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Abstract: Neurological diseases are a significant health threat, often presenting through abnormalities
in electroencephalogram (EEG) signals during seizures. In recent years, machine learning (ML)
technologies have been explored as a means of automated EEG pathology diagnosis. However,
existing ML-based EEG binary classification methods largely focus on extracting EEG-related features,
which may lead to poor performance in classifying EEG signals by overlooking potentially redundant
information. In this paper, we propose a novel Kruskal–Wallis (KW) test-based framework for EEG
pathology detection. Our framework first divides EEG data into frequency sub-bands using wavelet
packet decomposition and then extracts statistical characteristics from each selected coefficient. Next,
the piecewise aggregation approximation technique is used to obtain the aggregated feature vectors,
followed by the KW statistical test methodology to select significant features. Finally, three ensemble
learning classifiers, random forest, categorical boosting (CatBoost), and light gradient boosting
machine, are used to classify the extracted significant features into normal or abnormal classes. Our
proposed framework achieves an accuracy of 89.13%, F1-score of 87.60%, and G-mean of 88.60%,
respectively, outperforming other competing techniques on the same dataset, which shows the great
promise in EEG pathology detection.

Keywords: pathology detection; significant features; Kruskal–Wallis test; wavelet packet decomposition;
electroencephalography

MSC: 68T01; 92C55

1. Introduction

The brain is a crucial organ responsible for receiving external stimuli, generating
sensations, forming consciousness, and providing instructions. Therefore, research on the
brain has been a subject of immense interest. In recent decades, electroencephalogram
(EEG) has become a useful auxiliary tool for brain research. It allows researchers to
record and monitor spontaneous brain activity. Unlike other existing biomedical imaging
techniques, such as magnetic resonance imaging [1], EEG offers numerous advantages,
including non-invasiveness, high temporal resolution, real-time monitoring, relatively
low cost, and easy accessibility. These features make EEG an attractive technology for
screening or monitoring brain-related disorders, particularly in a large number of low-
income hospitals. Furthermore, EEG has found widespread use in clinical practice for
providing diagnostic support for patients with neurological diseases such as epilepsy [2,3],
Parkinson’s disease [4], and depression [5,6]. However, EEG data often presents challenges
such as non-stationary chaotic dynamics and low signal-to-noise ratio [7], which can make
manual interpretation of the recorded brain signals difficult. Therefore, there is an urgent
need for a reliable methodology to accurately and automatically detect EEG pathology.

Currently, several machine learning-based methodologies have been documented
in the literature, including convolutional neural network [8,9], categorical boosting
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(CatBoost) [10], support vector machine (SVM) [11], Riemannian geometry (RG) [7], and
others. These methodologies can be broadly categorized into feature-based and deep learn-
ing approaches. The two methodologies differ in terms of classification performance and
evaluation of clinical implications [12,13]. The deep learning methodologies are data-driven,
which adopt an end-to-end learning framework capable of automatically extracting and
classifying features. However, they require a large number of labeled samples (e.g., known
patient characteristics) for model training to prevent overfitting and ensure generalization
ability [14]. Additionally, deep learning models are complex, creating a trade-off between
accuracy and interpretability [15]. In contrast, the feature-based methodologies can learn
effective parameters with relatively small training samples [16], using two stages: EEG
feature extraction using time or time-frequency analysis techniques and classification using
conventional classifiers such as CatBoost and SVM. The most common methodologies for
feature extraction include wavelet packet decomposition (WPD) [17], continuous wavelet
transform (CWT) [7], and wavelet decomposition [18]. For instance, Zhou et al. [19] incor-
porated the Hilbert transform (HT) and discrete wavelet transform (DWT) for extracting
amplitude and frequency modulation features in EEG data. Overall, feature-based decod-
ing frameworks can perform as well as the most advanced deep neural networks in EEG
pathology classification [7,19]. Furthermore, researchers favor these techniques due to their
robustness, low cost, and interpretability [20–22]. However, the majority of existing feature-
based EEG pathology methodologies primarily focus on feature extraction procedures,
neglecting redundancy and irrelevant features, which may adversely impact classification
performance.

