Doha, Qatar is used. Qatar is located at latitude
25.35◦ N and longitude 51.03◦ E, in the eastern region of Saudi Arabia. It has a dry climate
with low precipitation and exceedingly hot and humid summers. The temperature during
the winter months, from December to February, remains above 10 ◦C and most of the
precipitation occurs during this period. The region receives a small amount of precipitation,
as shown in Figure 1, which is highly unpredictable both in terms of time and space.

Figure 1. Histogram of precipitation amount in Doha (mm).

Weather data from 1983 to 2013 were used to develop a stochastic weather model. To
compare calculation methods for evapotranspiration, data over the period from 1985 to
2013 were used. The data included basic weather factors, such as daily values of the mean,
minimum, and maximum temperature (◦C), precipitation (mm), relative humidity (%), and
wind speed (m/s). More detailed weather factors for calculating evapotranspiration were
included from 1985.

To ignore the effects of leap years, we subtract the last day (i.e., 29 February) in a leap
year. This gives us a simple model structure with an equal number of days in each year,
with 365 days in every year.

In this study, missing values in the temperature data were replaced with the existing
values of the same day in the previous year. This is because missing values found in
our data were mostly consecutive and over a long period; for example, the worst case is
that there were no data for the whole month. For precipitation, missing data values were
considered as non-rainy days because in Qatar there were not many rainy days. All data
processing and calculations were done with the statistical software package R.

2.2. Reconnaissance Drought Index (RDI)

In the last few decades, many drought indices have been developed as tools for
assessing the severity of droughts. By incorporating the effects of relevant weather variables
on the occurrence and intensity of droughts into a single numerical value, drought indices
make it easy to establish strategies that could reduce the associated risks. Through the
drought index, droughts could be classified as hyper-arid, arid, semi-arid, sub-humid,
and humid. In this paper, we used a more recent drought index called the reconnaissance
drought index (RDI), introduced by Tsakiris et al. (2007) [23]. The RDI is a physically
based, universal, and comprehensive index that depends on cumulative precipitation and
potential evapotranspiration. Most drought indices are precipitation-based only and are
not sufficiently effective at capturing the effects of droughts on crops and agricultural
production. When assessing the severity of droughts, evapotranspiration is also required in
order to provide the most realistic information on water scarcity and agricultural conditions.
Therefore, the RDI is a preferred index for use in agriculture in drought severity assessment
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and monitoring. It is also sensitive to changing climatic environments and flexible for
different growing periods (Tsakiris et al. (2007) [23]).

RDI is defined as the ratio of accumulated precipitation to potential evapotranspiration [23]:

RDIi =

n

∑
j=1

Pij

n

∑
j=1

PETij

, (1)

where Pij and PETij are the precipitation and potential evapotranspiration (PET) for the
jth month of the ith year and n is the period in which we are interested. Based on this
equation, we can calculate RDI for any period in each year. Potential evapotranspiration
(PET) is the evaporation that occurs where there is a sufficient water supply, but in practice
it is very hard to obtain. Therefore, in practice, we use an adjusted RDI, which uses actual
evapotranspiration (ET) instead of potential evapotranspiration (PET):

RDIi
adj =

n

∑
j=1

Pij

n

∑
j=1

ETij

, (2)

where ETij is the actual evapotranspiration ET for the jth month of the ith year.

2.3. Evapotranspiration

Evapotranspiration consists of two processes that account for water loss to the at-
mosphere: evaporation and transpiration. While evaporation represents the water loss
due to movement from the soil to the atmosphere, transpiration represents the water loss
through plants. Since these two processes occur simultaneously, it is difficult to measure
their effect separately. Therefore, we use evapotranspiration as a quantity that measures
the combined effect of the two processes. Since the weather is the only factor that affects
evapotranspiration, there are calculation methods using weather data. Several calculation
methods have been developed and proposed to estimate evapotranspiration from weather
data such as temperature, humidity, wind speed, and other weather parameters, such as
solar radiation, pressure, and so on.

The FAO-56 Penman–Monteith (PM) method [24] is recommended by the Food and
Agriculture Organization of the United Nations (FAO) as a standardized method to calculate
the reference evapotranspiration ET0. It has the following form:

ET0 =

0.408∆(Rn − G) + γ

[
900

(T + 273)
U2(es − ea)

]
∆ + γ(1 + 0.34U2)

, (3)

where ET0 is the reference evapotranspiration (mm/day), Rn is the net radiation at the
crop surface (MJ/m2day), G is the soil heat flux density (MJ/m2day), T2 is the mean air
temperature at a 2 m height (◦C), U2 is the wind speed at a 2 m height (m/s), es is the
saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), ∆ is the slope of the
vapor pressure curve (kPa/◦C), and γ is a psychometric constant (kPa/◦C).

