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Abstract: Extractive Question Answering, also known as machine reading comprehension, can be
used to evaluate how well a computer comprehends human language. It is a valuable topic with
many applications, such as in chatbots and personal assistants. End-to-end neural-network-based
models have achieved remarkable performance on these tasks. The most frequently used approach
to extract answers with neural networks is to predict the answer’s start and end positions in the
document, independently or jointly. In this paper, we propose another approach that considers
all words in an answer jointly. We introduce an encoder-decoder model to learn from all words
in the answer. This differs from previous works. which usually focused on the start and end and
ignored the words in the middle. To help the encoder-decoder model to perform this task better, we
employ evaluation-based reinforcement learning with different reward functions. The results of an
experiment on the SQuAD dataset show that the proposed method can outperform the baseline in
terms of F1 scores, offering another potential approach to solve the extractive QA task.

Keywords: natural language processing; question answering; encoder-decoder models;
reinforcement learning; neural network; machine learning

MSC: 68T50

1. Introduction

Text question-answering [1] systems can answer natural language questions automati-
cally, providing a convenient way for people to obtain required knowledge. A successful
system must be able to carry out several Natural Language Processing (NLP) tasks, such
as natural language understanding [2], information retrieval [3], or natural language in-
ference [4], making Question Answering (QA) one of the most challenging tasks that has
attracted the interest of many NLP researchers.

Researchers have proposed and defined different types of text QA tasks, such as
multichoice QA [5], generative QA [6], and extractive QA [7]. This paper focuses on
extractive QA tasks, which take a question and a document as the input. The document
contains a span that can serve as the correct answer for the question. Figure 1 shows an
example. An extractive QA system needs to locate the start and end positions of the answer
span in the input document and “extract” the span as the answer.

Extractive QA specifies the scope of the input question. The input question should
be about a document, and the answer exists in the document as a substring. This setting
enables us to confidently evaluate the predicted answers by comparing them to ground
truth using overlap-based metrics, thus providing a relatively ideal and convenient test
bed for QA models. Many works have used the extractive QA task to test models’ ability to
answer questions [2,8–10] or focus on achieving better results [11].
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Extractive QA Model

As this was the 50th Super Bowl, the league emphasized the "golden anniversary" with various gold-themed initiatives...

What was the theme of Super Bowl 50?

Document:

Question:

Answer:"golden anniversary" 

 The Answer is a span from the Document

Figure 1. An extractive question-answering system takes a question and a document as the input
and extracts a span from the document as the output answer.

The neural network models in [8,11–14] have achieved remarkable performances. They
differ in their approaches for adapting end-to-end neural networks to model extractive QA
tasks, e.g., the model proposed in [14] predicts the start and end positions of the span jointly,
while [12] predicts them independently. This paper discusses several approaches to the
modeling of extractive QA with neural networks. We propose the use of encoder-decoder
models to solve the extractive QA task with evaluation-based reinforcement learning. The
main ideas of this paper are as follows:

1. We solve the extractive QA task with an encoder-decoder model that generates all
answer words jointly, enabling the model to use more information from the answers
for training and to naturally output entire answers in the inference.

2. The proposed encoder-decoder extractive QA model uses evaluation-based reinforce-
ment learning to enhance the model’s performance. The experiment results show that
the proposed model can achieve better results than the baseline.

The structure of this paper is as follows: Section 2 gives the background and related
work, which includes a discussion about existing approaches to the training of neural-
network-based extractive QA models, the introduction of the encoder-decoder model, and
some general ideas behind reinforcement learning. Section 3 proposes our encoder-decoder
model, the constrained decoding method, and evaluation-based reinforcement learning.
Next, we present the experiment settings, results, and discussion in Section 4 and the
conclusion in Section 5.

2. Background and Related Work
2.1. Extractive Question Answering

Extractive Question Answering is also known as span prediction or machine reading
comprehension [15,16]. An extractive QA sample contains a question Q, a document
D, and an answer A to question Q. Q = {q1, q2, . . . , q|Q|}, D = {d1, d2, . . . , d|D|}, and
A = {a1, a2, . . . , a|A|}. These are represented as word sequences where qi, di, and ai denote
the words, and |Q|, |D|, and |A| are the number of words in each sequence. The word
sequence A = {a1, a2, . . . , q|A|} is a substring (subsequence occupies consecutive positions)
in D, i.e., s and e exist and satisfy

{a1, a2, . . . , a|A|} = {ds, ds+1, . . . , de}, where 0 < s ≤ e < |D|. (1)

We can solve this task by using an end-to-end model that takes Q and D as the input and
A as the output. The model predicts the probability of a span S being the correct answer
P(S|D, A) (We refer to P(S|D, A) as P(S) for brevity). The span S = {ds, ds+1, . . . , de}
denotes a substring in D.

