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Abstract: In this paper, the fractional order differential terms are introduced into a horizontal
nonlinear dynamics model of a cold mill roller system. The resonance characteristics of the roller
system under high-frequency and low-frequency excitation signals are investigated. Firstly, the
dynamical equation of the roller system with a fractional order is established by replacing the normal
damping term with a fractional damping term. Secondly, the fast-slow variable separation method is
introduced to solve the dynamical equation. The amplitude frequency response characteristics of the
system are analyzed. The study finds that there are three equilibrium points. The characteristics of
the three equilibrium points and the critical forces causing the bifurcation are investigated. Due to
the different orders of the fractional derivatives, various new resonant phenomena are found in the
systems with single-well and double-well potentials. Additionally, the double resonance occurs while
p = 0.3 or 1.0, and single resonance occurs while p = 1.8. Unlike integer order systems, the critical
resonance amplitude of high-frequency signals in fractional order systems depends on the damping
strength and is influenced by the fractional order damping. This study provides a broader picture of
the vibration characteristics of the roll system for rolling mills.

Keywords: roller system; fractional-order; pitchfork bifurcation; vibration resonance

MSC: 37D05

1. Introduction

The vibration of the roll system during the rolling process not only affects the stable
operation of the equipment, but may also cause vibration patterns on the surface of the
strip and can also restrict the product quality [1]. Early studies on roller vibration mostly
consider the phenomenon to be a linear steady-state system [2]. However, in fact, there are
many nonlinear factors in the operation of the roll system, such as nonlinear damping and
nonlinear stiffness. Currently, most scholars have studied the linear and nonlinear aspects of
roll system vibration by treating the roll system as a general integer order system. Hou D.X.
studied the vertical–horizontal coupling vibration characteristics of strip mill rolls [3–6].
Huang J.L. investigated the effect of asymmetric structural parameters on mill stability and
also investigated the effect of asymmetric friction coefficients on vibration and stability in
hot rolling mills [7,8]. Sun Y.Y. investigated the nonlinear vibration characteristics of the
rolling mill system by considering the rolling interface roughness [9]. He D.P. analyzed
the non-linear vertical vibration characteristics of a corrugated roll mill roll system under
parametric excitation [10–12]. Liu B. studied the nonlinear vibration characteristics of strip
mills under the action of roll–roll coupling [13,14]. Zhang R.C. investigated the parametric
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excitation of horizontal nonlinear vibrations in a single-roll drive mill roll system [15]. Yang
X. studied the vertical nonlinear vibration model of the cold rolling mill roll system and
analyzed the system stability [16].

However, it has been found that integer order differential equations deviate signifi-
cantly from theoretical and experimental results when modelling practical problems. In fact,
fractional derivatives are very useful for describing the viscoelastic properties of materials
or the dissipative forces of structural dynamics in engineering practice [17,18]. This is be-
cause fractional models can deliver a more accurate description of engineering systems and
provide more insight into the intrinsic properties of current physical systems [19–27]. An
improved fractional order DE algorithm is proposed in this study to improve the efficiency
of achieving the optimal strategy of a real-time underwater countermeasure. Addition-
ally, the order of a fractional order DE can affect the convergence rate and optimization
error, which can also be tuned to satisfy different underwater requirements [28]. A novel
nonlinear vibration isolator in the shape of a circular ring is investigated. When the ring
is compressed along a diametral line, it exhibits highly nonlinear geometric stiffness due
to the effects of stretching-induced tension coupled with the curvature changes [29]. A
magnetic field coupling fractional step lattice Boltzmann model can be utilized for the com-
plex interfacial behavior in magnetic multiphase flows [30]. As a result, fractional numbers
are used in a wide range of scientific and engineering applications, such as viscoelastic
material models [31,32], fluid mechanics [33–35], control [36,37], bioengineering [38], and
mechanics [39,40]. The introduction of fractional theory into the dynamic properties of
roller systems can greatly improve these deficiencies. Moreover, the fractional differential
term possesses not only damping properties, but also stiffness properties in modeling
dynamical problems [41,42]. In this paper, a richer dynamic characteristic of the mill roll
system is obtained through theoretical analysis and simulation, while the relationship
between the influence of system parameters on the vibration resonance of the roll system is
investigated.

