Nonlocality of Star-Shaped Correlation Tensors Based on the Architecture of a General Multi-Star-Network

Shu Xiao ${ }^{1}$, Zhihua Guo ${ }^{1, *}$, Huaixin Cao ${ }^{1, *}$ (D) Kanyuan Han ${ }^{1}$ and Ying Yang ${ }^{2}$
1 School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, China
2 School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China
* Correspondence: guozhihua@snnu.edu.cn (Z.G.); caohx@snnu.edu.cn (H.C.)

Citation: Xiao, S.; Guo, Z.; Cao, H.; Han, K.; Yang, Y. Nonlocality of Star-Shaped Correlation Tensors Based on the Architecture of a General Multi-Star-Network.
Mathematics 2023, 11, 1625. https:// doi.org/10.3390/math11071625

Academic Editors: Denis V. Makarov, Efim Pelinovsky and Pavel Petrov

Received: 20 February 2023
Revised: 21 March 2023
Accepted: 24 March 2023
Published: 28 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this work, we study the nonlocality of star-shaped correlation tensors (SSCTs) based on a general multi-star-network $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$. Such a network consists of $1+m+n_{1}+\cdots+n_{m}$ nodes and one center-node A that connects to m star-nodes $B^{1}, B^{2}, \ldots, B^{m}$ while each star-node B^{j} has $n_{j}+1$ star-nodes $A, C_{1}^{j}, C_{2}^{j}, \ldots, C_{n_{j}}^{j}$. By introducing star-locality and star-nonlocality into the network, some related properties are obtained. Based on the architecture of such a network, SSCTs including star-shaped probability tensors (SSPTs) are proposed and two types of localities in SSCTs and SSPTs are mathematically formulated, called D-star-locality and C-star-locality. By establishing a series of characterizations, the equivalence of these two localities is verified. Some necessary conditions for a star-shaped CT to be D-star-local are also obtained. It is proven that the set of all star-local SSCTs is a compact and path-connected subset in the Hilbert space of tensors over the index set Δ_{S} and has least two types of star-convex subsets. Lastly, a star-Bell inequality is proved to be valid for all star-local SSCTs. Based on our inequality, two examples of star-nonlocal $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ are presented.

Keywords: multi-star-network; star-shaped correlation tensor; star-locality; star-Bell inequality

MSC: 81P45; 81P40

1. Introduction

As promising platforms for quantum information processing, quantum networks (QNs) [1] have recently attracted much interest [2-7]. It is important to understand the quantum correlations that arise in a QN. Recent developments have shown that the topological structure of a QN leads to novel notions of nonlocality [8,9] and new concepts of entanglement and separability [10-12]. These new concepts and definitions are different from the traditional ones $[13,14]$ and thus need to be analysed using new theoretical tools, such as mutual information [10,11], fidelity with pure states [11,12], and covariance matrices built from measurement probabilities [15,16].

According to Bell's local causality assumption [17,18], the joint probability $P\left(o_{1} o_{2} \ldots o_{n} \mid m_{1} m_{2} \ldots m_{n}\right)$ of obtaining measurement outcomes $o_{1}, o_{2}, \ldots, o_{n}$ of systems $A_{1}, A_{2}, \ldots, A_{n}$ can be obtained in terms of a local hidden variable model (LHVM) with just one "hidden variable", or "hidden state", λ. Such a probability distribution is said to be Bell local. Focusing on QNs, completely different approaches to multipartite nonlocality were proposed [19-23]. That means that network nonlocalities are fundamentally different from standard multipartite nonlocalities. Carvacho et al. [24] investigated a quantum network consisting of three spatially separated nodes and experimentally witnessed quantum correlations in the network. Due to the complex topological structure of a network, it is possible to detect the quantum nonlocality in experiments by performing just one fixed measurement [8,25-28].

Quantum coherence originated from the superposition principle originally pointed out by Schrödinger [29] and is a fundamentally quantum property [30,31]. Quantum nonlocality is a correlation property of subsystems of a multipartite system, exhibited by a
set of local measurements. It is also a powerful tool for analyzing correlations in a quantum network [32] and a direct link between the theory of multisubspace coherence [33] and the approach to quantum networks with covariance matrices $[15,16]$.

Patricia et al. [34] found some sufficient conditions for nonlocality in QNs and showed that any network with shared pure entangled states is genuinelu multipartite nonlocal. Supić et al. [35] proposed a concept of genuine network quantum nonlocality and proved several examples of genuine network nonlocal correlations.

Recently, Tavakoli et al. [36] discussed the main concepts, methods, results, and future challenges of network nonlocality with a list of open problems. More recently, Xiao et al. [37] discussed two types of trilocality in probability tensors (PTs), $P=\llbracket P\left(a_{1} a_{2} a_{3}\right) \rrbracket$ and that of correlation tensors (CTs) $P=\llbracket P\left(a_{1} a_{2} a_{3} \mid x_{1} x_{2} x_{3}\right) \rrbracket$, based on the triangle network [8] and described by continuous (integral) and discrete (sum) trilocal hidden variable models (CtriLHVMs and D-triLHVMs).

Haddadi et al. [38] studied the thermal evolution of the entropic uncertainty bound in the presence of quantum memory for an inhomogeneous, four-qubit, spin-star system and proved that the entropic uncertainty bound can be controlled and suppressed by adjusting the inhomogeneity parameter of the system. Related research on spin-star systems can be found in $[39,40]$ and the references therein. As a generalization of star-networks [22,23], Yang et al. [41] considered the nonlocality of $\left(2^{n}-1\right)$-partite tree-tensor networks (referring to Figure 1 for the case where $n=2$) and derived the Bell-type inequalities.

Figure 1. The six-local tree-tensor networks consisting of seven parties and six independent sources $S_{1}, S_{2}, \ldots, S_{6}$ characterized by hidden variables $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{6}$, respectively [41].

Extending the scenario in [41], Yang et al. [42] discussed the nonlocality of a type of multi-star-shaped QNs (Figure 2), called 3-layer m-star QNs (3-m-SQNWs), and established related Bell-type inequalities.

Figure 2. A 3-layer m-star quantum network (3-m-SQNW) for $m=3$ consisting of a node A, m star-nodes $B^{1}, B^{2}, \ldots, B^{m}$, and m^{2} star-nodes $C_{1}^{j}, C_{2}^{j}, \ldots, C_{m}^{j}(j=1,2, \ldots, m)$ [42].

In this work, we study the nonlocality of star-shaped CTs and star-shaped PTs based on a more general multi-star network $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ depicted in Figure 3.

Figure 3. The multi-star-network scenario, denoted by $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$. When $m=1, n_{1}=n-1$, it reduces to $\operatorname{MSN}(1, n-1)$, which is just an n-local scenario [22,43]; when $m=n_{1}=1$, it becomes $\operatorname{MSN}(1,1)$, reducing to the bi-local scenario [20,43].

Such a network consists of $1+m+n_{1}+\cdots+n_{m}$ nodes and one center-node A that connects to m star-nodes $B^{1}, B^{2}, \ldots, B^{m}$ while each star-node B^{j} has $n_{j}+1$ star-nodes $A, C_{1}^{j}, C_{2}^{j}, \ldots, C_{n_{j}}^{j}$.

In Section 2, we will introduce the star-locality and star-nonlocality of the multi-starnetwork $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ and give some related properties. In Section 3, we will first introduce star-shaped CTs (SSCTs), including star-shaped PTs (SSPTs), and discuss two types of localities of SSCTs and SSPTs, called D-star-locality and C-star-locality. Then, we establish a series of characterizations of D-star-localities and C-star-localities, show the equivalence of these two types of localities, and give some necessary conditions for star-shaped CT to be D-star-local. At the end of this section, we will show that the set $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ of all star-local SSCTs over the index set Δ_{S} is a compact and path-connected subset in the Hilbert space $\mathcal{T}^{\text {star }}\left(\Delta_{S}\right)$ of all tensors over Δ_{S} and contains at least two types of subsets that are star-convex. In Section 4, we shall establish an inequality that holds for all star-local SSCTs, called a star-Bell inequality. Based on our inequality, two examples are given. The first example is a star-nonlocal $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$, in which the shared states are all entangled pure states, and the second one gives a star-nonlocal $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ in which the shared states are all entangled mixed states. In Section 5, we will give a summary and conclusions.

2. Multi-Star-Network Scenario

2.1. Notations and Concepts

In what follows, we consider the multi-star-network scenario as depicted in Figure 3, denoted by $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$. The network involves $1+m+\sum_{j=1}^{m} n_{j}$ parties

$$
A, B^{1}, \ldots, B^{m}, C_{1}^{1}, \ldots, C_{n_{1}}^{1}, \ldots, C_{1}^{m}, \ldots, C_{n_{m}}^{m}
$$

and $m+\sum_{j=1}^{m} n_{j}$ sources

$$
S^{1}, \ldots, S^{m}, S_{1}^{1}, \ldots, S_{n_{1}}^{1}, \ldots, S_{1}^{m}, \ldots, S_{n_{m}}^{m},
$$

which are characterized by hidden variables $\lambda^{j} \in D_{j}$ and $\mu_{k}^{j} \in F_{j}(k)\left(j \in[m], k \in\left[n_{j}\right]\right)$, where $[n]:=\{1,2, \ldots, n\}$.

We use $\rho_{A_{j} B_{0}^{j}} \in \mathcal{D}\left(\mathcal{H}_{A j} \otimes \mathcal{H}_{B_{0}^{j}}\right)$ to denote the states shared by A and B^{j} for all $j \in[m]$, and $\rho_{B_{k}^{j} C_{k}^{j}} \in \mathcal{D}\left(\mathcal{H}_{B_{k}^{j}} \otimes \mathcal{H}_{C_{k}^{j}}\right)$ to denote the states shared by B^{j} and C_{k}^{j} for all $j \in[m]$ and
$k \in\left[n_{j}\right]$. We get $\mathcal{H}_{A}=\bigotimes_{j=1}^{m} \mathcal{H}_{A^{j}}, \mathcal{H}_{B j}=\mathcal{H}_{B_{0}^{j}} \otimes\left(\otimes_{k=1}^{n_{j}} \mathcal{H}_{B_{k}^{j}}\right)(j=1,2, \ldots, m)$. Then we define the system state as

$$
\begin{equation*}
\Gamma=\left(\bigotimes_{j=1}^{m} \rho_{A^{j} B_{0}^{j}}\right) \otimes\left(\bigotimes_{j=1}^{m}\left(\rho_{B_{1}^{j} C_{1}^{j}} \otimes \rho_{B_{2}^{j} C_{2}^{j}} \otimes \ldots \otimes \rho_{B_{n_{j}}^{j} C_{n_{j}}^{j}}\right) .\right. \tag{1}
\end{equation*}
$$

Consider the measurement assemblages

$$
\left.\begin{array}{l}
\mathcal{M}(A)=\left\{M(x):=\left\{M_{a \mid x}\right\}_{a=1}^{o(A)}: x=1,2, \ldots, m(A)\right\}, \\
\mathcal{N}\left(B^{j}\right)=\left\{N^{j}\left(y_{j}\right):=\left\{N_{b_{j} \mid y_{j}}^{j}\right\}_{b_{j}=1}^{o\left(B_{j}^{j}\right)}: y_{j}=1,2, \ldots, m\left(B^{j}\right)\right\}, \tag{2}\\
\mathcal{L}\left(C_{k}^{j}\right)=\left\{L_{k}^{j}\left(z_{j, k}\right):=\left\{L_{c_{j, k} \mid z_{j, k}}^{j, k}\right\}_{c_{j, k}=1}^{o\left(C_{k}^{j}\right)}: z_{j, k}=1,2, \ldots, m\left(C_{k}^{j}\right)\right\}
\end{array}\right\}
$$

consisting of positive-operator-valued measures (POVMs), on systems A, B^{j} and $C_{k^{\prime}}^{j}$, respectively, where $j \in[m]$ and $k \in\left[n_{j}\right]$, consisting of positive operators satisfying the normalization conditions:

$$
\sum_{a=1}^{o(A)} M_{a \mid x}=I_{A}, \sum_{b_{j}=1}^{o\left(B^{j}\right)} N_{b_{j} \mid y_{j}}^{j}=I_{B^{j}}, \sum_{c_{j, k}=1}^{o\left(C_{k}^{j}\right)} L_{c_{j, k} \mid z_{j, k}}^{j, k}=I_{C_{k}^{j}}
$$

Then, we can obtain a measurement assemblage (MA)

$$
\begin{equation*}
\mathcal{M}:=\mathcal{M}(A) \otimes\left(\bigotimes_{j=1}^{m} \mathcal{N}\left(B^{j}\right)\right) \otimes\left(\bigotimes_{j=1}^{m}\left(\mathcal{L}\left(C_{1}^{j}\right) \otimes \mathcal{L}\left(C_{2}^{j}\right) \otimes \ldots \otimes \mathcal{L}\left(C_{n_{j}}^{j}\right)\right)\right) \tag{3}
\end{equation*}
$$

of the quantum network with measurement operators

$$
\begin{equation*}
M_{a \mathbf{b c} \mid x \mathbf{y z}}:=M_{a \mid x} \otimes\left(\bigotimes_{j=1}^{m} N_{b_{j} \mid y_{j}}^{j}\right) \otimes\left(\bigotimes_{j=1}^{m}\left(L_{c_{j, 1} \mid z_{j, 1}}^{j, 1} \otimes L_{c_{j, 2} \mid z_{j, 2}}^{j, 2} \otimes \ldots \otimes L_{c_{j, n_{j}} \mid z_{j, n_{j}}}^{j, n_{n}}\right)\right) \tag{4}
\end{equation*}
$$

where $x \in[m(A)], y_{j} \in\left[m\left(B^{j}\right)\right]$ and $z_{k}^{j} \in\left[m\left(C_{k}^{j}\right)\right]$ denote the inputs of parties A, B^{j} and C_{k}^{j} with the corresponding outputs $a \in[o(A)], b_{j} \in\left[o\left(B_{j}\right)\right]$ and $c_{k}^{j} \in\left[o\left(C_{k}^{j}\right)\right]$, respectively, and

$$
\begin{gathered}
\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right) \equiv\left\{y_{j}\right\}_{j=1}^{m}, \mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \equiv\left\{b_{j}\right\}_{j=1}^{m}, \\
\mathbf{z}=\left(z_{1,1}, \ldots, z_{1, n_{1}}, z_{2,1}, \ldots, z_{2, n_{2}}, \ldots, z_{m, 1}, \ldots, z_{m, n_{m}}\right) \equiv\left\{z_{j, k}\right\}_{j \in[m], k \in\left[n_{j}\right]}, \\
\mathbf{c}=\left(c_{1,1}, \ldots, c_{1, n_{1}}, c_{2,1}, \ldots, c_{2, n_{2}}, \ldots, c_{m, 1}, \ldots, c_{m, n_{m}}\right) \equiv\left\{c_{j, k}\right\}_{j \in[m], k \in\left[n_{j}\right]} .
\end{gathered}
$$

Clearly, the measurement operators $M_{a b c \mid x y z}$ are positive operators acting on the Hilbert space

$$
\mathcal{H}_{\mathrm{MHS}}:=\mathcal{H}_{A} \otimes\left(\bigotimes_{j=1}^{m} \mathcal{H}_{B^{j}}\right) \otimes\left(\bigotimes_{j=1}^{m}\left(\mathcal{H}_{C_{1}^{j}} \otimes \mathcal{H}_{C_{2}^{j}} \otimes \ldots \otimes \mathcal{H}_{C_{n_{j}}^{j}}\right)\right.
$$

while the system state Γ given by (1) is an operator acting on the Hilbert space

$$
\mathcal{H}_{\mathrm{SHS}}:=\left(\bigotimes_{j=1}^{m}\left(\mathcal{H}_{A_{j}} \otimes \mathcal{H}_{B_{0}^{j}}\right)\right) \otimes\left(\bigotimes_{j=1}^{m}\left(\mathcal{H}_{B_{1}^{j}} \otimes \mathcal{H}_{C_{1}^{j}} \otimes \ldots \otimes \mathcal{H}_{B_{n_{j}}^{j}} \otimes \mathcal{H}_{C_{n_{j}}^{j}}\right)\right) .
$$

Generally, $\mathcal{H}_{\mathrm{MHS}} \neq \mathcal{H}_{\mathrm{SHS}}$ due to the non-commutativity of tensor product, and in that case, the product $M_{a \mathbf{b c} \mid x \mathbf{y z}} \Gamma$ does not work well. Therefore, we have to change the system
state Γ to a state $\tilde{\Gamma}$ acting on the space $\mathcal{H}_{\text {MHS }}$ in order to make the tensor product $M_{a \mathbf{b c} \mid x \mathbf{y z}} \tilde{\Gamma}$ reasonable. To do this, we define a swapping operation $U: \mathcal{H}_{\mathrm{SHS}} \rightarrow \mathcal{H}_{\mathrm{MHS}}$ by $|\Psi\rangle \mapsto U|\Psi\rangle$, where

$$
\begin{aligned}
U|\Psi\rangle= & \left(\bigotimes_{j=1}^{m}\left|\psi_{A_{j}}\right\rangle\right) \otimes\left(\bigotimes_{j=1}^{m}\left(\left|\psi_{B_{0}^{j}}\right\rangle \otimes\left|\psi_{B_{1}^{j}}\right\rangle \otimes \ldots \otimes\left|\psi_{B_{m}^{j}}\right\rangle\right)\right) \otimes \\
& \left(\bigotimes_{j=1}^{m}\left(\left|\psi_{C_{1}^{j}}\right\rangle \otimes \ldots \otimes\left|\psi_{C_{n_{j}}^{j}}\right\rangle\right)\right) \\
& \in \mathcal{H}_{\mathrm{MHS}}
\end{aligned}
$$

for all

$$
\begin{aligned}
|\Psi\rangle= & \left(\bigotimes_{j=1}^{m}\left(\left|\psi_{A_{j}}\right\rangle \otimes\left|\psi_{B_{0}^{j}}\right\rangle\right)\right) \\
& \otimes\left(\bigotimes_{j=1}^{m}\left(\left|\psi_{B_{1}^{j}}\right\rangle \otimes\left|\psi_{C_{1}^{j}}\right\rangle \otimes \ldots \otimes\left|\psi_{B_{n_{j}}^{j}}\right\rangle \otimes\left|\psi_{C_{n_{j}}^{j}}\right\rangle\right)\right) \\
& \in \mathcal{H}_{\mathrm{SHS}} .
\end{aligned}
$$

Then, we obtain a new state $\tilde{\Gamma}=U \Gamma U^{\dagger}$ acting the Hilbert space $\mathcal{H}_{\mathrm{MHS}}$ so that the operator product $M_{a \mathbf{b c} \mid x \mathbf{y z}} \tilde{\Gamma}$ works well. Furthermore, it is easy to see that

$$
\begin{equation*}
\operatorname{tr}\left[M_{a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}} \tilde{\Gamma}\right]=\operatorname{tr}\left[\widetilde{M}_{a b c \mid x y z} \Gamma\right] \tag{5}
\end{equation*}
$$

where $\widetilde{M}_{a \mathbf{b c} \mid x \mathbf{y z}}=U^{\dagger} M_{a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}} U$, which is an operator acting on the Hilbert space $\mathcal{H}_{\text {SHS }}$ for every index ($a, \mathbf{b}, \mathbf{c}, x, \mathbf{y}, \mathbf{z}$). Thus, the joint probability distribution $P(a b c \mid x y z)$ of obtaining a, b, c reads:

$$
\begin{equation*}
P_{\mathcal{M}}^{\Gamma}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}):=\operatorname{tr}\left[M_{a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}} \tilde{\Gamma}\right]=\operatorname{tr}\left[\tilde{M}_{a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}} \Gamma\right] . \tag{6}
\end{equation*}
$$

With these preparations, we can describe the locality and nonlocality of our quantum network $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ as follows.