The limitation of using the PM formulation is that it requires extensive climatic data
that are not easily available. Therefore, we test other simpler evapotranspiration formula-
tions for compatibility with the PM formulation for Qatar, including those developed by
Blaney and Criddle [25], Hargreaves and Samani [26], Jensen and Haise [27], Linacre [28],
and Turc [29]. This will be crucial for other arid regions where the available weather data
are limited. The formulations of each of these methods are provided in Appendix A.
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In order to select the appropriate formulation, we compared the compatibility of each
of these methods with the PM formulation by computing various statistical quantities,
including, the Pearson’s correlation (R2), root-mean-square error (RMSE), mean absolute
error (MAE), and the maximum absolute error (MAXE). The computed values of these
quantities based on the data from 1985 to 2014 are presented in Table 1.

Table 1. Statistics for the comparison of ET0 methods.

Blaney and
Criddle

Hargreaves and
Samani Jensen and Haise Lincare Turc

R2 0.5107 0.7283 0.5765 0.4367 0.7623
RMSE 2.8507 1.6317 2.4806 10.3425 1.4817
MAE 2.4389 1.3574 2.1244 8.9496 1.2232

MAXE 5.636 3.8584 5.8988 24.0355 3.4935

With the highest correlation R2 value and lowest RMSE, MAE, and MAXE error values,
the Turc method shows the closest agreement with the PM method. The Turc method is
given by the following piecewise continuous function or relative humidity RH

ET0 = 0.013
(

Tmean

15 + Tmean

)
(Rs + 50), RH > 50%

= 0.013
(

Tmean

15 + Tmean

)
(Rs + 50)

(
1 +

50− RH
70

)
, RH < 50%,

(4)

and requires only mean temperature, Tmean (ºC), relative humidity, RH (%), and mean solar
radiation, Rs (W/m2day), which are variables that are easily obtainable over an arid region,
such as Qatar, making the method suitable for common use. Therefore, the Turc method is
selected as a method of evapotranspiration for the RDI calculation in this paper.

Once we obtain ET0, the actual evapotranspiration specific to a certain crop can be
easily calculated using the crop coefficient. While most of the effects from relevant weather
conditions are reflected in ET0, the effect of the crop type on evapotranspiration is incor-
porated by adjusting ET0 with the crop coefficient to obtain the crop evapotranspiration,
denoted by ETc, which is given by:

ETc = ET0 × kc , (5)

where kc is the crop coefficient. Every crop has its own crop coefficient values based on the
growth environment, water requirements, and growth stages. Crop coefficients for specific
crops at specific growth stages are provided by the Food and Agriculture Organization
of the United Nations (FAO) [24]. Table 2 shows the growth period and crop coefficients
for Qatar. The growth period is separated into four growth stages; initial, development,
mid-season, and late season. Typically, crop coefficients in mid-season have the largest
values. Most crops in Qatar are grown in the winter months and harvested before the start
of the summer months because the summer has very few rainy days.

Crop evapotranspiration for six crops, including alfalfa, bean, carrot, maize, tomato,
and wheat, was calculated using observed and simulated weather data. Observed weather
data from 1985 to 2013 and simulation data with the same length as the observation data
were used. The mean, standard deviation, minimum, and maximum of crop evapotranspi-
ration are presented in Table 3. The mean crop evapotranspiration from tomatoes shows
the largest value, while alfalfa shows the smallest value.
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Table 2. Growing periods and crop coefficients in Qatar (FAO 56, 1988).

Crop
Growing Period Growth Stage kc (Crop Coefficient)

Planting Harvest Initial Dev Mid Late Initial Mid Late

Alfalfa 1-Jan 2-Mar 10 20 20 10 0.40 0.95 0.40
Bean 15-Sep 29-Nov 15 25 25 10 0.50 1.15 0.90

Carrot 15-Oct 12-Feb 20 30 50 20 0.70 1.05 0.95
Cucumber 15-Nov 25-Mar 25 35 50 20 0.60 1.00 0.75

Maize 1-Jan 21-May 25 40 45 30 0.30 1.20 0.60
Onion 15-Oct 31-May 20 35 110 45 0.70 1.05 0.75
Potato 1-Dec 20-Apr 30 35 50 25 0.50 1.15 0.75
Rice 1-Dec 30-Apr 30 30 60 30 1.05 1.20 0.70

Tomato 1-Jan 16-May 30 40 40 25 0.60 1.15 0.80
Wheat 15-Dec 24-May 20 50 60 30 0.70 1.15 0.30

Table 3. Summary statistics of ETc.