In this paper, we propose a novel machine learning framework that addresses the
challenges of EEG pathology detection. Our framework is based on the Kruskal–Wallis
(KW) test and WPD to discriminate between normal and pathological EEG signals. The
nonparametric KW test is a widely used method for feature selection, which is applied to
analyze each feature for detecting statistically significant differences between normal and
abnormal EEG signals. We first decompose brain signals into different wavelet coefficients
using WPD and measure the statistical parameters of each selected coefficient as a feature
vector. We then present a new mechanism based on feature aggregation and KW to rank the
aggregated features and select the desired subset of available features, aiming to accelerate
the subsequent classification procedure further. Finally, the selected features are fed into
different ensemble learning classification algorithms (i.e., random forest (RF), CatBoost,
and light gradient boosting machine (LightGBM)) to distinguish between pathological and
non-pathological EEGs. Our experiments demonstrate that our proposed methodology out-
performs the listed five representative baselines, with an F1-score of 87.60% and a G-mean
of 88.60%. This indicates the feasibility and effectiveness of our proposal. Furthermore,
the ablation experiment also shows that the designed feature selection mechanism can
decrease the dimensionality of feature space while not impairing the characteristic quality,
substantially simplifying the computational complexity of our approach. To the best of our
knowledge, we are likely to be among the first to apply the KW statistical test in the EEG
pathology detection domain. The major contributions of this study are listed as follows:

1. We design a novel feature selection mechanism incorporating feature aggregation
and KW statistical tests to rank aggregated EEG features and eliminate meaningless
features by set thresholds. In particular, the newly presented feature aggregation
strategy can significantly reduce the dimension of EEG features, thereby simplifying
the computational complexity of our framework.

2. We perform extensive experiments on the popular benchmark dataset. The proposed
method with the CatBoost classifier outperforms existing approaches, providing a
better supporting technique for EEG pathology diagnosis. We also verified that the
designed feature selection proposal helps EEG detection performance improvement
through rigorous ablation studies.

The remaining sections of this paper are arranged as follows. Section 2 provides
a literature review of related works. Section 3 describes the experimental data and our
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proposed technique in detail. Section 4 presents the experimental results and analysis.
Finally, we conclude with suggestions on future work in Section 5.

2. Related Works

In recent years, machine learning has shown promising results in the medical field.
However, it can be challenging for neurologists to observe important information in EEGs
without utilizing machine learning technologies. Various approaches have been proposed
in the literature, broadly categorized into feature-based and deep learning methods. In
this section, we will briefly discuss the related works that have been employed to detect
EEG pathology.

2.1. Deep Learning Methods

Deep learning approaches have shown good representation learning abilities in clas-
sification and detection tasks, and several deep learning-based approaches have been
proposed for distinguishing pathological vs. normal EEG in the literature with good classi-
fication results [5,23]. These approaches adopt different neural network architectures and
neural architecture search strategies to improve the performance of EEG detection. For
example, Schirrmeister et al. [8] used shallow and deep convolutional neural networks
with an automatic hyperparameter optimization algorithm to decode EEG pathology and
obtained an accuracy of about 85%. Since then, deep learning-based EEG pathology detec-
tion approaches have proliferated. Gemein et al. [7] proposed an adaptation braindecode
temporal convolutional network (BD-TCN) for optimized EEG decoding, which achieved
86.20% accuracy. Roy et al. [14] designed the ChronoNet architecture as a recurrent neural
network to process EEG data efficiently and obtained 86.57% accuracy. Amin et al. [11] pre-
sented a cognitive smart healthcare framework based on the AlexNet model for analyzing
EEG pathology, which resulted in 87.32% accuracy. Although these network models have
shown the capability to detect abnormal EEG signals, they are complex and require a large
volume of labeled samples for training to prevent overfitting and provide generalization
ability [14,15]. For instance, some studies [11,24] employed massive additional closed
source EEG data to pretrain the network model. Furthermore, overfitting was observed in
some designed network models for EEG detection [14,25].

2.2. Feature-Based Methods

Over the past two decades, traditional machine learning technologies have been
extensively utilized for EEG decoding tasks due to their robustness, low cost, and inter-
pretability [20–22]. These machine learning approaches can be divided into two parts:
feature extraction and EEG classification. They first extracted various EEG features from
different domains, and then classified the extracted features into different categories. For
example, Subasi et al. [2] used the DWT and WPD to extract EEG features for classifying
epileptic focal region. Similarly, Acharya et al. [3] utilized the WPD to extract features
and selected a subset for epileptic activity classification, while Kutlu et al. [26] used WPD
for arrhythmia classification. Tawhid et al. [27] presented a completed non-parametric
local transform approach for classifying multiple neurological abnormalities, and Nicolaou
et al. [28] investigated permutation entropy features in the time-domain perspective for the
purpose of detecting seizures.

