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Abstract: Let A be a connected cochain DG algebra such that its underlying graded algebra A# is the

graded skew polynomial algebra k〈x1, x2, x3〉/

 x1x2 + x2x1

x2x3 + x3x2

x3x1 + x1x3

 , |x1| = |x2| = |x3| = 1. Then the

differential ∂A is determined by

 ∂A(x1)

∂A(x2)

∂A(x3)

 = M

 x2
1

x2
2

x2
3

 for some M ∈ M3(k). When the rank

r(M) of M belongs to {1, 2, 3}, we compute H(A) case by case. The computational results in this
paper give substantial support for the research of the various homological properties of such DG
algebras. We find some examples, which indicate that the cohomology graded algebras of such kind
of DG algebras may be not left (right) Gorenstein.

Keywords: cochain DG algebra; cohomology algebra; DG skew polynomial algebra; AS-Gorenstein
algebra

MSC: 16E45; 16E65; 16W20; 16W50

1. Introduction

In the literature, Koszul, homologically smooth, Gorenstein and Calabi-Yau properties
of cochain DG algebras have been frequently studied. In general, these homological
properties are difficult to detect. For a non-trivial DG algebra A, the trivial DG algebra
H(A) is much simpler to study since it has zero differential. There have been some attempts
to judge the various homological properties of A from H(A). It is shown in [1–3] that a
connected cochain DG algebra A is a Kozul Calabi-Yau DG algebra if H(A) belongs to one
of the following cases:

(a)H(A) ∼= k; (b)H(A) = k[dze], z ∈ ker(∂1
A);

(c)H(A) =
k〈dz1e, dz2e〉

(dz1edz2e+ dz2edz1e)
, z1, z2 ∈ ker(∂1

A).

A more general result is proved in [4] that A is Calabi-Yau if the trivial DG algebra
(H(A), 0) is Calabi-Yau. In particular, A is a Calabi-Yau DG algebra if

H(A) = k〈dxe, dye, dze〉/

 adyedze+ bdzedye+ cdxe2
adzedxe+ bdxedze+ cdye2
adxedye+ bdyedxe+ cdze2

,

where (a, b, c) ∈ P2
k −D and x, y, z ∈ ker(∂1

A). By [5] (Proposition 6.2),A is not a Gorenstein
DG algebra but a Koszul and homologically smooth DG algebra if H(A) = k〈dy1e, · · · , dyne〉,
for some degree 1 cocycle elements y1, · · · , yn in A. In addition, [6] (Proposition 6.5)
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indicates that A is Calabi-Yau if H(A) = k[dz1e, dz2e], where z1 ∈ ker(∂1
A) and z2 ∈

ker(∂2
A). In [7], it is proved that A is a Koszul homologically smooth DG algebra if

H(A) = k[dy1e, · · · , dyme], for some central, cocycle and degree 1 elements y1, · · · , ym
in A. Moreover, A is 0-Calabi-Yau if and only if m is an odd integer. It is proved in [1]
(Proposition 4.3) that A is a Koszul and Calabi-Yau DG algebra if

H(A) = k〈dy1e, dy2e〉/(t1dy1e2 + t2dy2e2 + t3(dy1edy2e+ dy2edy1e))

with y1, y2 ∈ Z1(A) and (t1, t2, t3) ∈ P2
k − {(t1, t2, t3)|t1t2 − t2

3 6= 0}. These results indicate
that it is worthwhile to compute the cohomology algebra of a given DG algebra if one
wants to study its homological properties.

Recently, the constructions and studies on some specific family of connected cochain
DG algebras have attracted much attention. In [5–7], DG down–up algebras, DG polynomial
algebras and DG-free algebras are introduced and systematically studied, respectively. It
is exciting to discover that non-trivial DG down–up algebras and DG free algebras with
2 degree 1 variables are Calabi-Yau DG algebras. It seems to be a good way to construct
some interesting homologically smooth DG algebras on AS-regular algebras. The notion
of AS-regular algebras was introduced by Artin-Schelter in [8]. AS-regular algebras are
thought to be the coordinate rings of the corresponding non-commutative projective spaces
in the non-commutative projective geometry (cf. [9–11]). One of the central questions in
non-commutative projective geometry is to classify non-commutative projective spaces,
or equivalently, to classify the corresponding Artin–Schelter regular algebras. In the last
twenty years, they have been intensively studied in the literature (cf. [12–20]).

Let D be the subset of the projective plane P2
k consisting of the 12 points:

D := {(1, 0, 0), (0, 1, 0), (0, 0, 1)} t {(a, b, c)|a3 = b3 = c3}.

Recall that the points (a, b, c) ∈ P2
k −D parametrize the 3-dimensional Sklyanin algebras,

Sa,b,c =
k〈x1, x2, x3〉
( f1, f2, f3)

,

where

f1 = ax2x3 + bx3x2 + cx2
1

f2 = ax3x1 + bx1x3 + cx2
2

f3 = ax1x2 + bx2x1 + cx2
3.

The 3-dimensional Sklyanin algebras form the most important class of Artin-Schelter
regular algebras of global dimension 3 (cf. [21–25]). We say that a cochain DG algebraA is a
3-dimensional Sklyanin DG algebra if its underlying graded algebra A# is a 3-dimensional
Sklyanin algebra Sa,b,c for some (a, b, c) ∈ P2

k −D. In [2], all possible differential structures
on 3-dimensional DG Sklyanin algebras are classified. By [2] (Theorem A), ∂A = 0 when
|a| 6= |b| or c 6= 0. Note that ∂A 6= 0 only if either a = b, c = 0 or a = −b, c = 0. When
a = −b, c = 0, the 3-dimensional DG Sklyanin algebras A is just a DG polynomial algebra,
which is systematically studied in [7]. For the case a = b, c = 0, the differential ∂A is
defined by  ∂A(x1)

∂A(x2)
∂A(x3)

 = M

 x2
1

x2
2

x2
3

, for some M ∈ M3(k).

In this case, the 3-dimensional DG Sklyanin algebra is just AO−1(k3)(M) in [1]. Note that
such 3-dimensional DG Sklyanin algebras are actually a family of cochain DG skew poly-
nomial algebras. The motivation of this paper is to compute H(A) when the rank r(M) of
M belongs to {1, 2, 3}.
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For any M ∈ M2(k), one sees that H[AO−1(k2)(M)] is always AS-Gorenstein by [26].
In addition, each DG algebra AO−1(k2)(M) is a Koszul Calabi-Yau DG algebra by [3]
(Theorem C). It is natural for us to put forward the following conjecture.

Conjecture 1. For any M ∈ M3(k), H(AO−1(k3)(M)) is a left (right) Gorenstein graded algebra.

Finally, we give a concrete counterexample to disprove Conjecture 1 (see Example 1).
More generally, we have the following theorem (see Theorem 2).

Theorem 1. Let A be a connected cochain DG algebra such that

A# = k〈x1, x2, x3〉/

 x1x2 + x2x1
x2x3 + x3x2
x3x1 + x1x3

, |x1| = |x2| = |x3| = 1,

and ∂A is determined by  ∂A(x1)
∂A(x2)
∂A(x3)

 = N

 x2
1

x2
2

x2
3

.

Then, the graded algebra H(A) is not left (right) Gorenstein if and only if there exists some
C = (cij)3×3 ∈ QPL3(k) satisfying N = C−1M(c2

ij)3×3, where

M =

 1 1 0
1 1 0
1 1 0

 or M =

 m11 m12 m13
l1m11 l1m12 l1m13
l2m11 l2m12 l2m13


with m12l2

1 + m13l2
2 6= m11, l1l2 6= 0 and 4m12m13l2

1 l2
2 = (m12l2

1 + m13l2
2 −m11)

2.
Here, QPLn(k) is the set of quasi-permutation matrixes in GLn(k). Recall that a square

matrix is called a quasi-permutation matrix if each row and each column has at most one non-zero
element (cf. [27]). By [1] (Lemma 3.3), a matrix M = (mij)n×n in GLn(k) is a quasi-permutation
if and only if mirmjr = 0, for any 1 ≤ i < j ≤ n and r ∈ {1, 2, · · · , n}.

2. Preliminaries
2.1. Notations and Conventions

Throughout this paper, k is an algebraically closed field of characteristic 0. For any k-
vector space V, we write V′ = Homk(V, k). Let {ei|i ∈ I} be a basis of a finite dimensional
k-vector space V. We denote the dual basis of V by {e∗i |i ∈ I}, i.e., {e∗i |i ∈ I} is a basis of
V′ such that e∗i (ej) = δi,j. For any graded vector space W and j ∈ Z, the j-th suspension
ΣjW of W is a graded vector space defined by (ΣjW)i = Wi+j.

A cochain DG algebra is a graded k-algebra A together with a differential ∂A : A → A
of degree 1 such that

∂A(ab) = (∂Aa)b + (−1)|a|a(∂Ab)

for all homogeneous elements a, b ∈ A. We write Aop for its opposite DG algebra, whose
multiplication is defined as a · b = (−1)|a|·|b|ba for all homogeneous elements a and b in A.
Let A be a cochain DG algebra. We denote by Ai its i-th homogeneous component. The
differential ∂A is a sequence of linear maps ∂i

A : Ai → Ai+1 such that ∂i+1
A ◦ ∂i

A = 0, for
all i ∈ Z. If ∂A 6= 0, A is called non-trivial. The cohomology graded algebra of A is the
graded algebra

H(A) =
⊕
i∈Z

ker(∂i
A)

im(∂i−1
A )

.
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Let z ∈ ker(∂i
A) be a cocycle element of degree i. We write dze for the cohomology class

in H(A) represented by z. If A0 = k and Ai = 0, ∀i < 0, then we say that A is connected.
One sees that H(A) is a connected graded algebra if A is a connected cochain DG algebra.
Let A be a connected cochain DG k-algebra. We write m as the maximal DG ideal A>0 of
A. Via the canonical surjection ε : A → k, k is both a DG A-module and a DG Aop-module.
It is easy to check that the enveloping DG algebra Ae = A⊗Aop of A is also a connected
cochain DG algebra with H(Ae) ∼= H(A)e, and

mAe = mA ⊗Aop +A⊗mAop .

The derived category of left DG modules over A (DG A-modules for short) is denoted
by D(A). A DG A-module M is compact if the functor HomD(A)(M,−) preserves all
coproducts in D(A) [28–31]. By [32] (Proposition 3.3), a DG A-module is compact if
and only if it admits a minimal semi-free resolution with a finite semi-basis. The full
subcategory of D(A) consisting of compact DG A-modules is denoted by Dc(A). The
right derived functor of Hom is denoted by RHom, and the left derived functor of ⊗ is
denoted by L⊗. They can be computed via K-projective, K-injective and K-flat resolution
of the DG modules. For any M, N ∈ D(A) and L ∈ D(Aop), let F '→ M, N '→ I and
P '→ L be a K-projective resolution of M, K-injective resolution of N and K-flat resolution
of L, respectively. Then, we have RHomA(M, N) = HomA(F, N) ∼= HomA(M, I) and
L L⊗AM = P⊗A M (cf. [33–36]).

In the rest of this subsection, we review some important homological properties for
DG algebras.

Definition 1. Let A be a connected cochain DG algebra.

1. If dimk H(RHomA(k,A)) = 1 (resp. dimk H(RHomAop(k,A)) = 1), thenA is called the
left (resp. right) Gorenstein (cf. [37]);

2. If Ak, or equivalently AeA, has a minimal semi-free resolution with a semi-basis concentrated
in degree 0, then A is called Koszul (cf. [38]);

3. If Ak, or equivalently the DGAe-moduleA is compact, thenA is called homologically smooth
(cf. [39] (Corollary 2.7));

4. If A is homologically smooth and RHomAe(A,Ae) ∼= Σ−nA in the derived category
D((Ae)op) of right DGAe-modules, thenA is called an n-Calabi-Yau DG algebra (cf. [40,41]).

Note that the DG algebras considered in this paper are not graded commutative in
general. We should distinguish between left and right Gorenstein properties. To extend the
rich theory of commutative Gorenstein rings to DG algebras, people have completed a lot
of work. We refer to [33,35,42–44] for more details on them.

2.2. AS-Gorenstein (AS-Regular) Graded Algebras

In this subsection, we let A be a connected graded algebra. We have the following
definitions on AS-Gorenstein graded algebras and AS-regular graded algebras [45–47].

Definition 2. We say that A is left (resp. right) Gorenstein if dimk Ext∗A(k, A) = 1 (resp.
dimk Ext∗Aop(k, A) = 1), where Ext∗A(k, A) = ⊕i∈ZExti

A(k, A). For a left Gorenstein graded
algebra A, there is some integer l such that

Exti
A(k, A) =

{
0, i 6= depthA A,
k(l), i = depthA A.

(1)

A left (resp. right) Gorenstein graded algebra A is called left (resp. right) AS-Gorenstein (AS
stands for Artin-Schelter) if its left injective dimension idA A < ∞ (resp. right injective dimension
idAop A < ∞). If further, its global dimension gl.dimA < ∞, then we say A is left (resp. right)
AS-regular.
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Lemma 1. Let A be a Noetherian and AS-Gorenstein graded algebra. Then, the graded algebra
B = A[x] with |x| = 2 is also a Noetherian and AS-Gorenstein graded algebra.