2.1.1. Independent Assumption for the Start and End Positions

Since S could be an arbitrary span that holds s ≤ e, the number of valid spans is
quadratically related to |D| (e.g., D has (|D|2 + |D|)/2 spans). Inferring the probabilities
for all these spans is time-consuming and ineffective. Additionally, only one or a few
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spans are the correct answers, so training models to learn from such imbalanced data
is challenging. Therefore, precisely calculating the P(S) usually hinders such models
from obtaining a state-of-the-art prediction accuracy [17,18]. Rajpurkar et al. [19] and
Seo et al. [12] try to approximate P(S) by assuming that the start position s and the end
position e are independent, which can also accelerate the computation:

P(S) = P(ds, de) ≈ Pstart(ds)Pend(de). (2)

ds and de denote the start and end token of the span S. S can be uniquely identified by its
boundary (s and e), so P(ds, de) equals P(S), and words between ds and de can be omitted
from this formulation. Pstart(ds) denotes the probability of the s-th word in D being the
start of the answer, and Pend(de) denotes that probability that the e-th word is the end.

With this approximation, a model πθ can be used to estimate the Pstart(di) and Pend(de)
for each word in D as πθ,start(di) and πθ,end(de) and then assemble them to get the predicted
answer Ã:

s̃, ẽ = argmax
1≤i≤|D|,i≤j≤|D|

(
πθ,start(di)πθ,end(dj)

)
Ã = {ds̃, . . . , dẽ}.

(3)

The number of calculations is reduced to be linearly related to the document length |D|.

2.1.2. Greedy Search in the Multistep Decomposition

Although the independent assumption can reduce the computation load satisfacto-
rily [8,14], it is somewhat counterintuitive, since these two positions cannot be independent.
The start and end positions form the answer together, and if one varies, the other should
also move to improvise a rational answer. Thus, Yang et al. [20] and Clark et al. [21] insisted
on using a precise formula for determining the span’s probability, but they decomposed it
into multiple steps and used a greedy search to reduce the computational load. Usually,
the end position is a conditional probability in the decomposition:

P(S) = P(ds, de) = Pstart(ds)Pend(de | ds). (4)

Compared with Equation (2), Pend(de) becomes Pend(de | ds) in Equation (4), indicating
that the end position should depend on the start position. A model πθ can estimate the
preceding probability Pstart(di) over each word di ∈ D by picking the highest value as s̃ and
then finding the end position ẽ based on s̃. The two steps are performed in a greedy manner:

s̃ = argmax
1≤i≤|D|

(πθ,start(di))

ẽ = argmax
s̃≤j≤|D|

(
πθ,end(dj | ds̃)

)
.

(5)

The independent (Equation (2)) and decomposition (Equation (4)) methods have
similar levels of computational complexity and can achieve competitive performances. The
decomposition method is more flexible, since its performance can be improved through
the use of more complex search methods, such as the beam search [22]. It provides a more
convenient way of balancing performance and efficiency. Moreover, Fajcik et al. [14] and
Wang and Jiang [23] pointed out that independent methods may reduce the prediction
accuracy, and therefore, the start and end positions should be considered jointly. Regarding
approaches to predict the answer span, this paper explores another method to decompose
the P(S), which takes care of all tokens in the answer using an encoder-decoder model.
Section 3 details the proposed approach.
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2.1.3. Neural Network Models Used for Prediction

As introduced above, we need to predict P(ds), P(de), or P(de|ds) to extract the answer
span from D. Neural networks could be suitable choices with remarkable performance on
this task [24]. Generally, neural-network-based extractive QA models consist of an encoder
to transform each word into a feature vector and a classifier to compute the probability of
each word (as start or end) based on its feature vector [8,12,13]:{

d1, d2, . . . , d|D|
}
= encoder

(
d1, d2, . . . , d|D|

)
πθ,start(di) = classifierθ,start(di).