Crop
Observation Simulation

Mean SD Min Max Mean SD Min Max

Alfalfa 1.6790 0.6127 0.3651 3.4470 1.1920 0.4732 0.2531 2.6430
Bean 2.6640 0.6936 0.7510 4.6270 2.0430 0.5325 0.8086 3.7270

Carrot 2.1840 0.3488 0.9584 3.8760 1.5560 0.3148 0.5188 2.9350
Maize 2.7510 1.2636 0.2738 6.4760 2.4020 1.2528 0.1638 6.3320

Tomato 2.8830 1.0954 0.5477 6.2060 2.5150 1.2096 0.3277 6.0680
Wheat 2.5730 1.1111 0.6206 6.2060 2.1510 1.1037 0.4033 6.0680

2.4. Temperature Model

We propose using the mean reversion process to develop the temperature model
accounting for its seasonality, which repeats annually. We use an adjusted Ornstein–
Uhlenbeck (O–U), suggested by [13,14] and given by

dXt =

[
λ(µ− Xt) +

dµ

dt

]
dt + γdWt , (6)

where Xt represents the daily temperature, λ is the speed of mean reversion, µ is the mean
where the process reverts to, γ is the volatility of the model, and dWt is the Wiener process,
which is normally distributed with a mean of 0 and variance of t. The solution to Equation (6), a
stochastic differential equation (SDE), is derived from Itô’s Lemma and is given by [13]:

Xt = µ− e−
∫ t

0 λ ds(µ + X0) + e−
∫ t

0 λ ds
∫ t

0
e−
∫ t

0 λ dsγdWs . (7)

In this process, λ, µ, and γ are parameters that need to be estimated from the data. Here, we
use the least-squares method to estimate these parameters, where we assume that consecu-
tive observations have a linear relation with normally distributed error.
The following linear equation is applied to the solution of the SDE [30]:

Xt = a + bXt−1 + ε . (8)

The relationship between the parameters of the linear equation and the solution of the
SDE [30] is then derived and described below.

a = µ
(

1− e−λδ
)

, (9)

b = e−λδ, (10)
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and,

sd(ε) = γ

√
1− e−2λδ

2λ
. (11)

Here, δ represents the time step between t and t− 1, so δ is 1. Thus, rewriting with
respect to parameters in the SDE, we have

λ = − ln b
δ

, (12)

µ =
a

1− b
, (13)

and,

γ = sd(ε)

√
−2 ln b

δ(1− b2)
. (14)

We can calculate the parameters of the least square fit as follows:

a =
Sy − bSx

n
, (15)

b =
nSxy − SxSy

nSxx − Sx
2 , (16)

sd(ε) =

√
nSyy − Sy

2 − b(nSxy − SxSy)

n(n− 2)
, (17)

where Sx =
n

∑
t=1

Xt−1, Sy =
n

∑
t=1

Xt, Sxx =
n

∑
t=1

X2
t−1, Sxy =

n

∑
t=1

Xt−1Xt and Syy =
n

∑
t=1

X2
t .

The mean values of the parameters in the SDE are calculated for each month of the
year and are presented in Table 4. The highest value of γ is found in June and the smallest
value is found in October. For a speed of mean reversion, August has a large value of λ,
which means it is drawn very strongly back to its mean value. Moreover, the value of µ is
close to the monthly mean temperature.

Table 4. Parameter values of the mean reversion process for the temperature.

Month µ λ γ

January 17.4780 0.4011 1.6294
February 18.8917 0.4824 1.7278

March 22.3762 0.4331 1.7986
April 28.2374 0.2821 1.5822
May 33.1215 0.3567 1.6389
June 35.0124 0.6396 1.9190
July 35.7646 0.6965 1.8501

August 35.1229 0.9300 1.5149
September 32.8898 0.5524 1.2789

October 28.6960 0.2412 0.8825
November 23.7035 0.1493 1.1662
December 18.8716 0.3034 1.4249

We also used the maximum likelihood estimation method to estimate these parameters
and very similar results were obtained. (See Appendix B for details).