The structure of this article is as follows: Section 2 introduces the fractional differential
term into the roller dynamic characteristics that are under a two frequency excitation.
Section 3 uses the fast-slow variable separation method to obtain an approximate analytical
solution of the vibration system of the roll system and the response amplitude gain Q.
Additionally, the bifurcation and vibration resonance is also discussed in that section. In
Section 4, the influence of each parameter on the vibration resonance of single-well and
double-well system, respectively, are discussed. Lastly, in Section 5, the conclusions of this
paper are presented.

2. Horizontal Nonlinear Equation of the Roller System

The roller system has nonlinear characteristics during the rolling process. By referenc-
ing the model of the roller system [43] and by introducing the duffing oscillator model, we
can establish the horizontal nonlinear parameter vibration model of the roller system with
the fractional order, as is shown in Figure 1. According to the vibration model in Figure 1,
the horizontal nonlinear kinematic equation of the roll system can be established as per the
following:

m
..
x(t) + c(x2(t)− 1)

.
x(t) + (k1 + k2x2(t))x(t) + KDp[x(t)] = F1 cos(ωt) + F2 cos(Ωt), (0 < p < 2) (1)

where K is the fractional differential term coefficient and K > 0, p is the fractional differ-
ential term order. Further, c is the nonlinear damping coefficient, k1 is the linear stiffness
coefficient, k2 is the nonlinear stiffness coefficient, m is equivalent mass of the roll, F1 is the
low-frequency excitation amplitude, F2 is the high-frequency excitation amplitudes, ω is the
low excitation frequency, Ω is the high excitation frequency, e is the clearance between the
bearing housing and the frame, and x(t) is the horizontal displacement of the roller system.
Due to the presence of e, the roll system vibrates back and forth under horizontal excitation
forces, which is defined as a horizontal excitation force of F1 cos(ωt) + F2 cos(Ωt).
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Figure 1. A physical model of the horizontal nonlinear vibrations with the fractional order of roll
systems.

In order to better describe the intrinsic relationships of engineering materials, the
ordinary damping term is replaced by a fractional damping term, thus introducing the
following variable substitution:

δ = c/m = K/m, ω0 =
√

k1/m, β = k2/m, f = F1/m, F = F2/m (2)

Then, the vibration equation of the horizontal nonlinear system of Equation (1) can be
written as per the following:

..
x(t) + ω2

0x(t) + δDp[x(t)] + βx3(t) = f cos(ωt) + F cos(Ωt), (0 < p < 2) (3)

It is assumed here that δ > 0, f << 1, Ω >> ω and the system have different
vibrational properties when the value of the fractional order p is between (0,1] and (1,2),
and when the potential energy function of the system is the following:

V(x) = ω2
0x2/2 + βx4/4 (4)

There is no unique form of definition for fractional order derivatives, and different
types of definitions of fractional order derivatives are derived depending on the context of
the study. There are three usual definitions that are used, namely the Riemann–Liouville
(R–L) definition, the Grünwald–Letnikov (G–L) definition, and the Caputo definition. In the
system defined by Equation (3), the roll system displacements are first order continuously
differentiable in [0, T] and the roll system accelerations are integrable in [0, T]. Therefore, for
each order p (0 < p < 2), both the Riemann–Liouville and Grünwald–Letnikov derivatives
exist and they are equivalent. However, the R–L approach leads to the initial conditions
containing limiting values for the fractional derivatives of t = t0, which do not have a
known physical meaning, thereby making the results problematic in terms of practical
applications in the village. Therefore, this paper adopts a more engineeringly meaningful
definition of Caputo in order to deal with fractional order differential terms.

For a given function x(t), t ∈ (t0, tx) is the fractional order of the Caputo definition, as
per [44].

CDp
t0,t[x(t)] =

1
Γ(m− p)

∫ t

t0

x(m)(τ)

(t− τ)1+p−m dτ (5)

where m = [p] is an integer, [] means to take an integer, and Γ(z) is the Gamma function,
thus satisfying Γ(z + 1) = z Γ(z).