Recently, feature-based techniques have gained attention for EEG pathology detection.
For example, Gemein et al. [7] extracted different domain EEG characteristics using various
analysis techniques, such as discrete Fourier transform (DFT), DWT, CWT, and HT, and
achieved 85.90% accuracy with the RG classifier. Sharma et al. [18] designed an auto-
matic framework based on wavelet decomposition and various classifiers to distinguish
normal and abnormal EEGs. More recently, Albaqami et al. [17] extracted six statistical
characteristics from each selected WPD coefficient, including average power, standard de-
viation, and skewness, and input them into the CatBoost classifier, achieving an accuracy of
87.68%. However, most existing feature-based EEG pathology detection approaches ignore
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redundant and irrelevant features, which can negatively affect classification performance.
Therefore, in this paper, we present a novel feature extraction mechanism to effectively
address this challenge.

3. Materials and Methods

This section introduces a new framework for resolving the classification problem of
normal versus pathological EEGs. The machine learning pipeline employed in this study
is illustrated in Figure 1. The process involves three phases: statistical features extraction,
significant features selection, and classification. Each phase is discussed in detail in the
following subsections.

Training Labels

Feature 
Selection

Classifier 
Training

Selected 
Features

Trained 
Classifier

Performance 
Evaluation

Test Labels

Normalization
Feature 

extraction
Preprocessing

Feature 
aggregation

Normalization
Feature 

extraction
Preprocessing

Feature 
aggregation

Figure 1. Flowchart of the proposed EEG pathology detection framework.

3.1. Clinical Scalp EEG Dataset

This work utilizes the publicly available EEG Abnormal Corpus V2.0.0 [29], which
has been extensively studied in the literature, as in [7,8,11,30]. This database was provided
by the Temple University Hospital in America and contains over 2717 multichannel EEG
records collected from patients ranging in age from 7 days to 96 years. The recorded
brain-related pathologies include, but are not limited to, epilepsy, stroke, and depression.
The EEG recordings were obtained using common electrodes arranged according to the
international 10/20 position system, as depicted in Figure 2. The database contains a
minimum of 21 and a maximum of 31 EEG channels, with each recording lasting at
least 15 min, and having a sampling rate ranging from 250 to 500 Hz. To ensure data
consistency, the EEG signals were down-sampled to 250 Hz, and the same 21 EEG channels
present in all recordings were selected (Figure 2). Additionally, neurologists have labeled
each record as either pathological or normal EEG. Based on this labeling, the benchmark
corpus has been separated into training and testing sets. The training set consists of
1346 pathological samples and 1371 normal samples, while the testing set consists of
126 pathological samples and 150 normal samples. The training set was obtained from
893 pathological patient records and 1237 normal patient records, while the testing set was
obtained from 105 pathological patient records and 148 normal patient records. Table 1
provides a concise summary of the TUH Abnormal EEG dataset, and further information
about the dataset can be found in [29].
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Figure 2. Layout of EEG electrodes.

Table 1. Description of samples and patients employed in TUH Abnormal EEG Corpus (V2.0.0).

Description
Samples Patient

Normal Pathological Normal Pathological

Training 1371 1346 1237 893
Testing 150 126 148 105
Total 1521 1472 1385 998

3.2. Feature Extraction

In general, EEG-related characteristics can effectively be extracted from raw brain data
using time, frequency, and time-frequency analysis methods. However, each approach
has its own strengths and limitations. The time-domain analysis techniques capture EEG
features from a time-domain perspective, but may overlook valuable frequency information.
The frequency-domain analysis, on the other hand, mainly focuses on the spectral structure
in brain activity signals and may lose significant information. By contrast, time-frequency
analysis techniques, such as WPD, can simultaneously consider both time and frequency
domain information, which has gained widespread attention in recent decades and has
been widely used for pathology detection [17,31,32]. Therefore, in this paper, we utilize the
WPD to extract discriminative characteristics from the raw brain signals.

To address the non-stationary characteristics of long duration EEG signals, they
are typically clipped into shorter segments to extract discriminative features more ef-
fectively [33,34]. Each segment is considered pseudo-stationary because of the similarity
between the statistical characteristics in the time and frequency domains [35]. We introduce
a non-overlapping sliding window with a size of 8 s to clip each of the EEG signals (channel-
wise) into small intervals. Subsequently, the WPD technology is applied to decompose each
segmented signal into frequency sub-bands. Specifically, the information obtained from
the decomposition in the first level provides both approximate and detailed coefficients.
WPD continues to decompose both approximate and detailed coefficients at the next level
and repeats this procedure until all predetermined decomposition levels are reached. We
assume Wn

j is the nth (n = 0, 1, 2, · · · , 2j − 1) wavelet packet at the jth scale, which could
be represented as a wavelet function:

Wn
j,k(t) = 2−j/2Wn(2−jt− k), (1)

is the orthonormal basis corresponding to Wn
j , where j, k, n, t are index scale (integer), shift factor