Proof. By the well-known ‘Hilbert basis Theorem’, one sees that B is Noetherian. We have
B = A⊗ k[x]. Let P and Q be the finitely generated minimal free resolutions of Ak and k[x]k,
respectively. Then, P⊗Q is a finitely generated minimal free resolution of Bk. We have

H(HomB(P⊗Q, B)) = H(HomA⊗k[x](P⊗Q, A⊗ k[x]))
∼= H(HomA(P, Homk[x](Q, A⊗ k[x])))
∼= H(HomA(P, A⊗Homk[x](Q, k[x]))
∼= H(HomA(P, A)⊗Homk[x](Q, k[x]))
∼= H(HomA(P, A))⊗ H(Homk[x](Q, k[x])).

Since A and k[x] are both AS-Gorenstein, we have

dimk Ext∗B(k, B) = dimk H(HomB(P⊗Q, B)) = 1.

Thus, B = A[x] is left AS-Gorenstein. We can similarly show that B = A[x] is right
AS-Gorenstein.

Lemma 2. Let A be a connected graded algebra such that

A =
k〈x, y〉

(ax2 +
√

ab(xy + yx) + by2)
, ab > 0, |x| = |y| = 1.

Then, A is not left (right) Gorenstein.

Proof. The trivial module Ak admits a finitely generated minimal free resolution

· · · dn+1−−→ Fn
dn−→ Fn−1

dn−1−−→ · · · d3−→ F2
d2−→ F1 = Aex ⊕ Aey

d1−→ A ε−→ Ak→ 0,

where
Fn−1 = Aen−1, dn(en) = (ax +

√
aby)en−1, n ≥ 3;

d2(e2) = (ax +
√

aby)ex + (
√

abx + by)ey, d1(ex) = x, d1(ey) = y.

Acting the functor HomA(−, A) on the deleted complex of the minimal free resolution
above, we obtain the complex

0→ 1∗A
d∗1−→ e∗x A⊕ e∗y A

d∗2−→ e∗2 A
d∗3−→ e∗3 A

d∗4−→ · · · d∗n−→ e∗n A
d∗n+1−−→ · · · ,

where

d∗1(1
∗) = e∗xx + e∗yy; d∗2(e

∗
x) = e∗r (ax +

√
aby), d∗2(e

∗
y) = e∗r (

√
abx + by);

d∗i+1(e
∗
i ) = e∗i+1(ax +

√
aby), i ≥ 2.

We have

Ext0
A(k, A) = ker(d∗1) = 0;

Ext1
A(k, A) =

ker(d∗2)
im(d∗1)

=
(
√

b
a e∗x − e∗y)A⊕ (e∗xx + e∗yy)A

(e∗xx + e∗yy)A
∼= (

√
b
a

e∗x − e∗y)A;

Exti
A(k, A) =

ker(d∗i+1)

im(d∗i )
=

e∗i (ax +
√

aby)A

e∗i (ax +
√

aby)A
= 0, i ≥ 2.
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Obviously, dimk Ext∗A(k, A) 6= 1 and hence A is not left Gorenstein, similarly, we can show
that A is not right Gorenstein.

Lemma 3. Let A be a connected graded algebra such that

A =
k〈x, y〉

(ax2 + by2)
, ab = 0, (a, b) 6= (0, 0), |x| = |y| = 1.

Then, A is not left (right) Gorenstein.

Proof. Without the loss of generality, we assume that a = 0, b 6= 0. The trivial module Ak
admits a finitely generated minimal free resolution

· · · dn+1−−→ Fn
dn−→ Fn−1

dn−1−−→ · · · d3−→ F2
d2−→ F1 = Aex ⊕ Aey

d1−→ A ε−→ Ak→ 0,

where
Fn = Aen, dn(en) = (by)en−1, n ≥ 3;

d2(e2) = (by)ey, d1(ex) = x, d1(ey) = y.

Acting the functor HomA(−, A) on the deleted complex of the minimal free resolution
above, we obtain the complex

0→ 1∗A
d∗1−→ e∗x A⊕ e∗y A

d∗2−→ e∗2 A
d∗3−→ e∗3 A

d∗4−→ · · · d∗n−→ e∗n A
d∗n+1−−→ · · · ,

where

d∗1(1
∗) = e∗xx + e∗yy; d∗2(e

∗
x) = 0, d∗2(e

∗
y) = e∗r (by);

d∗i+1(e
∗
i ) = e∗i+1(by), i ≥ 2.

Ext0
A(k, A) = ker(d∗1) = 0;

Ext1
A(k, A) =

ker(d∗2)
im(d∗1)

=
e∗x A⊕ (e∗xx + e∗yy)A

(e∗xx + e∗yy)A
∼= e∗x A;

Exti
A(k, A) =

ker(d∗i+1)

im(d∗i )
=

e∗i (by)A
e∗i (by)A

= 0, i ≥ 2.

Since dimk Ext∗A(k, A) 6= 1, A is not left Gorenstein. Similarly, we can show that A is not
right Gorenstein.

3. Some Basic Lemmas

In this section, we give some simple lemmas, which will be used in the subsequent
computations. If no special assumption is emphasized, we let A be a DG Sklyanin algebra
with A# = Sa,a,0, and ∂A is determined by a matrix M in M3(k).

Lemma 4. For any t ∈ N, x2t
1 , x2t

2 , x2t
3 are cocycle central elements of A.

Proof. One sees that x2
i is a central element of A since

x2
i xj = xixixj = −xixjxi = xjx2

i ,

when i 6= j. This implies that each x2t
i is a central element of A. We have

∂A(x2
i ) = ∂A(xi)xi − xi∂A(xi)

=
n

∑
j=1

mijx2
j xi − xi

n

∑
j=1

mijx2
j

=
n

∑
j=1

mij(x2
j xi − xix2

j ) = 0.
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Using this, we can inductively prove ∂A(x2t
i ) = 0.

Lemma 5. Let Ω be a coboundary element in A of degree d ≥ 3.
(1) If d = 2l + 1 is odd, then Ω = ∂A[x1x2 f + x1x3g + x2x3h], where f , g and h are all

linear combinations of monomials with non-negative even exponents.
(2) If d = 2l is even, then Ω = ∂A[x1 f + x2g + x3h + x1x2x3u], where f , g, h and u are all

linear combinations of monomials with non-negative even exponents.

Proof. By the assumption, we have

Ω = ∂A[ ∑
l1+l2+l3=d−1

l1,l2,l3≥0

Cl1,l2,l3 xl1
1 xl2

2 xl3
3 ].

If d = 2l + 1 is odd, then d = 2l is even. Since

∑
l1+l2+l3=d−1

l1,l2,l3≥0

Cl1,l2,l3 xl1
1 xl2

2 xl3
3

= ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l2 are odd, l3 is even

Cl1,l2,l3 xl1
1 xl2

2 xl3
3 + ∑

l1+l2+l3=d−1
l1,l2,l3≥0

l1,l3 are odd, l2 is even

Cl1,l2,l3 xl1
1 xl2

2 xl3
3

+ ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l2,l3 are odd, l1 is even

Cl1,l2,l3 xl1
1 xl2

2 xl3
3 + ∑

l1+l2+l3=d−1
l1,l2,l3≥0

l1,l2,l3 are even

Cl1,l2,l3 xl1
1 xl2

2 xl3
3 ,

we have

Ω = ∂A[ ∑
l1+l2+l3=d−1

l1,l2,l3≥0

Cl1,l2,l3 xl1
1 xl2

2 xl3
3 ]

= ∂A[x1x2 ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l2 are odd, l3is even

Cl1,l2,l3 xl1−1
1 xl2−1

2 xl3
3 ]

+ ∂A[x1x3 ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l3 are odd, l2is even

Cl1,l2,l3 xl1−1
1 xl2

2 xl3−1
3 ]

+ ∂A[x2x3 ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l2,l3 are odd, l1is even

Cl1,l2,l3 xl1
1 xl2−1

2 xl3−1
3 ]

by Lemma 4. Let

f = ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l2 are odd, l3is even

Cl1,l2,l3 xl1−1
1 xl2−1

2 xl3
3 ,

g = ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l3 are odd, l2is even

Cl1,l2,l3 xl1−1
1 xl2

2 xl3−1
3 ,

h = ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l2,l3 are odd, l1is even

Cl1,l2,l3 xl1
1 xl2−1

2 xl3−1
3 .
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This proves (1).
If d = 2l is even, then d− 1 = 2l − 1 is odd. Since

∑
l1+l2+l3=d−1

l1,l2,l3≥0

Cl1,l2,l3 xl1
1 xl2

2 xl3
3

= ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l2 are even, l3 is odd

Cl1,l2,l3 xl1
1 xl2

2 xl3
3 + ∑

l1+l2+l3=d−1
l1,l2,l3≥0

l1,l3 are even, l2 is odd

Cl1,l2,l3 xl1
1 xl2

2 xl3
3

+ ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l2,l3 are even, l1 is odd

Cl1,l2,l3 xl1
1 xl2

2 xl3
3 + ∑

l1+l2+l3=d−1
l1,l2,l3≥0

l1,l2,l3 are odd

Cl1,l2,l3 xl1
1 xl2

2 xl3
3 ,

we have

Ω = ∂A[ ∑
l1+l2+l3=d−1

l1,l2,l3≥0

Cl1,l2,l3 xl1
1 xl2

2 xl3
3 ]

= ∂A[x3 ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l2 are even, l3 is odd

Cl1,l2,l3 xl1
1 xl2

2 xl3−1
3 ]

+ ∂A[x2 ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l3 are even, l2 is odd

Cl1,l2,l3 xl1
1 xl2−1

2 xl3
3 ]

+ ∂A[x1 ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l2,l3 are even, l1 is odd

Cl1,l2,l3 xl1−1
1 xl2

2 xl3
3 ]

+ ∂A[x1x2x3 ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l2,l3 are odd

Cl1,l2,l3 xl1−1
1 xl2−1

2 xl3−1
3 ].

Let

f = ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l2,l3 are even, l1 is odd

Cl1,l2,l3 xl1−1
1 xl2

2 xl3
3 ,

g = ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l3 are even, l2 is odd

Cl1,l2,l3 xl1
1 xl2−1

2 xl3
3 ,

h = ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l2 are even, l3 is odd

Cl1,l2,l3 xl1
1 xl2

2 xl3−1
3 ,

u = ∑
l1+l2+l3=d−1

l1,l2,l3≥0
l1,l2,l3 are odd

Cl1,l2,l3 xl1−1
1 xl2−1

2 xl3−1
3 .

This proves (2).

Lemma 6. Let M = (mij)3×3 be a matrix in GL3(k). Then, x2
1, x2

2, x2
3 are coboundary elements

in A.

Proof. For ∀a1, a2, a3 ∈ k, we have
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∂A(c1x1 + c2x2 + c3x3)

= a1(m11x2
1 + m12x2

2 + m13x2
3) + a2(m21x2

1 + m22x2
2 + m23x2

3)

+ a3(m31x2
1 + m32x2

2 + m33x2
3)

= (a1m11 + a2m21 + a3m31)x2
1 + (a1m12 + a2m22 + a3m32)x2

2

+ (a1m13 + a2m23 + a3m33)x2
3.

So, ∂A(a1x1 + a2x2 + a3x3) = x2
1 if and only if

a1m11 + a2m21 + a3m31 = 1
a1m12 + a2m22 + a3m32 = 0
a1m13 + a2m23 + a3m33 = 0

⇔ MT

 a1
a2
a3

 =

 1
0
0

.

Since r(M) = 3, there exists 
a1 = m22m33−m23m32

|M|
a2 = m13m32−m12m33

|M|
a3 = m12m23−m13m22

|M|

such that ∂A(a1x1 + a2x2 + a3x3) = x2
1. Similarly, we can show there exist

b1 = m23m31−m21m33
|M|

b2 = m11m33−m13m31
|M|

b3 = m13m21−m11m23
|M|

and


c1 = m21m32−m22m31

|M|
c2 = m12m31−m11m32

|M|
c3 = m11m22−m12m21

|M|

such that ∂A(b1x1 + b2x2 + b3x3) = x2
2 and ∂A(c1x1 + c2x2 + c3x3) = x2

3, respectively.

Lemma 7. Let M = (mij)3×3 be a matrix in GL3(k) and m22m33 −m23m32 6= 0. If g(x̄2, x̄3) ∈
Z2l+1[A/(x2

1)] and h(x̄2, x̄3) ∈ Z2l [A/(x2
1)] are sum of monomials in variables x̄2 and x̄3 with

l ≥ 1. Then

h(x̄2, x̄3) =
l

∑
i=0

r2i x̄2
2l−2i x̄3

2i with r2i ∈ k, 0 ≤ i ≤ l.

Furthermore, there exist u(x2, x3) and v(x2, x3), which are sums of monomials in variables x2 and
x3, such that {

g(x̄2, x̄3) = ∂A[u(x2, x3)],
h(x̄2, x̄3) = ∂A[v(x2, x3)].

Proof. Let g(x̄2.x̄3) =
2l+1
∑

j=0
tj x̄2

2l+1−j x̄3
j and h(x̄2, x̄3) =

2l
∑

j=0
rj x̄2

2l−j x̄3
j, where each tj, rj ∈ k.

