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Abstract: The current study focuses on one-dimensional (1D) deformation in an excited microe-
longated semiconductor medium impacted by optoelectronics with exponential laser-pulsed heat.
Diffusion effect is considered in a photothermal problem of a semiconducting media. Microelongated
optoelectronics and a broad variety of concepts have been introduced. Appropriate solutions to a
set of microelongated photothermal diffusion differential equations have been found. The homoge-
neous (thermal and mechanical) and isotropic characteristics of the medium are thought to be in the
x-direction, including coupled diffusion equations. The linear photo-thermoelasticity (PTE) theory of
semiconductors is used to describe thermo-elastodiffusive waves. As a case study, the developed
theoretical framework may be used to explore the microelongation-photo-thermoelastic problem in a
semiconductor medium caused by the laser pulse. The analytical linear solutions for the main quanti-
ties during thermoelastic (TD) and electronic (ED) deformation are obtained using Laplace transforms
for dimensionless quantities. To obtain exact expressions of the important physical variables accord-
ing to certain boundary surface conditions, numerical approximations solutions of the fundamental
relevant relations are performed in the Laplace inverse time domain. To describe the wave prop-
agation of the physical fields graphically, the computational results for silicon (Si) semiconductor
material are derived using several cases of thermal memory and microelongation factors.

Keywords: electrons; photoexcited; microelongation; thermo-elastic waves; laser pulse; semiconductors

MSC: 74A15

1. Introduction

A substance known as a semiconductor material has electrical conductivity attributes
that fall in between those of a conductor and those of non-conductor or insulator materials.
This suggests that semiconductors may change their behavior from conducting to insulating
depending on the external environment. As the temperature increases, a semiconductor’s
internal resistance gradually decreases, enabling a current to pass through it. The most
well-known, pure semiconductor is silicon, whereas gallium arsenide is a compound
semiconductor element. In recent years, the scientific world has been more interested in
semiconductor gain processes on ultrafast time scales. To investigate how semiconductor
laser amplifiers react to ultrashort (picosecond or shorter time scales) light pulses in this
region, some experimental approaches have been carried out. Empirical testing has shown
the complexity of gain, measured along the timeframe in the order of picoseconds. The
idea that this kind of gain response is caused by unusual behavior of the carrier ensemble
on short time scales; notably, the conduction of dynamic carrier heating is supported by
mathematical calculations [1]. The process of electronic deformation (ED) occurs when the
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electrons go to the surface after being tremendously excited. On the other hand, the increase
in temperature causes the inner particles to vibrate and collide, allowing thermoelastic
deformation (TE) to emerge. In this situation, semiconductor materials may be studied as
elastic materials. These materials may be studied using the so-called photo-thermoelasticity
theory during ED and TE deformation processes [2]. In light of these deformations, it is
necessary to take into account the microinertia process of the material’s microelements
(ED and TD). The behavior of semiconductor materials with changing internal structures
is insufficiently explained by classical theories [3]. In contemporary science, the surface
deformation of a material is now dominated by laser heating. An extremely adaptable tool
for altering the surfaces of materials is the laser. When the laser’s intensity is extremely
high, it interacts with the surface of the material and causes absorption there.

Attempts to predict the behavior of materials with internal structures using just the
classical theory have shown to be inadequate. Eringen and Suhubi [4,5] have suggested a
nonlinear theory for microelastic solids. Eringen [6–8] devised the linear theory of micropo-
lar elasticity, which accounts for the fact that material particles in solids may undergo both
macro- and micro-rotations. Axial stretch was considered in Eringen’s [9] model of a mi-
cropolar elastic solid. The micropolar hypothesis was expanded by many writers to include
thermal effects [10–13]. Both the idea of temperature rate-dependent thermoelasticity and
the theory of Lord and Shulman [14] are significant examples of generalized thermoelastic-
ity. In a study of the thermodynamics of thermoelastic substances, Muller [15] proposed
an entropy production inequality, which restricts a specific class of constitutive equations.
A generalization of this inequality was introduced by Green and Laws [16]. Green and
Lindsay [17] established an alternate representation of these constitutive equations. All
the equations of the coupled theory are modified by these two constants, which were
created independently and explicitly and act as relaxation times [12]. Nevertheless, Shaw
and Othman [18] investigated specific issues in the thermoelasticity theory by means of a
conformable fractional differential equation. Rayleigh and Reflection wave propagation in
a nonlocal rotating isotropic piezo-thermoelastic material with fractional derivatives was
investigated by Lata et al. [19–23].