(integer), frequency factor, and time, respectively. Wn
j,k(t) satisfies the Equations (2) and (3) [36],

when n is even,
Wn

j,0(t) = ∑
k

h0(k)Wi
j−1,k, (2)
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when n is odd,
Wn

j,0(t) = ∑
k

h1(k)Wi
j−1,k, (3)

where h0(k), h1(k) is a couple of quadruple mirror filters that are scale-independent and
satisfies with (4),

h1(k) = (−1)1−kh0(1− k). (4)

Note that W0
0,0 and W1

0,0 represent the scaling function and the mother wavelet function,
respectively. Assuming that f (t) is a function of space L2(R), when the scale is small
enough, the sampling sequence f (k∆t) of f (t) can be directly used to approximate the
coefficients d0

0(k) as space W0
0 . The coefficient dn

j (k) of WPD at jth level and kth sample is
represented as (5) and (6),

d2n
j (k) = ∑

k
h0(m− 2k)dn

j−1(m), (5)

d2n+1
j (k) =

k

∑
m

h1(m− 2k)dn
j−1(m), (6)

where m ∈ Z. From level (j− 1)th, we can obtain the decomposition coefficients of level jth,
and the WPD coefficients of the digital signal f (k) at each level can be found by sequential
analogy. Figure 3 shows an example of a 3-level (j ∈ {1, 2, 3}) WPD decomposition of the
EEG signal, where A and D stand for the approximate and detail coefficients, respectively.
The effectiveness of the WPD technique is influenced by two important factors: the number
of decomposition levels and the wavelet basis used. Typical wavelet basis functions include
Symlets, Coiflets, and Daubechies [37]. Among these, Symlets, also referred to as orthogonal
wavelets due to their good symmetry and orthogonality, is particularly well-suited for
analyzing EEG data [38]. In addition, the more decomposition levels are utilized, the more
coefficients are generated, resulting in a greater time overhead. In this study, in response to
the results of the preliminary experiment, we choose the 8-level decomposition level and
sym4 as the wavelet mother function.

Level 1

Level 2 AA

A D

AD DA DD

AAA AAD ADA ADD DAA DAD DDA DDDLevel 3

EEG Signals segment

Figure 3. The structure of 3-level WPD.

After decomposition, a simple approach is to concatenate all the coefficients into a
single vector and use it as the input to the classification algorithm. However, this method
suffers from poor classification performance due to the high-dimensional nature and low
signal-to-noise ratio of EEGs. To address this issue, a commonly adopted strategy is
to derive a set of statistical characteristics from each selected frequency component, as
depicted in Figure 4. In this study, we follow the approach proposed in [39,40], which
involves extracting only three statistical characteristics from each selected WPD frequency
component, namely, mean absolute value (msk), mean value (usk), and standard deviation
(σsk). They are given by the following mathematical equations:
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msk =
1
Lk

Lk

∑
t=1
|xkt| (7)

usk =
1
Lk

Lk

∑
t=1

xkt (8)

σsk =

(
1

Lk − 1

Lk

∑
t=1

(xkt − usk)
2

)
(9)

where s represents the s-th segment of a raw signal, k(k = 1, 2, · · · , K) is the k-th coefficient
in the selected coefficient list, K is the size of the selected coefficient list, Lk is the length of
the k-th coefficient signal, and xkt denotes the t-th data point in the k-th coefficient. Among
all measures, the former two refer to the frequency information of the signal, while the σsk
represents the number of changes in the frequency of the signal. For each EEG sample,
after calculating the statistical characteristics, the obtained values are stored in a matrix
Fstatistics ∈ RC×S×3K for further analysis:

Fstatistics =





m11 u11 σ11 · · · m1k · · · σ1K
m21 u21 σ21 · · · m2k · · · σ2K

...
...

...
...

...
...

...
ms1 us1 σs1 · · · msk · · · σsK

...
...

...
...

...
...

...
mS1 uS1 σS1 · · · mSk · · · σSK


× C channels


(10)

where S represents the total amount of the consecutive segments for an EEG sample and C
denotes the channel number of the used EEGs. In addition, for the purpose of eliminating
the effects of unit and scale differences among characteristics, the statistical features are
normalized with the Z-score normalization technique in this study.