2.5. Humidity Model

In addition to temperature, relative humidity is needed to calculate evapotranspiration
using our selected Turc method. Similar to the temperature model, a mean-reverting O–
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U process is used to model daily humidity data. The SDE equation given by Equation
(6) and its solution given by Equation (7) are applied, where Xt represents humidity.
The parameters are then determined using Equations (12)–(14). The mean values of the
parameters in the SDE were calculated using the least square method for each month of
the year and are presented in Table 5. Similar results were obtained using the maximum
likelihood estimation method (see Appendix B for details). As one may expect, the volatility
values for humidity are larger than those for the temperature model.

Table 5. Parameter values of the mean reversion process for humidity.

Month µ λ γ

January 67.4488 0.6768 11.4293
February 64.0371 0.9049 14.8098

March 54.9218 0.7767 15.1913
April 46.4332 0.5920 12.7813
May 36.3553 0.7387 12.2807
June 35.3932 0.7081 14.4253
July 45.2631 0.5689 15.4916

August 55.2619 0.7355 14.2856
September 56.2345 1.1614 15.9156

October 58.7774 0.9829 11.9194
November 62.1151 1.1193 11.0523
December 67.9820 0.8075 10.6235

2.6. Precipitation Model

We now present the precipitation model, which is required along with evapotranspira-
tion for RDI calculation.

The most commonly used stochastic models for precipitation consist of a two-process
formulation that models precipitation occurrence and amount. In the two-process model, a
Markov chain is used to model precipitation occurrence, and a probability distribution is
used to determine the precipitation amount on a wet day [15–19,31,32]. In the following
sections, we describe the first-order Markov chains used to model precipitation occurrence
and consider several probability distributions for estimating the precipitation amount.

2.6.1. Precipitation Occurrence Model

The first-order Markov chain implicitly assumes that the probability of rain tomorrow
depends only on whether it rained today or not and is described by the Markov property:

P(Xt+1 = st+1|Xt = st, Xt−1 = st−1, · · · , X0 = s0) = P(Xt+1 = st+1|Xt = st) , (18)

where time t = {0, 1, 2, · · · , T} and state space s = {1, 2, 3, · · · , S}. The Markov chain
transition matrix that defines a probability that each event occurs is composed of transition
probabilities, which are conditional probabilities of future state j given state i. The transition
matrix, denoted by P, is given by

P =

p11 · · · p1j
...

. . .
...

pi1 · · · pij

 for i, j ∈ S , (19)

where pij = P(Xt+1 = j|Xt = i). The property of a transition matrix is that the total sum of
each row must equal 1, i.e.,

S

∑
j=1

pij =
S

∑
j=1

P(Xt+1 = j|Xt = i) = 1. (20)
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The precipitation occurrence has two states: dry and wet. Therefore, the transition matrix
is specified by two conditional probabilities, which are

pdd = P(dry on day t+1|dry on day t) , (21)

pdw = P(wet on day t+1|dry on day t) , (22)

pwd = P(dry on day t+1|wet on day t) , (23)

pww = P(wet on day t+1|wet on day t) . (24)

Since there are only two states, transition probabilities at the same given state are comple-
mentary. So it is not necessary to estimate four transition probabilities, we only need to
estimate one of each pair of transition probabilities. For instance, the probability of a dry
day following a dry day is calculated using the probability of a wet day following the dry
day, which is pdd = 1− pdw. The probability transition matrix is defined as below.

P =

[
pdd pdw
pwd pww

]
0 ≤ pij ≤ 1 i, j = {d, w} . (25)

Using the transition matrix, we can calculate the stationary state vector such that π = πP.

It implies a long-run relative frequency of precipitation occurrence and satisfies
S

∑
i=1

πi = 1,

where πi ≥ 0 for all i. Each element, πi, denotes the probability of being in state i. If this
state vector is given by

π =
(
πd πw

)
, (26)

then it must satisfy

(
πd πw

)
=
(
πd πw

)[1− pdw pdw
pwd 1− pwd

]
. (27)

Therefore, by solving the stationary probabilities πd and πw, we obtain:

πd =
pwd

pwd + pdw
, (28)

πw =
pdw

pwd + pdw
. (29)

The stationary probabilities are calculated for each month and are shown in Table 6.
We can see that most of the stationary probabilities for dry days are quite large, showing
that Qatar does not have many wet days. Since there are no wet days in June and July from
the data, stationary probabilities for dry days are one, as expected.

Table 6. Steady-state probability vectors for precipitation occurrence in Doha.