Around the beginning of the twentieth century, studies into semiconductor properties
were beginning to be conducted. Due to scientific and industrial advances, semiconductors
had extensive applications in the 20th century, being incorporated into anything from
solar cells that produce renewable energy to electrical circuits in medical equipment.
Maruszewski [24,25] introduced new theoretical models that take into account the interplay
of the elastic, thermal, and charge carrier fields in elastic semiconductors. The thermal
diffusivity of semiconductors during heat and mass transport processes has recently been
studied based on the overlap between thermal, elastic, and plasma waves [26,27]. The
photothermal (PT) technique is used in contemporary research on delicate photoacoustic
processes in semiconductor materials [28]. Both TE and ED deformation are required by the
PT process, which analyses semiconductors’ physical characteristics. The effects of a laser
beam, electromagnetic radiation, and acoustic waves on a semiconductor material were
investigated [29]. The photo-thermoelasticity theory was used by several authors to study a
variety of topics about elastic semiconductor materials [30–32]. The absorbed optical energy
on the free surface of homogeneous and non-homogeneous semiconductor materials was
examined when thermal conductivity varied during PT transport activities [33–37]. Khamis
et al. [38] studied the semiconductor medium under the impact of thermal piezoelectricity
in the context of photo-thermal excitation. Mahdy et al. [39,40] used the time-fractional heat
order and Thomson effects under the impact of pulse heat flux to investigate the magneto-
photothermal semiconductor medium during variable thermal conductivity. In all of the
aforementioned studies, the interaction between electrons and holes was ignored while they
were examining semiconductors using PT theory. However, the effect of microelongation
under the effect of laser pulses has been ignored when there was no heat source. The excited
electrons with holes were found to be dispersed toward the semiconductor’s surface and
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move about, creating an electron cloud known as carrier density and hole charge in studies
on the characteristics of semiconductors (plasma).

The main objective of this work is to examine the effects of electron diffusion in the
presence of microelongation parameters. The homogeneous, isotropic, microelongated
semiconductor medium is used to analyze the propagation of elasto-thermodiffusive waves
during photo-generated excitation. In this paper, we use the photo-thermoelasticity theory
to the study of laser-induced thermo-elastodiffusive waves in a semiconductor medium.
A new model for one-dimensional deformation processes is developed using the microe-
longated semiconductor in accordance with the microinertia of medium. A completely
new mathematical photo-thermoelasticity model is developed, including elongation in
1D deformation and dimensionless quantities. Under the appropriate conditions, Laplace
transforms for the partial differential governing equation are applied analytically. Math-
ematically, the reverse of the Laplace transform is numerically utilized to provide the
complete solutions of the main variables in this problem. Finally, by presenting the results
of the physical field quantities graphically, analytical verification can be provided. The
impacts of microelongation and laser pulses factor are studied, as well as the thermal
memory of silicon medium. Graphical representations of the numerical findings have been
made and are discussed.

2. Governing Equation

The Cartesian coordinate is utilized in 1D deformation at reference temperature T0 ,
in which case all field variables are independent of the y and z coordinates. In the linear
theory of photo-thermoelasticity of microelongated semiconductors, the governing field
equations in 1D for temperature distribution T(x, t), the microelongational function ϕ(x, t),
displacement u(x, t), H(x, t) and electron diffusion field (carrier density) N(x, t) depend
on the time t and the x-axis in accordance with the semiconductor’s electric neutrality. The
constitutive equations for microelongated semiconductor photo-thermoelastic media are
presented in the general form of tensors [2]:

σi I = (λo ϕ + λur,r )δi I + 2µuI,i − δi Iδh H − γ̂(1 + vo
∂
∂t )Tδi I − ((3λ + 2µ)dn N)δi I ,

mi = a0 ϕ,i,
s− σ = λoui,i −β1(1 + τθ

∂
∂t )T +−((3λ + 2µ)dn N)δ2i − δ2iδh H + λ1 ϕ.

, (1)

When the body forces electro-magnetic pressure and heat sources are absent, according
to the microelongated photo-thermoelastic theory, the main equations may be found in
1D [9].