When p = 1, there are no fractional differential terms present. Suppose t0 = 0 and t = ti
for the different values of p, then the derivative under the Caputo definition is as per [45].
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When 0 < p < 1:

[CDp
t0,tx(t)]t=ti =

1
Γ(1−α)

∫ ti
t0

.
x(τ)

(ti−τ)α dτ

= 1
Γ(1−p)

i−1
∑

k=0

∫ tk+1
tk

.
x(τ)

(ti−τ)p dτ

≈ 1
Γ(1−α)

i−1
∑

k=0

∫ tk+1
tk

1
(ti−τ)p

x(tk+1)−x(tk)
∆t dτ

=
i−1
∑

k=0

∆t−p

Γ(2−α)
[(i− k)1−p − (i− k− 1)1−p](x(tk+1)− x(tk))

(6a)

when 1 < p < 2:

[CDp
t0,tx(t)]t=ti =

1
Γ(2−n)

∫ ti
t0

..
x(τ)

(ti−τ)1−p dτ

= 1
Γ(2−p)

i−1
∑

k=0

∫ tk+1
tk

..
x(τ)

(ti−τ)1−p dτ

≈ 1
Γ(2−p)

i−1
∑

k=0

∫ tk+1
tk

1
(ti−τ)1−p

.
x(tk+1)−

.
x(tk)

∆t dτ

= 1
Γ(2−p)

x(ti−k−1)−2x(ti−k)+x(ti−k+1)
∆t2

∫ tk+1
tk

τ1−pdτ

(6b)

Thus the rewritten Equation (3) is as follows:{ .
x = y
.
y = −ω2

0x− βx3 − δ dpx
dtp + f1 cos(ωt) + f2 cos(Ωt)

(7)

The discrete form is as follows:{
xi = xi−1 + yi−1∆t

yi = yi−1 + [−ω2
0xi−1 − βx3

i−1 − δ
dxp

i−1
dtp + ( f1)i−1 + ( f2)i−1]∆t

(8)

The above formula is the algorithm for finding the fractional differential terms under
the Caputo definition. Numerous studies have shown that the fractional order differential
theory defined by Caputo above is accurate and is also reliable for solving the dynamic
properties of nonlinear systems [46–50].

3. Bifurcation and Vibration Resonance
3.1. Pitchfork Bifurcation

Due to the different orders of the fractional derivatives, various new resonance phe-
nomena are found for single-well and double-well systems, respectively. Furthermore, the
value of the fractional order can be used as a bifurcation parameter by which the response
characteristics of the mill roll system can be analyzed.

In the roller vibration system, the fast and slow variable separation method can be
used to analyze the response characteristics of the system under the dual frequency signal
excitation; it can also be used to eliminate the fast variables in the system. When compared
with the averaging and multi-scale methods, this method can obtain a stable solution of
the system and can effectively avoid the jump phenomenon in the response of a non-linear
system.

According to the fast and slow variable separation method, assume x = X(t) +
Ψ(t, Ωt). Where X(t) is a slow variable with the period of 2π/ω, and Ψ(t, Ωt) is a fast
variable with the period of 2π/Ω, then evidently the following applies:

〈Ψ(t, Ω)〉 = Ω
2π

∫ 2π

0
Ψ(t, Ω)dt = 0 (9)

Substitute x = X(t) + Ψ(t, Ωt) into Equation (3) and separate fast and slow variables
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d2Ψ
dt2 + δ

dpΨ
dtp = −(ω2

0 + 3βX2)(Ψ− 〈Ψ〉)− 3βX(Ψ2 −
〈

Ψ2
〉
)− β(Ψ3 −

〈
Ψ3
〉
) + F cos(Ωt) (10a)

d2X
dt2 + δ

dpX
dtp = −ω2

0〈Ψ〉 − β〈Ψ〉3 − (ω2
0 + 3β

〈
Ψ2
〉
)X− 3β〈Ψ〉X2 − βX3 + f cos(ωt) (10b)

Since Ψ is the fast variable, d2Ψ/dt2, dpΨ/dtp>>Ψ, Ψ2, Ψ3. This results in neglecting all
the nonlinear terms on the right hand of Equation (10b) and using Equations (9) and (10b),
which can be reduced to the linear form:

d2Ψ
dt2 + δ

dpΨ
dtp + ω2

0Ψ = F cos(Ωt) (11)

Assume the solution of Equation (11) as per the following:

Ψ = (F/µ) cos(Ωt− θ) (12)

According to Equation (12), we can obtain

Ψ|t=0 = (F/µ) cos(−θ)
Ψ|t=θ/Ω = F/µ

(13)