Definition 1. A quantum network $M S N\left(m, n_{1}, \ldots, n_{m}\right)$ with the state (1) is said to be star-local for an $M A \mathcal{M}$ given by (3) if there exists a probability distribution (PD)

$$
\begin{equation*}
p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)=\prod_{j=1}^{m} p\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p\left(\mu_{k}^{j}\right), \tag{7}
\end{equation*}
$$

where $\left\{p_{j}\left(\lambda^{j}\right)\right\}_{\lambda^{j}}$ and $\left\{p_{j, k}\left(\mu_{k}^{j}\right)\right\}_{\mu_{k}^{j}}$ are respectively probability distributions (PDs) of λ^{j} and μ_{k}^{j} such that for all $a, \mathbf{b}, \mathbf{c}, x, \mathbf{y}, \mathbf{z}$, it holds that

$$
\begin{align*}
P_{\mathcal{M}}^{\Gamma}(\mathbf{a b c} \mid x \mathbf{y z})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) P_{A}(a \mid x, \lambda) \\
& \times \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \tag{8}
\end{align*}
$$

where

$$
\begin{gathered}
\lambda=\left(\lambda^{1}, \ldots, \lambda^{m}\right) \in D, \mu_{j}=\left(\mu_{1}^{j}, \ldots, \mu_{n_{j}}^{j}\right) \in F_{j}(j \in[m])(\text { local hidden variables }(\text { LHVs })) ; \\
D=D_{1} \times \ldots \times D_{m}, F_{j}=F_{1}^{j} \times \ldots \times F_{n_{j}}^{j}(j \in[m]) \text { (finite sets of LHVs) }
\end{gathered}
$$

$\left\{P_{A}(a \mid x, \lambda)\right\},\left\{P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right)\right\}$ and $\left\{P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)\right\}$ are PDs of a, b_{j} and $c_{j, k}$, respectively. Otherwise, $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ is said to be star-nonlocal for \mathcal{M}.
$\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ is said to be star-local if it is star-local for any \mathcal{M}, and it is said to be star-nonlocal if it is not star-local, i.e., it is star-nonlocal for some \mathcal{M}.

2.2. Properties

Similar to the reference [42], we can obtain the following results:
Proposition 1. If a network $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ with the state (1) is star-local for \mathcal{M} given by Equation (3), then the $\tilde{\Gamma}$ as a state of system $A B_{1} \cdots B_{m} C_{1}^{1} \cdots C_{n_{1}}^{1} \cdots C_{1}^{m} \cdots C_{n_{m}}^{m}$ is Bell-local for \mathcal{M}.

Proposition 2. The reduced states of $\tilde{\Gamma}$ on subsystems $A_{j} B_{0}^{j}$ and $B_{k}^{j} C_{k}^{j}$ are $\tilde{\Gamma}_{A_{j} B_{0}^{j}}=\rho_{A_{j} B_{0}^{j}}$ and $\tilde{\Gamma}_{B_{k}^{j} C_{k}^{j}}=\rho_{B_{k}^{j} C_{k}^{j}}$, respectively, for all $j \in[m]$ and $k \in\left[n_{j}\right]$.
Proposition 3. If the network $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ with the state (1) is star-local, then the bipartite states $\rho_{B_{t}^{j} C_{t}^{j}}$ and $\rho_{A_{j} B_{0}^{j}}$ are Bell-local for all $s \in[m]$ and $t \in\left[n_{j}\right]$. Furthermore, the m-partite reduced state $(\tilde{\Gamma})_{B^{1} B^{2} \ldots B^{m}}$ is Bell-local.

Consequently, if one of bipartite states $\rho_{B_{t}^{j} C_{t}^{j}}$ and $\rho_{A_{j} B_{0}^{j}}$ is Bell-nonlocal, then the network $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ must be star-nonlocal. Especially, if one of the shared states is a pure entangled state, then the network $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ is star-nonlocal. See Examples 1 and 2 in Section 4.

Proposition 4. Every separable (i.e., all of the shared states are separable) $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ is star-local.

Proof. Since the shared states $\rho_{A_{j} B_{0}^{j}}$ and $\rho_{B_{k}^{j} C_{k}^{j}}$ are separable, they can be written as

$$
\begin{aligned}
\rho_{A_{j} B_{0}^{j}} & =\sum_{\lambda^{j}=1}^{d_{j}} p_{j}\left(\lambda^{j}\right)\left|s_{\lambda^{j}}^{\prime}\right\rangle\left\langle s_{\lambda_{j}}^{\prime}\right| \otimes\left|s_{\lambda^{j}}^{\prime \prime}\right\rangle\left\langle s_{\lambda j}^{\prime \prime}\right|, \\
\rho_{B_{k}^{j} c_{k}^{j}}= & \sum_{\mu_{k}^{j}=1}^{d_{k}^{j}} p_{j, k}\left(\mu_{k}^{j}\right)\left|t_{\mu_{k}}^{\prime}{ }_{k}\right\rangle\left\langle t_{\mu_{k}^{\prime}}{ }^{j}\right| \otimes\left|t_{\mu_{k}{ }_{k}^{\prime \prime}}\right\rangle\left\langle t_{\mu_{k}^{j}}^{\prime \prime}\right|,
\end{aligned}
$$

where $p_{j}\left(\lambda^{j}\right)$ and $p_{j, k}\left(\mu_{k}^{j}\right)$ are PDs of λ^{j} and μ_{k}^{j}. Put

$$
\begin{gathered}
\lambda=\left(\lambda^{1}, \lambda^{2}, \ldots, \lambda^{m}\right), \mu_{j}=\left(\mu_{1}^{j}, \mu_{2}^{j}, \ldots, \mu_{n_{j}}^{j}\right), \\
D=\left[d_{1}\right] \times \ldots \times\left[d_{m}\right], F_{j}=\left[d_{1}^{j}\right] \times \ldots \times\left[d_{n_{j}}^{j}\right](j \in[m]),
\end{gathered}
$$

then

$$
\begin{aligned}
\Gamma= & \left(\bigotimes_{j=1}^{m} \rho_{A j^{j} B_{0}^{j}}\right) \otimes\left(\bigotimes_{j=1}^{m}\left(\rho_{B_{1}^{j} C_{1}^{j}} \otimes \rho_{B_{2}^{j} C_{2}^{j}} \otimes \ldots \otimes \rho_{B_{n_{j}}^{j} j_{n_{j}}^{j}}\right)\right) \\
= & \sum_{\lambda \in D} \sum_{\mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \\
& \bigotimes_{j=1}^{m}\left(\left|s_{\lambda_{j}}^{\prime}\right\rangle\left\langle s_{\lambda^{j}}^{\prime}\right| \otimes\left|s_{\lambda}^{\prime \prime}\right\rangle\left\langle s_{\lambda j}^{\prime \prime}\right|\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}}\left|t_{\mu_{k}^{\prime}}^{\prime}\right\rangle\left\langle t_{\mu_{k}^{j}}^{\prime}\right| \otimes\left|t_{\mu_{k}^{j}}^{\prime \prime}\right\rangle\left\langle t_{\mu_{k}^{j}}^{\prime \prime}\right|\right),
\end{aligned}
$$

which induces the measurement state

$$
\widetilde{\Gamma}=U \Gamma U^{\dagger}=\sum_{\lambda \in D} \sum_{\mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \times \Gamma^{\prime}\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)
$$

where

$$
\begin{aligned}
\Gamma^{\prime}\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)= & \left(\bigotimes_{j=1}^{m}\left|s_{\lambda j}^{\prime}\right\rangle\left\langle s_{\lambda_{j}}^{\prime}\right|\right) \otimes\left(\bigotimes_{j=1}^{m}\left(\left|s_{\lambda_{j}}^{\prime \prime}\right\rangle\left\langle s_{\lambda_{j}}^{\prime \prime}\right| \otimes \bigotimes_{k=1}^{n_{j}}\left|t_{\mu_{k}^{\prime}}^{\prime}\right\rangle\left\langle t_{\mu_{k}^{\prime}}\right|\right)\right) \\
& \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}}\left|t_{\mu_{k}{ }_{j}^{\prime \prime}}^{\prime \prime}\right\rangle\left\langle t_{\mu_{k}^{\prime \prime}}\right|\right)
\end{aligned}
$$

Thus, for any MA \mathcal{M} given by (3), we compute that

$$
\begin{align*}
P_{\mathcal{M}}^{\Gamma}(a \mathbf{b c} \mid x \mathbf{y z})= & \operatorname{tr}\left[\left(M_{a \mid x} \otimes N_{\mathbf{b} \mid \mathbf{y}} \otimes L_{\mathbf{c} \mid \mathbf{z}}\right) \widetilde{\Gamma}\right] \\
= & \sum_{\lambda \in D} \sum_{\mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \\
& \times \operatorname{tr}\left[\left(M_{a \mid x} \otimes N_{\mathbf{b} \mid \mathbf{y}} \otimes L_{\mathbf{c} \mid \mathbf{z}}\right) \Gamma^{\prime}\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)\right] \\
= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \times P_{A}(a \mid x, \lambda) \\
& \times \prod_{j=1}^{m} P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \tag{9}
\end{align*}
$$

where

$$
\begin{gathered}
P_{A}(a \mid x, \lambda)=\operatorname{tr}\left[M_{a \mid x}\left(\bigotimes_{j=1}^{m}\left|s_{\lambda_{j}}^{\prime}\right\rangle\left\langle s_{\lambda^{j}}^{\prime}\right|\right)\right] ; \\
P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right)=\operatorname{tr}\left[N_{b_{j} \mid y_{j}}\left(\left|s_{\lambda_{j}}^{\prime \prime}\right\rangle\left\langle s_{\lambda_{j}}^{\prime \prime}\right| \otimes \bigotimes_{k=1}^{n_{j}}\left|t_{\mu_{k}^{j}}^{\prime}\right\rangle\left\langle t_{\mu_{k}^{j}}^{\prime}\right|\right)\right] ; \\
\left.\left.P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)=\operatorname{tr}\left[L_{c_{k}^{j} \mid}\left|z_{k}^{j}\right| t_{\mu_{k}^{j}}^{\prime \prime}\right\rangle\left\langle t_{\mu_{k}^{\prime}}^{\prime \prime}\right|\right)\right] .
\end{gathered}
$$

This shows that Equation (8) holds and then the network is star-local. The proof is completed.

3. Star-Locality of Star-Shaped Cts

When a multi-star network given by Figure 3 for the case that $m=3$ is measured by parties

$$
A, B^{1}, \ldots, B^{m}, C_{1}^{1}, \ldots, C_{n_{1}}^{1}, \ldots, C_{1}^{m}, \ldots, C_{n_{m}}^{m},
$$

the conditional probabilities $P(a \mathbf{b c} \mid x \mathbf{y z})$ of obtaining result $(a, \mathbf{b}, \mathbf{c})$ conditioned on the measurement choice $(x, \mathbf{y}, \mathbf{z})$ form a correlation tensor (CT) [44] $\mathbf{P}=\llbracket P(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ over the index set

$$
\begin{equation*}
\Delta_{S}=[o(A)] \times \prod_{j=1}^{m}\left[o\left(B^{j}\right)\right] \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left[o\left(C_{k}^{j}\right)\right] \times\left[m_{A}\right] \times \prod_{j=1}^{m}\left[m\left(B^{j}\right)\right] \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left[m\left(C_{k}^{j}\right)\right] \tag{10}
\end{equation*}
$$

which is a non-negative function defined on Δ_{S} satisfying the following completeness condition:

$$
\begin{equation*}
\sum_{a, \mathbf{b}, \mathbf{c}} P(a \mathbf{b c} \mid x \mathbf{y z})=1, \forall x, \mathbf{y}, \mathbf{z} \tag{11}
\end{equation*}
$$

We call such a \mathbf{P} a star-shaped $C T$ over Δ_{S}. Let $\mathcal{C} \mathcal{T}^{\text {star }}\left(\Delta_{S}\right)$ be the set of all star-shaped CTs over Δ_{S}.

To discuss the algebraic and topological properties of the $\mathcal{C} \mathcal{T}^{\text {star }}\left(\Delta_{S}\right)$, we have to make it live in a Hilbert space. To accomplish this, we let $\mathcal{T}^{\text {star }}\left(\Delta_{S}\right)$ be the set of all real tensors $\mathbf{P}=\llbracket P(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ over Δ_{S}. That is, $\mathbf{P} \in \mathcal{T}^{\text {star }}\left(\Delta_{S}\right)$ if and only if it is a real-valued function defined on Δ_{S} with the value $P(a \mathbf{b c} \mid x \mathbf{y z})$ and a point $(a, \mathbf{b}, \mathbf{c}, x, \mathbf{y}, \mathbf{z})$ in Δ_{S}. Clearly, $\mathcal{T}^{\text {star }}\left(\Delta_{S}\right)$ becomes a finite-dimensional Hilbert space over \mathbb{R} with respect to the following operation and inner product:

$$
\begin{aligned}
& s \mathbf{P}_{1}+t \mathbf{P}_{2}=\llbracket s P_{1}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})+t P_{2}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) \rrbracket \\
& \left\langle\mathbf{P}_{1}, \mathbf{P}_{2}\right\rangle=\sum_{a, \mathbf{b}, \mathbf{c}, x, \mathbf{y}, \mathbf{z}} P_{1}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) P_{2}(a \mathbf{b c} \mid x \mathbf{y z}) .
\end{aligned}
$$

The norm induced by the inner product reads

$$
\|\mathbf{P}\|:=\sqrt{\langle\mathbf{P}, \mathbf{P}\rangle}=\left\{\sum_{a, \mathbf{b}, \mathbf{c}, x, \mathbf{y}, \mathbf{z}}(P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}))^{2}\right\}^{\frac{1}{2}}
$$

Especially, when $m(A)=m\left(B^{j}\right)=m\left(C_{k}^{j}\right)=1$ for all k, j, we denote $\mathbf{P}=\llbracket P(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ by $\mathbf{P}=\llbracket P(a \mathbf{b c}) \rrbracket$ and call it a star-shaped probability tensor $(P T)$ over

$$
\Omega_{S}=[o(A)] \times \prod_{j=1}^{m}\left[o\left(B^{j}\right)\right] \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left[o\left(C_{k}^{j}\right)\right]
$$

Let $\mathcal{P} \mathcal{T}^{\text {star }}\left(\Omega_{S}\right)$ be the set of all star-shaped PTs over Ω_{S} and let $\mathcal{T}^{\text {star }}\left(\Omega_{S}\right)$ be the set of all real tensors $\mathbf{P}=\llbracket P(a \mathbf{b c}) \rrbracket$ over Ω_{S}, which is a finite-dimensional Hilbert space over \mathbb{R} with respect to the following operation and inner product:

$$
\begin{aligned}
s \mathbf{P}_{1}+t \mathbf{P}_{2} & =\llbracket s P_{1}(a \mathbf{b} \mathbf{c})+t P_{2}(a \mathbf{b} \mathbf{c}) \rrbracket, \\
\left\langle\mathbf{P}_{1}, \mathbf{P}_{2}\right\rangle & =\sum_{a, \mathbf{b}, \mathbf{c}} P_{1}(a \mathbf{b} \mathbf{c}) P_{2}(a \mathbf{b} \mathbf{c}) .
\end{aligned}
$$

The norm induced by the inner product reads

$$
\|\mathbf{P}\|:=\sqrt{\langle\mathbf{P}, \mathbf{P}\rangle}=\left\{\sum_{a, \mathbf{b}, \mathbf{c}}(P(a \mathbf{b c}))^{2}\right\}^{\frac{1}{2}}
$$

3.1. Concepts

Definition 2. A star-shaped CT $\mathbf{P}=\llbracket P(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ over Δ_{S} is said to be C-star-local if it admits a "C-star-shaped LHVM":

$$
\begin{align*}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \int_{D \times F_{1} \times \ldots \times F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) P_{A}(a \mid x, \lambda) \prod_{j=1}^{m} P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \\
& \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \mathrm{d} \gamma(\lambda) \mathrm{d} \tau_{1}\left(\mu_{1}\right) \ldots \mathrm{d} \tau_{m}\left(\mu_{m}\right) \tag{12}
\end{align*}
$$

for all $a, \mathbf{b}, \mathbf{c}, x, \mathbf{y}, \mathbf{z}$, where
(i) $(\Lambda, \Omega, \mu) \equiv\left(D \times \prod_{j=1}^{m} F_{j}, \sigma \times \prod_{j=1}^{m} \delta_{j}, \gamma \times \prod_{j=1}^{m} \tau_{j}\right)$ is a product measure space with

$$
\lambda=\left(\lambda^{1}, \ldots, \lambda^{m}\right) \in D, \mu_{j}=\left(\mu_{1}^{j}, \ldots, \mu_{n_{j}}^{j}\right) \in F_{j}(j \in[m])(\text { LHVs }) ;
$$

$$
\begin{gathered}
D=D_{1} \times \ldots \times D_{m}, F_{j}=F_{1}^{j} \times \ldots \times F_{n_{j}}^{j}(j \in[m])(\text { spaces of LHVs) } \\
\sigma=\prod_{j=1}^{m} \sigma_{j}, \delta_{j}=\prod_{k=1}^{n_{j}} \delta_{k}^{j}(j \in[m]) \text { (product } \sigma \text {-algebras) } \\
\gamma=\prod_{j=1}^{m} \gamma_{j}, \tau_{j}=\prod_{k=1}^{n_{j}} \tau_{k}^{j}(j \in[m]) \text { (product measures) }
\end{gathered}
$$

(ii) All of the local hidden variables (LHVs) $\lambda^{1}, \ldots, \lambda^{m}, \mu_{1}^{j}, \ldots, \mu_{n_{j}}^{j}(\forall j \in[m])$ are independent, i.e.,

$$
\begin{equation*}
p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)=\prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \tag{13}
\end{equation*}
$$

where $p_{j}\left(\lambda^{j}\right)$ and $p_{j, k}\left(\mu_{k}^{j}\right)$ are density functions (DFs) of λ_{j} and $\mu_{k^{\prime}}^{j}$ respectively, i.e., they are non-negative and satisfy

$$
\int_{D_{j}} p_{j}\left(\lambda^{j}\right) \mathrm{d} \gamma_{j}\left(\lambda^{j}\right)=1, \int_{F_{k}^{j}} p_{j, k}\left(\mu_{k}^{j}\right) \mathrm{d} \tau_{k}^{j}\left(\mu_{k}^{j}\right)=1 ;
$$

(iii) $P_{A}(a \mid x, \lambda), P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right)$ and $P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)$ are PDs of a, b_{j} and $c_{j, k}$, respectively, and are measurable with respect to $\lambda,\left(\lambda^{j}, \mu_{j}\right)$ and $\mu_{k^{\prime}}^{j}$ respectively.