ρ
∂2u
∂t2 = (2µ + λ )

∂2u
∂x2 − γ(1 + τθ

∂

∂t
)

∂T
∂x

+ λo
∂ϕ

∂x
− δn

∂N
∂x
− δh

∂H
∂x

, (2)

K(1 + τθ
∂
∂t )

∂2T
∂x2 + mnq

∂2 N
∂x2 + mhq

∂2 H
∂x2 − ρ(an

1
∂N
∂t + ah

1
∂H
∂t )−

(1 + τq
∂
∂t )
[
ρ Ce

∂T
∂t + ρ T0αn

∂N
∂t + ρ T0αh

∂H
∂t + T0γ ∂

∂x
∂u
∂t

]
−[

ρan
1

tn N +
ρah

1
th H

]
= γ̂1To

∂ϕ
∂t

, (3)

mqn
∂2T
∂x2 + Dnρ ∂2 N

∂x2 − ρ(1− an
2 T0αn + tn ∂

∂t )
∂N
∂t

−an
2

[
ρ Ce

∂T
∂t + ρ T0αh

∂H
∂t + T0γ ∂

∂x
∂u
∂t

]
= − ρ

tn
1
(1 + tn ∂

∂t )N

, (4)

mqh
∂2T
∂x2 + Dhρ ∂2 H

∂x2 − ρ(1− ah
2 T0αh + th ∂

∂t )
∂H
∂t −

ah
2

[
ρ Ce

∂T
∂t + ρ T0αn

∂N
∂t + T0γ ∂

∂t
∂u
∂x

]
= − ρ

th
1
(1 + th ∂

∂t )H

, (5)

αo
∂2 ϕ

∂x2 − λ1 ϕ− λo
∂u
∂x

+ γ1

(
1 + τθ

∂

∂t

)
T =

1
2

jρ
∂2 ϕ

∂t2 , (6)
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where δh is the elastic-diffusive parameter of holes, k expresses the diffusivity, Dh is the
coefficients of diffusion for the holes, γ1 = (3λ+ 2µ)αϑ, αϑ is the microelongational thermal
expansions coefficient, th is the thermal memories of holes, and αh is the thermos-diffusive
constants of the holes. The other notations correspond as: an

1 =
aQn
aQ

, ah
1 =

aQh
aQ

, an
2 =

aQn
an

and ah
2 =

aQh
ah

.
For the effects of the electron and hole carrier field in 1D, the microelongated constitu-

tive equation is as follows [41]:

σxx = (2µ + λ)
∂u
∂x
− (γ(1 + τθ

∂

∂t
)T + δnN)− δh H + λ1 ϕ = σ. (7)

The main equations shown in [36–40] may be simplified further by transforming them
using the dimensionless values listed below:

(x′, u′) = ω∗(x,u)
CT

, (t′, τ′q, τ′θ , tn′ , th′ , tn′
1 , th′

1 ) = ω∗(t, τq, τθ , tn, th, tn
1 , th

1), C2
L = µ

ρ ,

β2 =
C2

T
C2

L
, k = K

ρCe
, σ′ ij =

σij
2µ+λ , N′ = δn(N)

2µ+λ , C2
T = 2µ+λ

ρ , ϕ =
ρC2

T
To γ̂ ϕ,

ω∗ = Ce(λ+2µ)
K , (δn, δh) =

(δnn0,δhh0)
γT0

, T′ = γT
2µ+λ , H′ = δn(H)

2µ+λ .

. (8)

When Equation (8) is used in combination with Equations (2)–(7), the dashes are
omitted for convenience, resulting in:{

∂2

∂x2 −
∂2

∂t2

}
u− (1 + τθ

∂

∂t
)

∂T
∂x
− ∂N

∂x
+ a1

∂ϕ

∂x
− α21

∂H
∂x

= 0, (9)

(
(1 + τθ

∂
∂t )

∂2

∂x2 − (1 + τq
∂
∂t )

∂
∂t

)
T +

(
α1

∂2

∂x2 − α2(1 + τq
∂
∂t )− α3

∂
∂t − α4

)
N+(

α5
∂2

∂x2 − (1 + τα
∂
∂t )α6 − α7

)
H − ε1(1 + τq

∂
∂t )

∂
∂t

(
∂u
∂x

)
− ζ

∂ϕ
∂t = 0

, (10)

{
∂2

∂x2 − α8
∂
∂t

}
T +

{
α9

∂2

∂x2 − (α10 + tn ∂
∂t )α11 + (1 + tn ∂

∂t )
α11
tn

}
N−

α12
∂H
∂t − α13

∂
∂x

∂u
∂t = 0

}
, (11)

{
∂2

∂x2 − α18
∂
∂t

}
T +

{
α14

∂2

∂x2 − (α15 + th ∂
∂t )α16

∂
∂t + (1 + th ∂

∂t )α17

}
H−

α19
∂N
∂t − α20

∂
∂t

∂u
∂x = 0

 , (12)

(
∂2

∂x2 − C3 − C4
∂2

∂t2 )ϕ− C5
∂u
∂x

+ C6(1 + τθ
∂

∂t
)T = 0 (13)