πθ,end(dj) =

{
classifierθ,end(dj) for P(ds) in Equation (2)
classifierθ,end(dj, ds̃) for P(dj|ds̃) Equation (4)

(6)

di and dj are the feature vectors for di and dj, respectively. Commonly, the classifier is a
multilayer perception with a softmax function that gives the final probability [25]. When
calculating the end position with Equation (4), the classifier can take the features for both
the predicted start word ds̃ and the candidate end word dj. The encoder has more elaborate
architectures like the Recurrent Neural Network (RNN) [26,27] or hte Convolutional Neural
Network (CNN) [28,29] to transform words into feature vectors effectively. θ denotes the
parameters of the model πθ . It can be optimized by minimizing a loss function on labeled
data using the gradient descent.

2.2. Encoder-Decoder Models

This paper employs an encoder-decoder model to predict the answer span S. Encoder-
decoder models are also known as sequence-to-sequence models, which can generate
word sequences according to the input word sequences [30,31]. The input and output of
the models, i.e., the sequence of words, are adaptable and can be used in many natural
language generation tasks, such as dialogue systems [32,33], machine translation [34,35],
text summarization [36,37], and knowledge graph completion[38,39].

Figure 2 illustrates an encoder-decoder model. The encoder transforms an input
word sequence X = {x1, x2, . . . , xm} into numerical features, similar to the encoder in
Equation (6). These features are considered to capture the semantic information in X. The
decoder generates the output sequence Y = {y1, y2, . . . , yn} based on the features of X
constructed by the encoder.

Encoder Decoder

x1, x2, ..., xm <start> y1 ... yn-1 yn

y1 y2 ... yn <end>

Figure 2. An encoder-decoder model autoregressively generates an output word sequence based on
the input. <start> and <end> are the special tokens representing the generation’s start and end.

Generally, an encoder-decoder model πθ estimates the conditional probability P(Y | X)
with πθ(Y | X). The number of output candidates is exponential, and it is impractical
to enumerate them to find the one with the highest probability. Thus, the P(Y | X) is
conditionally factorized for the decoder to handle it in an autoregressive manner:

P(Y | X) = P(y1 | X)P(y2 | X, y1)P(y3 | X, y1, y2) · · · P(yn | X, y1, y2, . . . , yn−1). (7)
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The decoder can generate the output sequence in a word-by-word greedy manner.
The generation of the i-th word depends upon the already generated words:

ỹi = argmax
w∈V

(decoder(w | ỹ1, ỹ2, . . . , ỹi−1)). (8)

V represents the vocabulary containing all of the candidate words. The process starts with
a special “start of the sequence” token representing an empty generated sequence and stops
if gets a special “end of the sequence” token. Additionally, advanced search algorithms
in [22,40,41] can be used to improve the generation results.

2.3. Reinforcement Learning for Encoder-Decoder Models

Reinforcement Learning (RL) is learning to control an agent to accomplish an objective
in the environment [42]. Usually, the agent does not learn, or barely learns, from examples
that show which action is the best for the objective but requires the discovery of the
superior actions by trial and error. RL uses reward functions r to quantify how well the
agent accomplishes the objective. The agent’s goal is to maximize the rewards:

E[r(A)πθ(A)], (9)

where A denotes actions, and πθ(A) determines the probability of choosing A. r(A) is the
reward obtained from the environment after taking A.

A simple way to integrate RL with the encoder-decoder models is to consider the output
sequence Y as actionsA and the input sequence X as the state [43]. Thus, Equation (9) becomes

E[r(Y)πθ(Y | X)]

=[r(y1, y2, . . . , yn)πθ(y1, y2, . . . , yn | X)]
(10)

πθ denotes the encoder-decoder model here. We continue to use πθ to represent the model
for convenience. πθ generates Y word-by-word and earns a reward when the generation is
finished. πθ(Y | X) is the probability of generating the whole sequence Y. The selection of
the reward function can be flexible. Task-specified evaluation methods, such as BLEU [44]
for machine translation, ROUGE [45] for text summarization, or Diversity [46] for response
generation, are suitable for the corresponding tasks.

The RL has been used in many NLP models. Ranzato et al. [47] proposed sequence-
level training, which uses BLEU and ROUGE to calculate the reward for a generated
sequence. Chen and Bansal [48] used RL to train a sentence selector in the proposed
two-stage model, which selects salient sentences from the document and then summarizes
the salient sentences to get the final summary. Li et al. [49] proposed the use of RL to
help with the question generation task. Xiong et al. [50] defined an additional RL-based
objective for the extractive QA model that independently predicts the answer span’s start
and end positions. Hu et al. [51] improved the reward function used in [50], which involves
overlap-based metrics and could neglect the acceptable answers. These works show the
significant potential of using RL to help with the NLP. To our knowledge, the RL has not
been evaluated in extractive QA models using the encoder-decoder framework. This paper
fills this gap by providing empirical results. Other than extracting answers from textual
evidence, locating answers over a knowledge graph [52] has been well-studied and applied
in many real-world applications [53].