A star-shaped CT $\mathbf{P}=\llbracket P(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ over Δ_{S} is said to be C-star-nonlocal if it is not C-star-local.

We use $\mathcal{C} \mathcal{T}^{\text {C-star-local }}\left(\Delta_{S}\right)$ and $\mathcal{C} \mathcal{T}^{\text {C-star-nonlocal }}\left(\Delta_{S}\right)$ to denote the sets of all C-star-local CTs and all C-star-nonlocal CTs over Δ_{S}, respectively.

Specifically, when $D_{1}, \ldots, D_{m}, F_{1}^{j}, \ldots, F_{n_{j}}^{j}(j \in[m])$ are finite sets with the counting measures, a C-star-shaped-LHVM (12) becomes a "D-star-shaped-LHVM":

$$
\begin{align*}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) P_{A}(a \mid x, \lambda) \\
& \times \prod_{j=1}^{m} P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \tag{14}
\end{align*}
$$

where $\left\{P_{A}(a \mid x, \lambda)\right\},\left\{P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right)\right\}$, and $\left\{P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)\right\}$ are PDs of a, b_{j} and $c_{j, k}$, respectively, and the joint PD $p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)$ is given by (13). In this case, we say that \mathbf{P} is D-star-local. If P has no D-star-shaped LHVMs of the form (14), then we say that it is D-star-nonlocal.

We use $\mathcal{C} \mathcal{T}^{\text {D-star-local }}\left(\Delta_{S}\right)$ and $\mathcal{C} \mathcal{T}^{\text {D-star-nonlocal }}\left(\Delta_{S}\right)$ to denote the sets of all D-star-local CTs and all D-star-nonlocal CTs over Δ_{S}, respectively. Clearly,

$$
\mathcal{C} \mathcal{T}^{\text {D-star-local }}\left(\Delta_{S}\right) \subset \mathcal{C} \mathcal{T}^{\text {C-star-local }}\left(\Delta_{S}\right)
$$

Definition 3. A star-shaped PT $\mathbf{P}=\llbracket P(a \mathbf{b c}) \rrbracket$ over Ω_{S} is said to be C-star-local if it admits a "C-star-shaped LHVM":

$$
\begin{align*}
P(a \mathbf{b c})= & \int_{D \times F_{1} \times \ldots \times F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) P_{A}(a \mid \lambda) \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid \lambda^{j}, \mu_{j}\right) \\
& \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid \mu_{k}^{j}\right) \mathrm{d} \gamma(\lambda) \mathrm{d} \tau_{1}\left(\mu_{1}\right) \ldots \mathrm{d} \tau_{m}\left(\mu_{m}\right) \tag{15}
\end{align*}
$$

for all $a, \mathbf{b}, \mathbf{c}$, where $p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)$ is a DF of the form (13). It is said to be C-star-nonlocal if it is not C-star-local.

Definition 4. A star-shaped PT $\mathbf{P}=\llbracket P(a \mathbf{b c}) \rrbracket$ over Ω_{S} is said to be D-star-local if it admits a "D-star-shaped LHVM":

$$
\begin{align*}
P(a \mathbf{b c})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) P_{A}(a \mid \lambda) \\
& \times \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid \mu_{k}^{j}\right) \tag{16}
\end{align*}
$$

for all $a, \mathbf{b}, \mathbf{c}$, where $p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)$ is a PD of the form (13). It is said to be D-star-nonlocal if it is not D-star-local.

Definition 5. A star-shaped PT $\mathbf{P}=\llbracket P(a \mathbf{b c}) \rrbracket$ over Ω_{S} is said to be star-local if it is either C-star-local or D-star-local. It is said to be star-nonlocal if is neither C-star-local nor D-star-local.

We use $\mathcal{P} \mathcal{T}^{\text {C-star-local }}\left(\Omega_{S}\right)$ (resp., $\mathcal{P} \mathcal{T}^{\text {D-star-local }}\left(\Omega_{S}\right)$) to denote the set of all C-star-local (resp., D-star-local) star-shaped PTs over Ω_{S}.

Clearly,

$$
\mathcal{P} \mathcal{T}^{\text {D-star-local }}\left(\Omega_{S}\right) \subset \mathcal{P} \mathcal{T}^{\text {C-star-local }}\left(\Omega_{S}\right)
$$

3.2. Characterizations

To show every C-star-local CT (especially every PT) is D-star-local, we need the following lemma [37,43]. Recall that an $m \times n$ function matrix $B(\lambda)=\left[b_{i j}(\lambda)\right]$ on Λ is said to be row-statistic (RS) if, for each $\lambda \in \Lambda, b_{i j}(\lambda) \geq 0$ for all i, j and $\sum_{j=1}^{n} b_{i j}(\lambda)=1$.

Lemma 1. Let (Λ, Ω) be a measurable space and let $B(\lambda)=\left[b_{i j}(\lambda)\right]$ be an $m \times n$ RS function matrix whose entries $b_{i j}$ are Ω-measurable on Λ. Then, $B(\lambda)$ can be written as:

$$
\begin{equation*}
B(\lambda)=\sum_{k=1}^{n^{m}} \alpha_{k}(\lambda)\left[\delta_{j, J_{k}(i)}\right], \forall \lambda \in \Lambda \tag{17}
\end{equation*}
$$

where $\alpha_{k}\left(k=1,2, \ldots, n^{m}\right)$ are all non-negative and Ω-measurable functions on Λ with $\sum_{k=1}^{n^{m}} \alpha_{k}(\lambda)=$ 1 for all $\lambda \in \Lambda$, and $\left\{J_{k}\right\}_{k=1}^{n^{m}}$ denotes the set of all maps from $[m]$ into $[n]$.

Put

$$
N(A)=o(A)^{m(A)}, N\left(B^{j}\right)=o\left(B^{j}\right)^{m\left(B^{j}\right)}, N\left(C_{k}^{j}\right)=o\left(C_{k}^{j}\right)^{m\left(C_{k}^{j}\right)}
$$

and let $\left\{J_{i}\right\}_{i=1}^{N(A)}$ be the set of all maps from $[m(A)]$ into $[o(A)],\left\{K_{s_{j}}^{j}\right\}_{s_{j}=1}^{N\left(B^{j}\right)}$ the set of all maps from $\left[m\left(B^{j}\right)\right]$ into $\left[o\left(B^{j}\right)\right]$, and let $\left\{L_{t_{j k}}^{j, k}\right\}_{t_{j k}=1}^{N\left(C_{k}^{j}\right)}$ be the set of all maps from $\left[m\left(C_{k}^{j}\right)\right]$ into $\left[o\left(C_{k}^{j}\right)\right]$.

Let $\mathbf{P}=\llbracket P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) \rrbracket$ be a C-star-local CT over Δ_{S}. Then, it has a C-star-shaped LHVM (12). Since function matrices
$M(\lambda):=\left[P_{A}(a \mid x, \lambda)\right]_{x, a}, M\left(\lambda^{j}, \mu_{j}\right):=\left[P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right)\right]_{y_{j}, b_{j},} M\left(\mu_{k}^{j}\right):=\left[P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)\right]_{z_{j, k}, c_{j, k}}$
are RS for each parameters $\lambda,\left(\lambda^{j}, \mu_{j}\right), \mu_{k}^{j}$ and their entries are measurable with respect to the related parameters, respectively, it follows from Lemma 1 that they have the following decompositions:

$$
M(\lambda)=\sum_{i=1}^{N(A)} \alpha(i \mid \lambda)\left[\delta_{a, J_{i}(x)}\right]
$$

$$
\begin{gathered}
M\left(\lambda^{j}, \mu_{j}\right)=\sum_{s_{j}=1}^{N\left(B^{j}\right)} \beta^{j}\left(s_{j} \mid \lambda^{j}, \mu_{j}\right)\left[\delta_{b_{j}, K_{s_{j}}}\left(y_{j}\right)\right] \\
M\left(\mu_{k}^{j}\right)=\sum_{t_{j k}=1}^{N\left(c_{k}^{j}\right)} f^{j, k}\left(t_{j k} \mid \mu_{k}^{j}\right)\left[\delta_{c_{j, k}, L_{t_{j k}}^{j, k}}\left(z_{j, k}\right)\right.
\end{gathered}
$$

equivalently,

$$
\begin{gather*}
P_{A}(a \mid x, \lambda)=\sum_{i=1}^{N(A)} \alpha(i \mid \lambda) \delta_{a, J_{i}(x)}, \tag{18}\\
P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right)=\sum_{s_{j}=1}^{N\left(B^{j}\right)} \beta^{j}\left(s_{j} \mid \lambda^{j}, \mu_{j}\right) \delta_{b_{j}, K_{s_{j}}^{j}\left(y_{j}\right)^{\prime}} \tag{19}\\
P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)=\sum_{t_{j k}=1}^{N\left(C_{k}^{j}\right)} f^{j, k}\left(t_{j k} \mid \mu_{k}^{j}\right) \delta_{c_{j, k,}, L_{t_{j k}}^{j, k}\left(z_{j, k}\right)^{\prime}} \tag{20}
\end{gather*}
$$

where $\alpha_{i}(\lambda), \beta_{s_{j}}^{j}\left(\lambda^{j}, \mu_{j}\right)$ and $f_{t_{j k}}^{j, k}\left(\mu_{k}^{j}\right)$ are PDs of i, s_{j} and $t_{j k}$, respectively, and are measurable with respect to $\lambda,\left(\lambda^{j}, \mu_{j}\right)$ and $\mu_{k^{\prime}}^{j}$ respectively. It follows from Equations (12) and (18)-(20) that

$$
\begin{equation*}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})=\sum_{i, s_{j}, t_{j k}} \pi(i, \mathbf{s}, \mathbf{t}) \delta_{a, J_{i}(x)} \prod_{j=1}^{m} \delta_{b_{j}, K_{s_{j}}^{j}\left(y_{j}\right)} \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \delta_{c_{j, k}, L_{t_{j k}}^{j, k}}\left(z_{j, k}\right) \tag{21}
\end{equation*}
$$

for all $a, \mathbf{b}, \mathbf{c}, x, \mathbf{y}, \mathbf{z}$, where $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{m}\right) \equiv\left\{s_{j}\right\}_{j=1}^{m}$,

$$
\mathbf{t}=\left(t_{11}, t_{12}, \ldots, t_{1 n_{1}}, t_{21}, t_{22}, \ldots, t_{2 n_{2}}, \ldots, t_{m 1}, t_{m 2}, \ldots, t_{m n_{m}}\right) \equiv\left\{t_{j k}\right\}_{j \in[m], k \in\left[n_{j}\right]},
$$

and

$$
\begin{align*}
\pi(i, \mathbf{s}, \mathbf{t})= & \int_{D \times F_{1} \times \ldots \times F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) \alpha(i \mid \lambda) \prod_{j=1}^{m} \beta^{j}\left(s_{j} \mid \lambda^{j}, \mu_{j}\right) \\
& \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} f^{j, k}\left(t_{j k} \mid \mu_{k}^{j}\right) \mathrm{d} \gamma(\lambda) \mathrm{d} \tau_{1}\left(\mu_{1}\right) \ldots \mathrm{d} \tau_{m}\left(\mu_{m}\right) \tag{22}
\end{align*}
$$

with $p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)$ given by (13). Clearly, $\mathbf{p}=\llbracket \pi(i, \mathbf{s}, \mathbf{t}) \rrbracket$ is a C-star-local PT over

$$
\Gamma_{S}=[N(A)] \times \prod_{j=1}^{m}\left[N\left(B^{j}\right)\right] \times \prod_{j=1}^{m} \prod_{k=1}^{n_{i}}\left[N\left(C_{k}^{j}\right)\right]
$$

which generates \mathbf{P} in terms of Equation (21).
Conversely, if (21) holds for some completely independent PD (13) and a C-star-local PT $\mathbf{p}=\llbracket \pi(i, \mathbf{s}, \mathbf{t}) \rrbracket$ with a C-star-shaped LHVM (22), then (12) holds for $P_{A}, P_{B^{j}}$ and $P_{C_{k}^{j}}$ given by Equations (18)-(20). Thus, \mathbf{P} is C-star-local.

This shows that (12) \Leftrightarrow (21) and leads to the following.
Theorem 1. A star-shaped CT \mathbf{P} over Δ_{S} is C-star-local if and only if it has the following decomposition:

$$
\begin{equation*}
\mathbf{P}=\sum_{i, \mathbf{s}, \mathbf{t}} \pi(i, \mathbf{s}, \mathbf{t}) \mathbf{D}_{i, \mathbf{s}, \mathbf{t}} \tag{23}
\end{equation*}
$$

where $\mathbf{p}=\llbracket \pi(i, \mathbf{s}, \mathbf{t}) \rrbracket$ is a C-star-local PT over Γ_{S} given by (22) and $\mathbf{D}_{i, \mathbf{s}, \mathbf{t}}=\llbracket D_{i, \mathbf{s}, \mathbf{t}}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) \rrbracket$ is given by

$$
D_{i, \mathbf{s}, \mathbf{t}}(a \mathbf{b c} \mid x \mathbf{y z})=\delta_{a, J_{i}(x)} \prod_{j=1}^{m} \delta_{b_{j}, K_{s_{j}}^{j}\left(y_{j}\right)} \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \delta_{c_{j, k}, L_{t_{j k}}^{j, k}}\left(z_{j, k}\right)
$$

As an application of Theorem 1, we obtain the following relationship between C-starlocal CTs and C-star-local PTs:

$$
\begin{equation*}
\mathcal{C} \mathcal{T}^{\text {C-star-local }}\left(\Delta_{S}\right)=\left\{\sum_{i, \mathbf{s}, \mathbf{t}} \pi(i, \mathbf{s}, \mathbf{t}) \mathbf{D}_{i, \mathbf{s}, \mathbf{t}}: \mathbf{p}=\llbracket \pi(i, \mathbf{s}, \mathbf{t}) \rrbracket \in \mathcal{P} \mathcal{T}^{\text {C-star-local }}\left(\Gamma_{S}\right)\right\} \tag{24}
\end{equation*}
$$

Again, we let \mathbf{P} be a C-star-local CT over Δ_{S}. We aim to prove that \mathbf{P} is D-star-local. First, it has a C-star-shaped LHVM (12). Since

$$
p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)=\prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right),
$$

we obtain from (12) and (20) that

$$
\begin{align*}
P(a \mathbf{b c} \mid x \mathbf{y z})= & \sum_{t_{j k} \in\left[N\left(C_{n_{j}}^{j}\right)\right](j \in[m])} \int_{D} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times P_{A}(a \mid x, \lambda) \mathrm{d} \gamma(\lambda) \\
& \times \int_{F_{1} \times \ldots \times F_{m}} \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) f_{t_{j k}}^{j, k}\left(\mu_{k}^{j}\right) \mathrm{d} \tau_{1}\left(\mu_{1}\right) \ldots \mathrm{d} \tau_{m}\left(\mu_{m}\right) \\
& \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \delta_{c_{j, k}, l_{t_{j k k}}^{j, k}\left(z_{j, k} .\right.} . \tag{25}
\end{align*}
$$

Put

$$
q_{j, k}\left(t_{j k}\right)=\int_{F_{k}^{j}} f_{t_{j k}}^{j, k}\left(\mu_{k}^{j}\right) p_{j, k}\left(\mu_{k}^{j}\right) \mathrm{d} \tau_{k}^{j}\left(\mu_{k}^{j}\right),
$$

which are PDs of $t_{j k}$ and satisfy

$$
\prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right)=\int_{F_{j}} \prod_{k=1}^{n_{j}}\left(f_{t_{j k}}^{j, k}\left(\mu_{k}^{j}\right) p_{j, k}\left(\mu_{k}^{j}\right)\right) \mathrm{d} \tau_{j}\left(\mu_{j}\right)
$$

and define

$$
\begin{gathered}
P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right)=\frac{1}{\prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right)} \int_{F_{j}} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times\left(\prod_{k=1}^{n_{j}} f_{t_{j k}}^{j, k}\left(\mu_{k}^{j}\right) p_{j, k}\left(\mu_{k}^{j}\right)\right) \mathrm{d} \tau_{j}\left(\mu^{j}\right) \\
\text { if } \prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right)>0 ; \text { and }
\end{gathered}
$$

$$
P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right)=\frac{1}{o\left(B^{j}\right)}
$$

otherwise. Clearly, $P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right)$ is a PD of b_{j} for each $\left(y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right)$, and when $\prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right)>0$, we have

$$
\begin{equation*}
\prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right) \times P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right)=\int_{F_{j}} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right)\left(\prod_{k=1}^{n_{j}} f_{t_{j k}}^{j, k}\left(\mu_{k}^{j}\right) p_{j, k}\left(\mu_{k}^{j}\right)\right) \mathrm{d} \tau_{j}\left(\mu^{j}\right) \tag{26}
\end{equation*}
$$

Note that the right-hand side of above equation is less than equal to $\prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right)$ and is equal to zero when $\prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right)=0$. Thus, Equation (26) is valid in any case. Using Equation (26) yields that

$$
\begin{aligned}
& \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right) \times \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right) \\
= & \prod_{j=1}^{m} \int_{F_{j}} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times\left(\prod_{k=1}^{n_{j}} f_{t_{j k}}^{j, k}\left(\mu_{k}^{j}\right) p_{j, k}\left(\mu_{k}^{j}\right)\right) \mathrm{d} \tau_{j}\left(\mu^{j}\right) \\
= & \int_{F_{1} \times \ldots \times F_{m}} \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right)\left(\prod_{j=1}^{m} \prod_{k=1}^{n_{j}} f_{t_{j k}}^{j, k}\left(\mu_{k}^{j}\right) p_{j, k}\left(\mu_{k}^{j}\right)\right) \mathrm{d} \tau_{1}\left(\mu_{1}\right) \ldots \mathrm{d} \tau_{m}\left(\mu_{m}\right) .
\end{aligned}
$$

Combining Equation (25) yields that

$$
\begin{align*}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{t_{j k} \in\left[N\left(C_{n_{j}}^{j}\right)\right](j \in[m], j \in[m])} \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right) \\
& \times \int_{D} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right) \times P_{A}(a \mid x, \lambda) \mathrm{d} \gamma(\lambda) \\
& \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \delta_{c_{j, k}, k} t_{t_{j k}, k}^{j, k}\left(z_{j, k} .\right. \tag{27}
\end{align*}
$$