Subsequently, we present the computational complexity of our WPD-based characteris-
tics to analyze the computational cost and time requirements for computing characteristics.
In this regard, we defined the big-O notation O(.), which generally expresses the asymp-
totic behavior when the input size u (here referring to the EEG signals) tends to infinity [41].
We define the time complexity Tc and g as two positive functions with the following
Equation (11):

Tc(u) = O(g(u)) (11)

where u ∈ R if and only if positive constant t and u′, such that we have Tc(u) ≤ tg(u)
with respect to all u ≥ u′ [17]. Let Ls be the length of the s-th (s = 1, 2, · · · , S) segment,
then the s-th segment time complexity of computing WPD-based characteristics can be
obtained by O(Ls log2(Ls) ∗ d), where d is the decomposition levels. It should be noted
that the time complexity of feature extraction is linearly related to the length of the EEG
segments. Furthermore, the total time complexity can be obtained by multiplying the time
complexity of a segment by S and by C.
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EEG Signal
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Figure 4. Statistical feature extraction process from the raw EEG signal.

3.3. Feature Selection by Statistical Significance

In the task of EEG classification, irrelevant or partially relevant extracted features can
negatively affect classification performance [42]. To improve the differentiation of different
categories, it is important to select more meaningful characteristics. For instance, in this
study, a training set of 2717 EEG samples was used, with K, C, and S being 16, 21, and 100,
respectively, for each sample. Using the proposed statistical feature extraction methodology,
a one-dimensional feature vector with a length of 33,600 was derived from each sample.
However, this high-dimensional feature vector increases the computational load, leading
to overfitting and containing meaningless features. Therefore, appropriate feature selection
is a crucial and essential step to eliminate irrelevant or redundant features. This paper
proposes a novel feature selection mechanism that incorporates feature aggregation and
KW statistical tests. The newly presented approach consists of two steps. In the first step,
we apply a piecewise aggregation approximation technique to reduce the dimension of the
feature matrix and in order to accelerate feature selection. This technique represents the
original time series as a sequence, where the elements are composed of the mean values of
each equal-length segment. It transforms long-time series into short ones, where the mean
vector becomes a reduced representation of the data. Figure 5 depicts the entire procedure
of EEG statistical feature aggregation. To minimize the negative effect on the quality of
extracted characteristics, the statistical feature matrix of each EEG sample is split into the
first, middle, and last three parts along with the time direction. The mean of all segments
within each part is then calculated and concatenated into a single feature vector. That is,
Fstatistics can be transformed into a new feature vector Fstatistics = (F f irst, Fmiddle, Flast)× C,
where its length is C× S′ × 3K, S′ denotes the number of aggregation output values for
each statistical feature vector and its value is equal to 3 in this paper, that is, S′ � S. F f irst
can be calculated by:

F f irst = (m f irst, 1, u f irst, 1, σ f irst, 1, · · · , σ f irst, k, · · · , m f irst, K, u f irst, K, σ f irst, K), (12)
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where

m f irst,k =
1
y

S/2

∑
s=1

msk, u f irst,k =
1
y

S/2

∑
s=1

usk, σ f irst,k =
1
y

S/2

∑
s=1

σsk, y = S/2, k = 1, 2, · · · , K. (13)

Similarly, for Fmiddle, Flast, they can be obtained by:

mmiddle,k =
1
y

3S/4

∑
s=S/4

msk, umiddle,k =
1
y

3S/4

∑
s=S/4

usk, σmiddle,k =
1
y

3S/4

∑
s=S/4

σsk, k = 1, 2, · · · , K, (14)

mlast,k =
1
y

S

∑
s=S/2

msk, ulast,k =
1
y

S

∑
s=S/2

usk, σlast,k =
1
y

S

∑
s=S/2

σsk, k = 1, 2, · · · , K. (15)

In this aggregation process, a mean value is used to summarize the information
embedded in S/2 feature values, resulting in a significant reduction in the size of the
feature matrix of each part.

48

Split Aggregation  Concatenation
21

100

21
21

1

48
48

50

3024

Figure 5. The complete process of feature aggregation.

In the subsequent step, an appropriate feature ranking technique is employed to
further eliminate redundant or noisy characteristics that may still be present in the ag-
gregated features. This scheme ranks all of the extracted characteristics based on their
discriminative power, thereby selecting the most relevant characteristics from the available
characteristics. This approach reduces the computational burden of the classifiers by using
a smaller number of characteristics without compromising classification accuracy [4,43]. To
analyze the significance of the aggregated characteristics, we utilize the KW test, which
is a non-parametric statistical test. The highly important characteristics indicate good
discrimination and can be evaluated by employing the p-value, where a smaller p-value
corresponds to a more important feature. In addition, to determine the statistical signifi-
cance of the aggregated features, the KW test is conducted to test the null hypothesis that
there is no difference between the features of different categories. On the contrary, the
alternative hypothesis is that the distribution of features between different categories is not
completely the same. If the p-value is less than the selected significance level, we reject the
null hypothesis. By comparing the p-value with the significance level, significant features
can be distinguished, and those with a p-value less than the predetermined threshold are
identified as useful features and retained, while the rest are discarded. In this work, the
significance level of p is set to 0.001, which is a commonly used p-value, for example, in
medical applications to perform statistical tests of significance [44,45]. More specifically,
features with p-values < 0.001 are selected, indicating that there is strong evidence against
the null hypothesis with less than 0.1% probability. Therefore, the calculated p-values are
used to rank the features and identify an optimal set of features to reduce the computational
complexity of the proposed method.
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3.4. Ensemble Learning Classifiers