σxx =

(
∂u
∂x
− ( (1 + τθ

∂

∂t
)T + N)

)
+ a1 ϕ− H = σ. (14)

where

α1 =
mnqαt
dn K , α2 = T0αn

Ce
, α3 =

an
1

Ce
, α4 =

an
1 γ

Ceτn(2µ+λ)
, α5 =

γmhq h0
(2µ+λ)K , α6 = T0 αh K h0

Ce
,

α7 =
ah

1γω∗

thK , α8 =
an

2 K
mqn

, α9 = Dnραt
mqn dn

, α10 = 1− an
2 T0αn, α11 = αtK

mqn dnCe
, α12 =

an
2 γh0αhω∗

mqn
,

α13 =
an

2 γ2T0ω∗

ρ mqn
, α14 = Dnh0γ

C2
T mqh

, α15 = 1− ah
2T0αn, α16 = γh0ω∗

mqh
, α17 = γh0ω∗

mqhτh
1

, α18 = ah
2

K
mqh

,

α19 =
ah

2γT0αn(2µ+λ)ω∗

mqhδn
, α20 =

ah
2γ2T0 ω∗

mqhρ , α21 = δh
(2µ+λ)

, ε1 = T0γ2ω∗

ρK , a1 = λo
ρc2

T
, ζ = γ̂1γ̂To

Kρ ,

C3 = λ1ω∗2

α0C2
T

, C4 = ρjω∗4

α0C2
2

, C5 = λoω∗2

α0C2
T

, C6 = γ̂1ρω∗2To
γ̂α0

.
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The following initial conditions, which may be expressed as follows, should be taken
into account for this problem:

u(x, t)|t=0 = ∂u(x, t)
∂t

∣∣∣
t=0

= 0, T(x, t)|t=0 = ∂T(x, t)
∂t

∣∣∣
t=0

= 0, N(x, t)|t=0 = ∂N(x, t)
∂t

∣∣∣
t=0

= 0,

ϕ(x, t)|t=0 = ∂ϕ(x, t)
∂t

∣∣∣
t=0

= 0, H(x, t)|t=0 = ∂H(x, t)
∂t

∣∣∣
t=0

= 0
(15)

3. Analytical Solution Procedure

The partial differential equations are transformed into ordinary differential equations
in the time–space domain using the above conditions provided (ODE). These methods, with
Equation (15), may be used to build function ∆(x, t) according to the Laplace transform:

L(∆(x, t)) = ∆(x, s) =
∞∫

0

∆(x, t) exp(−st) dt. (16)

The following equations may be derived from the Laplace transform Equation (16):(
D2 − s2

)
u− q14DT − DN − a1Dϕ− α21H = 0, (17)

(
q1 D2 − q2

)
T +

(
α1D2 − q3

)
N +

(
α5D2 − q4

)
H − q5Du− sζϕ = 0, (18)

(
D2 − q7

)
T +

(
α9D2 − q6

)
N − q8H − q9Du = 0, (19)

(
D2 − q10

)
T +

(
α14D2 − q11

)
H − q12N − q13Du = 0, (20)

(D2 − C7)ϕ− C5Du + C8T = 0, (21)

σ = Du− (1 + sτθ)
(
T + N

)
+ a1 ϕ− H. (22)

where

D = d
dx , q1 = (1 + τθs), q2 = (1 + τqs) s, q3 =

(
α2(1 + τqs) + α3s + α4

)
, q4 = (1 + τqs)α6 + α7

q5 = (1 + τq s)ε1 s, q6 = (α10 + tns)α11 − (1 + tns) α11
tn , q7 = α8 s, q8 = α12s, C7 = C3 + C4s2,

q9 = α13 s, q10 = α18s, q11 = (α15 + ths)α16s− (1 + ths)α17, q12 = α19s, q13 = α20s, C8 = C6q1.

The following differential equation may be obtained by using the process of elimination
between quantities T, u, H, N and ϕ in the preceding equation:(

D10 − η1D8 + η2D6 − η3D4 + η4D2 + η5

){
ϕ, T, N, H, u

}
= 0 (23)

where

η1 = −1
α1

{
βα9q1 − s2α1 + α1q1q14 + α9q5q14 − βα1 − α1q7 + α9q2 − q3 − q5

}
,

η2 = 1
α1

{
−βs2α9q1 + βs2α1 − βα1q9q14 − βα9q5q14 + s2α1q7 − s2α9q2 + βα1q7 − βα9q2−
βq1q6 + βq1q9 + s2q3 − q3q9q14 − q5q6q14 + βq3 + βq5 − q2q6 + q2q9 + q3q7 + q5q7