According to the fractional derivative formula of the simple harmonic function, we
can obtain

dpΨ
dtp =

dp

dtp [
F
µ

cos(Ωt− θ)] =
F
µ

Ωp cos(Ωt− θ +
pπ

2
) (14)

which is the use of the method of undetermined coefficients. When substituting Equation (12)
into Equation (11), and when calculating and comparing the equation coefficients of
sin(Ωt − θ) and cos(Ωt − θ) at both ends of the equation by using triangle male, we
can obtain −

Ω2F
µ + δ Ωp F

µ cos( pπ
2 ) + ω2

0
F
µ = F cos θ

δ Ωp F
µ sin( pπ

2 ) = F sin θ
(15)

Then
µ2 = [ω2

0 + δΩp cos(pπ/2)−Ω2]
2
+ [δΩp sin(pπ/2)]2 (16a)

θ = arctan
δΩp sin(pπ/2)

ω2
0 + δΩp cos(pπ/2)−Ω2

(16b)

From Equation (12), one obtains the averaging values of different order of Ψ within
[0, 2π/Ω]:

〈Ψ〉 =
〈

Ψ3
〉
= 0,

〈
Ψ2
〉
= F2/2µ2 (17)

When one inserts Equations (17) and (12) into Equation (10a), the govern equation for
fast motion becomes

d2X
dt2 + δ

dpX
dtp + S1X + S2X3 = f cos(ωt) (18)

where
S1 = ω2

0 + 3βF2/(2µ2), S2 = β (19)

From Equation (18), we can obtain the potential function of the system:

Ve(X) = S1X2/2 + S2X4/4 (20)
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Unlike Equation (4), the V(x), which is completely determined by the parameters ω2
0

and β, Ve(X), is also affected by the high-frequency excitation force F. When f = 0, the
slow variable system Equation (18) may have three equilibrium points.

X∗1 = 0, X∗2 = −
√
−S1/S2, X∗3 =

√
−S1/S2 (21)

The slow variable X may behave as the vibration around the stable equilibrium point.
From Equation (21), we can know that when the S1 > 0, then the Ve is a single-well
function and that the system has a unique stable equilibrium point X∗1 = 0. When the
S1 < 0, Ve is a double-well function and the system has two stable equilibrium points of
X∗2,3 = ±

√
−S1/S2 and one unstable equilibrium point X∗1 = 0. The influence of the system

parameters on the equilibrium points are shown in Figure 2. The figures show that the
system has a forked bifurcation and that different parameters have different effects on the
degree of bifurcation. This phenomenon occurs because the high frequency signal softens
the stiffness of the system, as well as alters the equilibrium point of the system, which thus
causes the nonlinear system to become a pitchfork bifurcation.
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In Equation (19), F is the independent variable. By solving S1 = 0, we can obtain the
critical value that changes the number of equilibrium points in the system, which is the
equilibrium point causing the pitchfork bifurcation:

FC =
√

2µ2
∣∣ω2

0

∣∣/3β (22)

3.2. Vibration Resonance

To obtain the amplitude of the low-frequency excitation, assume Y = X − X∗ and
bring it into Equation (18), thereby eliminating the constant component of the response and
retaining the harmonic term as

d2Y
dt2 + δ

dpY
dtp + S3Y + S4Y2 + S5Y3 = f cos(ωt) (23)

where S3 = ω2
r = S1 + 3S2X∗2, S4 = 3S2X∗, S5 = β,ωr is the resonance frequency because

of f << 1. Furthermore, when t→ ∞ ,|Y| << 1, then neglect the nonlinear term in
Equation (23) and obtain the linear equation for Y, which is

d2Y
dt2 + δ

dpY
dtp + ω2

r Y = f cos(ωt) (24)
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In using the undetermination coefficient method, we can assume the solution of
Equation (24) is Y = AL cos(ωt− φ). Therefore, we can insert it into Equation (24), and
thus we can obtain

AL = f /
√
[ω2

r −ω2 + δωp cos(pπ/2)]2 + [δωp sin(pπ/2)]2 (25a)

φ = arctan
{
[δωp sin(pπ/2)]/[ω2

r −ω2 + δωp cos(pπ/2)]
}

(25b)

where φ represents the initial distance between the motion and the stable equilibrium point
X∗. This means that t = 0, Y = cos(φ) is the initial deviation between X and X∗. Since
p is included in Equation (25b), it has an effect on the value of the initial phase φ. The
initial phase approaches 0 as p approaches 0 or 2. Furthermore, as p varies, φ undergoes a
solution as the value of p changes from −π/2 to π/2 (or from π/2 to −π/2). As such, the
monotonicity of φ before the solution is the opposite of the monotonicity after the solution.