Month Probability Vector Month Probability Vector

January [0.965 0.035] July [1 0]
February [0.971 0.029] August [0.999 0.001]

March [0.97 0.030] September [0.999 0.001]
April [0.976 0.024] October [0.998 0.002]
May [0.993 0.007] November [0.976 0.024]
June [1 0] December [0.960 0.040]
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2.6.2. Distribution of Precipitation Amount

By accounting for the fact that there is an extreme amount of precipitation over
100 mm, we expect that distributions with thicker tails will perform better in estimating the
precipitation amount. Therefore, we employed two extreme distributions, the generalized
extreme value, and four-kappa distributions. Since these distributions have thicker tails,
they can better capture extremely large amounts of precipitation in the simulation.

In this study, we also considered the probability distributions used in previous re-
search, including the exponential, log-normal, and gamma distributions, and two extreme
distributions, i.e., the general extreme value and four-kappa distributions, to simulate
the precipitation amount. The parameters of these distributions are estimated using the
maximum likelihood method (MLE), which is the most common method used to find
parameters in statistics.

Once we have the precipitation occurrence sequence, the next step is to determine
the precipitation amounts on wet days. Since the precipitation amount is generally small,
we use a right-skewed probability distribution for the precipitation amount [19]. Previ-
ously, many right-skewed probability distributions, including the exponential, log-normal,
and gamma, were used to describe the distribution of the precipitation amount [18,33].
In this study, we consider exponential, log-normal, and gamma distributions, and two
extreme probability distributions, the general extreme value distribution (GEVD) and
four-kappa distribution (K4D). Functions for the probability distributions are given in
Table 7. The two extreme distributions have a thick tail, which could model the extreme
amount of precipitation in the simulation. The probability distribution parameters are
estimated using the maximum likelihood estimation (MLE), and the results are shown
in Table 8.

Table 7. Functions for the probability distributions.

Distribution

Exponential
(density) f (x; λ) = λ exp(−λx), x ≥ 0; λ > 0

Log-normal
(density) f (x; µ, σ) = 1

xσ
√

2π
exp

(
−(ln x−µ)2

2σ2

)
, x > 0; σ > 0

Gamma
(density) f (x; α, β) =

β−αxα−1e−x/β

Γ(α)
, x > 0; α, β > 0

GEVD
(CDF)

F(x; ξ, µ, α) = exp
{
−
[
1 + ξ

(
x−µ

α

)]−1/ξ
}

,

where x ∈ {z|1 + ξ(z− µ)/α > 0}; σ > 0

K4D
(CDF) F(x; ξ, α, h, k) =

[
1− h

[
1− k(x−ξ)

α

] 1
k
] 1

h

, k 6= 0, h 6= 0

(See [34] for a description of the support of K4D.)

Table 8. Estimation of parameters in probability distributions.

Distribution Estimation of Parameters

Exponential µ̂ = 0.108
Log-normal µ̂ = 0.834 σ̂ = 1.510

Gamma α̂ = 0.463 β̂ = 0.050
GEVD µ̂ = 1.060 α̂ = 1.322 ξ̂ = 1.364
K4D ξ̂ = 1.225 α̂ = 1.424 ĥ = −0.375 k̂ = −1.329

It would be preferable to fit probability distributions for each month. However, some
months have very few or no rainy days in our data, making it challenging to find suitable
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probability distributions. Therefore, we use all the available precipitation data to estimate
the probability distribution of precipitation amount in Qatar.

We determine which probability distributions show the best fit for the precipitation
amount by using three model validation methods, the Kolmogorov–Smirnov (KS test),
Akaike information criteria (AIC), and Bayesian information criteria (BIC). As described
below, the KS test provides p-values while both AIC and BIC provide values based on
likelihood functions [33].

1. Kolmogorov–Smirnov test (KS test [33])
The Kolmogorov–Smirnov test is used to determine if a dataset comes from a specified
distribution. It measures the differences between the empirical distribution of the
sample and the cumulative distribution of the specified distribution, providing a test
statistic, D, and p-values that can be used as criteria for hypothesis testing.

2. Akaike information criteria (AIC [35])
Firstly, the AIC developed by Hirotugu Akaike was used to evaluate the performance
of the model in a simple linear regression. It was created to select the model that has
the smallest loss of information from the given data. It measures the loss based on a
likelihood function and is defined by:

AIC = −2 ln(L) + 2K, (30)

where L is the likelihood function and K is the number of parameters. In the formula,
the negative log-likelihood term represents the loss of information and 2K contains
a penalty corresponding to the number of parameters in the model. This penalty
considers the number of parameters because the model performance improves with
the number of parameters it has. By comparing AIC, the model with the smallest AIC
is considered to have good performance.