Then

0 = ∂A(
2l+1

∑
j=0

tjx
2l+1−j
2 xj

3)

= ∂A(
l

∑
i=0

t2ix2l−1−2i
2 x2i

3 +
l+1

∑
i=1

t2i−1x2l−2i
2 x2i−1

3 )

=
l

∑
i=0

[t2i(m22 x̄2
2 + m23 x̄3

2)x̄2
2l−2i−2 x̄3

2i + t2i+1 x̄2
2l−2i−2 x̄3

2i(m32 x̄2
2 + m33 x̄3

2)]

=
l

∑
i=0

[(t2im22 + t2i+1m32)x̄2
2l−2i x̄3

2i + (t2im23 + t2i+1m33)x̄2
2l−2i−2 x̄3

2i+2]
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and

0 = ∂A(
2l

∑
j=0

rjx
2l−j
2 xj

3)

=
l

∑
i=1

r2i−1[(m22 x̄2
2 + m23 x̄3

2)x̄2
2l−2i x̄3

2i−1 − x̄2
2l−2i+1 x̄3

2i−2(m32 x̄2
2 + m33 x̄3

2)].

They imply 

t0m22 + t1m32 = 0
t2m22 + t3m32 + t0m23 + t1m33 = 0
t4m22 + t5m32 + t2m23 + t3m33 = 0
........
t2l−2m22 + t2l−1m32 + t2l−4m23 + t2l−3m33 = 0
t2lm22 + t2l+1m32 + t2l−2m23 + t2l−1m33 = 0
t2lm23 + t2l+1m33 = 0

(2)

and 

r1m32 = 0
r1m22 = 0
r1m33 + r3m32 = 0
r1m23 + r3m22 = 0
........
r2l−3m33 + r2l−1m32 = 0
r2l−3m23 + r2l−1m22 = 0
r2l−1m33 = 0
r2l−1m23 = 0.

(3)

Since m22m33 −m23m32 6= 0, the rank of the system matrix

m22 m32 0 0 0 0 0 · · · 0 0 0 0 0 0 0
m23 m33 m22 m32 0 0 0 · · · 0 0 0 0 0 0 0

0 0 m23 m33 m22 m32 0 · · · 0 0 0 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 0 · · · 0 m23 m33 m22 m32 0 0
0 0 0 0 0 0 0 · · · 0 0 0 m23 m33 m22 m32
0 0 0 0 0 0 0 · · · 0 0 0 0 0 m23 m33


of (2) is l + 2. Hence, the space of the solutions of (2) is of dimension l. On the other hand,

for any 1 ≤ i ≤ l, ∂A(x2l−2i+1
2 x2i−1

3 ) is

−m32 x̄2
2l−2i+3 x̄3

2i−2 + m22 x̄2
2l−2i+2 x̄3

2i−1 −m33 x̄2
2l−2i+1 x̄3

2i + m23 x̄2
2l−2i x̄3

2i+1.
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Therefore,





−m32
m22
−m33
m23

0
0
0
...
0
0
0
0
0
0
0



,



0
0
−m32
m22
−m33
m23

0
...
0
0
0
0
0
0
0



, · · · ,



0
0
0
0
0
0
0
...
0
−m32
m22
−m33
m23

0
0



,



0
0
0
0
0
0
0
...
0
0
0
−m32
m22
−m33
m23





is a k-basis of the

space of the solutions of system (2). So, there exists {s2i−1 ∈ k|1 ≤ i ≤ l} such that

∂A(
l

∑
i=1

s2i−1x2l−2i+1
2 x2i−1

3 ) = g(x̄2, x̄3). Take u(x2, x3) =
l

∑
i=1

s2i−1x2l−2i+1
2 x2i−1

3 . .

Since
∣∣∣∣ m22 m23

m32 m33

∣∣∣∣ 6= 0, we can conclude r1 = r3 = · · · = r2l−1 = 0 from the system

of Equation (3). So, h(x̄2, x̄3) =
l

∑
i=0

r2i x̄2
2l−2i x̄3

2i. Since

{
∂A[

m33
m22m33−m23m32

x2 − m23
m22m33−m23m32

x3] = x̄2
2

∂A[
−m32

m22m33−m23m32
x2 +

m22
m22m33−m23m32

x3] = x̄3
2,

we have

h(x̄2, x̄3) =
l

∑
i=0

r2i x̄2
2l−2i x̄3

2i

= ∂A[
l−1

∑
i=0

r2i(
m33x2

m22m33 −m23m32
− m23x3

m22m33 −m23m32
)x2l−2i−2

2 x2i
3 ]

+ ∂A[r2l(
−m32x2

m22m33 −m23m32
+

m22x3

m22m33 −m23m32
)x2l−2

3 ].

Take

v(x2, x3) =
l−1

∑
i=0

r2i(
m33x2

m22m33 −m23m32
− m23x3

m22m33 −m23m32
)x2l−2i−2

2 x2i
3

+ r2l(
−m32x2

m22m33 −m23m32
+

m22x3

m22m33 −m23m32
)x2l−2

3 .

Then, we are finished.

Remark 1. Since x2
2 and x2

3 are cocycle elements in A, one sees that u(x2, x3) in Lemma 7 can be

chosen as u(x2, x3) =
l

∑
i=1

s2i−1x2l−2i+1
2 x2i−1

3 with s2i−1 ∈ k, 1 ≤ i ≤ l.

Lemma 8. Let M = (mij)3×3 be a matrix in GL3(k) with m22m33 −m23m32 6= 0 and m33 6= 0.
Assume that I1 = (x2

1), I2 = (x2
1, x2

2) and I3 = (x2
1, x2

2, x2
3) are the three DG ideals generated by

the subsets {x2
1}, {x2

1, x2
2} and {x2

1, x2
2, x2

3} of the DG algebra A, respectively. Then,
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Hi(I2/I1) =


kdx̄2

2e, if i = 2
kdx̄1 x̄2

2 + x̄2
2(m13m32−m12m33

m22m33−m23m32
x̄2 +

m12m23−m13m22
m22m33−m23m32

x̄3)e, if i = 3

0, if i ≥ 4

and

Hi(I3/I2) =


kdx̄3

2e, if i = 2
kd−m33 x̄1 x̄3

2 + m13 x̄3
3e ⊕ kd−m33 x̄2 x̄3

2 + m23 x̄3
3e, if i = 3

kdm23 x̄1 x̄3
3 −m13 x̄2 x̄3

3 −m33 x̄1 x̄2 x̄3
2e, if i = 4

0, if i ≥ 5.

Proof. By Lemma 4, each x2
i is a central cocycle element of A. So, I1, I2 and I3 are indeed

DG ideals of A. Then, H2(I2/I1) = kdx2
2e and H2(I3/I2) = kdx2

3e since I2/I1 and I3/I2 are
concentrated in degrees ≥ 2, (I2/I1)

2 = kx2
2 and (I3/I2)

2 = kx2
3.

Any graded cocycle element Ω of degree d in I2/I1 can be written as

Ω = x̄1 x̄2
2 f (x̄2, x̄3) + x̄2

2g(x̄2, x̄3),

where f (x̄2, x̄3) and g(x̄2, x̄3) are sums of monomials in variables x̄2 and x̄3. We have

0 =∂I2/I1(z)

=(m12 x̄2
2 + m13 x̄3

2)x̄2
2 f (x̄2, x̄3)− x̄1 x̄2

2∂A[ f (x2, x3)] + x̄2
2∂A[g(x2, x3)]

=x̄2
2{(m12 x̄2

2 + m13 x̄3
2) f (x̄2, x̄3) + ∂A[g(x2, x3)]} − x̄1 x̄2

2∂A[ f (x2, x3)].

Thus {
∂A[ f (x2, x3)] = 0
∂A[g(x2, x3)] = −(m12 x̄2

2 + m13 x̄3
2) f (x̄2, x̄3).

(4)

When d = 3, we have | f (x2, x3)| = 0 and |g(x2, x3)| = 1. Let f (x2, x3) = c ∈ k and
g(x2, x3) = c1x2 + c2x3. Then

−(m12 x̄2
2 + m13 x̄3

2)c = ∂A[g(x2, x3)]

= ∂A(c1x2 + c2x3)

= c1(m21x2
1 + m22x2

2 + m23x2
3) + c2(m31x2

1 + m32x2
2 + m33x2

3)

= (c1m22 + c2m32)x̄2
2 + (c1m23 + c2m33)x̄3

2.

This implies that {
c1m22 + c2m32 = −cm12

c1m23 + c2m33 = −cm13.

Hence 

c1 =

∣∣∣∣∣∣ −m12 m32

−m13 m33

∣∣∣∣∣∣∣∣∣∣∣∣ m22 m32

m23 m33

∣∣∣∣∣∣
c = c(m13m32−m22m33)

m22m33−m23m32

c2 =

∣∣∣∣∣∣ m22 −m12

m23 −m13

∣∣∣∣∣∣∣∣∣∣∣∣ m22 m32

m23 m33

∣∣∣∣∣∣
c = c(m12m23−m13m22)

m22m33−m23m32
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Then,

Ω = x̄1 x̄2
2c + x̄2

2[
c(m13m32 −m22m33)

m22m33 −m23m32
x̄2 +

c(m12m23 −m13m22)

m22m33 −m23m32
x̄3]

and

H3(I2/I1) = kdx̄1 x̄2
2 + x̄2

2(
m13m32 −m22m33

m22m33 −m23m32
x̄2 +

m12m23 −m13m22

m22m33 −m23m32
x̄3)e

since B3(I2/I1) = 0.
When d = 4, we have | f (x̄2, x̄3)| = 1 and |g(x̄2, x̄3)| = 2. Let f (x̄2, x̄3) = l1 x̄2 + l2 x̄3

and g(x̄2, x̄3) = t1 x̄2
2 + t2 x̄2 x̄3 + t3 x̄3

2. Then, by (4), we have

0 =∂A[ f (x2, x3)]

=∂A(l1x2 + l2x3)

=l1(m21x2
1 + m22x2

2 + m23x2
3) + l2(m31x2

1 + m32x2
2 + m33x2

3)

=(l1m22 + l2m32)x̄2
2 + (l1m23 + l2m33)x̄3

2,

which implies that {
l1m22 + l2m32 = 0
l1m23 + l2m33 = 0.

Since m22m33 −m23m32 6= 0, we obtain l1 = l2 = 0 and hence f (x̄2, x̄3) = 0. Then, by (4),
we have

0 =∂A[g(x2, x3)]

=∂A[t1x2
2 + t2x2x3 + t3x2

3]

=t2(m21x2
1 + m22x2

2 + m23x2
3)x3 − t2x2(m31x2

1 + m32x2
2 + m33x2

3)

=t2m22 x̄2
2 x̄3 + t2m23 x̄3

3 − t2m32 x̄2
3 − t2m33 x̄2 x̄3

2.

Thus, t2m22 = t2m23 = t2m32 = t2m33 = 0. Since
∣∣∣∣ m22 m23

m32 m33

∣∣∣∣ 6= 0, we obtain t2 = 0.

So, Ω = x̄1 x̄2
2 f (x̄2, x̄3) + x̄2

2g(x̄2, x̄3) = x̄2
2(t1 x̄2

2 + t3 x̄3
2). By the proof of Lemma 6,

there exist 
b1 = m23m31−m21m33

|M|
b2 = m11m33−m13m31

|M|
b3 = m13m21−m11m23

|M|

and


c1 = m21m32−m22m31

|M|
c2 = m12m31−m11m32

|M|
c3 = m11m22−m12m21

|M|

such that ∂A(b1x1 + b2x2 + b3x3) = x2
2 and ∂A(c1x1 + c2x2 + c3x3) = x2

3, respectively. Then,

z = x̄2
2(t1 x̄2

2 + t3 x̄3
2)

= x̄2
2[t1∂A(b1x1 + b2x2 + b3x3) + t3∂A(c1x1 + c2x2 + c3x3)]

= ∂I2/I1{x̄2
2[t1(b1 x̄1 + b2 x̄2 + b3 x̄3) + t3(c1 x̄1 + c2 x̄2 + c3 x̄3)]}.

Hence, H4(I2/I1) = 0.
When d = 2l + 3, l ≥ 1, we have | f (x̄2, x̄3)| = 2l and |g(x̄2, x̄3)| = 2l + 1. Since

∂A[ f (x2, x3)] = 0 by (4), we obtain f (x̄2, x̄3) =
l

∑
i=0

r2i x̄2
2l−2i x̄3

2i by Lemma 7, where r2i ∈ k,

0 ≤ i ≤ l. Then by (4), we have
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∂A[g(x2, x3)] = −(m12 x̄2
2 + m13 x̄3

2) f (x̄2, x̄3)

= −(m12 x̄2
2 + m13 x̄3

2)(
l

∑
i=0

r2i x̄2
2l−2i x̄3

2i)

= ∂A[(
−m12m33

m22m33 −m23m32
x2 +

m12m23

m22m33 −m23m32
x3)(

l

∑
i=0

r2i x̄2
2l−2i x̄3

2i)]

+ ∂A[(
m13m32

m22m33 −m23m32
x2 −

m13m22

m22m33 −m23m32
x3)(

l

∑
i=0

r2i x̄2
2l−2i x̄3

2i)]

= ∂A{
l

∑
i=0

r2i[
m13m32 −m12m33

m22m33 −m23m32
x2l−2i+1

2 x2i
3 +

m12m23 −m13m22

m22m33 −m23m32
x2l−2i

2 x2i+1
3 ]}

Then, by Lemma 7, we may let

g(x̄2, x̄3)

=
l

∑
i=0

r2i[
m13m32 −m12m33

m22m33 −m23m32
x̄2

2l−2i+1 x̄3
2i +

m12m23 −m13m22

m22m33 −m23m32
x̄2

2l−2i x̄3
2i+1]

+ ∂A[u(x2, x3)],

where u(x2, x3) is a sum of monomials in variables x2 and x3. Then,

Ω = x̄1 x̄2
2 f (x̄2, x̄3) + x̄2

2g(x̄2, x̄3)

=
l

∑
i=0

r2i x̄1 x̄2
2l−2i+2 x̄3

2i + x̄2
2∂A[u(x2, x3)]

+
l

∑
i=0

r2i[
m13m32 −m12m33

m22m33 −m23m32
x̄2

2l−2i+3 x̄3
2i +

m12m23 −m13m22

m22m33 −m23m32
x̄2

2l−2i+2 x̄3
2i+1]

=
l

∑
i=0

r2i[x̄1 +
(m13m32 −m12m33)x̄2 + (m12m23 −m13m22)x̄3

m22m33 −m23m32
]x̄2

2l−2i+2 x̄3
2i

+ x̄2
2∂A[u(x2, x3)].