Using Lemma 1 for the RS function matrix $\left[P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right)\right]$ with $\left(y_{j} t_{j 1} \cdots t_{j n_{j}}, b_{j}\right)-$ entry $P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right)$, we get that

$$
\begin{equation*}
\left.P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right)=\sum_{r^{j}=1}^{N^{*}\left(B^{j}\right)} g_{r j^{j}}^{j}\left(\lambda^{j}\right) \delta_{b_{j}, E_{r^{j}}^{j}\left(y_{j}, t_{j 1}, \ldots, t_{n_{j}}\right.}\right)^{\prime} \tag{28}
\end{equation*}
$$

where

$$
N^{*}\left(B^{j}\right)=o\left(B_{j}\right)^{m\left(B_{j}\right) N\left(C_{1}^{j}\right) \cdots N\left(C_{n_{j}}^{j}\right)},
$$

$g_{r r^{j}}^{j}\left(\lambda^{j}\right)$ is a PD of r^{j} and is measurable with respect to λ^{j}, and $\left\{E_{r^{j}}^{j}\right\}_{r^{j} \in\left[N^{*}\left(B^{j}\right)\right]}$ denotes the set of all maps from $\left[m\left(B_{j}\right) N\left(C_{1}^{j}\right) \cdots N\left(C_{n_{j}}^{j}\right)\right]$ into $\left[o\left(B_{j}\right)\right]$. Thus, we see from Equation (28) that

$$
\begin{align*}
\prod_{j=1}^{m} P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, t_{j 1}, \ldots, t_{j n_{j}}\right) & =\prod_{j=1}^{m} \sum_{r^{j}=1}^{N^{*}\left(B^{j}\right)} g_{r^{j}}^{j}\left(\lambda^{j}\right) \delta_{b_{j}, E_{r j}^{j}\left(y_{j}, t_{j}, \ldots, t_{j_{n}}\right)} \\
& =\sum_{r_{1}=1}^{N^{*}\left(B^{1}\right)} \cdots \sum_{r_{m}=1}^{N^{*}\left(B^{m}\right)} \prod_{j=1}^{m} g_{r^{j}}^{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \delta_{b_{j}, E_{r_{j}}^{j}\left(y_{j}, t_{j 1}, \ldots, t_{j n_{j}}\right)} . \tag{29}
\end{align*}
$$

It follows from Equations (27) and (29) that

$$
\left.\begin{array}{rl}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{r^{1}=1}^{N^{*}\left(B^{1}\right)} \cdots \sum_{r^{m}=1}^{N^{*}\left(B^{m}\right)} \sum_{t_{j k} \in\left[N\left(C_{n_{j}}^{j}\right)\right](j \in[m], j \in[m])} \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right) \\
& \times \int_{D} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} g_{r^{j}}^{j}\left(\lambda^{j}\right) \times P_{A}(a \mid x, \lambda) \mathrm{d} \gamma(\lambda) \\
& \times \prod_{j=1}^{m} \delta_{b_{j}, E_{r j}^{j}}^{j}\left(y_{j}, t_{j 1}, \ldots, t_{j_{n}}\right) \tag{30}
\end{array}\right) \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \delta_{c_{j, k}, l_{1}} t_{t_{j k}, k}\left(z_{j, k}\right) .
$$

Put

$$
\begin{equation*}
h_{j}\left(r^{j}\right)=\int_{D_{j}} p_{j}\left(\lambda^{j}\right) g_{r^{j}}^{j}\left(\lambda^{j}\right) \mathrm{d} \tau_{j}\left(\lambda^{j}\right), \tag{31}
\end{equation*}
$$

then we obtain a $\operatorname{PD} h_{j}\left(r^{j}\right)$ of r^{j} for every j. Define $r=\left(r^{1}, r^{2}, \ldots, r^{m}\right)$ and put

$$
P_{A}(a \mid x, r)=\frac{1}{\prod_{j=1}^{m} h_{j}\left(r^{j}\right)} \int_{D} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} g_{r^{j}}^{j}\left(\lambda^{j}\right) \times P_{A}(a \mid x, \lambda) \mathrm{d} \gamma(\lambda)
$$

if $\prod_{j=1}^{m} h_{j}\left(r^{j}\right)>0$; otherwise, define $P_{A}(a \mid x, r)=\frac{1}{o_{A}}$ for all a, x, then $P_{A}(a \mid x, r)$ is a PD of a and

$$
\begin{equation*}
\int_{D} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} g_{r^{j}}^{j}\left(\lambda^{j}\right) \times P_{A}(a \mid x, \lambda) \mathrm{d} \gamma(\lambda)=\prod_{j=1}^{m} h_{j}\left(r^{j}\right) \times P_{A}(a \mid x, r) \tag{32}
\end{equation*}
$$

Thus, from Equations (30) and (32), we get that

$$
\begin{align*}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{r \in R, t_{1} \in T_{1}, \ldots, t_{m} \in T_{m}} \prod_{j=1}^{m} h_{j}\left(r^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right) \times P_{A}(a \mid x, r) \\
& \times \prod_{j=1}^{m} \delta_{b_{j}, K_{r j}^{j}\left(y_{j}, t_{j 1}, \ldots, t_{j_{n}}\right)} \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \delta_{c_{j, k}, L_{L_{j k}}^{j, k}\left(z_{j, k}\right)^{\prime}} \tag{33}
\end{align*}
$$

where $t_{j}=\left(t_{j 1}, \ldots, t_{j n_{j}}\right)$, and

$$
R=\prod_{j=1}^{m}\left[N^{*}\left(B^{j}\right)\right], T_{j}=\left[N\left(C_{1}^{j}\right)\right] \times \cdots \times\left[N\left(C_{n_{j}}^{j}\right)\right](j=1,2, \ldots, m)
$$

Put

$$
P_{B j}\left(b_{j} \mid y_{j}, r^{j}, t_{j}\right)=\delta_{b_{j}, K_{r j}^{j} j}^{j}\left(y_{j}, t_{j 1}, \ldots, t_{j n_{j}}\right), P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, t_{j k}\right)=\delta_{c_{j, k}, L_{t_{j k}}^{j, k}}\left(z_{j, k}\right)^{\prime}
$$

which are of PDs of b_{j} and $c_{j, k}$, respectively. Then Equation (33) becomes

$$
\begin{align*}
P(a \mathbf{b c} \mid x \mathbf{y z})= & \sum_{r \in R, t_{1} \in T_{1}, \ldots, t_{m} \in T_{m}} \prod_{j=1}^{m} h_{j}\left(r^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} q_{j, k}\left(t_{j k}\right) \times P_{A}(a \mid x, r) \\
& \times \prod_{j=1}^{m} P_{B j}\left(b_{j} \mid y_{j}, r^{j}, t_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, t_{j k}\right) . \tag{34}
\end{align*}
$$

This shows that \mathbf{P} is D-star-local.
From this discussion, we have the following conclusion.
Theorem 2. A star-shaped CT P over Δ_{S} is C-star-local if and only if it is D-star-local, that is,

$$
\mathcal{C} \mathcal{T}^{\text {C-star-local }}\left(\Delta_{S}\right)=\mathcal{C} \mathcal{T}^{\text {D-star-local }}\left(\Delta_{S}\right) \equiv \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)
$$

Due to this conclusion, we say that a star-shaped CT P over Δ_{S} is star-local if it is C-star-local, equivalently, if it is D-star-local.

As a special case of $m=n_{1}=n_{2}=2$, Theorem 2 implies the following result, which is an equivalent characterization of the six-locality discussed in [41].

Corollary 1. The correlations $P\left(a, b_{1}, b_{2}, c_{1}, c_{2}, c_{3}, c_{4} \mid x, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, z_{4}\right)$ discussed in [41] are six-local if and only if the following decomposition is valid:

$$
\begin{align*}
& P\left(a, b_{1}, b_{2}, c_{1}, c_{2}, c_{3}, c_{4} \mid x, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, z_{4}\right) \\
& =\sum_{\lambda_{k} \in\left[n_{k}\right](\forall k)} \prod_{k=1}^{6} p_{k}\left(\lambda_{k}\right) \times P_{1}\left(a \mid x, \lambda_{1} \lambda_{2}\right) P_{2}\left(b_{1} \mid y_{1}, \lambda_{1} \lambda_{3} \lambda_{4}\right) P_{3}\left(b_{2} \mid y_{2}, \lambda_{2} \lambda_{5} \lambda_{6}\right) \\
& \times P_{4}\left(c_{1} \mid z_{1}, \lambda_{3}\right) P_{5}\left(c_{2} \mid z_{2}, \lambda_{4}\right) P_{6}\left(c_{3} \mid z_{3}, \lambda_{5}\right) P_{7}\left(c_{4} \mid z_{4}, \lambda_{6}\right) \tag{35}
\end{align*}
$$

for all possible $a, b_{1}, b_{2}, c_{1}, c_{2}, c_{3}, c_{4}, x, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, z_{4}$, where $p_{k}\left(\lambda_{k}\right)$'s are PDs of λ_{k}, and $P_{1}, P_{2}, \ldots, P_{7}$ are PDs of $a, b_{1}, b_{2}, c_{1}, c_{2}, c_{3}, c_{4}$, respectively.

Theorem 3. A star-shaped $C T \mathbf{P}=\llbracket P(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ over Δ_{S} is star-local if and only if it is "separable star-quantum", i.e., it can be generated by an $M A$ (3) together with some separable states $\rho_{A_{j} B_{0}^{j}} \in \mathcal{D}\left(\mathcal{H}_{A^{j}} \otimes \mathcal{H}_{B_{0}^{j}}\right)$ and $\rho_{B_{k}^{j} C_{k}^{j}} \in \mathcal{D}\left(\mathcal{H}_{B_{k}^{j}} \otimes \mathcal{H}_{C_{k}^{j}}\right)$, in such a way that

$$
\begin{equation*}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})=\operatorname{tr}\left[\left(M_{a \mid x} \otimes N_{\mathbf{b} \mid \mathbf{y}} \otimes L_{\mathbf{c} \mid \mathbf{z}}\right) \tilde{\Gamma}\right], \forall x, a, \mathbf{y}, \mathbf{b}, \mathbf{z}, \mathbf{c}, \tag{36}
\end{equation*}
$$

where the network state Γ is given by Equation (1).
Proof. To show the necessity, we let $\mathbf{P}=\llbracket P(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ be star-local. Then, it can be written as (14), that is,

$$
\begin{align*}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) P_{A}(a \mid x, \lambda) \\
& \times \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \tag{37}
\end{align*}
$$

where $\left\{P_{A}(a \mid x, \lambda)\right\},\left\{P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right)\right\}$ and $\left\{P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)\right\}$ are PDs of a, b_{j} and $c_{j, k}$, respectively, and

$$
\begin{equation*}
p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)=\prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \tag{38}
\end{equation*}
$$

in which $p_{j}\left(\lambda^{j}\right)$ and $p_{j, k}\left(\mu_{k}^{j}\right)$ are PDs of λ_{j} and $\mu_{k^{\prime}}^{j}$ respectively. Choose Hilbert spaces

$$
\mathcal{H}_{A^{j}}=\mathcal{H}_{B_{0}^{j}}=\mathbb{C}^{\left|D_{j}\right|}, \quad \mathcal{H}_{B_{k}^{j}}=\mathcal{H}_{C_{k}^{j}}=\mathbb{C}^{\left|F_{k}^{j}\right|}, \forall j, k,
$$

where $|S|$ denotes the cardinality of a finite set S; take their orthonormal bases $\left\{\left|s_{\lambda j}\right\rangle\right\}_{\lambda^{j}=1}^{\left|D_{j}\right|}$ and $\left\{\left|t_{\mu_{k}^{j}}\right\rangle\right\}_{\mu_{k}^{j}=1}^{\left|F_{k}^{j}\right|}(\forall j, k)$, respectively; and put

$$
\mathcal{H}_{A}=\bigotimes_{j=1}^{m} \mathcal{H}_{A^{j}}, \quad \mathcal{H}_{B^{j}}=\mathcal{H}_{B_{0}^{j}} \otimes\left(\bigotimes_{k=1}^{n_{j}} \mathcal{H}_{B_{k}^{j}}\right)
$$

Choose separable states

$$
\rho_{A_{j} B_{0}^{j}}=\sum_{\lambda^{j}=1}^{\left|D_{j}\right|} p_{j}\left(\lambda^{j}\right)\left|s_{\lambda_{j}}\right\rangle\left\langle s_{\lambda^{j}}\right| \otimes\left|s_{\lambda^{j}}\right\rangle\left\langle s_{\lambda_{j}}\right|, \rho_{B_{k}^{j} C_{k}^{j}}=\sum_{\mu_{k}^{j}=1}^{\left|F_{k}^{j}\right|} p_{j, k}\left(\mu_{k}^{j}\right)\left|t_{\mu_{k}^{j}}\right\rangle\left\langle t_{\mu_{k}^{j}}\right| \otimes\left|t_{\mu_{k}^{j}}\right\rangle\left\langle t_{\mu_{k}^{j}}\right| .
$$

Then, we can obtain a network state

$$
\Gamma=\left(\bigotimes_{j=1}^{m} \rho_{A j B_{0}^{j}}\right) \otimes\left(\bigotimes_{j=1}^{m}\left(\rho_{B_{1}^{j} C_{1}^{j}} \otimes \rho_{B_{2}^{j} C_{2}^{j}} \otimes \ldots \otimes \rho_{B_{n_{j}}^{j} C_{n_{j}}^{j}}\right)\right.
$$

which induces the measurement state

$$
\widetilde{\Gamma}=\sum_{\lambda \in D} \sum_{\mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \times \Gamma^{\prime}\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right),
$$

where

$$
\Gamma^{\prime}\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)=\left(\bigotimes_{j=1}^{m}\left|s_{\lambda_{j}}\right\rangle\left\langle s_{\lambda j}\right|\right) \otimes\left(\bigotimes_{j=1}^{m}\left[\left|s_{\lambda_{j}}\right\rangle\left\langle s_{\lambda j}\right| \otimes \bigotimes_{k=1}^{n_{j}}\left|t_{\mu_{k}^{j}}\right\rangle\left\langle t_{\mu_{k}^{j}}\right|\right]\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}}\left|t_{\mu_{k}^{j}}\right\rangle\left\langle t_{\mu_{k}^{j}}\right|\right) .
$$

To define an MA (3), we put

$$
\begin{gathered}
M_{a \mid x}=\sum_{\lambda \in D} P_{A}(a \mid x, \lambda) \bigotimes_{j=1}^{m}\left|s_{\lambda j}\right\rangle\left\langle s_{\lambda_{j}}\right|, \\
N_{b_{j} \mid y_{j}}=\sum_{\mu_{j} \in F_{j}} P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right)\left|s_{\lambda j}\right\rangle\left\langle s_{\lambda j}\right| \otimes\left(\bigotimes_{k=1}^{n_{j}}\left|t_{\mu_{k}^{j}}\right\rangle\left\langle t_{\mu_{k}^{j}}\right|\right), \\
L_{c_{j, k} \mid c_{j, k}}=\sum_{\mu_{k}^{j} \in F_{k}^{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)\left|t_{\mu_{k}^{j}}\right\rangle\left\langle t_{\mu_{k}^{j}}\right| .
\end{gathered}
$$

It can be checked that

$$
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})=\operatorname{tr}\left[\left(M_{a \mid x} \otimes N_{\mathbf{b} \mid \mathbf{y}} \otimes L_{\mathbf{c} \mid \mathbf{z}}\right) \widetilde{\Gamma}\right]
$$

for all possible variables $a, \mathbf{b}, \mathbf{c}, x, \mathbf{y}$, and \mathbf{z}. This proves that \mathbf{P} is separable star-quantum.
Conversely, we suppose that \mathbf{P} can be written as the form of (36). Then, from the proof of Proposition 4, we see that \mathbf{P} has a D-star-shaped LHVM (9) and then is star-local. The proof is completed.

Theorem 4. Let a star-shaped CT $\mathbf{P}=\llbracket P(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ over Δ_{S} be star-local. Then, for each $1 \leq j_{0} \leq m$ and $\left(j_{0}, k_{0}\right) \in[m] \times\left[n_{j_{0}}\right]$, the following conclusions are valid.
(a) The marginal $\mathbf{P}_{A B^{j_{0}} C_{k_{0}}^{j_{0}}}=\llbracket P_{A B^{j_{0}} C_{k_{0}}^{j_{0}}}\left(a b_{j_{0}} c_{j_{0}, k_{0}} \mid x y_{j_{0}} z_{j_{0}, k_{0}}\right) \rrbracket$ of \mathbf{P} on subsystem $A B^{j_{0}} C_{k_{0}}^{j_{0}}$ is bilocal.
(b) The marginal $\mathbf{P}_{A C_{k_{0}}^{j_{0}}}=\llbracket P_{A C_{k_{0}}^{j_{0}}}\left(a c_{j_{0}, k_{0}} \mid x z_{j_{0}, k_{0}}\right) \rrbracket$ of \mathbf{P} on subsystem $A C_{k_{0}}^{j_{0}}$ is product: $\mathbf{P}_{A C_{k_{0}}^{j_{0}}}=\mathbf{P}_{A} \otimes \mathbf{P}_{C_{k_{0}}^{j_{0}}}$, i.e.,

$$
\begin{equation*}
P_{A C_{k_{0}}^{j_{0}}}\left(a c_{j_{0}, k_{0}} \mid x z_{j_{0}, k_{0}}\right)=P_{A}(a \mid x) P_{C_{k_{0}}^{j_{0}}}\left(c_{j_{0}, k_{0}} \mid z_{j_{0}, k_{0}}\right) . \tag{39}
\end{equation*}
$$

(c) The $\left(n_{0}+1\right)$-partite $C T$

$$
\begin{aligned}
\mathbf{P}_{C_{1}^{j_{0}} \cdots C_{n_{j_{0}}}^{j_{0}} B j_{0}} & =\llbracket P_{C_{1}^{j_{0}} \cdots C_{n_{j_{0}}}^{j_{0}} B^{j_{0}}}\left(c_{j_{0}, 1} \cdots c_{j_{0}, n_{0}} b_{j_{0}} \mid z_{j_{0}, 1} \cdots z_{j_{0}, n_{0}} y_{j_{0}}\right) \rrbracket \\
& :=\llbracket P_{A B B_{k_{0}} C_{k_{0}}^{j_{0}}}\left(b_{j_{0}} c_{j_{0}, 1} \cdots c_{j_{0}, n_{0}} \mid y_{j_{0}} z_{j_{0}, 1} \cdots z_{j_{0} n_{0}}\right) \rrbracket
\end{aligned}
$$

is n_{0}-local.