The response amplitude is often used to define as Q = AL/ f in order to study the
vibrational resonance of the system. This represents the number of times a nonlinear system
is amplified by the action of a weak low-frequency signal, thus

Q = 1/
√
[ω2

r −ω2 + δωp cos(pπ/2)]2 + [δωp sin(pπ/2)]2 (26)

In order to verify the correctness of the analytical solution, an evaluation index of the
numerical solution should also be given to quantify the vibration resonance phenomenon
of the non-linear system of rolls. The degree of vibration resonance is usually measured by
the amplitude gain of the system response to a low frequency input signal. The numerical

method calculates the response amplitude as Q =
√

Q2
S + Q2

C/ f , and where Qs and Qc are
the sine and cosine components of the Fourier coefficients [51].

QS =
2

pT

∫ pT

0
x(t) sin(ωt)dt,QC =

2
pT

∫ pT

0
x(t) cos(ωt)dt (27)

where T = 2π/ω represents the period of the low-frequency signal and p is a positive
integer that should be chosen as large enough to ensure the accuracy of the numerical
results. In the theoretical analysis of this paper, only the 2π/ω periodic slow variables and
2π/Ω periodic sexual fast variables are present. In addition, other higher harmonics are
ignored because the amplitudes of other higher harmonics are very small compared to the
fundamental frequency when compared to the components.

4. Single-well and Double-well Systems

This section studies the single-well and double-well of the roll system described in
Equation (3). As shown in Figure 3, the response of the system is limited to within one
potential well due to the small amplitude of the externally excited high-frequency signal,
which does not allow traversal between two different potential wells. A single-well state
is presented. As the external excitation high-frequency signal gradually increases, the
response range of the system gradually expands into the other potential well. This results
in a double-well phenomenon.
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Figure 3. The potential function V(x) = ω2
0x2/2 + βx4/4 are shown as (a) the single-well system

and (b) the double-well system.

4.1. Single-well System

When ω2
0 , β > 0, V(x) is a single-well potential function (Figure 3a), and it always has

S1, S2 > 0. Ve, then it is also a single well (Figure 4a). Furthermore,X∗1 = 0 is the only stable
equilibrium point, thus S3 = S1, ωr =

√
S3 =

√
S1. As such, let

S = [ω2
r −ω2 + δωp cos(pπ/2)]2 + [δωp sin(pπ/2)]2

= [S3 −ω2 + δωp cos(pπ/2)]2 + [δωp sin(pπ/2)]2

= [S1 −ω2 + δωp cos(pπ/2)]2 + [δωp sin(pπ/2)]2

= [ω2
0 + 3βF2/(2µ2)−ω2 + δωp cos(pπ/2)]2 + [δωp sin(pπ/2)]2

(28)

As Q = 1/
√

S, the system vibration resonance occurs when S takes the minimum
value.
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Figure 4. The potential function Ve(x) = ω2
0x2/2 + βx4/4 is shown as a (a) single-well system and

(b) a double-well system.

Use ω as a control parameter. When varying the value of ω and fixing the other
parameters, S has a minimum value when the critical frequency ωVR > 0 is reached, thus
making the first part of Equation (28) satisfy Sω(ωVR) = 0. However, it is difficult to
obtain an expression for ωVR when p 6= 1. By numerical calculation, Figure 5a shows the
relationship between ωVR and F and p. The surface is curved and has extreme regions
(Figure 5b) in which no resonance occurs. Consider the three different values of p, then the
relationship between F and ωVR is shown in Figure 5c and it can be found that the critical
frequency increases gradually with the increase in the excitation amplitude F when p 6= 1.
This indicates that the introduction of the fractional differential term has a non-negligible
effect on the system. Figure 5d shows the effect of the fractional order on the critical
frequency of the system. As can be seen from the figure below, p has a concave curve in the
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interval [0, 2]. When p = 1, the critical frequency is at the bottom of the valley and increases
gradually as p decreases or increases. In Figure 5e, it is clear that a single resonance occurs
in the single-well system when the value of p deviates from 1, thereby implying that the
new resonance phenomena may be induced as p varies. Figure 5f visually shows the effect
of the excitation frequency on resonance as the decimal p takes on different values. The
closer the value of p is to 2, the more likely it is to induce strong resonances.
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Figure 5. (a) The surface diagram of the relationship between ωVR versus F and p. (b) The top view
of (a). (c) The plot of the critical frequency ωVR versus F at three different fractional orders. (d) ωVR

versus p for F = 0.2. (e) The analytical results for the response amplitude Q versus ω and p for F = 0.2.
(f) The response amplitude Q versus ω for the three different values of p, while ω0

2 = 1; u2 = 1; β = 1;
and δ = 1.5.