3. Bayesian information criterion (BIC [36])
Similar to AIC, BIC evaluates the model performance by using the likelihood, and the
model with the smallest BIC is preferred. Compared to AIC, it has a larger penalty
term for the number of parameters and observations. It is defined by

BIC = −2 ln(L) + K ln(n). (31)

The results of the KS test, AIC, and BIC for all of the distributions are presented
in Table 9.

Table 9. Results of the KS test, AIC, and BIC.

Distribution KS Test (p-Value) AIC BIC

Exponential 2.2× 10−16 1174.589 1177.793
Log-normal 9.937× 10−4 973.921 980.329

Gamma 1.467× 10−6 1075.677 1082.085
GEVD 1.467× 10−6 953.895 963.507
K4D 0.0929 999.214 1008.03

The p-values of all distributions except K4D are very small and much less than the sig-
nificance level of 0.05, indicating that only K4D is a significant distribution resulting from the
KS test. Furthermore, since the AIC and BIC values of K4D are among the smaller values, we
choose to adopt the K4D distribution for the amount of precipitation on wet days.

3. Results

We use the solution of the SDE to simulate daily temperatures and compare them
with the observed temperature data. Summary statistics of the observation and simulation
data are summarized in Table 10. The mean daily temperature from observation, 27.67, is
consistent with the simulation result of 27.57. Standard deviations from observation and
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simulation data are 6.8975 and 6.9036, respectively, which are close to each other. Addi-
tionally, the 1st, 10th, 25th, 50th, 75th, 90th, and 99th percentiles show similar consistencies.
Therefore, the temperature model with the adjusted O–U process is able to adequately
reproduce the properties of temperature found in the observation.

Table 10. Comparison of the summary statistics of the temperature (◦C).

Statistics Observation Simulation

Mean 27.67 27.57
SD 6.89756 6.903637

Min 9.80 11.48
Max 42.20 41.78

Percentile Observation Simulation

1 14.22 14.99241
10 17.90 17.95062
25 21.40 20.99015
50 28.70 28.54294
75 33.90 34.00301
90 35.90 35.83885
99 38.60 38.14206

Similarly, the summary statistics for the SDE simulation are presented in Table 11. The
mean humidity of the simulation is very close to the observation. In addition, percentiles
in the simulation are very similar to each other. The humidity simulation shows a smaller
standard deviation than the observation. The main discrepancy is found in the minimum
values. The minimum observation humidity is 8 but the simulation minimum is 2.252. Overall,
the performance of the humidity model with the mean reverting O–U process is adequate.

Table 11. Comparison of the summary statistics of humidity (%).

Statistics Observation Simulation

Mean 54.01 54.210
SD 16.2691 14.92881

Min 8.00 2.252
Max 95.00 98.900

Percentile Observation Simulation

1 18.00 17.39385
10 30.00 33.39348
25 42.00 44.32667
50 56.00 55.76611
75 66.00 64.95842
90 74.00 72.4125
99 85.00 83.9390

In terms of precipitation, 30 years of simulation data were generated using the stochas-
tic precipitation model with a Markov chain. The number of wet days in the observed and
simulated data is presented in Figure 2. The number of wet days in the observed and simu-
lated data is very similar, indicating that a first-order Markov chain works well to generate
precipitation occurrence. From the simulation data, the number of wet days in January,
March, and August is generated more than in the observed data. The simulated number of
wet days in February, April, May, October, November, and December is generally less than
the observed data.
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Figure 2. Comparison of rainy days from the observation and simulation data.

In order to compare the precipitation amounts between observation and simulation
data, percentiles and means are calculated using the selected probability density K4D. The
minimum, 25th percentile (Q1), median (Q2), mean, 75th percentile (Q3), and the maximum
simulated precipitation data are presented in Table 12. It is evident that a right-skewed
distribution is appropriate for the distribution of precipitation amount since the median
of the observed precipitation amount is smaller than the mean. Most of the simulated
percentiles are very similar to those from the observation data.

Table 12. Comparison of observation and simulation precipitation data.

Observation Simulation 2 (K4D)

Minimum 0.25 0.19
Q1 0.76 0.67

Q2 (Median) 1.78 1.53
Mean 9.22 8.68

Q3 6.10 4.71
Maximum 182.88 186.04

Figure 3 illustrates the histogram of the precipitation amounts obtained with K4D. The
dashed line represents the simulation and both the data and the simulation clearly show
that the distribution of precipitation amount is strongly rightly skewed.