One sees that ω = x1 +
(m13m32−m12m33)x2+(m12m23−m13m22)x3

m22m33−m23m32
is a cocycle element inA. Hence,

z = ∂A[−
l−1

∑
i=0

r2iω(b1x1 + b2x2 + b3x3)x2l−2i
2 x2i

3 − r2lωx2
2x2l−2

3 (c1x1 + c2x2 + c3x3)]

+ x̄2
2∂A[u(x2, x3)]

= ∂I2/I1{[−
l−1

∑
i=0

r2iω(b1 x̄1 + b2 x̄2 + b3 x̄3)x̄2
2l−2i−2 x̄3

2i]x̄2
2}

+ ∂I2/I1{[−r2lω(c1 x̄1 + c2 x̄2 + c3 x̄3)x̄3
2l−2 + u(x̄2, x̄3)]x̄2

2}.

Thus, H2l+3(I2/I1) = 0.
When d = 2l + 4, we have | f (x̄2, x̄3)| = 2l + 1 and |g(x̄2, x̄3)| = 2l + 2. Since

∂A[ f (x2, x3)] = 0 by (4), we have

f (x̄2, x̄3) = ∂A[
l

∑
i=1

s2i−1x2l−2i+1
2 x2i−1

3 ]
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by Lemma 7 and Remark 1, where s2i−1 ∈ k, 1 ≤ i ≤ l. Then, by (4), we have

∂A[g(x2, x3)] = −(m12 x̄2
2 + m13 x̄3

2) f (x̄2, x̄3)

= −(m12 x̄2
2 + m13 x̄3

2)∂A[
l

∑
i=1

s2i−1x2l−2i+1
2 x2i−1

3 ].

Then, by Lemma 7, we may let

g(x̄2, x̄3) = −(m12 x̄2
2 + m13 x̄3

2)[
l

∑
i=1

s2i−1 x̄2
2l−2i+1 x̄3

2i−1] + ∂A[v(x2, x3)].

where v(x2, x3) is a sum of monomials in variables x2 and x3. Then,

Ω = x̄1 x̄2
2 f (x̄2, x̄3) + x̄2

2g(x̄2, x̄3)

= x̄1 x̄2
2∂A[

l

∑
i=1

s2i−1x2l−2i+1
2 x2i−1

3 ]− (m12 x̄2
2 + m13 x̄3

2)[
l

∑
i=1

s2i−1 x̄2
2l−2i+3 x̄3

2i−1]

+ x̄2
2∂A[v(x2, x3)]

= −∂A[x1

l

∑
i=1

s2i−1x2l−2i+1
2 x2i−1

3 − v(x2, x3)]x̄2
2

= ∂I2/I1 [(v(x̄2, x̄3)− x̄1

l

∑
i=1

s2i−1 x̄2
2l−2i+1 x̄3

2i−1)x̄2
2]

and hence H2l+4(I2/I1) = 0.
Since (I3/I2)

3 = kx̄1 x̄3
2 ⊕ kx̄2 x̄3

2 ⊕ kx̄3
3, any cocycle element in (I3/I2)

3 can be de-
noted by c1 x̄1 x̄3

2 + c2 x̄2 x̄3
2 + c3 x̄3

3 where c1, c2, c3 ∈ k. Then,

0 =∂I3/I2 [c1 x̄1 x̄3
2 + c2 x̄2 x̄3

2 + c3 x̄3
3]

=c1m13 x̄3
4 + c2m23 x̄3

4 + c3m33 x̄3
4

=(c1m13 + c2m23 + c3m33)x̄3
4

and hence c1m13 + c2m23 + c3m33 = 0, which has a basic solution system −m33
0

m13

,

 0
−m33
m23


So, Z3(I3/I2) = k(−m33 x̄1 x̄3

2 + m13 x̄3
3)⊕ k(−m33 x̄2 x̄3

2 + m23 x̄3
3). Then,

H3(I3/I2) = kd−m33 x̄1 x̄3
2 + m13 x̄3

3e ⊕ kd−m33 x̄2 x̄3
2 + m23 x̄3

3e

since one sees easily that B3(I3/I2) = 0. Any graded cocycle element z of degree d, d ≥ 4
in I3/I2 can be written as

χ = x̄1 x̄3
2φ(x̄3) + x̄2 x̄3

2 ϕ(x̄3) + x̄1 x̄2 x̄3
2ψ(x̄3) + x̄3

2λ(x̄3).

We have

0 =∂I3/I2(χ) = ∂I3/I2 [x̄1 x̄3
2φ(x̄3) + x̄2 x̄3

2 ϕ(x̄3) + x̄1 x̄2 x̄3
2ψ(x̄3) + x̄3

2λ(x̄3)]

=m13 x̄3
4φ(x̄3)− x̄1 x̄3

2∂A[φ(x3)] + m23 x̄3
4 ϕ(x̄3)− x̄2 x̄3

2∂A[ϕ(x3)]

+ m13 x̄2 x̄3
4ψ(x̄3)−m23 x̄1 x̄3

4ψ(x̄3) + x̄1 x̄2 x̄3
2∂A[ψ(x̄3)] + x̄3

2∂A[λ(x3)]

=x̄3
2[m13 x̄3

2φ(x̄3) + m23 x̄3
2 ϕ(x̄3) + ∂A[λ(x3)]] + x̄1 x̄2 x̄3

2∂A[ψ(x̄3)]

− x̄1[x̄3
2∂A[φ(x3)] + m23 x̄3

4ψ(x̄3)] + x̄2[m13 x̄3
4ψ(x̄3)− x̄3

2∂A[ϕ(x3)]].
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Hence, 
m13 x̄3

2φ(x̄3) + m23 x̄3
2 ϕ(x̄3) + ∂A[λ(x3)] = 0

x̄3
2∂A[φ(x3)] + m23 x̄3

4ψ(x̄3) = 0
m13 x̄3

4ψ(x̄3)− x̄3
2∂A[ϕ(x3)] = 0

∂A[ψ(x̄3)] = 0.

(5)

When d = 4, we have |ψ(x̄3)| = 0, |ϕ(x̄3)| = |φ(x̄3)| = 1 and |λ(x̄3)| = 2. Let ψ(x̄3) = c ∈
k. Then, by (5), we obtain ϕ(x3) =

cm13
m33

x3, φ(x3) =
−cm23

m33
x3 and λ(x̄3) = c′ x̄3

2, for some
c′ ∈ k. So,

Z4(I3/I2) = k(−m23 x̄1 x̄3
3 + m13 x̄2 x̄3

3 + m33 x̄1 x̄2 x̄2
2)⊕ kx̄3

4.

Then, H4(I3/I2) = kdm23 x̄1 x̄3
3 −m13 x̄2 x̄3

3 −m33 x̄1 x̄2 x̄2
2e since B4(I3/I2) = kx̄3

4. When
d = 2l − 1 ≥ 5, we have |φ(x̄3)| = 2l − 4, |ϕ(x̄3)| = 2l − 4, |ψ(x̄3)| = 2l − 5 and |λ(x̄3)| =
2l − 3. Let ψ(x̄3) = qx̄3

2l−5 for some q ∈ k. Then 0 = ∂A[ψ(x̄3)] = qm33 x̄3
2l−4 by (5).

So, q = 0 and ψ(x̄3) = 0. Then, we obtain ∂A[φ(x3)] = ∂A[ϕ(x3)] = 0 by (5). Let
φ(x3) = px2l−4

3 and ϕ(x3) = rx2l−4
3 , p, r ∈ k. Then,

∂A[λ(x3)] = −m13 px̄3
2l−2 −m23rx̄3

2l−2.

So, λ(x̄3) =
−(m13 p+m23r)x̄3

2l−3

m33
. Then,

χ = x̄1 x̄3
2φ(x̄3) + x̄2 x̄3

2 ϕ(x̄3) + x̄1 x̄2 x̄3
2ψ(x̄3) + x̄3

2λ(x̄3)

= px̄1 x̄3
2l−2 + rx̄2 x̄3

2l−2 − (m13 p + m23r)x̄3
2l−1

m33

=
[m33(px̄1 + rx̄2)− (pm13 + rm23)x̄3]

m33
x̄3

2l−2

= ∂I3/I2{
[−m33(px̄1 + rx̄2) + (pm13 + rm23)x̄3]

m2
33

x̄3
2l−3}.

Thus, H2l−1(I3/I2) = 0, for any l ≥ 3. When d = 2l ≥ 6, we have |φ(x̄3)| = 2l − 3,
|ϕ(x̄3)| = 2l − 3, |ψ(x̄3)| = 2l − 4 and |λ(x̄3)| = 2l − 2. So, ∂A[λ(x3)] = 0 and ∂A[ψ(x3)] = 0.
Then, (5) is equivalent to


m13 x̄3

2φ(x̄3) + m23 x̄3
2 ϕ(x̄3) = 0

x̄3
2∂A[φ(x3)] + m23 x̄3

4ψ(x̄3) = 0
m13 x̄3

4ψ(x̄3)− x̄3
2∂A[ϕ(x3)] = 0.

Let λ(x̄3) = sx̄3
2l−2 and ψ(x3) = tx̄3

2l−4. Then, by the system of equations above, we
obtain φ(x̄3) =

−m23t
m33

x̄3
2l−3 and ϕ(x̄3) =

m13t
m33

x̄3
2l−3. Then

χ = x̄1 x̄3
2φ(x̄3) + x̄2 x̄3

2 ϕ(x̄3) + x̄1 x̄2 x̄3
2ψ(x̄3) + x̄3

2λ(x̄3)

=
−m23t

m33
x̄1 x̄3

2l−1 +
m13t
m33

x̄2 x̄3
2l−1 + tx̄1 x̄2 x̄3

2l−2 + sx̄2
2l

= [
−m23 x̄1 x̄3 + m13 x̄2 x̄3 + m33 x̄1 x̄2

m33
]tx̄3

2l−2 + sx̄3
2l

= ∂I3/I2{[
−m23 x̄1 x̄3 + m13 x̄2 x̄3 + m33 x̄1 x̄2

m2
33

]tx̄3
2l−1 +

s
m33

x̄3
2l−1}

Hence, H2l(I3/I2) = 0 for any l ≥ 3.
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Lemma 9. Let M = (mij)3×3 and r(M) = 2. Then, r(X) = 5, where

X =



m11 m21 m31 0 0 0 0 0 0
m12 m22 m32 m11 m21 m31 0 0 0
m13 m23 m33 0 0 0 m11 m21 m31

0 0 0 m13 m23 m33 m12 m22 m32
0 0 0 m12 m22 m32 0 0 0
0 0 0 0 0 0 m13 m23 m33

.

Proof. Since r(M) = 2, there exists (s1, s2, s3)
T 6= 0 such that M(s1, s2, s3)

T = 0, which is
equivalent to

s1

 m11
m21
m31

+ s2

 m12
m22
m32

+ s3

 m13
m23
m33

 = 0.

Without the loss of generality, let s1 6= 0. Then,

 m12
m22
m32

,

 m13
m23
m33

 are linearly indepen-

dent and
(m11, m21, m31) +

s2

s1
(m12, m22, m32) +

s3

s1
(m13, m23, m33) = 0.

For X, we can perform the following elementary row transformations

X
r1+

s2
s1
×r2

−−−−−→
r1+

s3
s1
×r3



0 0 0 s2
s1

m11
s2
s1

m21
s2
s1

m31
s3
s1

m11
s3
s1

m21
s3
s1

m31

m12 m22 m32 m11 m21 m31 0 0 0
m13 m23 m33 0 0 0 m11 m21 m31

0 0 0 m13 m23 m33 m12 m22 m32
0 0 0 m12 m22 m32 0 0 0
0 0 0 0 0 0 m13 m23 m33



r1+
s2
2

s2
1
×r5

−−−−−−→
r1+

s2s3
s2
1
×r4



0 0 0 0 0 0 −s2
3

s2
1

m13
−s2

3
s2

1
m23

−s2
3

s2
1

m33

m12 m22 m32 m11 m21 m31 0 0 0
m13 m23 m33 0 0 0 m11 m21 m31

0 0 0 m13 m23 m33 m12 m22 m32
0 0 0 m12 m22 m32 0 0 0
0 0 0 0 0 0 m13 m23 m33



r1+
s2
3

s2
1
×r6

−−−−−→



0 0 0 0 0 0 0 0 0
m12 m22 m32 m11 m21 m31 0 0 0
m13 m23 m33 0 0 0 m11 m21 m31

0 0 0 m13 m23 m33 m12 m22 m32
0 0 0 m12 m22 m32 0 0 0
0 0 0 0 0 0 m13 m23 m33

.