Use F as a control parameter with F varying and the other parameters being fixed. The
critical point at which the resonance occurs is obtained when the first part of Equation (28)
satisfies SF(FVR) = 0 in the same manner as Smin = S(FVR) > 0.

FVR =

√
2µ2

3β
(ω2 −ω2

0 − δωp cos
pπ

2
) (29)

According to the above equation, FVR is present when ω2 > ω2
0 + δωp cos(pπ/2), and

when p 6= 1; as such, FVR is not only related to δ, but is also the value of p.
Figure 6a depicts the results of the analysis of FVR and p. It is clear from the figure

that the system has a resonance phenomenon when p ≥ 0.84 and that there is no FVR when
p < 0.84. As such, it is necessary to investigate the resonance phenomenon in the range of
0.84 ≤ p ≤ 2. Figure 6b is a plot of Q versus F and p. It is clear that a change in the value of
F or p may trigger a vibration resonance. Figure 6c shows the relationship curve between Q
and F. As the value of p changes, the relationship curve changes from a monotonic curve
to a peak curve. Resonance only occurs at p = 1.8. This implies that the resonance of the
single-well function may be caused by fractional damping.
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Figure 6. (a) The cover of FVR versus p. (b) The analytical results for the response amplitude Q versus
F and p. (c) The response amplitude Q versus F for the three different values of p, while ω0

2 = 1;
u2 = 1; β = 1; and δ = 1.5.

In order to investigate the effect of the fractional order p on the response amplitude of
the system, the relationship between Q and p is given in Figure 7a, which shows that Q and
p are non-linearly correlated. Furthermore, the maximum resonance occurs at p = 1.8, and
it is necessary to focus on the phenomenon of resonance while p ∈ (1, 2). When p takes
three different values, the phase of the dynamic system defined by Equation (3) is shown in
Figure 7b. It can be seen that the phase trajectory of the system is a circle that is centered at
the origin.
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Figure 7. (a) The cover of Q versus p. (b) The phase portrait of system (3) for the three values of p,
while ω0

2 = 1; u2 = 1; β = 1; and δ = 1.5.

4.2. Double-well System

When ω2
0 < 0, β > 0, then V(x) is the double-well potential function (Figure 3b).

There are always S1 < 0 and Ve, which are double-well functions (Figure 4b). The system
has three equilibrium points, of which X∗2,3 = ±

√
−S1/S2 are the two stable equilibrium

points, and X∗1 = 0 is the unstable equilibrium point. Let

S = [ω2
r −ω2 + δωp cos(pπ/2)]

2
+ [δωp sin(pπ/2)]2 (30)

Use ω as a control parameter. Varying the value of ω and fixing the other parameters,
a non-zero root satisfying both Sω(ωVR) = 0 and Sωω(ωVR) > 0 can be obtained. The
relationship between ωVR and F and p is shown in Figure 8a. A convex region appears in
Figure 8b, wherein the resonance does not occur. The relationship curve of ωVR and F is
shown in Figure 8c. The figure below shows that no matter what value p takes, there is no
ωVR while F < 1.1 and let F = 0.5. The relationship of ωVR and p is shown in Figure 8d, and
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the response amplitude Q versus p and ω are shown in Figure 8e. Similar to a single well, if
Ve(x) is a double-well function, then the change in fractional order p will still cause a new
vibration resonance; the numerical verification results are shown in Figure 8f.
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Figure 8. (a) Surface diagram of the relationship between ωVR versus F and p. (b) The upward view
of (a). (c) The plot of critical frequency ωVR versus F at three different fractional orders. (d) ωVR

versus p for F = 0.5. (e) The analytical results for response amplitude Q versus ω and p for F = 0.5. (f)
The response amplitude Q versus ω for the three different values of p, while ω0

2 = −1; u2 = 1; β = 1;
and δ = 1.5.