Figure 3. Comparison of the precipitation histogram and K4D.
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We can calculate RDI using the observed and simulated weather data. To obtain
simulation data, temperature and humidity data are simulated from an adjusted O–U
process and precipitation data are simulated using a first-order Markov chain with K4D.
RDI values for four crops—carrots, maize, tomatoes, and wheat—where calculated. Mean,
standard deviation, and maximum values are presented in Table 13. No minimum values
are presented here since all of the crops considered yield a minimum value of 0.

Table 13. Summary statistics of RDI in Doha.

Crop Observation Simulation
Mean SD Max Mean SD Max

Carrot 0.1268 0.1827 0.7161 0.1460 0.2133 0.7788
Maize 0.0700 0.1104 0.4678 0.1141 0.1827 0.7602

Tomato 0.0692 0.1093 0.4631 0.1130 0.1813 0.7567
Wheat 0.0799 0.1047 0.4303 0.1153 0.1823 0.7341

As expected, RDI in Qatar is very small, which implies that Qatar is very dry. It is hard
to grow crops only relying on water from precipitation in Qatar. So it is absolutely necessary
to utilize effective irrigation systems to grow crops in Qatar. From the observation data,
the smallest mean value is found for tomatoes, while the largest mean value is found for
carrots, which also has the largest standard deviation. When comparing the RDI from
observation and simulation data, the mean values from the simulation are higher than those
from observation. The common trend shown in the mean and maximum values is that the
RDI from simulation is higher than that from observation data. From this perspective, we
can conclude that the dryness contained in the simulation weather data is less than that
from observation.

4. Discussion

We developed a stochastic weather model for temperature, humidity, and precipitation
in Qatar. We used an adjusted O–U process to simulate temperature and humidity, while
for the precipitation model, we employed a Markov chain with a probability distribution.
A first-order Markov chain was used to determine whether a day was wet or dry, and K4D
was used to determine the precipitation amount on wet days.

Moreover, we calculated RDI values from observation and simulated weather data
and compared them by computing the mean, standard deviation, and maximum values.
RDI from the observation is obviously small since Qatar is generally dry. The mean
and maximum values of RDI from the simulation are greater than the observation. The
comparison results between the observation and simulation tell us that the dryness included
in the simulation data is less than in the observation.

To improve stochastic weather models and obtain better simulation data, we suggest a
combined weather model. In this study, we constructed temperature and humidity models
separately. In fact, humidity is somehow related to temperature, so we could develop
a combined model with temperature and humidity. With a combined model, we expect
to have simulation data that will likely be in better agreement with real data. Thus, we
can reduce the differences in the drought index values between the observation data and
simulation data.
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Appendix A. Evapotranspiration Formulations

In this Appendix, we provide the details of the formulations developed by Blaney
and Criddle [25], Hargreaves and Samani [26], Jensen and Haise [27], Linacre [28], and
Turc [29]. Each method has different data requirements; they are simpler equations and
require fewer data variables compared to the FAO-56 PM method.

1. Blaney–Criddle:
The Blaney–Criddle equation can be written as follows:

ET0 = P(0.46Tmean + 8.13) (A1)

where Tmean is the mean temperature (◦C) and P is the percentage of daylight hours
associated with latitude and longitude.

2. Hargreaves:
The Hargreaves equation can be written as follows:

ET0 = 0.0023× Ra(Tmean + 17.80)
√

Tmax − Tmin (A2)

where Tmean, Tmax, and Tmin are the mean, maximum, and minimum temperatures
(◦C), respectively, and Ra is the extraterrestrial radiation (MJ/m2day) computed from
the latitude in radians, sunset hour angle, distance between the sun and Earth, and
solar declination.

3. Jensen–Haise:
The method developed by Jensen–Haise for the arid and semiarid regions has the
following equation:

PET =
1

38−
(

2× Elevat
305

)
+ 7.6

50
(es(Tmax) − es(Tmin)

)

×
[

Tmean −
(
−2.5− 0.14

(
es(Tmax) − es(Tmin)

)
− Elevat

550

)]
Ra

(A3)

where Elevat is the altitude (m), es(Tmin)
is the saturation vapor pressure (kPa) at the

minimum temperature, es(Tmax) is the saturation vapor pressure (kPa) at the maximum
temperature, ea(Tmin)

is the actual vapor pressure (kPa) at the minimum temperature,
and ea(Tmax) is the actual vapor pressure (kPa) at the maximum temperature. This
method is known to overestimate ET0 in humid areas and underestimate it in arid
and semi-arid regions.