This indicates r(X) ≤ 5 and

r(X) = r


m12 m22 m32 m11 m21 m31 0 0 0
m13 m23 m33 0 0 0 m11 m21 m31

0 0 0 m13 m23 m33 m12 m22 m32
0 0 0 m12 m22 m32 0 0 0
0 0 0 0 0 0 m13 m23 m33

.
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Let

l1



m12
m22
m32
m11
m21
m31

0
0
0


+ l2



m13
m23
m33

0
0
0

m11
m21
m31


+ l3



0
0
0

m13
m23
m33
m12
m22
m32


+ l4



0
0
0

m12
m22
m32

0
0
0


+ l5



0
0
0
0
0
0

m13
m23
m33


= 0.

Then, 

l1m12 + l2m13 = 0
l1m22 + l2m23 = 0
l1m32 + l2m33 = 0
l1m11 + l3m13 + l4m12 = 0
l1m21 + l3m23 + l4m22 = 0
l1m31 + l3m33 + l4m32 = 0
l2m11 + l3m12 + l5m13 = 0
l2m21 + l3m22 + l5m23 = 0
l2m31 + l3m32 + l5m33 = 0,

which implies l1 = l2 = l3 = l4 = l5 = 0 since

 m12
m22
m32

,

 m13
m23
m33

 are linearly indepen-

dent. Thus,

r(X) = r


m12 m22 m32 m11 m21 m31 0 0 0
m13 m23 m33 0 0 0 m11 m21 m31

0 0 0 m13 m23 m33 m12 m22 m32
0 0 0 m12 m22 m32 0 0 0
0 0 0 0 0 0 m13 m23 m33

 = 5.

Similarly, we can show r(X) = 5 when s2 6= 0 or s3 6= 0.

Lemma 10. Let M = (mij)3×3 be a matrix in M3(k) with r(M) = 2. If

r1 = m11x2
1 + m12x2

2 + m13x2
3,

r2 = m21x2
1 + m22x2

2 + m23x2
3,

r3 = m31x2
1 + m32x2

2 + m33x2
3,

then the graded ideal (r1, r2, r3) is a prime graded ideal of the polynomial graded algebra k[x2
1, x2

2, x2
3].

Proof. Since r(M) = 2, there exist a non-zero solution vector (t1, t2, t3)
T of the homoge-

neous linear equations MTX = 0. We have

t1r1 + t2r2 + t3r3 = (t1, t2, t3)

 r1
r2
r3

 = (t1, t2, t3)M

 x2
1

x2
2

x2
3

 = 0.

Since (t1, t2, t3)
T 6= 0, we may as well let t3 6= 0. Then, r3 = − t1

t3
r1 − t2

t3
r2 and hence

(r1, r2, r3) = (r1, r2). Since
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 m31
m32
m33

 = − t1

t3

 m11
m12
m13

− t2

t3

 m21
m22
m23

,

we have

r
(

m11 m12 m13
m21 m22 m23

)
= 2,

this indicates that there at least one non-zero minor among∣∣∣∣ m11 m12
m21 m22

∣∣∣∣, ∣∣∣∣ m11 m13
m21 m23

∣∣∣∣, ∣∣∣∣ m12 m13
m22 m23

∣∣∣∣.
We may as well let

∣∣∣∣ m11 m12
m21 m22

∣∣∣∣ 6= 0. Then, one sees that

k[x2
1, x2

2, x2
3]/(r1, r2) ∼= k[x2

3]

is a domain. So, (r1, r2, r3) = (r1, r2) is a graded prime ideal of k[x2
1, x2

2, x2
3].

Lemma 11. Assume that M = (mij)3×3 ∈ M3(k) with r(M) = 2, k(s1, s2, s3)
T and k(t1, t2, t3)

T

are the solution spaces of homogeneous linear equations MX = 0 and MTX = 0, respectively. We
have the following statements.

(1) If s1t2
1 + s2t2

2 + s3t2
3 6= 0, then k[dt1x1 + t2x2 + t3x3e] is a subalgebra of H(A);

(2) If s1t2
1 + s2t2

2 + s3t2
3 = 0, then

k[dt1x1 + t2x2 + t3x3e, ds1x2
1 + s2x2

2 + s3x2
3e]/(dt1x1 + t2x2 + t3x3e2)

is a subalgebra of H(A).

Proof. Clearly, we have H0(A) = k. Since r(MT) = 2 < 3, there is a non-zero solution
vector (t1, t2, t3)

T of the homogeneous linear equations MTX = 0. For any c1x1 + c2x2 +
c3x3 ∈ Z1(A), we have

0 = ∂A(c1x1 + c2x2 + c3x3)

= (c1, c2, c3)

 ∂A(x1)
∂A(x2)
∂A(x3)


= (c1, c2, c3)M

 x2
1

x2
2

x2
3

,

which implies that (c1, c2, c3)M = 0 or equivalently MT

 c1
c2
c3

 = 0. Thus, H1(A) =

kdt1x1 + t2x2 + t3x3e.
For any l11x2

1 + l12x1x2 + l13x1x3 + l22x2
2 + l23x2x3 + l33x2

3 ∈ ker(∂2
A), we have
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0 = ∂A[l11x2
1 + l12x1x2 + l13x1x3 + l22x2

2 + l23x2x3 + l33x2
3]

= l12(m11x2
1 + m12x2

2 + m13x2
3)x2 − l12x1(m21x2

1 + m22x2
2 + m23x2

3)

+ l13(m11x2
1 + m12x2

2 + m13x2
3)x3 − l13x1(m31x2

1 + m32x2
2 + m33x2

3)

+ l23(m21x2
1 + m22x2

2 + m23x2
3)x3 − l23x2(m31x2

1 + m32x2
2 + m33x2

3)

= −(l12m21 + l13m31)x3
1 + (l12m11 − l23m31)x2

1x2 + (l13m11 + l23m21)x2
1x3

− (l12m22 + l13m32)x1x2
2 + (l13m12 + l23m22)x2

2x3 + (l12m12 − l23m32)x3
2

− (l12m23 + l13m33)x1x2
3 + (l12m13 − l23m33)x2x2

3 + (l13m13 + l23m23)x3
3.

Hence, 

l12m21 + l13m31 = 0
l12m11 − l23m31 = 0
l13m11 + l23m21 = 0
l12m22 + l13m32 = 0
l13m12 + l23m22 = 0
l12m12 − l23m32 = 0
l12m23 + l13m33 = 0
l12m13 − l23m33 = 0
l13m13 + l23m23 = 0

⇔



l12m21 + l13m31 = 0
l12m22 + l13m32 = 0
l12m23 + l13m33 = 0
l12m11 − l23m31 = 0
l12m12 − l23m32 = 0
l12m13 − l23m33 = 0
l13m11 + l23m21 = 0
l13m12 + l23m22 = 0
l13m13 + l23m23 = 0,

which is equivalent to m11 m21 m31
m12 m22 m32
m13 m23 m33

 0 l12 l13
l12 0 l23
l13 −l23 0

 = 03×3.

We claim that l12 = l23 = l13 = 0. Indeed, if any one of l12, l23, l13 is non-zero, then there are
at least two non-zero linear independent vectors among

 0
l12
l13

,

 l12
0
−l23

,

 l13
l23
0

,

which are all solutions of MX = 0. This contradicts with r(M) = 2. Hence, ker(∂2
A) =

kx2
1 ⊕ kx2

2 ⊕ kx2
3. In A, we have

(t1x1 + t2x2 + t3x3)
2 = t2

1x2
1 + t2

2x2
2 + t2

3x2
3.

(1) If s1t2
1 + s2t2

2 + s3t2
3 6= 0, we claim that t2

1x2
1 + t2

2x2
2 + t2

3x2
3 6∈ B2(A). Indeed, if there exist

q1x1 + q2x2 + q3x3 ∈ A1 such that ∂A(q1x1 + q2x2 + q3x3) = t2
1x2

1 + t2
2x2

2 + t2
3x2

3, then

(q1, q2, q3)M

 x2
1

x2
2

x2
3

 = ∂A(q1x1 + q2x2 + q3x3)

= t2
1x2

1 + t2
2x2

2 + t2
3x2

3

= (t2
1, t2

2, t2
3)

 x2
1

x2
2

x2
3

,

which implies that (q1, q2, q3)M = (t2
1, t2

2, t2
3) and hence
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0 = (q1, q2, q3)M

 s1
s2
s3

 = (t2
1, t2

2, t2
3)

 s1
s2
s3

 = s1t2
1 + s2t2

2 + s3t2
3.

This contradicts with the assumption that s1t2
1 + s2t2

2 + s3t2
3 6= 0. Then, we obtain that t2

1x2
1 +

t2
2x2

2 + t2
3x2

3 6∈ B2(A) if s1t2
1 + s2t2

2 + s3t2
3 6= 0. On the other hand, we have dimk B2(A) = 2

since r(M) = 2. Therefore, dimk H2(A) = 1 and

H2(A) = kdt2
1x2

1 + t2
2x2

2 + t2
3x2

3e = kdt1x1 + t2x2 + t3x3e2.

In order to show k[dt1x1 + t2x2 + t3x3e] is a subalgebra of H(A), we need to show (t1x1 +
t2x2 + t3x3)

n 6∈ Bn(A) for any n ≥ 3. If this not the case, we have

(t1x1 + t2x2 + t3x3)
n =

{
∂A[x1x2 f + x1x3g + x2x3h], if n = 2j + 1 is odd
∂A[x1 f + x2g + x3h + x1x2x3u], if n = 2j is even

where f , g, h and u are all linear combinations of monomials with non-negative even
exponents. When n = 2j is even, we have

(t2
1x2

1+t2
2x2

2 + t2
3x2

3)
j = (t1x1 + t2x2 + t3x3)

n

= ∂A[x1 f + x2g + x3h + x1x2x3u]

= (m11x2
1 + m12x2

2 + m13x2
3) f + (m21x2

1 + m22x2
2 + m23x2

3)g

+ (m31x2
1 + m32x2

2 + m33x2
3)h + (m11x2

1 + m12x2
2 + m13x2

3)x2x3u

− x1(m21x2
1 + m22x2

2 + m23x2
3)x3g + x1x2(m31x2

1 + m32x2
2 + m33x2

3)u.

Considering the parity of exponents of the monomials that appear on both sides, the
equation above implies that

(t2
1x2

1 + t2
2x2

2 + t2
3x2

3)
j = (m11x2

1 + m12x2
2 + m13x2

3) f + (m21x2
1 + m22x2

2 + m23x2
3)g

+ (m31x2
1 + m32x2

2 + m33x2
3)h

= ∂A(x1) f + ∂A(x2)g + ∂A(x3)h

and

∂A(x1x2x3u) = (m11x2
1 + m12x2

2 + m13x2
3)x2x3u− x1(m21x2

1 + m22x2
2 + m23x2

3)x3g

+ x1x2(m31x2
1 + m32x2

2 + m33x2
3)u = 0.

Therefore, (t2
1x2

1 + t2
2x2

2 + t2
3x2

3)
j is in the graded ideal (∂A(x1), ∂A(x2), ∂A(x3)) of k[x2

1, x2
2, x2

3].
By Lemma 10, (∂A(x1), ∂A(x2), ∂A(x3)) is a graded prime ideal of k[x2

1, x2
2, x2

3]. So, t2
1x2

1 +
t2
2x2

2 + t2
3x2

3 ∈ (∂A(x1), ∂A(x2), ∂A(x3)). Hence, there exist a1, a2 and a3 in k such that

t2
1x2

1 + t2
2x2

2 + t2
3x2

3 = a1∂A(x1) + a2∂A(x2) + a3∂A(x3)

= ∂A(a1x1 + a2x2 + a3x3).

However, this contradicts with the fact that t2
1x2

1 + t2
2x2

2 + t2
3x2

3 6∈ B2(A), which we have
proved above. Thus, (t1x1 + t2x2 + t3x3)

n 6∈ Bn(A) when n is even.
When n = 2j + 1 is odd, we have
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(t1x1 + t2x2 + t3x3)(t2
1x2

1 + t2
2x2

2 + t2
3x2

3)
j = (t1x1 + t2x2 + t3x3)

n

= ∂A[x1x2 f + x1x3g + x2x3h]

= (m11x2
1 + m12x2

2 + m13x2
3)x2 f − x1(m21x2

1 + m22x2
2 + m23x2

3) f

+ (m11x2
1 + m12x2

2 + m13x2
3)x3g− x1(m31x2

1 + m32x2
2 + m33x2

3)g

+ (m21x2
1 + m22x2

2 + m23x2
3)x3h− x2(m31x2

1 + m32x2
2 + m33x2

3)h

= −x1[(m21x2
1 + m22x2

2 + m23x2
3) f + (m31x2

1 + m32x2
2 + m33x2

3)g]

+ x2[(m11x2
1 + m12x2

2 + m13x2
3) f − (m31x2

1 + m32x2
2 + m33x2

3)h]

+ x3[(m21x2
1 + m22x2

2 + m23x2
3)h + (m11x2

1 + m12x2
2 + m13x2

3)g]

= x1[−∂A(x2) f − ∂A(x3)g] + x2[∂A(x1) f − ∂A(x3)h] + x3[∂A(x2)h + ∂A(x1)g].