3. Methods
3.1. Modeling the Whole Answer Span Using the Encoder-Decoder Model

As introduced in Section 2, two kinds of approximation, independent assumption
(Equation (2), described in Section 2.1.1), and greedy search (Equation (4) described in
Section 2.1.2), have been developed for use in extractive QA. Each has advantages, e.g.,
independent assumption simplifies the training and inference process, and decompo-
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sition requires no strong assumptions and can deal with the multistop problem with
search algorithms.

However, both approaches can neglect some words in answers, i.e., the words be-
tween a1 and a|A| in the answer span A = {a1, a2, . . . , a|A|}. This paper proposes that the
words between boundaries, {a2, . . . , a|A|−1} (called middle words for convenience) can also
provide useful semantic information for QA models to learn the semantics of the answer,
which can aid in the understanding of the question and document. By considering the
middle words, the probability of a span S becomes

P(S) = P(ds)P(ds+1|ds)P(ds+2|ds, ds+1) · · · P(de|ds, ds+1, . . . , de−1), (11)

which is a word sequence that an encoder-decoder model can generate. s and e are the start
and end positions. Thus, we introduce an encoder-decoder model for extractive QA, as
shown in Figure 3a.

Encoder

Input:

Santa Clara, California

... Stadium in the San Francisco Bay Areaat Levi 's ... Santaat Clara California

Answer:

Constrained Decoder

Santa Clara California <end>

<start> Santa Clara

... 

(a)

... 

Stadium in the San Francisco Bay... at Levi 's ... Area at Santa Clara California

End Word Classifier

Start Word Classifier

Encoder

Input:

Santa Clara, California

Representation:

... Stadium in the San Francisco Bay Areaat Levi 's ... Santaat Clara California... Stadium in the San Francisco Bay Areaat Levi 's ... Santaat Clara California

... Stadium in the San Francisco Bay Areaat Levi 's ... Santaat Clara California... Stadium in the San Francisco Bay Areaat Levi 's ... Santaat Clara California

Stadium in the San Francisco Bay Areaat Levi 's ... Santaat Clara California

Answer:

(b)
Figure 3. The comparison between the proposed model and a baseline model. The input question is
“Which NFL team represented the NFC at Super Bowl 50?”. The answer is “Santa Clara California”. (a) The
encoder-decoder model is used to solve the extractive QA task, taking advantage of all words in the
answer. (b) The baseline extractive QA models use the start and end words only.

The encoder-decoder model is trained to predict all the words in the answers, esti-
mating the P(S) following Equation (11). As a comparison, Figure 3b shows a traditional
extractive QA model which ignores the middle words.

The loss function for generating an answer is [43]:

Ltext = −
|A|

∑
i=1

log πθ(ai|a1, . . . , ai−1, D, Q), (12)

where πθ denotes the encoder-decoder model.
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We use BART-base as the backbone of the proposed encoder-decoder model [54]. The
encoder in the BART-base consists of six transformer encoder layers, and the decoder has
the same number of transformer decoder layers. Each transformer layer contains a self-
attention layer and a feed-forward network [55]. The input is the concatenation of the
question and the document sequences, and the output is the word sequence in the answer.

3.2. Constrained Decoding

The decoder usually considers all words in the vocabulary as candidates when gen-
erating each word, as shown in Equation (8). However, the extractive QA ensures that
the output answer is a substring in the document, so we need to limit the output space of
the decoder, which is usually referred to as constrained decoding [56,57]. We implement
constrained decoding based on a trie tree, as shown in Algorithm 1.

Algorithm 1 Constrained Decoding.