}
,

η3 = −1
α1

{
−βs2α1q7 + βs2α9q2 + βs2q1q6 − βs2q3 + βq3q9q14 + βq5q6q14+

s2q2q6 − s2q3q7 + βq2q6 − βq2q9 − βq3q7 − βq5q7

}
,

η4 = −1
α1

{
−βs2α1q7 + βs2α9q2 + βs2q1q6 − q3q9q14 − q5q6q14 + βq3 + βq5+

−βs2α9q1 + βs2α1 − βα1q9q14 − βα9q5q14 + s2α1q7

}
,

η5 = 1
α1

{
−βs2q2q6 + βs2q3q7

}
.
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The differential equation’s characteristic equation is shown below:(
D2 − r2

1

)(
D2 − r2

2

) (
D2 − r2

3

)(
D2 − r2

4

)(
D2 − r2

5

){
ϕ, T, N, H, u

}
= 0 (24)

where ri(i = 1, 2, 3, 4, 5) refers the roots of the above equation when x → ∞ .
The generalized linear solution of Equation (18) for the temperature is shown in the

illustration below:

T(x, s) =
5

∑
i=1

Λi(s) e−kix. (25)

From the other perspective, linear solutions of the other important physical quantities
may be represented mathematically:

N(x, s) =
5

∑
i=1

Λ′i(s) e−rix =
5

∑
i=1

H1iΛi(s) e−rix, (26)

u(x, s) =
5

∑
i=1

Λ′′i (s) e−rix =
5

∑
i=1

H2i Λi(s) e−rix, (27)

ϕ (x, s) =
5

∑
i=1

Λ′′′i (s) e−rix =
5

∑
i=1

H3i Λi(s) e−rix, (28)

H (x, s) =
5

∑
i=1

Λ′′′′i exp(−rix) =
5

∑
i=1

H4i Λi exp(−rix), (29)

σ (x, s) =
5

∑
i=1

Λ
′′′′ ′
i exp(−rix) =

5

∑
i=1

H5i Λi exp(−rix). (30)

where Λi, Λ′i, Λ′′i , Λ′′′i , Λ′′′′i and Λ
′′′′ ′
i are unknown parameters that depend on S.

H1i =
−(mi

4+(−s2+q9q14−q7)mi
2+s2q7)

(mi
4α9+(−s2α9−q6+q9)mi

2+s2q6)mi
2−α1

,

H2i =
mi((α9q14−1)mi

2−q6q14+q7)
(mi

4α9+(−s2α9−q6+q9)mi
2+s2q6)

,

H3i =
−β

mi
2−β

, H5i = α5(mi H2i − (( 1 + sτθ) + H1i)).

4. Applications

In this section of the article, we evaluate parameters Λi. A very little amount of
heat escapes into the surrounding region as a result of pulsed laser stimulation, since
temperature changes occur quickly or at least within a short period. As a consequence,
pulsed laser excitation is advantageous for studies of absorption. It is also established
that a range of physical reactions, some of which need energy, may take place when a
laser beam impacts a solid microelongated semiconductor surface. A portion of the energy
from the laser light is transformed into heat when it strikes a material. This kind of heat
creation sends heat waves across the medium, which has certain impacts (e.g., photothermal
effects) [41–43].

(I) When x = 0, the pulsing heat flow boundary condition may be represented by the
thermally gradient temperature in the following ways:

∂T(x, t)
∂x

∣∣∣∣
x=0

= −q0
t2e
− t

tp

16t2
p

. (31)



Mathematics 2023, 11, 1627 7 of 16

When it is applied to a thermal condition load at time of pulse heat flux tp with
constant q0 and pulse parameter p, the Laplace transforms provide:

5

∑
i=1

kiΛi(s) e−kix

∣∣∣∣∣
x=o

=
q0tp

8(1 + ptp)
3 . (32)

Figure 1 illustrates the pattern that includes the temporal period of a laser pulse
(exponential laser-pulsed heat):
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(II) The load force = may be expressed as follows when the Laplace transform is used,
and it is regarded as a mechanical condition at the boundary x = 0:

σ(0, s) = = ⇒
5

∑
i=1

H4i Λi(s) = =. (33)

(III) The carriers are capable of obtaining the following value on the sample’s surface,
x = 0, as they disperse, where they have a chance of undergoing recombination.
Consequently, the following equation might be used to express the carrier density
boundary condition. In this, the plasma condition under the Laplace transform is
derived using the carrier density diffusive and is shown as follows:

N(0, s) =
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where 1i = −  is the imaginary unit and Re  is the real part. For convergence, N  is chosen 
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(IV) One may choose the microelongation condition as an elongation free on the surface
x = 0:

ϕ = 0⇒
5

∑
i=1

H3i Λi(s) = 0. (35)

(V) On the other hand, the equilibrium concentration situation for the hole charge car-
rier field at the boundary condition may be obtained in this instance by using the
Laplace transform:

H(0, s) = h0 ⇒
5

∑
i=1

H4i Λi = h0. (36)

where R(s) is to the Heaviside unit step function and
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5. Inversion of the Laplace Transforms

One must invert the transforms in the physical domain to obtain the results. The
complete 1D solutions for the fundamental dimensionless physical fields in the time
domain may be determined by using the Laplace transform’s inverse. The Riemann-
sum approximation technique and a numerical approach are used to invert the Laplace
transformations. As a result, a rapid Fourier transform-based numerical inversion of
the Laplace transform (NILT) approach is used [44]. For any function Φ(x, s), it can be
reversed as:

Φ(x, t′) = L−1{Φ(x, s)
}
=

1
2πi

∫ n+i∞

n−i∞
est′ Φ(x, s)ds. (37)

where s = n + iM(n, M ∈ R). In [0, 2t′], the Fourier series is used to expand function
Φ(x, t′) as:

Φ(x, t′) =
ent′

t′

[
1
2

Φ(x, n) + Re
N

∑
k=1

Φ(x, n +
ikπ

t′
)(−1)n

]
. (38)

where i =
√
−1 is the imaginary unit and Re is the real part. For convergence, N is chosen

freely when nt′ ≈ 4.7 [44].

6. Validation
6.1. The Microelongated Thermoelasticity Models

However, the governing Equations (2)–(6) are simplified to the generalized microe-
longated thermoelasticity theory when the electrons charge field (carrier density) and the
holes charge field are omitted (i.e., N = 0 and H = 0). The four equations may be rewritten
as follows in 1D as [7,8]:

K(1 + τθ
∂

∂t
)

∂2T
∂x2 − (1 + τq

∂

∂t
)

[
ρ Ce

∂T
∂t

+ T0γ
∂

∂x
∂u
∂t

]
= γ̂1To

∂ϕ

∂t
, (39)

ρ
∂2u
∂t2 = (2µ + λ )

∂2u
∂x2 − γ(1 + τθ

∂

∂t
)

∂T
∂x

+ λo
∂ϕ

∂x
, (40)

αo
∂2 ϕ

∂x2 − λ1 ϕ− λo
∂u
∂x

+ γ

(
1 + τθ

∂

∂t

)
T =

1
2

jρ
∂2 ϕ

∂t2 , (41)

(2µ + λ)
∂u
∂x
− γ(1 + τθ

∂

∂t
)T + λ1 ϕ = σ. (42)

The dual-phase lag (DPL) when 0 ≤ τθ < τq is obtained. The Lord and S, hulman (LS)
model can be observed when τθ = 0 and 0 < τq. Finally, the coupled thermos-elasticity
(CT) model is introduced when τθ = τq = 0.0.

6.2. The Influence of Microelongation Parameters

When the microelongation parameters are ignored (αo = λo = λ1 = 0), the set of
equations describes the case of the generalized photo-thermoelasticity theory when one is
taking into consideration the interaction between the elastic, thermal, and electronic waves,
and holes [45–47].

6.3. The Laser Pulses Impact

The effect of the exponential laser-pulsed heat is shown by the preceding basic bound-
ary condition (I). When the power intensity of the effect of the laser pulses is disregarded,
the model under examination transforms into a model of the photo-thermoelasticity theory
with a holes effect under the impact of microelongation parameters [45].
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7. Numerical Results and Discussion

The authors validated the accuracy of the theoretical and analytical conclusions that
were obtained and compared them to previous achievements. The numerical simulations
of wave propagation in the significant physical fields are discussed in this section. The
elastic wave (displacement), plasma wave (electron diffusion), mechanical wave (stress),
holes charge, and thermal wave that are created for a short time may all be graphically
represented. Utilizing the input parameters in the SI unit of the microelongated semicon-
ductor silicon (Si) material, the Matlab (2022a) software of the authors’ computer is used to
graph the distribution of the main wave distributions. The following physical constants for
Si are listed in Table 1 [46,47]:

Table 1. The SI units of the physical constants for Si medium.