Proof. Since \mathbf{P} is star-local, it has a D-star-shaped LHVM (14):

$$
\begin{align*}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) P_{A}(a \mid x, \lambda) \\
& \times \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right), \tag{40}
\end{align*}
$$

where

$$
\begin{equation*}
p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)=\prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \tag{41}
\end{equation*}
$$

in which $p_{j}\left(\lambda^{j}\right)$ and $p_{j, k}\left(\mu_{k}^{j}\right)$ are PDs of λ_{j} and $\mu_{k^{\prime}}^{j}$ respectively.
(a) Using (40) implies that

$$
\begin{aligned}
& P_{A B B_{0} C_{k_{0}}^{j_{0}}}\left(a b_{j_{0}} c_{j_{0}, k_{0}} \mid x y_{j_{0}} z_{j_{0}, k_{0}}\right) \\
= & \sum_{b_{j}, c_{j, k}\left(j \neq j_{0}, k \neq k_{0}\right)} P(a \mathbf{b c} \mid x \mathbf{y z}) \\
= & \sum_{\lambda^{j_{0}}} \sum_{\mu_{1}^{j_{0}} \cdots \mu_{n_{j_{0}}}^{j_{0}}} p_{j_{0}}\left(\lambda^{j_{0}}\right) p_{j_{0}, 1}\left(\mu_{1}^{j_{0}}\right) \cdots p_{j_{0}, n_{j_{0}}}\left(\mu_{n_{j_{0}}}^{j_{0}}\right) P_{A}\left(a \mid x, \lambda^{j_{0}}\right) \\
& \times P_{B j_{0}}\left(b_{j_{0}} \mid y_{j_{0}}, \lambda^{j_{0}}, \mu_{1}^{j_{0}} \cdots \mu_{n_{j_{0}}}^{j_{0}}\right) P_{C_{k_{0}}^{j_{0}}}\left(c_{j_{0}, k_{0}} \mid z_{j_{0}, k_{0}}, \mu_{k_{0}}^{j_{0}}\right) \\
= & \sum_{\lambda^{j_{0}}} \sum_{\mu_{k_{0}}^{j_{0}}} p_{j_{0}}\left(\lambda^{j_{0}}\right) p_{j_{0}, k_{0}}\left(\mu_{k_{0}}^{j_{0}}\right) P_{A}\left(a \mid x, \lambda^{j_{0}}\right) P_{B_{0}}\left(b_{j_{0}} \mid y_{j_{0}}, \lambda^{j_{0}}, \mu_{k_{0}}^{j_{0}}\right) P_{C_{k_{0}}^{j_{0}}}\left(c_{j_{0}, k_{0}} \mid z_{j_{0}, k_{0}}, \mu_{k_{0}}^{j_{0}}\right),
\end{aligned}
$$

where

$$
\begin{gathered}
P_{A}\left(a \mid x, \lambda^{j_{0}}\right)=\sum_{\lambda_{j} \in F_{j}\left(j \neq j_{0}\right)} p_{j}\left(\lambda_{j}\right) P_{A}(a \mid x, \lambda), \\
P_{B^{j_{0}}}\left(b_{j_{0}} \mid y_{j_{0}}, \lambda^{j_{0}}, \mu_{k_{0}}^{j_{0}}\right)=\sum_{\mu_{k}^{j_{0}}\left(k \neq k_{0}\right)} \prod_{\mu_{k}^{j_{0}}\left(k \neq k_{0}\right)} p_{j_{0}, k}\left(\mu_{k}^{j_{0}}\right) \times P_{B^{j 0}}\left(b_{j_{0}} \mid y_{j_{0}}, \lambda^{j_{0}}, \mu_{1}^{j_{0}} \mu_{2}^{j_{0}} \cdots \mu_{n_{j_{0}}}^{j_{0}}\right) .
\end{gathered}
$$

This shows that $\mathbf{P}_{A B^{j} 0} C_{k_{0}}^{j_{0}}$ is bilocal [43]
(b) Using Equation (42) implies that

$$
\begin{aligned}
P_{A C_{k_{0}}^{0}}^{j_{0}}\left(a c_{j_{0}, k_{0}} \mid x z_{j_{0}, k_{0}}\right) & =\sum_{b_{j_{0}}} P_{A B^{j 0} C_{k_{0}}^{j_{0}}}\left(a b_{j_{0}} c_{j_{0}, k_{0}} \mid x y_{j_{0}} z_{j_{0}, k_{0}}\right) \\
& =\sum_{\lambda^{0}, \mu_{k_{0}}^{j_{0}}} p_{j_{0}}\left(\lambda^{j 0}\right) p_{j_{0}, k_{0}}\left(\mu_{k_{0}}^{j_{0}}\right) P_{A}\left(a \mid x, \lambda^{j_{0}}\right) P_{C_{k_{0}}^{j}}\left(c_{j_{0}, k_{0}} \mid z_{j_{0}, k_{0}}, \mu_{k_{0}}^{j_{0}^{0}}\right) \\
& =P_{A}(a \mid x) P_{C_{k_{0}}^{j}}\left(c_{j_{0}, k_{0}} \mid z_{j_{0}, k_{0}}\right),
\end{aligned}
$$

implying Equation (39).
(c) Using the definition of $\mathbf{P}_{C_{1}^{j_{0}} \ldots C_{n_{j_{0}}}^{j_{0}} B j_{0}}$ and (14), we have

$$
\begin{aligned}
& P_{C_{1}^{j_{0}} \ldots c_{n_{j_{0}}}^{j_{0}}} B_{0}^{j_{0}}\left(c_{j_{0}, 1} \cdots c_{j_{0}, n_{0}} b_{j_{0}} \mid z_{j_{0}, 1} \cdots z_{j_{0}, n_{0}} y_{j_{0}}\right) \\
= & P_{A B^{j_{0}} C_{k_{0}}^{j_{0}}}\left(b_{j_{0}} c_{j_{0}, 1} \cdots c_{j_{0}, n_{0}} \mid y_{j_{0}} z_{j_{0}, 1} \cdots z_{j_{0}, n_{0}}\right) \\
= & \sum_{a} \sum_{b_{j}\left(j \neq j_{0}\right)} \sum_{c_{j, k}\left(k \in\left[n_{j}\right], j \neq j_{0}\right)} P(a \mathbf{b c} \mid x \mathbf{y z}) \\
= & \sum_{\lambda^{j_{0}}} \sum_{\mu_{1}^{j_{0}} \mu_{2}^{j_{0} \cdots \mu_{n_{j_{0}}}^{j_{0}}}} p_{j_{0}}\left(\lambda^{j_{0}}\right) p_{j_{0}, 1}\left(\mu_{1}^{j_{0}}\right) \cdots p_{j_{0}, n_{j_{0}}}\left(\mu_{n_{j_{0}}}^{j_{0}}\right) \\
& \times \prod_{k=1}^{n_{j_{0}}} P_{c_{k}^{j_{0}}}\left(c_{j_{0}, k} \mid z_{j_{0}, k}, \mu_{k}^{j_{0}}\right) \times P_{B^{j_{0}}}\left(b_{j_{0}} \mid y_{j_{0}}, \lambda^{j_{0}}, \mu_{1}^{j_{0}} \cdots \mu_{n_{j_{0}}}^{j_{0}}\right)
\end{aligned}
$$

for all possible $c_{j_{0}, 1}, \ldots, c_{j_{0}, n_{0}}, b_{j_{0}}, z_{j_{0}, 1, \ldots,}, z_{j_{0}, n_{0}}, y_{j_{0}}$. This shows that the $\left(n_{0}+1\right)$-partite CP $\mathbf{P}_{C_{1}^{j_{0}} \ldots C_{n_{j}} j_{0} B j_{0}}$ is n_{0}-local [43]. The proof is completed.

For a star-shaped CT \mathbf{P} over Δ_{S}, the conclusion (a) of Theorem 4 ensures that if there exists an index $\left(j_{0}, k_{0}\right) \in[m] \times\left[n_{0}\right]$ such that the marginal $\mathbf{P}_{A B^{j_{0}} C_{k_{0}}^{j_{0}}}$ is not bilocal, and conclusion (b) implies that if some of the marginal $\mathbf{P}_{A C_{k_{0}}{ }^{j}}$ is not a product, then \mathbf{P} must be star-nonlocal. Using conclusion (c) shows that when some marginal $\mathbf{P}_{C_{1}^{j_{0}} C_{2}^{j_{0}} \ldots C_{n_{j_{0}}}^{j_{0}} B^{j_{0}}}$ is not n_{0}-local [43], \mathbf{P} must be star-nonlocal.

3.3. Global Properties

As the end of this section, let us give some properties of the set $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$. First, since all elements of $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ admit their D-star-shaped LHVMs (34) with the unified form $\sum_{r \in R, t_{1} \in T_{1}, \ldots, t_{m} \in T_{m}}$ of summation, in which the index sets R, T_{1}, \ldots, T_{m} are independent of \mathbf{P}, the following conclusion can be checked easily.

Theorem 5. $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ is a compact subset of the Hilbert space $\mathcal{T}^{\text {star }}\left(\Delta_{S}\right)$.
This conclusion ensures that the set $\mathcal{C} \mathcal{T}^{\text {star-nonlocal }}\left(\Delta_{S}\right)$ forms a relative open set in the Hilbert space $\mathcal{T}^{\text {star }}\left(\Delta_{S}\right)$. That means that any star-shaped CTs near a star-nonlocal CT are all star-nonlocal.

Theorem 6. $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ is a path-connected set in the Hilbert space $\mathcal{T}^{\text {star }}\left(\Delta_{S}\right)$.
Proof. Put

$$
I(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) \equiv\left\{o(A) \prod_{j=1}^{m}\left(o\left(B^{j}\right) \prod_{k=1}^{n_{j}} o\left(C_{k}^{j}\right)\right)\right\}^{-1}
$$

then $\mathbf{I}:=\llbracket I(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) \rrbracket$ is an element of $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$. Let $\mathbf{P}=\llbracket P(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ and $\mathbf{Q}=$ $\llbracket Q(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ be any two elements of $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$. Then, \mathbf{P} and \mathbf{Q} admit D-star-shapedLHVMs:

$$
\begin{aligned}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) P_{A}(a \mid x, \lambda) \\
& \times \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)=\prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right), \tag{42}
\end{equation*}
$$

in which $p_{j}\left(\lambda^{j}\right)$ and $p_{j, k}\left(\mu_{k}^{j}\right)$ are PDs of λ_{j} and $\mu_{k^{\prime}}^{j}$, respectively, and

$$
\begin{aligned}
Q(a \mathbf{b c} \mid x \mathbf{y z})= & \sum_{\eta \in D^{\prime}, \xi_{1} \in F_{1}^{\prime}, \ldots, \xi_{m} \in F_{m}^{\prime}} q\left(\eta, \xi_{1}, \ldots, \xi_{m}\right) Q_{A}(a \mid x, \eta) \\
& \times \prod_{j=1}^{m} Q_{B^{j}}\left(b_{j} \mid y_{j}, \eta^{j}, \xi_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} Q_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \xi_{k}^{j}\right),
\end{aligned}
$$

where $\eta=\left(\eta^{1}, \ldots, \eta^{m}\right), \xi_{j}=\left(\xi_{1}^{j}, \ldots \xi_{n_{j}}^{j}\right)$, and

$$
\begin{equation*}
q\left(\eta, \xi_{1}, \ldots, \xi_{m}\right)=\prod_{j=1}^{m} q_{j}\left(\eta^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} q_{j, k}\left(\tilde{\zeta}_{k}^{j}\right), \tag{43}
\end{equation*}
$$

in which $q_{j}\left(\eta^{j}\right)$ and $q_{j, k}\left(\xi_{k}^{j}\right)$ are PDs of η^{j} and $\xi_{k^{\prime}}^{j}$, respectively.
For every $t \in[0,1 / 2]$, set

$$
\begin{gathered}
P_{A}^{t}(a \mid x, \lambda)=(1-2 t) P_{A}(a \mid x, \lambda)+2 t \frac{1}{o(A)}, \\
P_{B^{j}}^{t}\left(b_{j} \mid y_{j}, \lambda^{j}\right)=(1-2 t) P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}\right)+2 t \frac{1}{o\left(B^{j}\right)}(j \in[m]), \\
P_{C_{k}^{j}}^{t}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)=(1-2 t) P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right)+2 t \frac{1}{o\left(C_{k}^{j}\right)}\left(j \in[m], k \in\left[n_{j}\right]\right),
\end{gathered}
$$

which are clearly PDs of a, b_{j}, and $c_{j, k}$, respectively. Put

$$
\begin{aligned}
P^{t}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) P_{A}^{t}(a \mid x, \lambda) \\
& \times \prod_{j=1}^{m} P_{B^{j}}^{t}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}^{t}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right),
\end{aligned}
$$

then $f(t):=\llbracket P^{t}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) \rrbracket$ is a star-local CT over Δ_{S} for all $t \in[0,1 / 2]$ with $f(0)=\mathbf{P}$ and $f(1 / 2)=\mathbf{I}$. Obviously, the map $t \mapsto f(t)$ from $[0,1 / 2]$ into $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ is continuous. Similarly, for every $t \in[1 / 2,1]$, set

$$
\begin{gathered}
Q_{A}^{t}(a \mid x, \eta)=(2 t-1) Q_{A}(a \mid x, \eta)+2(1-t) \frac{1}{o(A)}, \\
Q_{B^{j}}^{t}\left(b_{j} \mid y_{j}, \eta^{j}\right)=(2 t-1) Q_{B^{j}}\left(b_{j} \mid y_{j}, \eta^{j}\right)+2(1-t) \frac{1}{o\left(B^{j}\right)}(j \in[m]), \\
Q_{C_{k}^{j}}^{t}\left(c_{j, k} \mid z_{j, k}, z_{k}^{j}\right)=(2 t-1) Q_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k} \xi_{k}^{j}\right)+2(1-t) \frac{1}{o\left(C_{k}^{j}\right)}\left(j \in[m], k \in\left[n_{j}\right]\right),
\end{gathered}
$$

which are clearly PDs of a, b^{j}, and c_{k}^{j}, respectively. Put

$$
\begin{aligned}
Q^{t}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} q\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) Q_{A}^{t}(a \mid x, \lambda) \\
& \times \prod_{j=1}^{m} Q_{B^{j}}^{t}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} Q_{C_{k}^{j}}^{t}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right),
\end{aligned}
$$

then $g(t):=\llbracket Q^{t}(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ is a star-local CT over Δ_{S} for all $t \in[1 / 2,1]$ with $g(1 / 2)=\mathbf{I}$ and $g(1)=\mathbf{Q}$. Obviously, the map $t \mapsto g(t)$ from $[1 / 2,1]$ into $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ is continuous. Thus, the function $p:[0,1] \rightarrow \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ defined by

$$
p(t)= \begin{cases}f(t), & t \in[0,1 / 2] \\ g(t), & t \in(1 / 2,1]\end{cases}
$$

is continuous everywhere and then induces a path p in $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ with $p(0)=\mathbf{P}$ and $p(1)=\mathbf{Q}$. This shows that $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ is path-connected. The proof is completed.

Next, we discuss the "quasi-convexity" of the $\operatorname{set} \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ by finding two classes of subsets of $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ that are star-convex.

For any fixed $1 \leq u \leq m$ and $1 \leq v \leq n_{u}$, by taking a star-shaped CT E $=$ $\llbracket E(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ such that the marginal $\mathbf{E}_{\widehat{C_{0}^{u} B^{u}}}$ is completely product:

$$
E_{\widehat{C_{v}^{u} B^{u}}}\left(a \mathbf{b}^{u} \widehat{\mathbf{c}}_{v}^{u} \mid x \mathbf{y}^{u} \widehat{\mathbf{z}}_{v}^{u}\right)=E_{A}(a \mid x) \times \prod_{j \neq u} E_{B^{j}}\left(b_{j} \mid y_{j}\right) \times \prod_{(j, k) \neq(u, v)} E_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}\right),
$$

where

$$
\mathbf{b}^{u}=\left\{b_{j}\right\}_{j \neq u,} \widehat{\mathbf{c}}_{v}^{u}=\left\{c_{j, k}\right\}_{(j, k) \neq(u, v)}, \mathbf{y}^{u}=\left\{y_{i}\right\}_{i \neq u}, \widehat{\mathbf{z}}_{v}^{u}=\left\{z_{j, k}\right\}_{(j, k) \neq(u, v)},
$$

we define a star-shaped CT $\mathbf{S}_{u, v}=\llbracket S_{u, v}(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ by

$$
\begin{equation*}
S_{u, v}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})=E_{\widehat{C_{v}^{u} B^{u}}}\left(a \mathbf{b}^{u} \widehat{\mathbf{c}}_{v}^{u} \mid x \mathbf{y}^{u} \widehat{\mathbf{z}}_{v}^{u}\right) \times \frac{1}{o\left(\mathrm{C}_{v}^{u}\right)} \times \frac{1}{o\left(B^{u}\right)} . \tag{44}
\end{equation*}
$$

Put

$$
\begin{equation*}
\mathcal{C} \mathcal{T}_{\mathbf{E}_{\mathbb{C}_{v}^{u} B^{u}}^{\text {star-local }}}^{\text {tich }}\left(\Delta_{S}\right)=\left\{\mathbf{P} \in \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right): \mathbf{P}_{\overparen{C_{v}^{u} B^{u}}}=\mathbf{E}_{\overparen{C_{v}^{u} B^{u}}}\right\}, \tag{45}
\end{equation*}
$$

which is just the set of all star-local CTs over Δ_{S} with a fixed marginal distribution $\mathbf{E}_{\widehat{C_{v}^{u} B^{u}}}$ on the subsystem $\widehat{C_{v}^{u} B^{u}}=A \prod_{j \neq u} B^{j} \prod_{(j, k) \neq(u, v)} C_{v}^{u}$. Clearly, $\left(\mathbf{S}_{u, v}\right)_{\widehat{C_{v}^{u} B^{u}}}=\mathbf{E}_{\widehat{C_{v}^{u} B^{u}}}$ and $\mathbf{S}_{u, v} \in$

Using these notations, we obtain the following.
Theorem 7. The set $\mathcal{C} \mathcal{T}_{\underset{E_{v}^{u} B^{u}}{\text { star-local }}}^{\text {star }}\left(\Delta_{S}\right)$ is star-convex with a sun $\mathbf{S}_{u, v}$, i.e., for all $t \in[0,1]$, it holds that

$$
\begin{equation*}
(1-t) \mathbf{S}_{u, v}+t \mathcal{C} \mathcal{T}_{\mathbf{E}_{\frac{C_{v}^{u}}{u} \mathrm{~B}^{u}}^{\text {star-local }}}\left(\Delta_{S}\right) \subset \mathcal{C} \mathcal{T}_{\mathbf{E}_{\bar{C}_{v}^{u} \mathrm{~B}^{u}}^{\text {star-local }}}^{\text {s. }}\left(\Delta_{S}\right) \tag{46}
\end{equation*}
$$