After selecting the strongly correlated features, we used the constructed feature ma-
trix as the input for the classifier to perform EEG classification. Common classification
algorithms include SVM, CatBoost [17], RG [7], LightGBM [46], and RF [47], among others.
However, a single learner may result in poor generalization performance under the miss
selection in the process of learning tasks. Therefore, ensemble learning, especially gradient
boosting-based methods, has attracted significant attention due to its excellent performance
and flexibility [48]. In this work, we adopted three popular ensemble learning algorithms,
namely RF, LightGBM, and CatBoost, to classify the selected important characteristics. The
latter two are gradient boosting-based ensemble learning classification approaches. RF is
a multi-tree integration algorithm that is extensively used for classification or regression.
It designates the category with the highest number of votes as the final output using the
bootstrap resampling technique, while scoring the importance of the variables.

LightGBM is a light gradient boosting algorithm, also derived from gradient boosting
decision trees (GBDTs) algorithms. It addresses the problem of an excessive number of
samples and features three techniques, i.e., the histogram algorithm, the one-sided gradient
sampling algorithm, and the mutually exclusive feature linking algorithm. These techniques
make the GBDT algorithm more lightweight and further improves the training speed.

CatBoost is another novel ensemble algorithm derived from the GBDTs, proposed
by Yandex [10] and demonstrated to have good ability in handling heterogeneous data.
Moreover, this algorithm employs oblivious trees as basic predictors, which are balanced,
to overcome over-fitting problems. Generally it exhibits superior classification performance
compared to other ensemble approaches.

4. Results and Discussion

In this section, we first introduce the experimental initialization, then show the imple-
mentation details of our proposed framework, and finally conduct a series of experiments
to verify the effectiveness of our proposed method. All experiments were conducted on
a workstation equipped with an Intel i7-8700 processor (up to 3.20 GHz) and an NVIDIA
GeForce RTX 3090 GPU.

4.1. Experimental Setup

To ensure a rigorous comparison, we used the same experimental setup as [17] to
evaluate the feasibility of our proposed methodology. Specifically, we applied the same
pre-processing operations, and sliced each EEG signal into 100 segments by using a non-
overlap sliding window with a size of 8 s. We then decomposed each segment into a series
of coefficients using the WPD with the sym4 wavelet basis and eight decomposition levels.
We selected eight approximations and details from the WPD coefficients, respectively, which
were exactly the same as those selected in [17]. We derived a set of statistical characteristics
from each selected coefficient and used a feature selection mechanism based on the KW
test to eliminate meaningless aggregated features. After carrying out the KW test, the
significant characteristics with a p-value less than 0.001 were selected and fed into RF,
LightGBM, and CatBoost classifiers for the detection of pathological and normal EEGs.
These classifiers are briefly described in Section 3.4. In all experiments, RF, LightGBM, and
CatBoost models were iterated 48, 60, and 800 times, respectively, and the maximum tree
depths were set to 8, 10, and 4. The learning rates for the latter two were 0.0284 and 0.003.
For the remaining hyperparameters used in each classifier, they were fixed to the default
values. The details of the proposed method are shown in Table 2.
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Table 2. Parameters for the proposed methodology in this work.

Parameters Value

Feature extraction WPD

wavelet basis sym4
decomposition level 8

selected coefficients [D, . . . , DDDDDDDD,
A, . . . , AAAAAAAA]

KW p-value 0.001

Classification methods

RF
n_estimators 48
max_depth 8

criterion gini

LightGBM
n_estimators 60
max_depth 10

learning_rate 0.0284

CatBoost
n_estimators 800
max_depth 4

learning_rate 0.03

Moreover, we evaluated the effectiveness of the proposed framework with three
commonly used measures: accuracy (ACC), F1-score, and G-mean [6,49]. Specifically,
accuracy is the simplest and most intuitive evaluation metric in the classification problem,
representing the proportion of correctly predicted normal and pathological samples. The
F1-score is a comprehensive evaluation metric that considers both the precision and recall
of the methodology, and it is not affected by sample proportion. The G-mean is obtained
from the squared root of precision and recall, measuring the model’s balance performance.
The mathematical definitions for accuracy, G-mean, and F1-score are as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(16)

G-mean =

√
TP

TP + FN
× TN

TN + FP
(17)

F1-score =
2TP

2TP + FP + FN
(18)

where TP (true positive) and TN (true negative) represent the number of correctly classified
pathological and normal EEG signals. Likewise, FP and FN represent the false positive
and false negative values, respectively.