This implies that
t1(t2

1x2
1 + t2

2x2
2 + t2

3x2
3)

j = −∂A(x2) f − ∂A(x3)g = ∂A[−x2 f − x3g]
t2(t2

1x2
1 + t2

2x2
2 + t2

3x2
3)

j = ∂A(x1) f − ∂A(x3)h = ∂A[x1 f − x3h]
t3(t2

1x2
1 + t2

2x2
2 + t2

3x2
3)

j = ∂A(x2)h + ∂A(x1)g = ∂A[x2h + x1g].

Since (t1, t2, t3)
T 6= 0, there is at least one non-zero ti, i ∈ {1, 2, 3}. Then, we obtain

(t2
1x2

1 + t2
2x2

2 + t2
3x2

3)
j = (t1x1 + t2x2 + t3x3)

2j ∈ B2j(A), which contradicts with the proved
fact that (t1x1 + t2x2 + t3x3)

n 6∈ Bn(A) when n is even. Therefore, (t1x1 + t2x2 + t3x3)
n 6∈

Bn(A) when n is odd.
Then, we reach a conclusion that k[dt1x1 + t2x2 + t3x3e] is a subalgebra of H(A) when

s1t2
1 + s2t2

2 + s3t2
3 6= 0.

(2) When s1t2
1 + s2t2

2 + s3t2
3 = 0, we should show t2

1x2
1 + t2

2x2
2 + t2

3x2
3 ∈ B2(A) and

s1x2
1 + s2x2

2 + s3x2
3 6∈ B2(A) first. In order to prove t2

1x2
1 + t2

2x2
2 + t2

3x2
3 ∈ B2(A), we need to

show the existence of an element q1x1 + q2x2 + q3x3 ∈ A1 such that

∂A(q1x1 + q2x2 + q3x3) = (q1, q2, q3)M

 x2
1

x2
2

x2
3


= (t2

1, t2
2, t2

3)

 x2
1

x2
2

x2
3

,

which is equivalent to

MT

 q1
q2
q3

 =

 t2
1

t2
2

t2
3

.

Hence, it suffices to show that the nonhomogeneous linear equations

MTX =

 t2
1

t2
2

t2
3



have solutions. Let M = (β1, β2, β3) and b =

 t2
1

t2
2

t2
3

. Since M

 s1
s2
s3

 = 0, we have

3
∑

i=1
siβi = 0 and hence

3
∑

i=1
siβ

T
i = 0. Hence,
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r(MT , b) = r

 βT
1 t2

1
βT

2 t2
2

βT
3 t2

3

 = r

 βT
1 t2

1
βT

2 t2
2

s1βT
1 + s2βT

2 + s3βT
3 s1t2

1 + s2t2
2 + s3t2

3


= r

 βT
1 t2

1
βT

2 t2
2

0 0

 ≤ 2.

On the other hand, we have r(MT , b) ≥ r(MT) = 2. So, r(MT , b) = 2 = r(MT) and then
the nonhomogeneous linear equations

MTX =

 t2
1

t2
2

t2
3


has solutions.

Now, let us prove s1x2 + s2y2 + s3z2 6∈ im(∂A), which is equivalent to the nonhomo-
geneous linear equations

MTX =

 s1
s2
s3



has no solutions. Let s =

 s1
s2
s3

. Then,

r(MT , s) = r

 βT
1 s1

βT
2 s2

βT
3 s3

 = r

 βT
1 s1

βT
2 s2

s1βT
1 + s2βT

2 + s3βT
3 s2

1 + s2
2 + s2

3


= r

 βT
1 s1

βT
2 s2

0 s2
1 + s2

2 + s2
3

 = 3 6= r(MT) = 2.

Hence, MTX = s has no solutions and H2(A) = kds1x2
1 + s2x2

2 + s3x2
3e. It remains to

show that
(s1x2

1 + s2x2
2 + s3x2

3)
j+1 6∈ B2j+2(A)

and
(t1x1 + t2x2 + t3x3)(s1x2

1 + s2x2
2 + s3x2

3)
j 6∈ B2j+1(A)

for any j ≥ 1. We will use a proof by contradiction.
If (s1x2

1 + s2x2
2 + s3x2

3)
j+1 ∈ B2j+2(A), then by Lemma 5, we have

(s1x2
1 + s2x2

2 + s3x2
3)

j+1 = ∂A[x1 f + x2g + x3h + x1x2x3u],

where f , g, h and u are all linear combinations of monomials with non-negative even
exponents. Considering the parity of exponents of the monomials that appear on both sides
of the following equation

(s1x2
1+s2x2

2 + s3x2
3)

j+1 = ∂A[x1 f + x2g + x3h + x1x2x3u]

= (m11x2
1 + m12x2

2 + m13x2
3) f + (m21x2

1 + m22x2
2 + m23x2

3)g

+ (m31x2
1 + m32x2

2 + m33x2
3)h + (m11x2

1 + m12x2
2 + m13x2

3)x2x3u

− x1(m21x2
1 + m22x2

2 + m23x2
3)x3g + x1x2(m31x2

1 + m32x2
2 + m33x2

3)u
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implies that

(s1x2
1 + s2x2

2 + s3x2
3)

j+1 = (m11x2
1 + m12x2

2 + m13x2
3) f + (m21x2

1 + m22x2
2 + m23x2

3)g

+ (m31x2
1 + m32x2

2 + m33x2
3)h

= ∂A(x1) f + ∂A(x2)g + ∂A(x3)h

and

∂A(x1x2x3u) = (m11x2
1 + m12x2

2 + m13x2
3)x2x3u− x1(m21x2

1 + m22x2
2 + m23x2

3)x3g

+ x1x2(m31x2
1 + m32x2

2 + m33x2
3)u = 0.

Therefore, (s1x2
1 + s2x2

2 + s3x2
3)

j+1 is in the graded ideal (∂A(x1), ∂A(x2), ∂A(x3)) of
k[x2

1, x2
2, x2

3]. By Lemma 10, (∂A(x1), ∂A(x2), ∂A(x3)) is a graded prime ideal of k[x2
1, x2

2, x2
3].

So, s1x2
1 + s2x2

2 + s3x2
3 ∈ (∂A(x1), ∂A(x2), ∂A(x3)). Hence, there exist b1, b2 and b3 in k

such that

s1x2
1 + s2x2

2 + s3x2
3 = b1∂A(x1) + b2∂A(x2) + b3∂A(x3)

= ∂A(b1x1 + b2x2 + b3x3).

However, this contradicts with the fact that s1x2
1 + s2x2

2 + s3x2
3 6∈ B2(A), which we have

proved above. Thus, (s1x2
1 + s2x2

2 + s3x2
3)

j+1 6∈ B2j+2(A), for any j ≥ 1.
If (t1x1 + t2x2 + t3x3)(s1x2

1 + s2x2
2 + s3x2

3)
j 6∈ B2j+1(A), then by Lemma 5, we have

(t1x1 + t2x2 + t3x3)(s1x2
1 + s2x2

2 + s3x2
3)

j = ∂A[x1x2 f + x1x3g + x2x3h],

where f , g and h are all linear combinations of monomials with non-negative even expo-
nents. Then,

(t1x1 + t2x2 + t3x3)(s1x2
1 + s2x2

2 + s3x2
3)

j = ∂A[x1x2 f + x1x3g + x2x3h]

= (m11x2
1 + m12x2

2 + m13x2
3)x2 f − x1(m21x2

1 + m22x2
2 + m23x2

3) f

+ (m11x2
1 + m12x2

2 + m13x2
3)x3g− x1(m31x2

1 + m32x2
2 + m33x2

3)g

+ (m21x2
1 + m22x2

2 + m23x2
3)x3h− x2(m31x2

1 + m32x2
2 + m33x2

3)h

= −x1[(m21x2
1 + m22x2

2 + m23x2
3) f + (m31x2

1 + m32x2
2 + m33x2

3)g]

+ x2[(m11x2
1 + m12x2

2 + m13x2
3) f − (m31x2

1 + m32x2
2 + m33x2

3)h]

+ x3[(m21x2
1 + m22x2

2 + m23x2
3)h + (m11x2

1 + m12x2
2 + m13x2

3)g]

= x1[−∂A(x2) f − ∂A(x3)g] + x2[∂A(x1) f − ∂A(x3)h] + x3[∂A(x2)h + ∂A(x1)g].

This implies


t1(s1x2

1 + s2x2
2 + s3x2

3)
j = −∂A(x2) f − ∂A(x3)g = ∂A(−x2 f − x3g)

t2(s1x2
1 + s2x2

2 + s3x2
3)

j = ∂A(x1) f − ∂A(x3)h = ∂A(x1 f − x3h)
t3(s1x2

1 + s2x2
2 + s3x2

3)
j = ∂A(x2)h + ∂A(x1)g = ∂A(x2h + x1g).

Since (t1, t2, t3)
T 6= 0, there is at least one non-zero ti, i ∈ {1, 2, 3}. Then, we obtain that

(s1x2
1 + s2x2

2 + s3x2
3)

j ∈ B2j(A). This contradicts with the proved fact that (s1x2
1 + s2x2

2 +
s3x2

3)
j 6∈ B2j(A) for any j ≥ 1.
Then, we can reach a conclusion that

k[dt1x1 + t2x2 + t3x3e, ds1x2
1 + s2x2

2 + s3x2
3e]/(dt1x1 + t2x2 + t3x3e2)

is a subalgebra of H(A).
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4. Computations of H(A)

In general, the cohomology graded algebra H(A) of a cochain DG algebra A usually
contains some homological information [4,48–50]. So, it is worthwhile to compute. Let A
be a 3-dimensional DG Sklyanin algebra with A# = Sa,a,0 and ∂A be defined by a matrix
M ∈ M3(k). Note that A is just the DG algebra AO−1(k3)(M), which is systematically
studied in [1]. In this section, we will compute H(A) case by case. When r(M) = 3, we
have the following proposition.

Proposition 1. If M = (mij)3×3 ∈ GL3(k), then H(A) = k.

Proof. It suffices to show that Hi(A) = 0 when i 6= 0. If l1x1 + l2x2 + l3x3 ∈ Z1(A), then

0 = ∂A(l1x1 + l2x2 + l3x3) = (l1, l2, l3)M

 x2
1

x2
2

x2
3

,

which implies that (l1, l2, l3)M = 0 and hence MT

 l1
l2
l3

 = 0. Then, each li = 0 since

r(MT) = 3. So, Z1(A) = 0 and H1(A) = 0. Since ∂A is a monomorphism, we have
dimk B2(A) = 3 and B2(A) = kx2

1 ⊕ kx2
2 ⊕ kx2

3. We claim Z2(A) = B2(A). It suffices to
show (kx1x2 ⊕ kx1x3 ⊕ kx2x3)

⋂
Z2(A) = 0 since

A2 = kx2
1 ⊕ kx2

2 ⊕ kx2
3 ⊕ kx1x2 ⊕ kx1x3 ⊕ kx2x3.

For any c12x1x2 + c13x1x3 + c23x2x3 ∈ Z2(A), we have

0 = ∂A[c12x1x2 + c13x1x3 + c23x2x3]

= c12(m11x2
1 + m12x2

2 + m13x2
3)x2 − c12x1(m21x2

1 + m22x2
2 + m23x2

3)

+ c13(m11x2
1 + m12x2

2 + m13x2
3)x3 − c13x1(m31x2

1 + m32x2
2 + m33x2

3)

+ c23(m21x2
1 + m22x2

2 + m23x2
3)x3 − c23x2(m31x2

1 + m32x2
2 + m33x2

3)

= (−c12m21 − c13m31)x3
1 + (c12m12 − c23m32)x3

2 + (c13m13 + c23m23)x3
3

+ (c12m11 − c23m31)x2y− (c12m22 + c13m32)x1x2
2 − (c12m23 + c13m33)x1x2

3

+ (c13m11 + c23m21)x2
1x3 + (c13m12 + c23m22)x2

2x3 + (c12m13 − c23m33)x2x2
3.

Then,



c12m21 + c13m31 = 0
c12m12 − c23m32 = 0
c13m13 + c23m23 = 0
c12m11 − c23m31 = 0
c12m22 + c13m32 = 0
c12m23 + c13m33 = 0
c13m11 + c23m21 = 0
c13m12 + c23m22 = 0
c12m13 − c23m33 = 0

⇔



c12m21 + c13m31 = 0
c12m22 + c13m32 = 0
c12m23 + c13m33 = 0
c12m11 − c23m31 = 0
c12m12 − c23m32 = 0
c12m13 − c23m33 = 0
c13m11 + c23m21 = 0
c13m12 + c23m22 = 0
c13m13 + c23m23 = 0

⇔


c12 = 0
c13 = 0
c23 = 0

since r(M) = 3. So, (kx1x2 ⊕ kx1x3 ⊕ kx2x3)
⋂

Z2(A) = 0. Thus, H2(A) = 0.
Since x2

1, x2
2 and x2

3 are central and cocycle elements in A, they generate a DG ideal
I = (x2

1, x2
2, x2

3) of A. One sees that A/I =
∧
(x1, x2, x3) with ∂A/I = 0. The long exact

sequence of cohomologies induced from the short exact sequence
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0→ I ι→ A ε→ A/I → 0

contains (Seq 4.1):

0→ H2(A/I) = k(dx1 ∧ x2e)⊕ k(dx1 ∧ x3e)⊕ k(dx2 ∧ x3e)
δ2
→ H3(I)

H3(ι)→

H3(A) H3(ε)→ H3(A/I) = k(dx1 ∧ x2 ∧ x3e)
δ3
→ H4(I)

H4(ι)→ H4(A)→ H4(A/I) = 0

→ H5(I)
H5(ι)→ H5(A)→ 0→ · · · 0→ Hi(I)

Hi(ι)→ Hi(A)→ 0→ · · · .