Proof. Let $t \in[0,1]$ and $\mathbf{P} \in \mathcal{C} \mathcal{T}_{\mathbf{E}_{\widehat{C_{v}^{u} B^{u}}}^{\text {star-local }}}^{\text {(}}\left(\Delta_{S}\right)$. Then, $\mathbf{P} \in \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ and $\mathbf{P}_{\widehat{C_{v}^{u} B^{u}}}=\mathbf{E}_{\overparen{C_{v}^{u} B^{u}}}$. Since \mathbf{P} has a D-star-shaped-LHVM:

$$
\begin{aligned}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \\
& \times P_{A}(a \mid x, \lambda) \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right),
\end{aligned}
$$

we get that

$$
\begin{aligned}
P_{\widehat{C_{v}^{u} B^{u}}}\left(a \mathbf{b}^{u} \widehat{\mathbf{c}}_{v}^{u} \mid x \mathbf{y}^{u} \widehat{\mathbf{z}}_{v}^{u}\right)= & \sum_{c_{u, v}, b_{u}} P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y} \mathbf{z}) \\
= & \sum_{\substack{ \\
\mu_{k}^{j}((j, k) \neq(u, v))}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{(j, k) \neq(u, v)} p_{j, k}\left(\mu_{k}^{j}\right) \\
& \times P_{A}(a \mid x, \lambda) \prod_{j \neq u} P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \\
& \times \prod_{(j, k) \neq(u, v)} P_{c_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) .
\end{aligned}
$$

For every $t \in[0,1]$, put

$$
\mu_{u}(s)=\left(\mu_{1}^{u}, \ldots, \mu_{v-1}^{u},\left(\mu_{v}^{u}, s\right), \mu_{v+1}^{u}, \ldots, \mu_{n_{u}}^{u}\right),
$$

and define

$$
\begin{gather*}
f_{u, v}^{t}\left(\mu_{v}^{u}, s\right)=\left\{\begin{array}{cc}
p_{u, v}\left(\mu_{v}^{u}\right)(1-t), & s=0 ; \\
p_{u, v}\left(\mu_{v}^{u}\right) t, & s=1,
\end{array}\right. \tag{47}\\
P_{B^{u}}\left(b_{u} \mid y_{u}, \lambda^{u}, \mu_{u}(s)\right)=\left\{\begin{array}{cc}
\frac{1}{o\left(B^{u}\right)}, & s=0 ; \\
P_{B^{u}}\left(b_{u} \mid y_{u}, \lambda^{u}, \mu_{u}\right), & s=1,
\end{array}\right. \tag{48}\\
P_{C_{v}^{u}}\left(c_{u, v} \mid z_{u, v},\left(\mu_{v}^{u}, s\right)\right)=\left\{\begin{array}{cc}
\frac{1}{o\left(C_{v}^{u}\right)}, & s=0 ; \\
P_{C_{v}^{u}}\left(c_{u, v} \mid z_{u, v}, \mu_{v}^{u}\right), & s=1,
\end{array}\right. \tag{49}
\end{gather*}
$$

which are PDs of $\left(\mu_{v}^{u}, s\right), b_{u}$ and $c_{u, v}$, respectively. Put

$$
\begin{aligned}
Q^{t}(a \mathbf{b c} \mid x \mathbf{y z})= & \sum_{s=0,1} \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{(j, k) \neq(u, v)} p_{j, k}\left(\mu_{k}^{j}\right) \times f_{u, v}^{t}\left(\mu_{v}^{u}, s\right) \\
& \times P_{A}(a \mid x, \lambda) \prod_{j \neq u} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times P_{B^{u}}\left(b_{u} \mid y_{u}, \lambda^{u}, \mu_{u}(s)\right) \\
& \times \prod_{(j, k) \neq(u, v)} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \times P_{C_{v}^{u}}\left(c_{u, v} \mid z_{u, v},\left(\mu_{v}^{u}, s\right)\right),
\end{aligned}
$$

then $\mathbf{Q}^{t}=\llbracket Q^{t}(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket \in \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$.

On the other hand, for all $a, \mathbf{b}, \mathbf{c}, x, \mathbf{y}, \mathbf{z}$, we compute that

$$
\begin{aligned}
Q^{t}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{(j, k) \neq(u, v)} p_{j, k}\left(\mu_{k}^{j}\right) \times f_{u, v}^{t}\left(\mu_{v}^{u}, 0\right) \\
& \times P_{A}(a \mid x, \lambda) \prod_{j \neq u} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times P_{B^{u}}\left(b_{u} \mid y_{u}, \lambda^{u}, \mu_{u}(0)\right) \\
& \times \prod_{(j, k) \neq(u, v)} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \times P_{C_{v}^{u}}\left(c_{u, v} \mid z_{u, v},\left(\mu_{v}^{u}, 0\right)\right) \\
& +\sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{(j, k) \neq(u, v)} p_{j, k}\left(\mu_{k}^{j}\right) \times f_{u, v}^{t}\left(\mu_{v}^{u}, 1\right) \\
& \times P_{A}(a \mid x, \lambda) \prod_{j \neq u} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times P_{B^{u}}\left(b_{u} \mid y_{u}, \lambda^{u}, \mu_{u}(1)\right) \\
& \times \prod_{(j, k) \neq(u, v)} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \times P_{C_{v}^{u}}\left(c_{u, v} \mid z_{u, v},\left(\mu_{v}^{u}, 1\right)\right) .
\end{aligned}
$$

Using Equations (47)-(49), we obtain that

$$
\begin{aligned}
Q^{t}(a \mathbf{b c} \mid x \mathbf{y z})= & (1-t) \sum_{\lambda, \mu_{k}^{j}((j, k) \neq(u, v))} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{(j, k) \neq(u, v)} p_{j, k}\left(\mu_{k}^{j}\right) \\
& \times P_{A}(a \mid x, \lambda) \prod_{j \neq u} P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \frac{1}{o\left(B^{u}\right)} \\
& \times \prod_{(j, k) \neq(u, v)} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \times \frac{1}{o\left(C_{v}^{u}\right)} \\
& +t \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{(j, k)} p_{j, k}\left(\mu_{k}^{j}\right) \\
& \times P_{A}(a \mid x, \lambda) \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{(j, k)} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \\
= & (1-t) S_{u, v}(a \mathbf{b c} \mid x \mathbf{y z})+t P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) .
\end{aligned}
$$

This shows that

$$
(1-t) \mathbf{S}_{u, v}+t \mathbf{P}=\mathbf{Q}^{t} \in \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right), \quad \forall t \in[0,1]
$$

Since $\left(\mathbf{S}_{u, v}\right)_{\overparen{C_{v}^{u} B^{u}}}=\mathbf{P}_{\overparen{C_{v}^{u} B^{u}}}=\mathbf{E}_{\overparen{C_{v}^{u} B^{u}}}$, we have $\mathbf{Q}_{\overparen{C_{v}^{u} B^{u}}}^{t}=(1-t)\left(\mathbf{S}_{u, v}\right)_{\overparen{C_{v}^{u} B^{u}}}+t \mathbf{P}_{\overparen{C_{v}^{u} B^{u}}}=\mathbf{E}_{\overparen{C_{v}^{u} B^{u}}}$. This shows that $\mathbf{Q}^{t} \in \mathcal{C} \mathcal{T}_{\mathbf{E}_{\mathcal{C}_{o}^{u} B^{u}}^{\text {star-local }}}^{\text {stan }}\left(\Delta_{S}\right)$. The proof is completed.

Next, let us find another star-convex subset of $\mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$. Fixed $1 \leq u \leq m$ and taken a star-shaped CT F $=\llbracket F(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket$ such that

$$
F_{\widehat{A B^{u}}}\left(\mathbf{b}^{u} \mathbf{c} \mid \mathbf{y}^{u} \mathbf{z}\right):=\sum_{a, b_{u}} F(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})=\prod_{j \neq u} F_{B j}\left(b_{j} \mid y_{j}\right) \times \prod_{j, k} F_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}\right),
$$

where $\mathbf{b}^{u}=\left\{b_{j}\right\}_{j \neq u}, \mathbf{y}^{u}=\left\{y_{j}\right\}_{j \neq u}$, we define a star-shaped CT $\mathbf{S}_{u}=\llbracket S_{u}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) \rrbracket$ by

$$
\begin{equation*}
S_{u}(a \mathbf{b c} \mid x \mathbf{y z})=\frac{1}{o(A)} \times F_{\widehat{A B^{u}}}\left(\mathbf{b}^{u} \mathbf{c} \mid \mathbf{y}^{u} \mathbf{z}\right) \times \frac{1}{o\left(B^{u}\right)} \times \prod_{j, k} F_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}\right) \tag{50}
\end{equation*}
$$

Put

$$
\begin{equation*}
\mathcal{C} \mathcal{T}_{\mathbf{F}_{\overparen{A B}}^{\text {star-local }}}\left(\Delta_{S}\right)=\left\{\mathbf{P} \in \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right): \mathbf{P}_{\widehat{A B^{u}}}=\mathbf{F}_{\widehat{A B^{u}}}\right\}, \tag{51}
\end{equation*}
$$

which is just the set of all star-local CTs over Δ_{S} with fixed marginal distribution $\mathbf{F}_{\widehat{A B^{u}}}$ on the subsystem $\widehat{A B^{u}}=\left(\prod_{j \neq u} B^{j}\right) C$. Clearly, $\left(\mathbf{S}_{u}\right)_{\widehat{A B^{u}}}=\mathbf{F}_{\widehat{A B^{u}}}=\llbracket F_{\widehat{A B^{u}}}\left(\mathbf{b}^{u} \mathbf{c} \mid \mathbf{y}^{u} \mathbf{z}\right) \rrbracket$ and then $\mathbf{S}_{u} \in \mathcal{C} \mathcal{T}_{\mathbf{F}_{\widehat{A B}}}^{\text {star-local }}\left(\Delta_{S}\right)$.

With these notations, we have the following.
Theorem 8. The set $\mathcal{C} \mathcal{T}_{\widehat{A B^{n}}}^{\text {star-local }}\left(\Delta_{S}\right)$ is star-convex with a sun \mathbf{S}_{u}, i.e., for all $t \in[0,1]$, it holds that

$$
\begin{equation*}
(1-t) \mathbf{S}_{u, v}+t \mathcal{C} \mathcal{T}_{\mathbf{F}_{\overparen{A B}}}^{\text {star-local }}\left(\Delta_{S}\right) \subset \mathcal{C} \mathcal{T}_{\mathbf{F}_{\overparen{A B}}}^{\text {star-local }}\left(\Delta_{S}\right) \tag{52}
\end{equation*}
$$

Proof. Let $\left.\mathbf{P} \in \mathcal{C} \mathcal{T}_{\mathbf{F}_{\overparen{A B}}{ }^{\text {star-local }}}^{\text {(}} \Delta_{S}\right)$. Then, $\mathbf{P} \in \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$ and $\mathbf{P}_{\widehat{A B^{u}}}=\mathbf{F}_{\widehat{A B^{u}}}$. Since \mathbf{P} has a D-star-shaped LHVM

$$
\begin{aligned}
P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \\
& \times P_{A}(a \mid x, \lambda) \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right),
\end{aligned}
$$

we get that

$$
\begin{aligned}
P_{\widehat{A B^{u}}}\left(\mathbf{b}^{u} \mathbf{c} \mid \mathbf{y}^{u} \mathbf{z}\right)= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \times \\
& \times \prod_{j \neq u} P_{B j}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) .
\end{aligned}
$$

For every $t \in[0,1]$, put

$$
\begin{gathered}
g_{u}^{t}\left(\lambda^{u}, s\right)=\left\{\begin{array}{cc}
p_{u}\left(\lambda^{u}\right)(1-t), & s=0 ; \\
p_{n}\left(\lambda^{u}\right) t, & s=1,
\end{array}\right. \\
\lambda^{\prime}=\left(\lambda^{1}, \lambda^{2}, \lambda^{u-1},\left(\lambda^{u}, s\right), \lambda^{u+1}, \ldots, \lambda^{m}\right), \\
P^{\prime}\left(a \mid x, \lambda^{\prime}\right)=\left\{\begin{array}{cc}
\frac{1}{o(A)}, & s=0 ; \\
P(a \mid x, \lambda), & s=1,
\end{array}\right. \\
P_{B^{u}}^{\prime}\left(b_{u} \mid y_{u},\left(\lambda^{u}, s\right), \mu_{u}\right)=\left\{\begin{array}{cc}
\frac{1}{o\left(B^{n}\right)}, & s=0 ; \\
P_{B^{n}}\left(b_{u} \mid y_{u}, \lambda^{u}, \mu_{u}\right), & s=1,
\end{array}\right.
\end{gathered}
$$

and define

$$
\begin{aligned}
Q^{t}(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z})= & \sum_{s=0,1} \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j \neq u} p_{j}\left(\lambda^{j}\right) \times g_{u}^{t}\left(\lambda^{u}, s\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \times \\
& \times P_{A}^{\prime}\left(a \mid x, \lambda^{\prime}\right) \times \prod_{j \neq u} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times P_{B^{u}}^{\prime}\left(b_{u} \mid y_{u},\left(\lambda^{u}, s\right), \mu_{u}\right) \\
& \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) .
\end{aligned}
$$

Clearly, $\mathbf{Q}^{t}:=\llbracket Q^{t}(a \mathbf{b c} \mid x \mathbf{y z}) \rrbracket \in \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right)$.

On the other hand, for all $a, \mathbf{b}, \mathbf{c}, x, y, \mathbf{z}$, we compute that

$$
\begin{aligned}
Q^{t}(a \mathbf{b c} \mid x \mathbf{y z})= & (1-t) \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \times \\
& \times \frac{1}{o(A)} \times \prod_{j \neq u} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \frac{1}{o\left(B^{u}\right)} \\
& \times \prod_{j, k} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \\
& +t \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \times \\
& \times P_{A}(a \mid x, \lambda) \times \prod_{j=1}^{m} P_{B^{j}}\left(b_{j} \mid y_{j}, \lambda^{j}, \mu_{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \\
= & (1-t) S_{u}(a \mathbf{b c} \mid x \mathbf{y z})+t P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) .
\end{aligned}
$$

This shows that

$$
(1-t) \mathbf{S}_{u}+t \mathbf{P}=\mathbf{Q}^{t} \in \mathcal{C} \mathcal{T}^{\text {star-local }}\left(\Delta_{S}\right), \quad \forall t \in[0,1]
$$

Clearly, $\mathbf{Q}_{\overparen{A B^{u}}}^{t}=\mathbf{F}_{\widehat{A B^{u}}}$. Hence, $(1-t) \mathbf{S}_{u}+t \mathbf{P}=\mathbf{Q}^{t} \in \mathcal{C} \mathcal{T}_{\widehat{A B^{u}}}^{\text {star-local }}\left(\Delta_{S}\right)$. The proof is completed.

4. A Star-Bell Inequality

In this section, we derive an inequality (56) that holds for all star-local star-shaped CTs, called a star-Bell inequality. Consider a star-shaped CT

$$
\begin{equation*}
\mathbf{P}=\llbracket P(a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}) \rrbracket=\llbracket P\left(a, b_{1} \cdots b_{m}, \mathbf{c} \mid x, y_{1} \cdots y_{m}, \mathbf{z}\right) \rrbracket \tag{53}
\end{equation*}
$$

with inputs $x, y_{j}, z_{j, k} \in\{0,1\}$ and outcomes $a, b_{j}, c_{j, k}, \in\{0,1\}$, where $j \in[m], k \in\left[n_{j}\right]$. Put $N=\sum_{j=1}^{m} n_{j}$. For all $\alpha_{0}, \alpha_{j}, z_{j, k} \in\{0,1\}$, we define the following two quantities

$$
\begin{align*}
I_{\alpha_{0} \alpha_{1} \ldots \alpha_{m}}(\mathbf{P})= & \frac{1}{2^{N}} \sum_{z_{j, k}=0,1} \sum_{a, b_{j}, c_{j, k}=0,1}(-1)^{a+\sum_{j} b_{j}+\sum_{j, k} c_{j, k}} \\
& \times P\left(a, b_{1} \cdots b_{m}, \mathbf{c} \mid \alpha_{0}, \alpha_{1} \cdots \alpha_{m}, \mathbf{z}\right), \tag{54}\\
J_{\beta_{0} \beta_{1} \ldots \beta_{m}}(\mathbf{P})= & \frac{1}{2^{N}} \sum_{z_{j, k}=0,1}(-1)^{\sum_{j, k} z_{j, k}} \sum_{a, b_{j}, c_{j, k}=0,1}(-1)^{a+\sum_{j} b_{j}+\sum_{j, k} c_{j, k}} \\
& \times P\left(a, b_{1} \cdots b_{m}, \mathbf{c} \mid \beta_{0}, \beta_{1} \cdots \beta_{m}, \mathbf{z}\right) . \tag{55}
\end{align*}
$$

Theorem 9. If a star-shaped CT \mathbf{P} given by Equation (53) is star-local, then

$$
\begin{equation*}
\left|I_{\alpha_{0} \alpha_{1} \ldots \alpha_{m}}(\mathbf{P})\right|^{\frac{1}{N}}+\left|J_{\beta_{0} \beta_{1} \ldots \beta_{m}}(\mathbf{P})\right|^{\frac{1}{N}} \leq 1, \forall \alpha_{j}, \beta_{j} \in\{0,1\} . \tag{56}
\end{equation*}
$$

Proof. Since P is star-local, it has a D-star-shaped LHVM (14). Thus,

$$
\begin{aligned}
& \sum_{a, b_{j}, c_{j, k}=0,1}(-1)^{a+\sum_{j} b_{j}+\sum_{j, k} c_{j, k}} P\left(a, b_{1} \cdots b_{m}, \mathbf{c} \mid \alpha_{0}, \alpha_{1} \cdots \alpha_{m}, \mathbf{z}\right) \\
& =\sum_{a, b_{j} c_{j, k}=0,1}(-1)^{a+\sum_{j} b_{j}+\sum_{j, k} c_{j, k}} \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) \\
& \times P_{A}\left(a \mid \alpha_{0}, \lambda\right) \times \prod_{j=1}^{m} P_{B j}\left(b_{j} \mid \alpha_{j}, \lambda^{j}, \mu_{j}\right) \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \\
& =\sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) \sum_{a=0,1}(-1)^{a} P_{A}\left(a \mid \alpha_{0}, \lambda\right) \\
& \times \prod_{j=1}^{m} \sum_{b_{j}=0,1}(-1)^{b_{j}} P_{B^{j}}\left(b_{j} \mid \alpha_{j}, \lambda^{j}, \mu_{j}\right) \\
& \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \sum_{c_{j, k}=0,1}(-1)^{c_{j, k}} P_{c_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) \\
& =\sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)\left\langle A_{\alpha_{0}}\right\rangle_{\lambda} \prod_{j=1}^{m}\left\langle B_{\alpha_{j}}^{j}\right\rangle_{\lambda, \mu_{j}} \\
& \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left\langle C_{z_{j, k}, k}^{j}\right\rangle_{j_{k}^{j}},
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
\left\langle A_{\alpha_{0}}\right\rangle_{\lambda}=\sum_{a=0,1}(-1)^{a} P_{A}\left(a \mid \alpha_{0}, \lambda\right), \\
\left\langle B_{\alpha_{j}}^{j}\right\rangle_{\lambda^{j}, \mu_{j}}=\sum_{b_{j}=0,1}(-1)^{b_{j}} P_{B j}\left(b_{j} \mid \alpha_{j}, \lambda^{j}, \mu_{j}\right), \\
\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}=\sum_{c_{j, k}=0,1}(-1)^{c_{j, k}} P_{C_{k}^{j}}\left(c_{j, k} \mid z_{j, k}, \mu_{k}^{j}\right) .
\end{array}\right.
$$