4.2. Comparison with the State-of-the-Art Baselines

To validate the effectiveness of the selected attributes for EEG pathology classification,
we conducted experiments with the proposed framework utilizing different classifiers
on the same dataset. The experimental results are illustrated in Figure 6. The horizontal
axis represents the target class, while the vertical axis represents the predicted class, with
both normal and abnormal categories included. Our findings reveal that when using the
CatBoost classifier, 6.6% of normal testing samples were misclassified as abnormal, and
15.8% of abnormal testing samples were misclassified as normal. Similarly, our framework
achieved an accuracy of 86.95% and a G-mean of 86.40% using LightGBM, and an accuracy
of 86.59% and a G-mean of 85.75% using RF. By comparison, we can conclude that the
proposed framework based on CatBoost produces superior classification performance and
is therefore chosen as the optimal classifier for our methodology.
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Figure 6. Confusion matrices of different classifiers on the default test set.

Next, to further validate our proposed methodology, we compared it with other state-
of-the-art baselines using the same database. To ensure a fair comparison, the comparative
approaches utilized the same EEG channels as our work, including BD-Deep4 [8], RG [7],
AlexNet + SVM [11], WPD + CatBoost [17], and BD-TCN [7]. Table 3 presents a comparison
of our methodology against five baselines, with the best results highlighted in bold.

Table 3. Comparison of results with different methods using the same public EEG dataset.

Methods ACC (%) F1-Score (%) G-Mean (%)

Traditional Models DFT, DWT, CWT, HT + RG [7] 85.90 80.41 84.92
WPD + CatBoost [17] 87.68 86.06 87.22

Deep Learning Models
BD-Deep4 [8] 85.42 85.42 84.06

AlexNet + SVM [11] 87.31 84.98 86.24
BD-TCN [7] 86.20 81.94 85.44

Proposed Method WPD + KW + CatBoost 89.13 87.60 88.60

The results suggest that our approach performs favorably compared to all the baselines
on the same EEG abnormal dataset. Through further analysis of Table 3, we have made the
following observations: compared to the traditional approach based on the RG classifier,
our approach improves classification accuracy by approximately 3.23%. In particular, our
method performs better than the method presented in [17] using the same classifier, thereby
providing further evidence for the effectiveness of our framework. Notably, in terms of
extracted statistical features, [7,17] extracted more statistical features than our method. For
example, the six statistical features (e.g., mean absolute values, skewness, kurtosis, etc.)
are extracted in [17], while our approach only extracts three statistical features from each
selected WPD component.

Furthermore, our approach shows improved performance compared to the two ad-
vanced deep learning approaches, which achieved an accuracy rate of 3.71% higher than
the BD-Deep4 and 2.93% higher than the BD-TCN. The results suggest that the feature
extraction technique proposed in this paper might be able to improve the detection of
abnormal EEG signals. Similarly, our method also compared favorably with the transfer
learning-based method, with a 1.82% improvement in classification accuracy and a 2.62%
improvement in F1-score. It is worth mentioning that both complexities of the network
structure and the number of training parameters are simultaneously increased when using
deep learning methods, which is a leading cause for adopting our method to address
abnormal EEG detection problems.

In conclusion, these results suggest that our proposal is effective and demonstrate the
potential benefits of reducing feature redundancy in enhancing classification performance.
To the best of our knowledge, feature-based approaches are better suited to deal with data
scarcity, while deep learning methods involve a substantial number of labeled training
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data to ensure their discriminative ability. Therefore, we chose to adopt the feature-based
method to address abnormal EEG detection problems in this work.

4.3. Ablation Experiment
4.3.1. Importance of Feature Selection

The KW test is a useful tool for reducing the dimension of EEG features from 3024 to
2100, thereby simplifying the computational complexity of our framework. This section
aims to fully investigate the actual impact of the KW test on the proposed EEG binary
classification framework by comparing the performance of our approach with and without
feature selection on a real-world abnormal EEG database. Additionally, we provide the
execution time of the training phase, which includes the time required for classifier training,
to further capture the importance of feature selection. Table 4 shows the experimental
results achieved using the RF, LightGBM, and CatBoost classifiers, respectively. The best
results in this table are indicated in bold.