Unit Symbol Value

N/m2 λ
µ

6.4× 1010

6.5× 1010

kg/m3 ρ 2330

K T0 800

sec (s) τ 5× 10−5

K−1 αt 4.14× 10−6

Wm−1K−1 K 150

J/(kg K) Ce 695

m/s s̃ 2

vk−1

mqn 1.4× 10−5

mnq 1.4× 10−5

mqh −0.004× 10−6

mhq −0.004× 10−6

J ·m−2 p 1011

m2s−1 Dn 0.35× 10−2

m2s−1 Dh 0.125× 10−2

m2/s αn 1× 10−2

m2/s αh 5× 10−3

ps tp 4

Constants q0
=

3
2

J ·m−2 p 1011

m2 j 0.2× 10−19

Nm−2 λ0 0.5× 1010

Nm−2 λ1 0.5× 1010

Nm−2 k 1010

K−1 αϑ 0.017× 10−3

Nm−2 α0 0.779× 10−9

7.1. The Photo-Thermoelasticity Models

According to models based on the theory of microelongated photo-thermoelasticity,
Figure 2 (first category) depicts the change in the distribution of the main physical variables
under the impact of various relaxation times with increasing distance in the microelongated
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semiconductor medium. In this group, real-dimensional numerical computations are
performed in a relatively small amount of time, t = 0.001, while being influenced by laser
pulses. As observed in the figure, the dual phase lag (DPL when 0 ≤ τθ < τq) model is
represented by the dashed line, while the dotted.
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Figure 2. According to the two-temperature theory, the primary field distributions change with
horizontal distance at various thermal memory (thermal relaxation durations) under the impact of
laser pulses.

Line represents the Lord and Shulman (LS when τθ = 0, 0 < τq = 0.0002) model, and
the solid line represents the theory of coupled thermoelasticity (CT, when τθ = τq = 0.0).
The first subfigure depicts the thermal (heat) wave’s distribution, which is represented
by the temperature distribution, where the distribution begins at the surface’s positive
value and satisfies the boundary condition [48,49]. The numerical study showed that
the structure’s maximum temperature consistently occurs close to the front of the heat
wave and gradually decreases as the depth in the medium increases. The thermal wave
distribution rises at the surface to achieve its maximum value as a direct consequence of
the laser pulses’ influence, then progressively decreases, taking the form of an exponential
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function. Further, under the surface, where the impact of the laser pulses is reduced,
the distribution ultimately converges with the zero line to achieve the equilibrium state.
These findings are consistent with what has been shown in actual experiments [50,51].
Microelongation wave propagation (the second subfigure), which begins at the surface
from zero and increases in the closed initial range as a result of the action of laser pulses,
may be used to characterize the microelongation scalar function. It then progressively
diminishes with exponential behavior. The microelongation wave converges to the zero line
far from the semiconductor surface because of the weak laser pulse effect until it reaches the
equilibrium condition within the medium. The displacement distribution with increasing
distance is used to indicate the shift in the elastic wave in the third subfigure. Due to the
thermal impact of the laser pulses, the distribution begins at the surface nearing the zero
value and progressively increases in the beginning to reach the highest value towards the
edge. The distribution then alternately lowers and grows until it reaches its minimum
value, just before it reaches an equilibrium state within the microelongated semiconductor
medium. The increased collisions between the inner particles as a direct consequence of
the heating action of the laser pulses cause this apparent perturbation in the elastic wave
distribution. The fourth and sixth subfigures show the dispersion of plasma waves, which
are represented by electron and hole diffusive activity with increasing distance (carrier
density and hole charge density). In two cases, these distributions begin with positive
values at the surface and satisfy the boundary surface conditions throughout the processes
of recombination and replacement between them. When the temperature rise caused by
the influence of laser pulses causes the diffusivity of electrons and holes to increase on the
surface, they do so until they reach their maximum value. Moving further from the surface
causes the distribution to progressively decrease until it achieves equilibrium in accordance
with the zero line within the microelongated semiconductor medium, which is compatible
with the experimental information and takes the shape of an exponential function [45,46].
On the other hand, the fifth subfigure depicts how the mechanical wave changes as the
distance increases using normal stress distribution. The distribution starts out as a result of
mechanical stress, which was applied at the surface from the positive value, satisfying the
boundary condition and causing the distribution to smoothly decelerate in the initial range
close to the edge. When the distribution reaches equilibrium within the semiconductor
medium, it climbs gradually to achieve its maximum value before adopting a curve in the
shape of wave distribution. The mechanical load and thermal impact of the laser pulses are
both responsible for this apparent behavior in mechanical wave distribution. This results
from the generation of mechanical forces and the operation of ultrafast lattice deformation.