Input: Question Q and Document D, Vocabulary V
Input: The decoder, Trie tree T and its functions: add(T, . . .), search(T, . . .)
Output: Answer Ã

1: Ã← {}, T ← Φ, i← 0, ỹ0 ← <start>
2: for k← 1 to |D| do . Initialize the trie tree T
3: add(T, {dk, dk+1, . . . , d|D|}) . Add a substring that starts with dk into trie tree T.
4: end for
5: while ỹi 6= <end> do
6: Vc ← {<end>} . Initialize the constrained vocabulary
7: P ← search(T, Ã) . Obtain the substring starting with Ã
8: foreach {p1, p2, . . .} ∈ P do . Loop over each substring in D starting with Ã
9: P = {p1, p2, . . .} − Ã . Remove the prefix Ã from substring {p1, p2, . . .}

10: Vc ← Vc + P[1] . Add the first token P[1] in P into Vc
11: end for
12: ỹi = argmax

w∈Vc

(decoder(w | ỹ1, ỹ2, . . . , ỹi−1)).

13: Ã← Ã + ỹi . Save the predicted words
14: end while
15: return Ã

T is a trie tree, also known as a prefix tree. It is a tree data structure that can store
and locate a set of sequences [58,59]. It groups the sequences based on their prefixes, and
we can obtain the sequences that have a specified prefix from all the stored sequences.
The function search(T, . . .) is shown in Algorithm 1. The add(T, . . .) function denotes
the addition of a new sequence to T. We add all possible starts, as shown in Lines 2–
3. The search(T, . . .) obtains the sequences that start with a prefix (We use the trie tree
implemented in https://github.com/pytries/marisa-trie, accessed on 7 August 2021). Vc
is the constrained vocabulary that stores all of the candidate words and can ensure that the
generation becomes invalid. It is updated at each generation step.

The constrained decoding required here is not trivial, since we need to take care of
the tokenization [60], which can split a natural word into pieces with different indices to
the origin word. The constrained decoder should not reject a generated word (piece) if its
index differs from the expected index, but it should be checked carefully. Thus, in practice,
we append every word w in the vocabulary V after the current sequence, check whether
the updated sequence satisfies the constraints, and save the valid word into the current
constrained vocabulary Vc.

3.3. Evaluation-Based Reinforcement Learning

Predicting a whole answer span is more challenging than predicting only its start
and end words, since there are more labels to be predicted. Therefore, we introduce

https://github.com/pytries/marisa-trie
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evaluation-based reinforcement learning to help the encoder-decoder model. Wvaluation-
based reinforcement learning is implemented as an auxiliary loss:

LRL = − log πθ(Ã|D, Q)r(Ã, A). (13)

Both the Ltext and LRL are optimized in training. The final loss function of the proposed
model is Ltext + LRL. Minimizing this loss function encourages the model to maximize the
reward. To make the optimization process more stable, we generate k candidate answers for
each sample (Q, D, and A) and standardize the rewards within the same sample:

r̂(Ã, A) =
1
k ∑ ik r(Ãi, A)−mean(r(Ã1, A), . . . , r(Ãk, A))

std(r(Ã1, A), . . . , r(Ãk, A))
. (14)

Ãi denotes the i-th answer sampled from πθ . We standardize the k raw rewards by sub-
tracting their mean values from them and then dividing them by their standard variance.
This standardization can help to ensure that the final rewards have both positive and
negative values.

r(Ã, A) is the reward obtained by comparing the predicted answer Ã with the ground
truth answer A. We compute the reward using conventional metrics for the extractive QA,
F1 and Exact Match (EM) [19]. We also test out the use of the ROUGE-L [45] for reward
calculation in our experiment.

Specifically, EM is used to check whether the prediction is the same as the ground truth:

EM(Ã, A) =

{
1 if the predicted sequence Ã equals the ground truth A,
0 otherwise.

(15)

Additionally, F1 is used to measure the word-level overlaps between the prediction and the
ground truth:

overlap(Ã, A) = ∑
w∈{A}∩{Ã}

min
(
count(w, A), count(w, Ã)

)
precision(Ã, A) =

overlap(Ã, A)

|Ã|

recall(Ã, A) =
overlap(Ã, A)

|A|

F1(Ã, A) =
2× precision(Ã, A)× recall(Ã, A)

precision(Ã, A) + recall(Ã, A)
.

(16)

In the above equation, w ∈ {A} ∩ {Ã} denotes enumerating the words that exist in both
A and Ã; each word only counts once. count(w, A) is the number of times that word w
appears in the sequence. |A| and |Ã| denote the lengths of sequences A and Ã, respectively.