We claim that H3(I) = kdω1e ⊕ kdω2e ⊕ kdω3e, where

ω1 = −m21x3
1 + m11x2

1x2 −m22x1x2
2 + m12x3

2 −m23x1x2
3 + m13x2x2

3

ω2 = −m31x3
1 + m11x2

1x3 −m32x1x2
2 + m12x2

2x3 −m33x1x2
3 + m13x3

3

ω3 = −m31x2
1x2 + m21x2

1x3 −m32x3
2 + m22x2

2x3 −m33x2x2
3 + m23x3

3.

Any cocycle element Ω ∈ Z3(I) can be written as

Ω = (q1x1 + q2x2 + q3x3)x2
1 + (q4x1 + q5x2 + q6x3)x2

2 + (q7x1 + q8x2 + q9x3)x2
3,

where each qi ∈ k, 1 ≤ i ≤ 9. Then

0 = ∂I(z)

= (q1, q2, q3)M

 x2
1

x2
2

x2
3

x2
1 + (q4, q5, q6)M

 x2
1

x2
2

x2
3

x2
2 + (q7, q8, q9)M

 x2
1

x2
2

x2
3

x2
3

= (q1, q2, q3)M

 x4
1

x2
1x2

2
x2

1x2
3

+ (q4, q5, q6)M

 x2
1x2

2
x4

2
x2

2x2
3

+ (q7, q8, q9)M

 x2
1x2

3
x2

2x2
3

x4
3


and hence 

(q1, q2, q3)M

 1
0
0

 = 0

(q4, q5, q6)M

 0
1
0

 = 0

(q7, q8, q9)M

 0
0
1

 = 0

(q1, q2, q3)M

 0
1
0

+ (q4, q5, q6)M

 1
0
0

 = 0

(q1, q2, q3)M

 0
0
1

+ (q7, q8, q9)M

 1
0
0

 = 0

(q4, q5, q6)M

 0
0
1

+ (q7, q8, q9)M

 0
1
0

 = 0,
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which is equivalent to



m11 m21 m31 0 0 0 0 0 0
0 0 0 m12 m22 m32 0 0 0
0 0 0 0 0 0 m13 m23 m33

m12 m22 m32 m11 m21 m31 0 0 0
m13 m23 m33 0 0 0 m11 m21 m31

0 0 0 m13 m23 m33 m12 m22 m32





q1
q2
q3
q4
q5
q6
q7
q8
q9


= 0.

Since r(M) = 3, one sees that

r



m11 m21 m31 0 0 0 0 0 0
0 0 0 m12 m22 m32 0 0 0
0 0 0 0 0 0 m13 m23 m33

m12 m22 m32 m11 m21 m31 0 0 0
m13 m23 m33 0 0 0 m11 m21 m31

0 0 0 m13 m23 m33 m12 m22 m32

 = 6.

Hence, dimk Z3(I) = 3. On the other hand,
∂A(x1x2) = ω1

∂A(x1x3) = ω2

∂A(x2x3) = ω3

implies that ∂I(ωi) = 0, i = 1, 2, 3. Then, Z3(I) = kω1 ⊕ kω2 ⊕ kω3 and hence H3(I) =
kdω1e ⊕ kdω2e ⊕ kdω3e since B3(I) = 0. The definition of connecting homomorphism
implies that

δ2(dx1 ∧ x2e) = dω1e
δ2(dx1 ∧ x3e) = dω2e
δ2(dx2 ∧ x3e) = dω3e.

Hence, δ2 is a bijection. By the long exact sequence (Seq 4.1), we have H3(A) = 0.
Since B2(A) = kx2

1 ⊕ kx2
2 ⊕ kx2

3, one sees that

B4(I) = kx4
1 ⊕ kx2

1x2
2 ⊕ kx2

1x2
3 ⊕ kx4

2 ⊕ kx2
2x2

3 ⊕ kx4
3.

For any Ω ∈ Z4(I)
⋂
(I4/B4(I)), we can write it as

Ω = (r1x1x2 + r2x1x− 3 + r3x2x3)x2
1 + (r4x1x2 + r5x1x3 + r6x2x3)x2

2

+ (r7x1x2 + r8x1x3 + r9x2x3)x2
3,

where ri ∈ k, 1 ≤ i ≤ 9. Then,
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0 =∂I(Ω) = [r1(m11x2
1 + m12x2

2 + m13x2
3)x2 − r1x1(m21x2

1 + m22x2
2 + m23x2

3)]x
2
1

+ [r2(m11x2
1 + m12x2

2 + m13x2
3)x3 − r2x1(m31x2

1 + m32x2
2 + m33x2

3)]x
2
1

+ [r3(m21x2
1 + m22x2

2 + m23x2
3)x3 − r3x2(m31x2

1 + m32x2
2 + m33x2

3)]x
2
1

+ [r4(m11x2
1 + m12x2

2 + m13x2
3)x2 − r4x1(m21x2

1 + m22x2
2 + m23x2

3)]x
2
2

+ [r5(m11x2
1 + m12x2

2 + m13x2
3)x3 − r5x1(m31x2

1 + m32x2
2 + m33x2

3)]x
2
2

+ [r6(m21x2
1 + m22x2

2 + m23x2
3)x3 − r6x2(m31x2

1 + m32x2
2 + m33x2

3)]x
2
2

+ [r7(m11x2
1 + m12x2

2 + m13x2
3)x2 − r7x1(m21x2

1 + m22x2
2 + m23x2

3)]x
2
3

+ [r8(m11x2
1 + m12x2

2 + m13x2
3)x3 − r8x1(m31x2

1 + m32x2
2 + m33x2

3)]x
2
3

+ [r9(m21x2
1 + m22x2

2 + m23x2
3)x3 − r9x2(m31x2

1 + m32x2
2 + m33x2

3)]x
2
3

= −(r1m21 + r2m31)x5
1 + (r4m12 − r6m32)x5

2 + (r8m13 + r9m23)x5
3

+ (r1m11 − r3m31)x4
1x2 + (r1m12 − r3m32 + r4m11 − r6m31)x2

1x3
2

+ (r1m13 − r3m33 + r7m11 − r9m31)x2
1x2x2

3 + (r2m11 + r3m21)x4
1x3

− (r1m22 + r2m32 + r4m21 + r5m31)x3
1x2

2 + (r7m13 − r9m33)x2x4
3

− (r1m23 + r2m33 + r7m21 + r8m31)x3
1x2

3 − (r4m22 + r5m32)x1x4
2

+ (r2m12 + r3m22 + r5m11 + r6m21)x2
1x2

2x3 + (r5m12 + r6m22)x4
2x3

+ (r2m13 + r3m23 + r8m11 + r9m21)x2
1x3

3 − (r7m23 + r8m33)x1x4
3

− (r4m23 + r5m33 + r7m22 + r8m32)x1x2
2x2

3

+ (r7m12 − r9m32 + r4m13 − r6m33)x3
2x2

3

+ (r5m13 + r6m23 + r8m12 + r9m22)x2
2x3

3

and hence



r1m21 + r2m31 = 0
r1m11 − r3m31 = 0
r2m11 + r3m21 = 0
r4m22 + r5m32 = 0
r4m12 − r6m32 = 0
r5m12 + r6m22 = 0
r7m23 + r8m33 = 0
r7m13 − r9m33 = 0
r8m13 + r9m23 = 0
r1m22 + r2m32 + r4m21 + r5m31 = 0
r1m12 − r3m32 + r4m11 − r6m31 = 0
r1m23 + r2m33 + r7m21 + r8m31 = 0
r1m13 − r3m33 + r7m11 − r9m31 = 0
r2m12 + r3m22 + r5m11 + r6m21 = 0
r2m13 + r3m23 + r8m11 + r9m21 = 0
r4m23 + r5m33 + r7m22 + r8m32 = 0
r4m13 − r6m33 + r7m12 − r9m32 = 0
r5m13 + r6m23 + r8m12 + r9m22 = 0.
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Since r(M) = 3, one sees that the rank of the coefficient matrix

m21 m31 0 0 0 0 0 0 0
m11 0 −m31 0 0 0 0 0 0

0 m11 m21 0 0 0 0 0 0
0 0 0 m22 m32 0 0 0 0
0 0 0 m12 0 −m32 0 0 0
0 0 0 0 m12 m22 0 0 0
0 0 0 0 0 0 m23 m33 0
0 0 0 0 0 0 m13 0 −m33
0 0 0 0 0 0 0 m13 m23

m22 m32 0 m21 m31 0 0 0 0
m12 0 −m32 m11 0 −m31 0 0 0
m23 m33 0 0 0 0 m21 m31 0
m13 0 −m33 0 0 0 m11 0 −m31

0 m12 m22 0 m11 m21 0 0 0
0 m13 m23 0 0 0 0 m11 m21
0 0 0 m23 m33 0 m22 m32 0
0 0 0 m13 0 −m33 m12 0 −m32
0 0 0 0 m13 m23 0 m12 m22


is 8. Therefore, dimk[Z4(I)

⋂
(I4/B4(I))] = 1. On the other hand,

∂A(x1x2x3) = (m11x2
1 + m12x2

2 + m13x2
3)x2x3 − (m21x2

1 + m22x2
2 + m23x2

3)x1x3

+ x1x2(m31x2
1 + m32x2

2 + m33x2
3)

= x2
1(m11x2x3 −m21x1x3 + m31x1x2) + x2

2(m12x2x3 −m22x1x3 + m32x1x2)

+ z2(m13x2x3 −m23x1x3 + m33x1x2).

We have

β = x2
1(m11x2x3 −m21x1x3 + m31x1x2) + x2

2(m12x2x3 −m22x1x3 + m32x1x2)

+ x2
3(m13x2x3 −m23x1x3 + m33x1x2) ∈ Z4(I)

⋂
(I4/B4(I))

and hence H4(I) = kdβe. By the definition of connecting homomorphism, we have
δ3(dx1 ∧ x2 ∧ x3e) = dβe 6= 0 and hence δ3 is an isomorphism. By the cohomology long
exact sequence (Seq 4.1), we obtain H4(A) = 0. Since Hi(A/I) = 0 for any i ≥ 4, we have
Hi+1(I) ∼= Hi+1(A) by the cohomology long exact sequence (Seq 4.1).

Since

0 6= |M| = m11

∣∣∣∣ m22 m23
m32 m33

∣∣∣∣−m12

∣∣∣∣ m21 m23
m31 m33

∣∣∣∣+ m13

∣∣∣∣ m21 m22
m31 m32

∣∣∣∣,
there is at least one non-zero in{∣∣∣∣ m22 m23

m32 m33

∣∣∣∣, ∣∣∣∣ m21 m23
m31 m33

∣∣∣∣, ∣∣∣∣ m21 m22
m31 m32

∣∣∣∣}.

Without the loss of generality, we assume that
∣∣∣∣ m22 m23

m32 m33

∣∣∣∣ 6= 0 and m33 6= 0. Let

Q1 = (x2
1, x2

2)/(x2
1) and Q2 = I/(x2

1, x2
2). By Lemma 8, we have

Hi(Q1) =


kdx̄2

2e, if i = 2
kdx̄1 x̄2

2 + x̄2
2(m13m32−m12m33

m22m33−m23m32
x̄2 +

m12m23−m13m22
m22m33−m23m32

x̄3)e, if i = 3

0, if i ≥ 4
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and

Hi(Q2) =


kdx̄1

2e, if i = 2
kd−m33 x̄1 x̄3

2 + m13 x̄3
3e ⊕ kd−m33 x̄2 x̄3

2 + m23 x̄3
3e, if i = 3

kdm23 x̄1 x̄3
3 −m13 x̄2 x̄3

3 −m33 x̄1 x̄2 x̄3
2e, if i = 4

0, if i ≥ 5.

The cohomology long exact sequence induced from the short exact sequence

0→ (x2
1, x2

2)
τ→ I π→ Q2 → 0

contains

· · · H4(π)→ H4(Q2)
δ4→ H5[(x2

1, x2
2)]

H5(τ)→ H5(I)
H5(π)→ H5(Q2) = 0 δ5

→ H6[(x2
1, x2

2)]

H6(τ)→ H6(I)
H6(π)→ H6(Q2) = 0→ · · · 0→ Hi[(x2

1, x2
2)]

Hi(τ)→ Hi(I)→ 0→ · · · .