Hence,

$$
\begin{aligned}
\left|I_{\alpha_{0} \alpha_{1} \ldots \alpha_{m}}(\mathbf{P})\right| \leq & \frac{1}{2^{N}} \sum_{\substack{z_{j, k}=0,1 \\
j=1, \ldots m, k=1, \ldots, n_{j}}} \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) \\
& \times\left|\left\langle A_{\alpha_{0}}\right\rangle_{\lambda} \prod_{j=1}^{m}\left\langle B_{\alpha_{j}}^{j}\right\rangle_{\lambda, \mu_{j}} \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right| \\
= & \frac{1}{2^{N}} \sum_{\substack{z_{j, k}=0,1 \\
j=1, \ldots, m, k=1, \ldots, n_{j}}} \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) \\
& \times\left|\left\langle A_{\alpha_{0}}\right\rangle_{\lambda}\right| \times \prod_{j=1}^{m}\left|\left\langle B_{\alpha_{j}}^{j}\right\rangle_{\lambda_{j}, \mu_{j}}\right| \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left|\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right| .
\end{aligned}
$$

Note that $\left|\left\langle A_{\alpha_{0}}\right\rangle_{\lambda}\right| \leq 1,\left|\left\langle B_{\alpha_{j}}^{j}\right\rangle_{\lambda, \mu_{j}}\right| \leq 1$, we have

$$
\begin{equation*}
\left|I_{\alpha_{0} \alpha_{1} \ldots \alpha_{m}}(\mathbf{P})\right| \leq \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) f\left(\mu_{1}, \ldots, \mu_{m}\right) \tag{57}
\end{equation*}
$$

where

$$
\begin{equation*}
f\left(\mu_{1}, \ldots, \mu_{m}\right)=\prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left|\frac{1}{2} \sum_{z_{j, k}=0,1}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right| . \tag{58}
\end{equation*}
$$

Analogously, we can get

$$
\begin{equation*}
\left|J_{\beta_{0} \beta_{1} \ldots \beta_{m}}(\mathbf{P})\right| \leq \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) g\left(\mu_{1}, \ldots, \mu_{m}\right) \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
g\left(\mu_{1}, \ldots, \mu_{m}\right)=\prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left|\frac{1}{2} \sum_{z_{j, k}=0,1}(-1)^{z_{j, k}}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right| \tag{60}
\end{equation*}
$$

Since

$$
p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right)=\prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right),
$$

where $\left\{p_{j}\left(\lambda^{j}\right)\right\}_{\lambda_{j}}$ and $\left\{p_{j, k}\left(\mu_{k}^{j}\right)\right\}_{\mu_{k}^{j}}$ are probability distributions, we have from Equation (57) that

$$
\begin{aligned}
\left|I_{\alpha_{0} \alpha_{1} \ldots \alpha_{m}}(\mathbf{P})\right| \leq & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} p\left(\lambda, \mu_{1}, \ldots, \mu_{m}\right) f\left(\mu_{1}, \ldots, \mu_{m}\right) \\
= & \sum_{\lambda \in D, \mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m} p_{j}\left(\lambda^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} p_{j, k}\left(\mu_{k}^{j}\right) \\
& \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left|\frac{1}{2} \sum_{z_{j, k}=0,1}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right| \\
= & \sum_{\mu_{1} \in F_{1}, \ldots, \mu_{m} \in F_{m}} \prod_{j=1}^{m}\left(\sum_{\lambda^{j}} p_{j}\left(\lambda^{j}\right)\right) \\
& \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(p_{j, k}\left(\mu_{k}^{j}\right)\left|\frac{1}{2} \sum_{z_{j, k}=0,1}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right|\right) .
\end{aligned}
$$

Note that $\sum_{\lambda^{j}} p_{j}\left(\lambda^{j}\right)=1$ for all $j=1,2, \ldots, m$, we obtain that

$$
\left|I_{\alpha_{0} \alpha_{1} \ldots \alpha_{m}}(\mathbf{P})\right| \leq \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(\sum_{\mu_{k}^{j}} p_{j, k}\left(\mu_{k}^{j}\right)\left|\frac{1}{2} \sum_{z_{j, k}=0,1}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right|\right) .
$$

Similarly, using inequality (59) implies that

$$
\left|J_{\beta_{0} \beta_{1} \ldots \beta_{m}}(\mathbf{P})\right| \leq \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(\sum_{\mu_{k}^{j}} p_{j, k}\left(\mu_{k}^{j}\right)\left|\frac{1}{2} \sum_{z_{j, k}=0,1}(-1)^{z_{j, k}}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right|\right)
$$

Using the following inequality [22] Lemma 1 :

$$
\sum_{k=1}^{m}\left(\prod_{i=1}^{n} x_{i}^{k}\right)^{\frac{1}{n}} \leq \prod_{i=1}^{n}\left(x_{i}^{1}+x_{i}^{2}+\ldots+x_{i}^{m}\right)^{\frac{1}{n}}, \forall x_{i}^{k} \geq 0
$$

we have

$$
\begin{aligned}
& \left(\left|I_{\alpha_{0} \alpha_{1} \ldots \alpha_{m}}(\mathbf{P})\right|\right)^{\frac{1}{N}}+\left(\left|J_{\beta_{0} \beta_{1} \ldots \beta_{m}}(\mathbf{P})\right|\right)^{\frac{1}{N}} \\
\leq & \left(\prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \sum_{\mu_{k}^{j}} p_{j, k}\left(\mu_{k}^{j}\right)\left|\frac{1}{2} \sum_{z_{j, k}=0,1}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right|\right)^{\frac{1}{N}} \\
& +\left(\prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \sum_{\mu_{k}^{j}} p_{j, k}\left(\mu_{k}^{j}\right)\left|\frac{1}{2} \sum_{z_{j, k}=0,1}(-1)^{z_{j, k}}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right|\right)^{\frac{1}{N}} \\
\leq & \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(\sum_{\mu_{k}^{j}} p_{j, k}\left(\mu_{k}^{j}\right)\left(\left|\frac{1}{2} \sum_{z_{j, k}=0,1}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right|+\left|\frac{1}{2} \sum_{z_{j, k}=0,1}(-1)^{z_{j, k}}\left\langle C_{z_{j, k}}^{j}\right\rangle_{\mu_{k}^{j}}\right|\right)\right)^{\frac{1}{N}} \\
= & \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(\sum_{\mu_{k}^{j}} p_{j, k}\left(\mu_{k}^{j}\right)\left(\left|\frac{\left\langle C_{0}^{j}\right\rangle_{\mu_{k}^{j}}+\left\langle C_{1}^{j}\right\rangle_{\mu_{k}^{j}}}{2}\right|+\left|\frac{\left\langle C_{0}^{j}\right\rangle_{\mu_{k}^{j}}-\left\langle C_{1}^{j}\right\rangle_{\mu_{k}^{j}}}{2}\right|\right)\right)^{\frac{1}{N}} \\
\leq & 1 .
\end{aligned}
$$

This shows that inequality (56) is valid and completes the proof.
The validity of the inequality (56) is a necessary condition for a star-shaped CT \mathbf{P} to be star-local. So, we call it a star-Bell inequality (SBI). Thus, a violation of SBI for some parameters $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}$ and $\beta_{0}, \beta_{1}, \ldots, \beta_{m}$ shows that \mathbf{P} is star-nonlocal.

Let us return to the network situation. Let $A_{x}, B_{y_{j}}^{j}$ and $C_{z_{j, k}}^{j, k}$ be $\{+1,-1\}$-valued observables of $\mathcal{H}_{A}, \mathcal{H}_{B^{j}}$, and $\mathcal{H}_{C_{k}^{j}}$. Then, we have the following spectrum decompositions:

$$
\left\{\begin{array}{l}
A_{x}=M_{0 \mid x}-M_{1 \mid x}=\sum_{a=0,1}(-1)^{a} M_{a \mid x} \tag{61}\\
B_{y_{j}}^{j}=N_{0 \mid y_{j}}^{j}-N_{1 \mid y_{j}}^{j}=\sum_{b_{j}=0,1}(-1)^{b_{j}} N_{b_{j} \mid y_{j}}^{j} \\
C_{z_{j, k}}^{j, k}=L_{0 \mid z_{j, k}}^{j, k}-L_{1 \mid z_{j, k}}^{j, k}=\sum_{z_{j, k}=0,1}(-1)^{c_{j, k}} L_{c_{j, k} \mid z_{j, k}}^{j, k}
\end{array}\right.
$$

Put

$$
M(x)=\left\{M_{0 \mid x}, M_{1 \mid x}\right\}, N^{j}\left(y_{j}\right)=\left\{N_{0 \mid y_{j}^{\prime}}^{j} N_{1 \mid y_{j}}^{j}\right\}, L^{j, k}\left(z_{j, k}\right)=\left\{L_{0 \mid z_{j, k}}^{j, k}, L_{1 \mid z_{j, k}}^{j, k}\right\}
$$

which are clearly POVMs of $\mathcal{H}_{A}, \mathcal{H}_{B^{j}}$, and $\mathcal{H}_{C_{k}^{j}}$, respectively. Then, we can get a measurement assemblage

$$
\begin{equation*}
\mathcal{M}=\left\{M(x) \otimes\left(\bigotimes_{j=1}^{m} N^{j}\left(y_{j}\right)\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}} L^{j, k}\left(z_{j, k}\right)\right): x, y_{j}, z_{j, k}=0,1\right\} \tag{62}
\end{equation*}
$$

of the quantum network with measurement operators

$$
M_{a \mathbf{b} \mathbf{c} \mid x \mathbf{y z}}:=M_{a \mid x} \otimes\left(\bigotimes_{j=1}^{m} N_{b_{j} \mid y_{j}}^{j}\right) \otimes\left(\bigotimes_{j=1}^{m}\left(L_{c_{j, 1} \mid z_{j, 1}}^{j, 1} \otimes L_{c_{j, 2} \mid z_{j, 2}}^{j, 2} \otimes \ldots \otimes L_{c_{j, n}}^{j, n_{j} \mid z_{j, n_{j}}}\right)\right)
$$

where

$$
a \in\{0,1\}, \mathbf{b}=\left(b_{1}, \ldots, b_{m}\right) \in\{0,1\}^{m}, \mathbf{c}=\left\{c_{j, k}\right\}_{k \in\left[n_{j}\right], j \in[m]}\left(c_{j, k}=0,1\right),
$$

$$
x \in\{0,1\}, \mathbf{y}=\left(y_{1}, \ldots, y_{m}\right) \in\{0,1\}^{m}, \mathbf{z}=\left\{z_{j, k}\right\}_{k \in\left[n_{j}\right], j \in[m]}\left(z_{j, k}=0,1\right)
$$

For all $\alpha_{j} \in\{0,1\}$, it is computed that

$$
\begin{align*}
I_{\alpha_{0} \alpha_{1} \ldots \alpha_{m}}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)= & \frac{1}{2^{N}} \sum_{z_{j, k}} \sum_{a, b_{j, ~}, c_{j, k}}(-1)^{a+\sum_{j} b_{j}+\sum_{j, k} c_{j, k}} P\left(a, b_{1} \cdots b_{m}, \mathbf{c} \mid \alpha_{0}, \alpha_{1} \cdots \alpha_{m, \mathbf{z}}\right) \\
= & \frac{1}{2^{N}} \sum_{z_{j, k}} \sum_{a, b_{j, c}, c_{j, k}}(-1)^{a+\sum_{j} b_{j}+\sum_{j, k} c_{j, k}} \\
& \times \operatorname{tr}\left[\left(M_{a \mid \alpha_{0}} \otimes\left(\bigotimes_{j=1}^{m} N_{b_{j} \mid \alpha_{j}}^{j}\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}} L_{c_{j, k} \mid z_{j, k}}^{j, k}\right)\right) \tilde{\Gamma}\right] \\
= & \frac{1}{2^{N}} \sum_{z_{j, k}}\left\langle A_{\alpha_{0}} \otimes\left(\bigotimes_{j=1}^{m} B_{\alpha_{j}}^{j}\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}} C_{z_{j, k}}^{j, k}\right)\right\rangle_{\tilde{\Gamma}} \tag{63}
\end{align*}
$$

Similarly, for all $\beta_{j} \in\{0,1\}$, we have

$$
\begin{align*}
J_{\beta_{0} \beta_{1} \ldots \beta_{m}}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)= & \frac{1}{2^{N}} \sum_{z_{j, k}}(-1)^{\sum_{j, k} z_{j, k}} \sum_{a, b_{j, c}, c_{j, k}}(-1)^{a+\sum_{j} b_{j}+\sum_{j, k} c_{j, k}} \\
& \times P\left(a, b_{1} \cdots b_{m}, \mathbf{c} \mid \beta_{0}, \beta_{1} \cdots \beta_{m}, \mathbf{z}\right) \\
= & \frac{1}{2^{N}} \sum_{z_{j, k}}(-1)^{\sum_{j, k} z_{j, k}}\left\langle A_{\beta_{0}} \otimes\left(\bigotimes_{j=1}^{m} B_{\beta_{j}}^{j}\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}} C_{z_{j, k}}^{j, k}\right)\right\rangle \tag{64}
\end{align*}
$$

This shows that the SBI (56) becomes

$$
\begin{equation*}
\left|I_{\alpha_{0} \alpha_{1} \ldots \alpha_{m}}\left(\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)\right)\right|^{\frac{1}{N}}+\left|J_{\beta_{0} \beta_{1} \ldots \beta_{m}}\left(\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)\right)\right|^{\frac{1}{N}} \leq 1, \forall \alpha_{j}, \beta_{j} \in\{0,1\} . \tag{65}
\end{equation*}
$$

It is valid whenever the network with state Γ is star-local for the given MA \mathcal{M}. Hence, to explore the star-nonlocality of the $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$, it suffices to choose some specific states distributed in the network and to choose specific measurements for each party such that the corresponding SBI (56) is violated for some $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}$ and $\beta_{0}, \beta_{1}, \ldots, \beta_{m}$.

Example 1. Let us consider the situation that the states distributed in the network are pure entangled states. Denote

$$
\left\{\begin{array}{l}
|\psi\rangle_{A_{j} B_{0}^{j}}=p_{1}^{j}|00\rangle+p_{2}^{j}|11\rangle(j \in[m]), \tag{66}\\
|\psi\rangle_{B_{k}^{j} C_{k}^{j}}=q_{1}^{j, k}|00\rangle+q_{2}^{j, k}|11\rangle\left(j \in[m], k \in\left[n_{j}\right]\right),
\end{array}\right.
$$

the normalized pure states shared by A and B^{j} and by B^{j} and $C_{k^{\prime}}^{j}$, respectively, with real and positive coefficients p_{1}^{j}, p_{2}^{j} and $q_{1}^{j, k}, q_{1}^{j, k}$ with $\left(p_{1}^{j}\right)^{2}+\left(p_{2}^{j}\right)^{2}=1$ and $\left(q_{1}^{j, k}\right)^{2}+\left(q_{2}^{j, k}\right)^{2}=1$. Thus,

$$
\Lambda:=\prod_{j=1}^{m}\left(2 p_{1}^{j} p_{2}^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(2 q_{1}^{j, k} q_{2}^{j, k}\right)>0
$$

Then, we can get

$$
\begin{equation*}
\rho_{A_{j} B_{0}^{j}}=|\psi\rangle_{A_{j} B_{0}^{j}}\langle\psi|, \rho_{B_{k}^{j} C_{k}^{j}}=|\psi\rangle_{B_{k}^{j} C_{k}{ }_{k}}\langle\psi|, \tag{67}
\end{equation*}
$$

Consider the $\{+1,-1\}$-valued observables of $\mathcal{H}_{A}=\left(\mathbb{C}^{2}\right)^{\otimes m}, \mathcal{H}_{B j}=\left(\mathbb{C}^{2}\right)^{\otimes\left(1+n_{j}\right)}$, and $\mathcal{H}_{C_{k}^{j}}=\mathbb{C}^{2}$:

$$
\left\{\begin{array} { l }
{ X _ { 0 } = \sigma _ { 1 } ^ { \otimes m } ; } \tag{68}\\
{ X _ { 1 } = \sigma _ { 3 } ^ { \otimes m } , }
\end{array} \quad \left\{\begin{array} { l }
{ Y _ { 0 } ^ { j } = \sigma _ { 1 } ^ { \otimes (1 + n _ { j }) } ; } \\
{ Y _ { 1 } ^ { j } = \sigma _ { 3 } ^ { \otimes (1 + n _ { j }) } , }
\end{array} \quad \left\{\begin{array}{l}
Z_{0}^{j, k}=\left(\cos \eta^{j, k}, 0, \sin \eta^{j, k}\right) \cdot \vec{\sigma} ; \\
Z_{1}^{j, k}=\left(\cos \theta^{j, k}, 0, \sin \theta^{j, k}\right) \cdot \vec{\sigma}
\end{array}\right.\right.\right.
$$

where $j \in[m], k \in\left[n_{j}\right], \vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is the vector composed of Pauli operators and $\eta^{j, k}, \theta^{j, k} \in$ $[-\pi, \pi]$. The spectral projections form an $M A \mathcal{M}$ given by (62) for the network.