Table 4. The result of ablation experiment.

Feature
Selection ACC (%) F1-Score (%) G-Mean (%) Training

Time (s)

RF No 84.42 81.54 83.28 4.15
Yes 86.59 84.38 85.75 3.19

LightGBM No 83.69 81.17 82.92 5.83
Yes 86.95 85.12 86.40 3.68

CatBoost No 85.86 83.54 85.02 41.55
Yes 89.13 87.60 88.60 31.95

Table 4 indicates that the adopted feature selection method can significantly enhance
the classification performance of our proposal. Specifically, the detection accuracy of
our methodology improves from 85.86% to 89.13% after performing the KW statistical
test to select significant features. Similar comparison results can also be seen for the RF
and LightGBM classifiers. Furthermore, the adopted feature selection methodology can
decrease the time overhead significantly. For example, the execution time for the CatBoost
classifier is reduced by 9.6(s) when feature selection is employed compared to when it is
not. Although the execution time spent using feature selection is more than the other two
classifiers, the better classification produced by the CatBoost classifier is worth the extra
time. The results suggest that the KW test-based feature selection scheme is effective and
suitable for improving EEG pathology detection performance.

4.3.2. Effect of Wavelet Function and Decomposition Level on Performance

As EEG signals are known to be non-linear and non-stationary, the use of the discrete
mother wavelet function with orthogonality can help preserve the decomposed EEG
signal [50]. Popular choices include Daubechies, Symlets, and Coiflets. However, there
is no well-established method to select a specific mother wavelet basis function that is
more suitable for EEG analysis [37]. To further study the effect of the mother wavelet
and decomposition level on the EEG classification performance, we experimented with
74 wavelets from orthogonal families, namely Daubeches (db1-db38), Symlets (sym2-
sym20), and Coiflets (coif 1-coif 17), with the decomposition levels ranging from 4 to 8
with an interval of 2. These mother wavelets are commonly used in biomedical signal
processing [51]. The CatBoost was employed to evaluate the effect of different wavelet
coefficients on abnormality detection. The top five mother wavelets that exhibit optimal
performance among the three wavelet families are presented in Table 5. The table’s best
results are highlighted in bold.
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Table 5. The top five mother wavelets that exhibit optimal performance among the three wavelet
families.

Mother Wavelet
4-Level 6-Level 8-Level

ACC (%) F1-Score (%) ACC (%) F1-Score (%) ACC (%) F1-Score (%)

Sym3 77.17 74.28 80.79 78.18 86.23 83.89
Sym4 77.17 74.28 81.52 79.18 89.13 87.60
Sym5 77.17 74.49 82.97 80.97 86.23 84.29
db3 77.17 74.28 80.79 78.18 86.23 83.89
db4 77.17 74.28 81.52 78.83 85.50 82.90

As shown in Table 5, the optimal performance is achieved by using the Sym4 wavelet
function with 8-level decomposition, surpassing the performance of the other two levels.
This configuration resulted in a classification accuracy of 89.13% and an F1-score of 87.60%,
indicating that 8-level decomposition is effective for EEG pathology detection. Conversely,
we also observed that using too low a level of decomposition may not represent the signal
information in sufficient detail, leading to unsatisfactory results.

5. Conclusions

In this work, we propose a feature-based framework for binary classification of EEG
signals using the WPD and KW tests, aiming to provide a better supporting technique for
pathology diagnosis in EEGs. Compared with most existing feature-based approaches,
our approach extracts fewer characteristics from each selected WPD component, and
meanwhile, a feature reduction technique is presented to further eliminate redundant
and meaningless characteristics, which can enhance the performance of EEG pathology
classification. To the best of our knowledge, we have not found any similar approach
being used for EEG abnormality detection in the literature surveyed in this area. The
experiments on the real EEG data suggest that our proposed framework with the CatBoost
classifier performs favorably compared to other competing techniques, indicating the
potential effectiveness of the proposed approach. Furthermore, the ablation experiment
provides supporting evidence for the benefits of the adopted feature selection mechanism
in improving classification performance.

However, we recognize that the proposed approach must be validated in real-world
clinical settings, and further studies should be conducted in collaboration with neurologists
and other medical professionals to ensure that the classification approach conforms to
established diagnostic criteria. Furthermore, there are several meaningful directions for
future research. One direction is to investigate a feasible technique for assessing the quality
of the final selected features to further remove redundant information. Another direction
is to extend our approach to reduce redundant EEG channels, thereby improving the
efficiency of EEG analysis.
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