4. Linacre
The Linacre method can be written as follows:

ET0 =

700(Tmean + 0.0006Z)
100− L

+ 15(Tmean − Td)

80− Tmean
(A4)

where Z is altitude (m), L is latitude in the degree, and Td is the dew point.

https://weatherspark.com/download/149641/Download-Hamad-International-Airport-Qatar-Weather-Data
https://weatherspark.com/download/149641/Download-Hamad-International-Airport-Qatar-Weather-Data
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5. Turc
Finally, the Turc method can be written as follows:

PET = 0.013
(

Tmean

15 + Tmean

)
(Rs + 50), RH > 50%

= 0.013
(

Tmean

15 + Tmean

)
(Rs + 50)

(
1 +

50− RH
70

)
, RH < 50%

(A5)

where Rs is the mean solar radiation(W/m2day) and RH is the relative humidity(%).

Appendix B. Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation is a common statistical method used to estimate the
parameters of a statistical model. Conditional maximum likelihood estimation (CMLE)
is a type of MLE that takes into account the presence of conditional information in the
data. In CMLE, the likelihood function is maximized with respect to the model parameters
under the condition that certain variables in the model are held constant. We define our
conditional likelihood function as

L(µ, λ, γ̂) =
n

∏
t=1

f (Xt|Xt−1; µ, λ, γ̂). (A6)

Applying the conditional maximum likelihood estimation to the solution of the SDE,
the conditional probability function of Xt given Xt−1 is given by

f (Xt|Xt−1; µ, λ, γ̂) =
1√

2πγ̂2
exp

[
−
(
Xt − Xt−1e−λδ − µ

(
1− e−λδ

))2

2γ̂2

]
, (A7)

γ̂2 = γ2 1− e−2λδ

2λ
. (A8)

The log-likelihood function is derived from the conditional probability function,

l(µ, λ, γ̂) =
n

∑
t=1

ln f (Xt|Xt−1; µ, λ, γ̂)

= −n
2

ln 2π − n ln γ̂− 1
2γ̂2

n

∑
t=1

[
Xt − Xt−1e−λδ − µ

(
1− e−λδ

)]2
.

(A9)

The maximum likelihood estimator has a value that is satisfied when all partial derivatives
(with respect to each parameter) are zero. Partial derivatives with respect to each parameter
and solution are presented below.

∂l(µ, λ, γ̂)

∂µ
=

1
γ̂2

n

∑
t=1

[
Xt − Xt−1e−λδ − µ

(
1− eλδ

)]
(1− e−λδ) = 0 , (A10)

µ =

n

∑
t=1

[
Xt − Xt−1e−λδ

]
n(1− e−λδ)

, (A11)

∂l(µ, λ, γ̂)

∂λ
= − δe−λδ

γ̂2

n

∑
t=1

[
(Xt − µ)(Xt−1 − µ)− e−λδ(Xt−1 − µ)2

]
= 0 , (A12)

λ = −1
δ

ln

n

∑
t=1

(Xt − µ)(Xt−1 − µ)

n

∑
t=1

(Xt−1 − µ)2
, (A13)
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∂l(µ, λ, γ̂)

∂γ̂
= − n

γ̂
+

1
γ̂3

n

∑
t=1

[
Xt − Xt−1e−λδ − µ(1− e−λδ)

]
= 0 , (A14)

γ̂2 =
1
n

n

∑
t=1

[
Xt − Xt−1e−λδ − µ

(
1− e−λδ

)]2
. (A15)

Note that the solutions of µ and λ are dependent on each other. The solution of µ is affected
by λ; likewise, λ is affected by µ. Therefore, at least knowing one value of these two
parameters is required to find µ and λ. In order to overcome this problem, a substitution of
λ into µ is applied. Once µ and λ are determined, γ can be found. Therefore, the parameters
are given as follows.

µ =
Sy − e−λδSx

n(1− e−λδ)
, (A16)

µ =
SySxx − SxSxy

n(Sxx − Sxy)(Sx
2 − SxSy)

, (A17)

λ = −1
δ

ln
Sxy − µSx − µSy + nµ2

Sxx − 2µSx + nµ2 , (A18)

γ̂2 =
1
n
[Syy − 2e−λδSxy + e−2λδSxx

− 2µ(1− e−λδ)(Sy − e−λδSx) + nµ2(1− e−λδ)2] ,
(A19)

γ2 = γ̂2 2λ

1− e−2λδ
. (A20)
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