Using Equations (67), (68) and (63) and taking $\alpha_{j}=0(j=0,1, \ldots, m)$, we can get

$$
\begin{aligned}
I_{00 \ldots 0}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right) & =\frac{1}{2^{N}} \sum_{z_{j, k}=0,1}\left\langle X_{0} \otimes\left(\bigotimes_{j=1}^{m} Y_{0}^{j}\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}} Z_{z_{j, k}}^{j, k}\right)\right\rangle_{\tilde{\Gamma}} \\
& =\frac{1}{2^{N}} \sum_{z_{j, k}=0,1}\left\langle\sigma_{1}^{\otimes m} \otimes\left(\bigotimes_{j=1}^{m} \sigma_{1}^{\otimes\left(1+n_{j}\right)}\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}} C_{z_{j, k}}^{j, k}\right)\right\rangle_{\tilde{\Gamma}} \\
& =\frac{1}{2^{N}} \sum_{z_{j, k}=0,1}\left\langle\left(\bigotimes_{j=1}^{m}\left(\sigma_{1} \otimes \sigma_{1}\right)\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}}\left(\sigma_{1} \otimes C_{z_{j, k}}^{j, k}\right)\right)\right\rangle_{\Gamma} \\
& =\frac{1}{2^{N}} \prod_{j=1}^{m}\left\langle\sigma_{1} \otimes \sigma_{1}\right\rangle_{\rho_{A_{j} B_{0}^{j}}} \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left\langle\sigma_{1} \otimes \sum_{z_{j, k}=0,1} C_{z_{j, k}}^{j, k}\right\rangle_{\rho_{B_{k}^{j} c_{k}^{j}}} \\
& =\frac{1}{2^{N}} \prod_{j=1}^{m}\left(2 p_{1}^{j} p_{2}^{j}\right) \times \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} 2\left(\cos \eta^{j, k}+\cos \theta^{j, k}\right) q_{1}^{j, k} q_{2}^{j, k} \\
& =\frac{\Lambda}{2^{N}} \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(\cos \eta^{j, k}+\cos \theta^{j, k}\right) .
\end{aligned}
$$

Analogously, taking $\beta_{j}=1(j=0,1, \ldots, m)$, we have

$$
\begin{aligned}
J_{11 \ldots 1}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right) & =\frac{1}{2^{N}} \prod_{j=1}^{m}\left\langle\sigma_{3} \otimes \sigma_{3}\right\rangle_{\rho_{A_{j} j_{0}^{j}}} \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left\langle\sigma_{3} \otimes \sum_{z_{j, k}=0,1}(-1)^{z_{j, k}} C_{z_{j, k}, k}^{j, k}\right\rangle_{\rho_{B_{k} c_{k}^{j}}} \\
& =\frac{1}{2^{N}} \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(\sin \eta^{j, k}-\sin \theta^{j, k}\right) .
\end{aligned}
$$

Putting

$$
\eta=\left(\eta^{1,1}, \ldots, \eta^{1, n_{1}}, \ldots, \eta^{m, 1}, \ldots, \eta^{m, n_{m}}\right), \theta=\left(\theta^{1,1}, \ldots, \theta^{1, n_{1}}, \ldots, \theta^{m, 1}, \ldots, \theta^{m, n_{m}}\right)
$$

implies that

$$
\begin{aligned}
f(\eta, \theta) & :=\left|I_{00 \ldots 0}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)\right|^{\frac{1}{N}}+\left|J_{11 \ldots 1}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)\right|^{\frac{1}{N}} \\
& =\left|\frac{1}{2^{N}} \Lambda \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(\cos \eta^{j, k}+\cos \theta^{j, k}\right)\right|^{\frac{1}{N}}+\left|\frac{1}{2^{N}} \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(\sin \eta^{j, k}-\sin \theta^{j, k}\right)\right|^{\frac{1}{N}} \\
& =\frac{1}{2} \sqrt[N]{\Lambda}\left|\prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(\cos \eta^{j, k}+\cos \theta^{j, k}\right)\right|^{\frac{1}{N}}+\frac{1}{2}\left|\prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left(\sin \eta^{j, k}-\sin \theta^{j, k}\right)\right|^{\frac{1}{N}} .
\end{aligned}
$$

Taking $\theta=-\eta$, i.e., $\theta^{j, k}=-\eta^{j, k}$ for all j, k yields that

$$
f(\eta,-\eta)=\sqrt[N]{\Lambda}\left|\prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \cos \eta^{j, k}\right|^{\frac{1}{N}}+\left|\prod_{j=1}^{m} \prod_{k=1}^{n_{j}} \sin \eta^{j, k}\right|^{\frac{1}{N}} .
$$

By taking $\eta^{j, k} \in[0, \pi / 2]$ such that

$$
\begin{equation*}
\sin \eta^{j, k}=\frac{1}{\sqrt{1+\Lambda^{\frac{2}{N}}}}, \cos \eta^{j, k}=\frac{\Lambda^{\frac{1}{N}}}{\sqrt{1+\Lambda^{\frac{2}{N}}}} \tag{69}
\end{equation*}
$$

for each j, k, we get that

$$
\left|I_{00 \ldots 0}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)\right|^{\frac{1}{N}}+\left|J_{11 \ldots 1}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)\right|^{\frac{1}{N}}=f(\eta,-\eta)=\sqrt{1+\Lambda^{\frac{2}{N}}}>1
$$

since $\Lambda>0$. This shows that SBI (65) is violated for $\left(\alpha_{j}, \beta_{j}\right)=(0,1)(j=0,1, \ldots, m)$ and then the network with the shared states given by (66) is star-nonlocal.

The following example is about a situation in which the states distributed in the network are Werner states with noise parameters v_{j} and v_{k}^{j}.

Example 2. Let us consider the Werner states distributed in the network:

$$
\begin{equation*}
\rho_{A_{j} B_{0}^{j}}=v_{j}\left|\phi^{+}\right\rangle\left\langle\phi^{+}\right|+\left(1-v_{j}\right) \frac{I}{4}, \rho_{B_{k}^{j} C_{k}^{j}}=v_{k}^{j}\left|\phi^{+}\right\rangle\left\langle\phi^{+}\right|+\left(1-v_{k}^{j}\right) \frac{I}{4}, \tag{70}
\end{equation*}
$$

where $v_{j} \in(0,1], v_{k}^{j} \in(0,1], j \in[m], k \in\left[n_{j}\right]$ and $\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$.
Consider the $\{+1,-1\}$-valued observables of $\mathcal{H}_{A}=\left(\mathbb{C}^{2}\right)^{\otimes m}, \mathcal{H}_{B j}=\left(\mathbb{C}^{2}\right)^{\otimes\left(1+n_{j}\right)}$ and $\mathcal{H}_{C_{k}^{j}}=\mathbb{C}^{2}$:

$$
\left\{\begin{array} { l }
{ X _ { 0 } = \sigma _ { 1 } ^ { \otimes m } ; } \tag{71}\\
{ X _ { 1 } = \sigma _ { 3 } ^ { \otimes m } , }
\end{array} \quad \left\{\begin{array} { l }
{ Y _ { 0 } ^ { j } = \sigma _ { 1 } ^ { \otimes (1 + n _ { j }) } ; } \\
{ Y _ { 1 } ^ { j } = \sigma _ { 3 } ^ { \otimes (1 + n _ { j }) } , }
\end{array} \quad \left\{\begin{array}{l}
Z_{0}^{j, k}=\frac{1}{\sqrt{2}}\left(\sigma_{1}+\sigma_{3}\right) ; \\
Z_{1}^{j, k}=\frac{1}{\sqrt{2}}\left(\sigma_{1}-\sigma_{3}\right),
\end{array}\right.\right.\right.
$$

where $j \in[m], k \in\left[n_{j}\right]$ and σ_{1}, σ_{3} are Pauli operators. The spectral projections form an $M A \mathcal{M}$ given by (62) for the network. Using Equation (70), Equation (71), and Equation (63) and taking $\alpha_{j}=0(j=0,1, \ldots, m)$, we compute that

$$
\begin{aligned}
I_{00 \ldots 0}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right) & =\frac{1}{2^{N}} \sum_{z_{j, k}=0,1}\left\langle X_{0} \otimes\left(\bigotimes_{j=1}^{m} Y_{0}^{j}\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}} Z_{z_{j, k}}^{j, k}\right)\right\rangle_{\tilde{\Gamma}} \\
& =\frac{1}{2^{N}} \sum_{z_{j, k}=0,1}\left\langle\sigma_{1}^{\otimes m} \otimes\left(\bigotimes_{j=1}^{m} \sigma_{1}^{\otimes\left(1+n_{j}\right)}\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}} C_{z_{j, k}}^{j, k}\right)\right\rangle_{\tilde{\Gamma}} \\
& =\frac{1}{2^{N}} \sum_{z_{j, k}=0,1}\left\langle\left(\bigotimes_{j=1}^{m}\left(\sigma_{1} \otimes \sigma_{1}\right)\right) \otimes\left(\bigotimes_{j=1}^{m} \bigotimes_{k=1}^{n_{j}}\left(\sigma_{1} \otimes C_{z_{j, k}}^{j, k}\right)\right)\right\rangle_{\Gamma} \\
& =\frac{1}{2^{N}} \prod_{j=1}^{m}\left\langle\sigma_{1} \otimes \sigma_{1}\right\rangle_{\rho_{A_{j} B_{0}^{j}}} \prod_{j=1}^{m} \prod_{k=1}^{n_{j}}\left\langle\sigma_{1} \otimes \sum_{z_{j, k}=0,1} C_{z_{j, k}}^{j, k}\right\rangle_{\rho_{B_{k}^{j} c_{k}^{j}}} \\
& =\frac{V}{\sqrt{2^{N}}}
\end{aligned}
$$

where $V=\prod_{j=1}^{m} v_{j} \prod_{j=1}^{m} \prod_{k=1}^{n_{j}} v_{k}^{j}$.
Analogously, taking $\beta_{j}=1(j=0,1, \ldots, m)$, we have $J_{11 \ldots 1}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)=\frac{V}{\sqrt{2^{N}}}$. Hence,

$$
\left|I_{00 \ldots 0}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)\right|^{\frac{1}{N}}+\left|J_{11 \ldots 1}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)\right|^{\frac{1}{N}}=\sqrt{2} V^{\frac{1}{N}} .
$$

Thus, $\left|I_{00 \ldots 0}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)\right|^{\frac{1}{N}}+\left|J_{11 \ldots 1}\left(\mathbf{P}_{\mathcal{M}}^{\Gamma}\right)\right|^{\frac{1}{N}}>1$ if and only if $V>\frac{1}{\sqrt{2^{N}}}$. Therefore, when the coefficients of the shared state (70) satisfy the condition $1>V>\frac{1}{\sqrt{2^{N}}}$, Equation (65) is violated, and then the network $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ is star-nonlocal.

5. Summary and Conclusions

In this work, a more general multi-star-network $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ was introduced. Such a network consists of $1+m+n_{1}+\cdots+n_{m}$ nodes and one center-node A that connects to m star-nodes $B^{1}, B^{2}, \ldots, B^{m}$ while each star-node B^{j} has $n_{j}+1$ star-nodes $A, C_{1}^{j}, C_{2}^{j}, \ldots, C_{n_{j}}^{j}$. When $m=1, n_{1}=n-1$, it reduces to $\operatorname{MSN}(1, n-1)$, which is just an n-local scenario [22,43], and when $m=n_{1}=1$, it becomes $\operatorname{MSN}(1,1)$, reducing to the bi-local scenario [20,43].

First, we have introduced the nonlocality of the star-locality and star-nonlocality of such a network and deduced some related properties. Based on the architecture of such a network, we have proposed the concepts of star-shaped correlation tensors (SSCTs) and starshaped probability tensors (SSPTs) and mathematically formulated two types of localities of SSCTs and SSPTs, named "D-star-locality" and "C-star-locality". By definition, an SSCT/SSPT is said to be C-star-local (resp., D-star-local) if it admits an integral star-shaped LHVM (resp., a finite-sum star-shaped LHVM). By establishing a series of characterizations, we have proven the equivalence of these localities is verified and then called them "starlocality". We have also found some necessary conditions for a star-shaped CT to be star-local. For the global properties of star-local SSCTs, we have proved that the set of all star-local SSCTs forms a path-connected compact set in the Hilbert space of tensors over the index set Δ_{S} and has least two types of star-convex subsets. Lastly, we have established a star-Bell inequality, which is proven to be valid for all star-local SSCTs. Based on this inequality, we have given two examples of star-nonlocal multi-star-network $\operatorname{MSN}\left(m, n_{1}, \ldots, n_{m}\right)$ with the shared pure and mixed entangled states, respectively.

Author Contributions: Conceptualization and investigation, H.C. and Z.G.; methodology and analysis, H.C., S.X. and K.H.; writing-original draft preparation, Z.G. and Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Nos. 11871318, 11771009, 12271325, 12001480), the Special Plan for Young Top-notch Talent of Shaanxi Province (1503070117), and the Applied Basic Research Program of Shanxi Province (No. 20210302123082).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.
Acknowledgments: The authors thank the reviewers for their kind comments and valuable suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Cirac, J.I.; Zoller, P.; Kimble, H.J.; Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 1997, 78, 3221. [CrossRef]
2. Kimble, H.J. The quantum internet. Nature 2008, 453, 1023. [CrossRef] [PubMed]
3. Sangouard, N.; Simon, C.H.; de Riedmatten, H.; Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 2011 83, 33. [CrossRef]
4. Simon, C. Towards a global quantum network. Nat. Phot. 2017, 11, 678. [CrossRef]
5. Wehner, S.; Elkouss, D.; Hanson, R. Quantum internet: A vision for the road ahead. Science 2018, 362, 303. [CrossRef] [PubMed]
6. Cirac, J.I.; van Enk, S.J.; Zoller, P.; Kimble, H.J.; Mabuchi, H. Quantum communication in a quantum network. Phys. Scr. 1998, T76, 223. [CrossRef]
7. Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145. [CrossRef]
8. Renou, M.O.; Bäumer, E.; Boreiri, S.; Brunner, N.; Gisin, N.; Beigi, S. Genuine quantum nonlocality in the triangle network. Phys. Rev. Lett. 2019, 123, 140401. [CrossRef]
9. Gisin, N.; Bancal, J.D.; Cai, Y.; Remy, P.;Tavakoli, A.; Cruzeiro, E.Z.; Popescu, S.; Brunner, N. Constraints on nonlocality in networks from no-signaling and independence. Nat. Commun. 2020, 11, 2378. [CrossRef]
10. Navascués, M.; Wolfe, E.; Rosset, D.; Pozas-Kerstjens, A. Genuine network multipartite entanglement. Phys. Rev. Lett. 2020, 125, 240505. [CrossRef]
11. Kraft, T.; Designolle, S.; Ritz, C.;Brunner, N.; Gühne, O.; Huber, M. Quantum entanglement in the triangle network. Phys. Rev. A 2021, 103, L060401. [CrossRef]
12. Luo, M.X. New genuinely multipartite entanglement. Adv. Quantum Technol. 2021, 4, 2000123. [CrossRef]
13. Acín, D.; Bruß, A.; Lewenstein, M.; Sanpera, A. Classification of mixed three-qubit states. Phys. Rev. Lett. 2001, 87, 040401. [CrossRef]
14. Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1. [CrossRef]
15. Kela, A.; Von Prillwitz, K.; Åberg, J.; Chaves, R.; Gross, D. Semidefinite tests for latent causal structures. IEEE Trans. Inf. Theory 2020, 66, 339. [CrossRef]
16. Åberg, J.; Nery, R.; Duarte, C.; Chaves, R. Semidefinite tests for quantum network topologies. Phys. Rev. Lett. 2020, 125, 110505. [CrossRef]
17. Bell, J.S. On the Einstein Podolsky Rosen paradox. Physics 1964, 1, 195-200. [CrossRef]
18. Bell, J.S. Speakable and Unspeakable in Quantum Mechanics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004.
19. Branciard, C.; Gisin, N.; Pironio, S. Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 2010, 104, 170401. [CrossRef]
20. Branciard, C.; Rosset, D.; Gisin, N.; Pironio, S. Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 2012, 85, 032119. [CrossRef]
21. Fritz, T. Beyond Bell's theorem: Correlation scenarios. New J. Phys. 2012, 14, 103001. [CrossRef]
22. Tavakoli, A.; Skrzypczyk, P.; Cavalcanti, D.; Acín, A. Nonlocal correlations in the star-network configuration. Phys. Rev. A 2014, 90, 062109. [CrossRef]
23. Mukherjee, K.;Paul, B.; Roy, A. Characterizing quantum correlations in a fixed-input n-local network scenario. Phys. Rev. A 2020, 101, 032328. [CrossRef]
24. Carvacho, G.; Andreoli, F.; Santodonato, L.; Bentivegna, M.; Chaves, R.; Sciarrino, F. Experimental violation of local causality in a quantum network. Nat. Commun. 2017, 8, 14775. [CrossRef]
25. Fraser, T.C.; Wolfe, E. Causal compatibility inequalities admitting quantum violations in the triangle structure. Phys. Rev. A 2018, 98, 022113. [CrossRef]
26. Wolfe, E.; Spekkens, R.W.; Fritz, T. The inflation technique for causal inference with latent variables. J. Causal Infer. 2019, 7, 20170020. [CrossRef]
27. Gisin, N. Entanglement 25 years after quantum teleportation: Testing joint measurements in quantum networks. Entropy 2019, 21, 325. [CrossRef]
28. Renou, M.O.; Wang, Y.; Boreiri, S.; Beigi, S.; Gisin, N.; Brunner, N. Limits on correlations in networks for quantum and no-signaling resources. Phys. Rev. Lett. 2019, 123, 070403. [CrossRef]
29. Schröedinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 807. [CrossRef]
30. Gour, G.; Spekkens, R.W. The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 2008, 10, 033023. [CrossRef]
31. Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying coherence. Phys. Rev. Lett. 2014, 113, 140401. [CrossRef]
32. Kraft, T.; Spee, C.; Yu, X.D.; Gühne, O. Characterizing quantum networks: Insights from coherence theory. Phys. Rev. A 2021, 103, 052405. [CrossRef]
33. Kraft T.; Piani, M. Monogamy relations of quantum coherence between multiple subspaces. arXiv 2019, arXiv:1911.10026.
34. Contreras-Tejada, P.; Palazuelos, C.; de Vicente, J.I. Genuine multipartite nonlocality is intrinsic to quantum networks. Phys. Rev. Lett. 2021, 126, 040501. [CrossRef]
35. Šupić, I.; Bancal, J.D.; Cai, Y.; Brunner, N. Genuine network quantum nonlocality and self-testing. Phys. Rev. A 2022, 105, 022206. [CrossRef]
36. Tavakoli, A.; Pozas-Kerstjens, A.; Luo, M.X.; Renou, M.O. Bell nonlocality in networks. Rep. Prog. Phys. 2022, 85, 056001. [CrossRef] [PubMed]
37. Xiao, S.; Cao, H.; Guo, Z.; Han, K. Two types of trilocality of probability and correlation tensors. Entropy 2023, 25, 273. [CrossRef]
38. Haddadi, S.; Ghominejad, M.; Akhound, A.; Pourkarimi, M. R. Suppressing measurement uncertainty in an inhomogeneous spin star system. Sci. Rep. 2021, 11, 22691. [CrossRef]
39. Militello, B.; Messina, A. Genuine tripartite entanglement in a spin-star network at thermal equilibrium. Phys. Rev. A 2011, 83, 042305. [CrossRef]
40. Haddadi, S.; Pourkarimi, M. R.; Akhound, A.; Ghominejad, M. Thermal quantum correlations in a two-dimensional spin star model. Mod. Phys. Lett. A 2019, 34, 1950175. [CrossRef]
41. Yang, L.H.; Qi, X.F.; Hou, J.C. Nonlocal correlations in the tree-tensor-network configuration. Phys. Rev. A 2021, 104, 042405. [CrossRef]
42. Yang, Y.; Xiao, S.; Cao, H.X. Nonlocality of a type of multi-star-shaped quantum networks. J. Phys. A: Math. Theor. 2022, 55, 025303. [CrossRef]
43. Xiao, S.; Cao, H.X.; Guo, Z.H.; Han, K.Y. Characterizations of Bilocality and n-Locality of Correlation Tensors. arXiv 2022, arXiv:2210.04207. https:/ /doi.org/10.48550/arXiv.2210.04207.
44. Bai, L.H.; Xiao, S.; Guo, Z.H.; Cao, H.X. Decompositions of n-partite nonsignaling correlation-type tensors with applications. Front. Phys. 2022, 10, 864452. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