The official evaluation script (https://worksheets.codalab.org/rest/bundles/0x6b567e1
cf2e041ec80d7098f031c5c9e/contents/blob/, accessed on 21 February 2022) normalizes the
answers before computing EM and F1, for example, by converting the answers into lower
case and removing some stop words, punctuation, and extra spaces. ROUGE-L indicates the
similarity between the prediction Ã and ground truth A based on their Longest Common
Subsequence (LCS [61,62]):

precisionlcs(Ã, A) =
LCS(Ã, A)

˜|A|

recalllcs(Ã, A) =
LCS(Ã, A)

|A|

ROUGEL(Ã, A) =
(1 + β2)× recalllcs(Ã, A)× precisionlcs(Ã, A)

β2 × precisionlcs(Ã, A) + recalllcs(Ã, A)
,

(17)

https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
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where LCS is the function that gives the LCS between the two input sequences, A and Ã.

4. Results and Discussion
4.1. Experiment Settings

We evaluated the proposed model on the SQuAD dataset [19], where each sample
consists of a question, a document, and an annotated answer. The documents were obtained
from Wikipedia (https://www.wikipedia.org/, accessed on 16 June 2016) paragraphs.
Table 1 shows two examples from the SQuAD dataset. The ground-truth answers are
marked in bold and the corresponding clues are presented in blue.

Table 1. Samples from the SQuAD dataset. An extractive QA model needs to understand the natural
language question and the evidence in the document to find the answer span from the document ∗.

NO. Question Document Answer

1
Which NFL team

represented the AFC
at Super Bowl 50?

Super Bowl 50 was an American football game
to determine the champion of the National

Football League (NFL) for the 2015 season. The
American Football Conference (AFC) champion
Denver Broncos defeated the National Football
Conference (NFC) champion Carolina Panthers

24-10 to earn their third Super Bowl title...

Denver
Broncos

2
Who was in charge of
the papal army in the

War of Barbastro?

The legendary religious zeal of the Normans
was exercised in religious wars long before the
First Crusade carved out a Norman principality
in Antioch. They were major foreign participants
in the Reconquista in Iberia. In 1018, Roger de

Tosny traveled to the Iberian Peninsula to carve
out a state for himself from Moorish lands, but
he failed. In 1064, during the War of Barbastro,

William of Montreuil led the papal army...

William of
Montreuil

* The ground-truth answers are in bold, and the corresponding clues are in blue.

There were 87,599 samples in the training set and 10,570 samples in the validation
set. We used the validation set for both validation and testing. We trained each model for
100,000 steps in total, saved checkpoints every 10,000 steps, and chose the best checkpoint
using the results of the validation set. Table 2 shows the other hyperparameters used.

Table 2. The Hyperparameters.

Hyperparameter Value Description

Batch size 32 Number of Samples in each Batch
Learning Rate (LR) 5× 10−5 Coefficient for updating the parameters
LR scheduler Linear warmup Tune the LR as the training step increases 1

LR warmup steps 500 The parameter for LR scheduler
Optimizer AdamW Adamw optimizer provided by Pytorch 2

Weight Decay 0.01 Coefficient for scaling the parameters down

Betas 0.9, 0.999 Coefficients used for computing running averages
of gradient and its square 3

k 4 Sampled sequences in Equation (14)
beam size 4 The number of beams for the beam search

1 https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/optimizer_schedules#transformers.get_
linear_schedule_with_warmup, accessed on 20 February 2023. 2 https://pytorch.org/, accessed on 20 February
2023. 3 https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html, accessed on 20 February 2023.

4.2. Main Results

Table 3 shows the experiment results. The baseline models include the following:

https://www.wikipedia.org/
https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/optimizer_schedules##transformers.get_linear_schedule_with_warmup
https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/optimizer_schedules##transformers.get_linear_schedule_with_warmup
https://pytorch.org/
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
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1. BiDAF [12]: a classical extractive QA model that uses bidirectional attention flow
(question-to-document and document-to-question attention) to enrich the representa-
tion of words. BiDAF predicts the answers’ start and end positions independently
according to the representations.

2. BiDAF\w compound (best) [14]: uses the approaches proposed in [14] that jointly
predict the start and end positions to enhance the BiDAF model. The best result
is reported.

3. DCN [63]: locates the answer spans by iteratively predicting the start and end posi-
tions to overcome the initial local maxima, which may lead to the wrong answers.

4. DCN+ [50]: introduces reinforcement learning techniques to optimize the F1 metric
for extractive QA directly.

5. R.M-Reader [51]: a memory-based model that uses reinforcement learning with a
reward function refined for better coverage.