Use F as a control parameter and vary the value of F while fixing the other parameters.
The root of the equation S1 = 0 is the FC, which is used as a bifurcation point, and through
this bifurcation point the potential function Ve changes from bi-stable to mono-stable. When
F < FC, there are then three equilibrium points in Equation (18), including the intermediate
unstable equilibrium point X∗1 and the stable equilibrium point X∗2,3 on both sides. In
addition, the slow variable moves around the stable equilibrium point X∗2,3. When F > FC,
the system has only one stable equilibrium point X∗1 and the slow variable moves around
the stable equilibrium point X∗1 .

The critical point FVR of the vibration resonance shall meet the equation ω2
r − ω2 +

δωp cos(pπ/2) = 0 or, FVR = FC. Through some calculations and analyses, three different
cases are obtained as follows:

Case 1: If ω satisfies the condition

δωp cos(pπ/2) < ω2 < δωp cos(pπ/2)− 2ω2
0 (31)

then the phenomenon of the double resonance appears at the critical points of F(1)
VR < FC

and F(2)
VR > FC, where F(1)

VR is the solution of ω2
r −ω2 + δωp cos(pπ/2) = 0 and F(2)

VR is given
by Formula (29), then

F(2)
VR = [

2µ2

3β
(ω2 − δωp cos

pπ

2
−ω2

0)]
1/2

> FC (32a)

F(1)
VR = [

µ2

3β
(δωp cos

pπ

2
−ω2 − 2ω2

0)]
1/2

< FC (32b)
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where F(1)
VR and F(2)

VR have the same maximum of the response amplitude

Q(1)
max = 1/[δωp sin(pπ/2)] (33)

Case 2: If ω satisfies the condition

ω2 ≥ δωp cos(pπ/2)− 2ω2
0 (34)

then only one single resonance appears at the critical point F(2)
VR > FC and has the same

maximum of the response amplitude as F(2)
VR, then it is Q(2)

max = Q(1)
max.

Case 3: If ω satisfies the condition

0 < ω2 ≤ δωp cos(pπ/2) (35)

then the only single resonance appears at the point FC, which, in this circumstance, is
S3 = S1 = 0, whereby the maximum of the response amplitude is

Q(3)
max = 1/

√
[δωp cos(pπ/2)−ω2]2 + [δωp sin(pπ/2)]2 (36)

As shown in Equation (30), the value of p has an effect on the value of S, which also
affects FVR. Figure 9a–c, respectively, represent the relationship curve of FVR and ω when
p = 0.3, 1.0, and 1.8. Additionally, the blue dashed line represents the critical value F(1)

VR of

the double resonance, and the red solid line represents the critical value F(2)
VR of the single

resonance. It is found that when p takes different values, the two lines can intersect and
thus becomes F(2)

VR > F(1)
VR before the intersection. Additionally, after the intersection, the

intersection position shifts downward with p increasing, which is the equal value of the
two critical forces, as p increases and thus becomes smaller. The results of the response
amplitudes Q versus F and p are shown in Figure 9d. According to the figure below, the
double resonance appears with the increasing of p, but this phenomenon does not appear
in the ordinary system. The reason is that in Equation (34) only one single-peak resonance
appears at the critical point of F(2)

VR while p = 1.0. Figure 9e shows the analysis of the
relationship between Q and F and p. It is obvious that with the change in F and p, it can
also cause a resonance. Figure 9f shows the relationship between Q and F. As shown in
the figure below, as the p-value changes, the relationship curve changes from a monotonic
to peak curve. Bi-resonance occurs when p = 0.3 or 1.0, and single resonance occurs when
p = 1.8.
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5. Conclusions

In this paper, a fractional differential term is introduced into the non-linear vibration
system of a mill roller system. The dynamic equations of the roll system were established.
The forked bifurcation of the system was studied using the separation of a fast and slow
variables method. Three equilibrium points were obtained and the single- and double-
potential well motion forms of the system were derived. The response amplitude gains of
the single- and dual-potential well systems were investigated using the excitation frequency
and excitation amplitude as control parameters, respectively. The numerical simulations
showed that the vibration resonance of the single potential well system is strongest when
the fractional order p = 1.8. Furthermore, the strongest vibration resonance in the two-
potential well system was obtained when p = 0.3 or 1.0. This study enriches the vibration
characteristics of the roll system and can be used to provide a theoretical basis for guiding
the design and manufacture of the roll system, as well as providing an important theoretical
reference for vibration suppression.
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