7.2. The Laser Pulses Effect

The principal fields in this phenomenon vary depending on the different values of
the laser pulses based on the power intensity (the pulse parameter p) versus a horizontal
distance x, as shown in Figure 3 (second category). The numerical simulation is carried out
during thermoelastic and electronic deformations over short moments, t = 0.001, under the
influence of microelongation parameters, according to the DPL model. Two instances fall
within this category: the first one is the disappearance of the laser pulse’s influence (without
the laser pulses effect), and the second one is the case of the laser pulses’ effects (with the
laser pulses effect). We investigated the impact of laser pulses on this model of equations,
since it is evident that the thermal effect of laser pulses modifies the behavior of wave
propagation in an obvious manner. From this, it is evident that the microelongated pho-
tothermal mechanical model, which accounts for all of these phenomena, can describe the
ultrafast photothermal response to the laser pulse effect across the semiconductor medium.
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Figure 3. According to the DPL model, the main field distributions in two temperature fields under
the impact of laser pulses and without them changing in terms of horizontal distance.

7.3. The Effect of Elongation Parameters

The third category (Figure 4) illustrates the variations in the main fields in this occur-
rence based on the different values of the microelongation parameters evaluated against
the horizontal distance. The DPL model states that a numerical simulation is run during
the brief electronic holes diffusion induced by laser pulses. Two instances fall within
this category, the first of which is the loss of the microelongation parameters (without
microelongation parameters when αo = λo = λ1 = 0), and the second one is obtained
when microelongation parameters are present. On the other hand, the behavior of wave
propagation varies across all distributions. It is observed that the main field distribution
behavior is greatly influenced by the microelongation parameters.
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Figure 4. The main field distributions in distinct two temperature cases under the influence of laser
pulses vary with horizontal distance in accordance with the DPL model.

8. Conclusions

In this study, we have presented the effects of mechanical loading, thermal memory,
and extended photo-thermoelasticity on the properties of an n-type microelongated silicon
semiconductor when it is subjected to laser pulses. The relationship between thermo-
elastic, microelongation, mechanical, and plasma waves is investigated when the material
is photoexcited during an elasto-thermodiffusive process. The novel model is examined in
the context of the microelongation effect during electronic holes diffusion. The difference
between photo-thermoelasticity theories is taken into consideration based on thermal re-
laxation times. Thermal memory has a considerable influence on all of the main physical
distribution wave propagations. However, all wave propagations are significantly influ-
enced by the intensity of the laser pulses, as well as microelongation. A photo-thermoelastic
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model was employed to forecast these variables, since the laser source had limitations in
terms of its diameter and lifetime. An increasingly potent technique for assessing a mate-
rial’s influence on its microstructure as a microelongated semiconductor is the generation
of elastic waves as a consequence of brief thermal heating. The fact that these waves travel
at rates of just a few kilometers per second is due to the extensive usage of semiconductors
in the manufacturing of electronics and medical equipment. On the other hand, the direct
possibility of creation, detection, and control being employed in the solar cell, as well as
the energy of these waves being concentrated close to the top region of the device’s surface,
make this sort of issue vital to research.
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Nomenclature (The Physical Quantities with Units)

λ, µ Elastic Lame’s parameters.
δn = (3λ + 2µ)dn Deformation potential difference between conduction and valence band.
dn The electronic deformation coefficient ED
T0 Reference temperature in its natural state
γ = (3λ + 2µ)αt Volume thermal expansion
σij Stress tensor
ρ The density of the sample
αt Linear thermal expansion
p The power intensity of the laser
Ce Specific heat at constant strain
K Thermal conductivity of the semiconductor medium
tn The electrons relaxation time
tn
1 The lifetime of photogenerated carriers

Eg Energy gap
ei j Components of the strain tensor
mnq, mqn, mhq, mqh Peltier–Seebeck and Dufour–Soret-like constants
aQn, aQh, aQ, an, ah The flux-like constants
τθ , τq Thermal and elastic relaxation times
αh, αn Holes and electrons thermo-diffusive parameters
n0,h0 The equilibrium value of electrons and holes concentration
δh = (2µ + 3λ)dh The holes elastodiffusive parameter
dh The coefficients of hole deformation
s̃ Recombination velocities
Dn, Dh The diffusion coefficients of the electrons and holes
a0, α0, λ0, λ1 Microelongational material parameters
mk Components of the microstretch vector
ϕ The scalar microelongational function
s = skk Stress tensor component
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δik Kronecker delta
Ω The pulse parameter
δ The optical absorption coefficient
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