6. BERT-base [8]: an extractive QA model based on a powerful pretrained language
model. We downloaded the model from https://huggingface.co/csarron/bert-base-
uncased-squad-v1/tree/main (accessed on 20 February 2023) and evaluated it locally.

7. BERT-base\w compound (best) [14]: jointly predicts the start and end positions. It is
similar to Model 2: BiDAF\w compound (best).

8. BART-base: directly trains a BART-base model to generate the whole answer based
on the question and answer.

The following models are trained with the proposed approaches. “RL\w F1”, “RL\w
ROUGE-L ”, and “RL\w EM&F1” represent the BART-base models that are trained using the
reinforcement learning loss with the F1 rewards (Equation (16)), ROUGE-L (Equation (17)),
and the sum of the F1 and EM values (Equations (16) and (15)), respectively. “Constrained”
denotes the use of constrained decoding for answer generation.

Table 3. The experimental results on the SQuAD dataset.

No. Model EM F1 #Out of Document

1 BiDAF [12] 66.16 76.19 0
2 \w compound (best) [14] 66.96 75.90 0
3 DCN [63] 65.4 75.6 0
4 DCN+ [50] 74.5 83.1 0
5 R.M-Reader [51] 78.9 86.3 0
6 BERT-base[8] 80.92 88.24 0
7 \w compound (best) [14] 81.83 88.52 0

8 BART-base 78.10 87.17 410
9 BART-base\w Constrained 79.80 88.05 0
10 RL\w EM&F1 78.37 87.87 329
11 RL\w EM&F1 Constrained 79.84 88.39 0
12 RL\w F1 78.83 88.04 310
13 RL\w F1 Constrained 80.02 88.54 0
14 RL\w ROUGE-L 78.27 87.44 304
15 RL\w ROUGE-L Constrained 79.39 87.97 0

As shown in Table 3, we can see that the proposed method, Model 13, can achieve
better F1 results than the baseline models. Model 13 uses the F1 score as the reward
function for reinforcement learning and constrained decoding. Model 13 outperforms the
models that also use reinforcement learning for extractive QA and works slightly better
than the model that also jointly models the start and end positions, showing the potential
for considering the whole answer span in extractive QA.

The use of metrics as rewards enables the models to be directly optimized based
on the metrics. However, Model 10 uses all of the metrics, EM and F1, as rewards but
does not achieve better results, indicating that the discrete EM value (0 or 1) may not be

https://huggingface.co/csarron/bert-base-uncased-squad-v1/tree/main
https://huggingface.co/csarron/bert-base-uncased-squad-v1/tree/main
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suitable for a reward function. Again, we emphasize that the reward functions should be
chosen carefully.

The “#Out of Document” shows the number of the predicted answer spans that are
not a substring of the input document, violating the settings of extractive QA. We can
see that there are always some invalid predictions without constrained decoding. This
means that the encoder-decoder model used, BART-base, still cannot thoroughly learn the
input–output paradigm of extractive QA. Generally, we find that the constrained decoding
strategy always brings a notable improvement to the EM score but does not improve F1
as much. Meanwhile, the proposed evaluation-based reinforcement learning method is
always helpful for improving the performance, even when the ROUGE-L is used as the
reward. ROUGE-L does not directly correspond with the evaluation metrics and is slightly
different from EM and F1 in terms of the calculation formula. The results again demonstrate
the effectiveness of the combination of the RL and text generation.

We set different beam sizes for the proposed encoder-decoder model and obtained
similar results, as shown in Table 4. One possible reason for this is that the generated
sequence is short, and the search space for generation is small, so the search algorithm is
limited. We set the beam size to 4 to obtain the results presented in Table 3.

Table 4. The experiment results with different beam sizes.

Model EM F1 Beam Size

BART-base 77.83 87.15 1
78.10 87.17 4
77.98 87.18 16

BART-base RL\w EM&F1 77.92 87.51 1
78.37 87.87 4
78.09 87.81 16

BART-base RL\w F1 78.43 87.77 1
78.83 88.04 4
78.61 88.01 16

BART-base RL\w ROUGE-L 77.77 87.08 1
78.27 87.44 4
78.14 87.41 16

4.3. Case Study and Discussion

Table 5 presents a case study to show the improvement qualitatively. The proposed
model is compared with a strong baseline model BERT on the SQuAD datasets. Ques-
tion 1 asks about the allies of Normans in the war. The baseline model gives their opponent,
whereas the proposed model yields the correct answer, demonstrating that it understands
the document correctly. Question 2 explicitly asks for the complete date, including the year,
month, and day, but the baseline provides the month only and omits the others.

Based on these cases, the proposed model seems to be better at producing longer an-
swers. To verify this assumption quantitatively, we investigated the lengths of the answers
predicted by different models. Figure 4 shows the average number of words/characters in
answers, respectively. The horizontal axis shows the answer’s length, and the vertical axis
displays the models.



Mathematics 2023, 11, 1624 12 of 16

Table 5. A case study for BERT-base (Baseline) and BART-base RL\w F1 (Our Model) on
SQuAD dataset ∗.

NO. Question Document Predictions

1
Who did the
Normans team up
with in Anatolia?

Some Normans joined Turkish forces to aid in
the destruction of the Armenians vassal-states
of Sassoun and Taron in far eastern Anatolia.
Later, many took up service with...

Baseline:
Armenians

Our Model:
Turkish forces

2

What month, day,
and year did the
Super Bowl 50
take place?

Super Bowl 50 was an American football game
used to determine the champion of the
National Football League... The game was
played on 7 February 2016 at Leviś Stadium
in the...

Baseline:

February

Our Model:
7 February 2016

* The ground-truth answers are in bold, and the corresponding clues are in blue.
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BERT-base

BART-base Constrained

BART-base \w F1

BART-base \w EM&F1 Constrained

BART-base \w ROUGE-L

BART-base \w F1 Constrained

BART-base \w EM&F1

BART-base \w ROUGE-L Constrained

Ground Truth

2.8392
2.8395

2.8738
2.8845

2.8961
2.9005

2.9122
2.9135

2.9295
2.9485

(a)

18.0 18.2 18.4 18.6 18.8 19.0
Number of characters

BART-base

BERT-base

BART-base Constrained

BART-base \w F1

BART-base \w ROUGE-L

BART-base \w EM&F1 Constrained

BART-base \w EM&F1

BART-base \w F1 Constrained

BART-base \w ROUGE-L Constrained

Ground Truth

18.16
18.17

18.36
18.46

18.52
18.54

18.59
18.63

18.68
18.93

(b)

Figure 4. The average length of the answers predicted by the models. (a) The numbers of words in
the answers. (b) The numbers of characters in the answers.

We sorted the models by the answers’ lengths in ascending order. We can see that the
ground-truth answers were the longest. The plain encoder-decoder model BART-base and
the baseline model BERT-base had the shortest average lengths, demonstrating that they
cannot perform ideally with long answers. The models equipped with the proposed meth-
ods, constrained decoding and evaluation-based RL (denoted by Constrained and RL\w,
respectively), prefer to give longer answers that are closer to the ground-truth’s length.

However, generating longer answers does not mean generating better answers, and we
need to evaluate their quality with the corresponding metrics. To analyze how the answer
length affects the models’ prediction results, we correlated the length of the ground-truth
answer with the F1 score of the answer predictions, as shown in Figure 5.
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Figure 5. The F1 scores of the predictions as the answer gets longer. (a) Grouped by numbers of
words. (b) Grouped by numbers of characters.

We grouped questions with similar answer lengths in the same range together and
averaged the F1 scores of the predictions for the questions in the same group. The horizontal
axis shows the length ranges, and the vertical axis denotes the F1 scores. Overall, the
performance degraded as the target answer became longer. Notably, the proposed model
(BART-base RL\w F1 Constrained) and the baseline model (BERT-base) performed similarly
when the answers were shorter (e.g., less than ten words). In comparison, the performance
of the proposed model was much better than the baseline model for longer answers. This
demonstrates that the proposed model generates longer answers and performs better
when the ground truth is longer, which also reveals that the improvement brought by the
proposed model is mainly for longer answers.

5. Conclusions

This paper proposes an encoder-decoder model for extractive QA. The proposed
encoder-decoder model can predict all the words in the answer span, which differs from
the previous extractive QA models, which only predict the start and end positions. Thus,
the extractive QA task runs in a more natural way, and the model should give a precise
answer, rather than answer pieces. We additionally introduced reinforcement learning to
create an auxiliary objective based on evaluation metrics to assist the models in training.
We evaluated the proposed method on the SQuAD dataset. The experiment results show
that the proposed encoder-decoder model can achieve competitive results to state-of-
the-art baseline models, showing the potential of the encoder-decoder models that use
reinforcement learning and unifying the NLP tasks with the encoder-decoder model.
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