We have

∂I(m23x1x3
3 −m13x2x3

3 −m33x1x2x2
3)

=(m11m23 −m13m21)x2
1x3

3 + (m21m33 −m23m31)x3
1x2

3

+(m13m31 −m11m33)x2
1x2x2

3 + (m12m23 −m13m22)x2
2x3

3

+(m33m22 −m23m32)x1x2
2x2

3 + (m13m32 −m12m33)x3
2x2

3

=

[∣∣∣∣ m11 m13
m21 m23

∣∣∣∣x3 +

∣∣∣∣ m21 m23
m31 m33

∣∣∣∣x1 −
∣∣∣∣ m11 m13

m31 m33

∣∣∣∣x2

]
x2

1x2
3

+

[∣∣∣∣ m12 m13
m22 m23

∣∣∣∣x3 +

∣∣∣∣ m22 m23
m32 m33

∣∣∣∣x1 −
∣∣∣∣ m12 m13

m32 m33

∣∣∣∣x2

]
x2

2x2
3

and

∂A

[∣∣∣∣ m11 m13
m21 m23

∣∣∣∣x3 +

∣∣∣∣ m21 m23
m31 m33

∣∣∣∣x1 −
∣∣∣∣ m11 m13

m31 m33

∣∣∣∣x2

]
x2

1

+∂A

[∣∣∣∣ m12 m13
m22 m23

∣∣∣∣x3 +

∣∣∣∣ m22 m23
m32 m33

∣∣∣∣x1 −
∣∣∣∣ m12 m13

m32 m33

∣∣∣∣x2

]
x2

2

=− |M|x2
2x2

1 + |M|x2
1x2

2 = 0.

So,

χ =

[∣∣∣∣ m11 m13
m21 m23

∣∣∣∣x3 +

∣∣∣∣ m21 m23
m31 m33

∣∣∣∣x1 −
∣∣∣∣ m11 m13

m31 m33

∣∣∣∣x2

]
x2

1

+

[∣∣∣∣ m12 m13
m22 m23

∣∣∣∣x3 +

∣∣∣∣ m22 m23
m32 m33

∣∣∣∣x1 −
∣∣∣∣ m12 m13

m32 m33

∣∣∣∣x2

]
x2

2 ∈ Z3(A).

Since we have proved H3(A) = 0, there exists ω ∈ A such that ∂A(ω) = χ. Then

∂I(m23x1x3
3 −m13x2x3

3 −m33x1x2x2
3) = χx2

3 = ∂A(ω)x2
3

and hence δ4(dm23x1x3
3 − m13x2x3

3 − m33x1x2x2
3e) = d∂A(ω)x2

3e = 0 by the definition of
connecting homomorphism. So, δ4 = 0. By the cohomology long exact sequence above, we
have Hi(I) ∼= Hi[(x2

1, x2
2)], i ≥ 5. The cohomology long exact sequence induced from the

short exact sequence
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0→ (x2
1)

τ→ (x2
1, x2

2)
φ→ Q1 → 0

contains

· · · 0 δ4
→ H5((x2

1))
H5(τ)→ H5((x2

1, x2
2))

H5(φ)→ H5(Q1) = 0 δ5
→

· · · 0 δi−1
→ Hi((x2

1))
Hi(τ)→ Hi((x2

1, x2
2)))

Hi(φ)→ Hi(Q1) = 0 δi
→ · · · .

Hence, Hi((x2
1))
∼= Hi((x2

1, x2
2)) for any i ≥ 5. Then, we obtain

Hi((x2
1))
∼= Hi((x2

1, x2
2))
∼= Hi(I) ∼= Hi(A)

for any i ≥ 5. Since x2
1 is a central and cocycle element in A, one sees that H((x2

1)) =
H(A)dx2

1e. We have shown that Hi(A) = 0, when i = 1, 2, 3, 4. Then, we can inductively
prove Hi(A) = 0 for any i ≥ 1.

Now, let us consider the case r(M) = 2. We have the following proposition.

Proposition 2. For M ∈ M3(k) with r(M) = 2, let k(s1, s2, s3)
T and k(t1, t2, t3)

T be the
solution spaces of homogeneous linear equations MX = 0 and MTX = 0, respectively. Then,
H(A) = k[dt1x1 + t2x2 + t3x3e] if s1t2

1 + s2t2
2 + s3t2

3 6= 0; and H(A) equals to

k[dt1x1 + t2x2 + t3x3e, ds1x2
1 + s2x2

2 + s3x2
3e]/(dt1x1 + t2x2 + t3x3e2)

when s1t2
1 + s2t2

2 + s3t2
3 = 0.

Proof. First, we claim dimk H3(A) = 1. Indeed, for any cocycle element

ξ = l1x3
1 + l2x2

1x2 + l3x2
1x3 + l4x1x2

2 + l5x3
2 + l6x2

2x3 + l7x1x2
3 + l8x2x2

3 + l9x3
3 + l10x1x2x3

in Z3(A), we have

0 = ∂A(ξ) = l1x2
1(m11x2

1 + m12x2
2 + m13x2

3) + l2x2
1(m21x2

1 + m22x2
2 + m23x2

3)

+ l3x2
1(m31x2

1 + m32x2
2 + m33x2

3) + l4(m11x2
1 + m12x2

2 + m13x2
3)x2

2

+ l5(m21x2
1 + m22x2

2 + m23x2
3)x2

2 + l6x2
2(m31x2

1 + m32x2
2 + m33x2

3)

+ l7(m11x2
1 + m12x2

2 + m13x2
3)x2

3 + l8(m21x2
1 + m22x2

2 + m23x2
3)x2

3

+ l9(m31x2
1 + m32x2

2 + m33x2
3)x2

3 + l10(m11x2
1 + m12x2

2 + m13x2
3)x2x3

− l10x1(m21x2
1 + m22x2

2 + m23x2
3)x3 + l10x1x2(m31x2

1 + m32x2
2 + m33x2

3).

This implies that 

l1m11 + l2m21 + l3m31 = 0
l1m12 + l2m22 + l3m32 + l4m11 + l5m21 + l6m31 = 0
l1m13 + l2m23 + l3m33 + l7m11 + l8m21 + l9m31 = 0
l4m13 + l5m23 + l6m33 + l7m12 + l8m22 + l9m32 = 0
l4m12 + l5m22 + l6m32 = 0
l7m13 + l8m23 + l9m33 = 0
l10 = 0.

Hence,
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m11 m21 m31 0 0 0 0 0 0
m12 m22 m32 m11 m21 m31 0 0 0
m13 m23 m33 0 0 0 m11 m21 m31

0 0 0 m13 m23 m33 m12 m22 m32
0 0 0 m12 m22 m32 0 0 0
0 0 0 0 0 0 m13 m23 m33





l1
l2
l3
l4
l5
l6
l7
l8
l9


= 0.

By Lemma 9,

r



m11 m21 m31 0 0 0 0 0 0
m12 m22 m32 m11 m21 m31 0 0 0
m13 m23 m33 0 0 0 m11 m21 m31

0 0 0 m13 m23 m33 m12 m22 m32
0 0 0 m12 m22 m32 0 0 0
0 0 0 0 0 0 m13 m23 m33

 = 5.

So, dimk Z3(A) = 9− 5 = 4. On the other hand,

∂A(x1x2) = (m11x2
1 + m12x2

2 + m13x2
3)x2 − x1(m21x2

1 + m22x2
2 + m23x2

3)

= m11x2
1x2 + m12x3

2 + m13x2x2
3 −m21x3

1 −m22x1x2
2 −m23x1x2

3,

∂A(x1x3) = (m11x2
1 + m12x2

2 + m13x2
3)x3 − x1(m31x2

1 + m32x2
2 + m33x2

3)

= m11x2
1x3 + m12x2

2x3 + m13x3
3 −m31x3

1 −m32x1x2
2 −m33x1x2

3,

∂A(x2x3) = (m21x2
1 + m22x2

2 + m23x2
3)x3 − x2(m31x2

1 + m32x2
2 + m33x2

3)

= m21x2
1x3 + m22x2

2x3 + m23x3
3 −m31x2

1x2 −m32x3
2 −m33x2x2

3

are linearly independent, since

0 = λ1∂A(x1x2) + λ2∂A(x1x3) + λ3∂A(x2x3)

= λ1(m11x2
1x2 + m12x3

2 + m13x2x2
3 −m21x3

1 −m22x1x2
2 −m23x1x2

3)

+ λ2(m11x2
1x3 + m12x2

2x3 + m13x3
3 −m31x3

1 −m32x1x2
2 −m33x1x2

3)

+ λ3(m21x2
1x3 + m22x2

2x3 + m23x3
3 −m31x2

1x2 −m32x3
2 −m33x2x2

3)

= (λ1m11 − λ3m31)x2
1x2 + (λ1m12 − λ3m32)x3

2 + (λ1m13 − λ3m33)x2x2
3

− (λ1m21 + λ2m31)x3
1 − (λ1m22 + λ2m32)x1x2

2 − (λ1m23 + λ2m33)x1x2
3

+ (λ2m11 + λ3m21)x2
1x3 + (λ2m12 + λ3m22)x2

2x3 + (λ2m13 + λ3m23)x3
3

implies 

λ1m11 − λ3m31 = 0
λ1m12 − λ3m32 = 0
λ1m13 − λ3m33 = 0
λ1m21 + λ2m31 = 0
λ1m22 + λ2m32 = 0
λ1m23 + λ2m33 = 0
λ2m11 + λ3m21 = 0
λ2m12 + λ3m22 = 0
λ2m13 + λ3m23 = 0

⇔ λ1 = λ2 = λ3 = 0

since r(M) = 2. Then, dimk B3(A) = 3 and we show the claim dimk H3(A) = 1.
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Let I = (r1, r2, r3) be the DG ideal of A generated by the central coboundary elements
r1 = ∂A(x1), r2 = ∂A(x2) and r3 = ∂A(x3). Then, the DG quotient ring Q = A/I has a
trivial differential. Since each ri = mi1x2

1 + mi2x2
2 + mi3x2

3 and r(M) = 2, we may assume
without the loss of generality that r1, r2 are linearly independent, which is equivalent to
t3 6= 0. Then, r3 = t1

t3
r1 +

t2
t3

r2 and I = (r1, r2). We have

Hi(I) =

{
kdr1e ⊕ kdr2e, i = 2
dr1eHi−2(A)⊕ dr2eHi−2(A)⊕ dr1x2 − x1r2eHi−3(A), i ≥ 3

and

dimk Hi(Q) = dimk Qi =


0, i < 0
1, i = 0
3, i = 1
4, i ≥ 2.

The short exact sequence

0→ I ι→ A π→ Q→ 0

induces the cohomology long exact sequence (Seq 4.2):

0→ H0(A) H0(π)→ H0(Q)
δ0
→ H1(I)

H1(ι)→ H1(A) H1(π)→ H1(Q)
δ1
→ H2(I)

H2(ι)→ H2(A) H2(π)→ H2(Q)
δ2
→ · · · δi−1

→ Hi(I)
Hi(ι)→ Hi(A) Hi(π)→ Hi(Q)

δi
→ · · · .

Since r1, r2 and r1x2 − x1r2 are coboundary elements in A, we have Hi(ι) = 0 for any i ≥ 3.
The cohomology long exact sequence (Seq 4.2) implies that

dimk Hi(A) + dimk Hi+1(I) = dimk Hi(Q), i ≥ 3.

By Lemma 11 and dimk H3(A) = 1, we inductively obtain dimk Hi(A) = 1, i ≥ 4. Hence,
dimk Hi(A) = 1 for any i ≥ 0.

By Lemma 11, the algebra k[dt1x1 + t2x2 + t3x3e] is a subalgebra of H(A) when
3
∑

i=1
sit2

i 6= 0, and

k[dt1x1 + t2x2 + t3x3d, ds1x2
1 + s2x2

2 + s3x2
3e]/(dt1x1 + t2x2 + t3x3e2)

is a subalgebra of H(A) when
3
∑

i=1
sit2

i = 0. Considering the dimension of each Hi(A) gives

that H(A) = k[dt1x1 + t2x2 + t3x3e] = H(A) when
3
∑

i=1
sit2

i 6= 0, and

k[dt1x1 + t2x2 + t3x3e, ds1x2
1 + s2x2

2 + s3x2
3e]/(dt1x1 + t2x2 + t3x3e2) = H(A),

when
3
∑

i=1
sit2

i = 0.

It remains to consider the case that r(M) = 1. In this case, we might as well let

M =

 m11 m12 m13
l1m11 l1m12 l1m13
l2m11 l2m12 l2m13

, with l1, l2 ∈ k and (m11, m12, m13) 6= 0.
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Indeed, one can see the reason by [1] (Remark 5.4). Note that we have
∂A(x1) = m11x2

1 + m12x2
2 + m13x2

3

∂A(x2) = l1[m11x2
1 + m12x2

2 + m13x2
3]

∂A(x3) = l2[m11x2
1 + m12x2

2 + m13x2
3].

For any c1x1 + c2x2 + c3x3 ∈ Z1(A), we have

0 = ∂A(c1x1 + c2x2 + c3x3) = (c1 + l1c2 + l2c3)[m11x2
1 + m12x2

2 + m13x2
3]

⇒ c1 + l1c2 + l2c3 = 0,

which admits a basic solution system

 l1
−1
0

,

 l2
0
−1

. So,

Z1(A) = k(l1x1 − x2)⊕ k(l2x1 − x3)

and
H1(A) = kdl1x1 − x2e ⊕ kdl2x1 − x3e.

For any c11x2
1 + c12x1x2 + c13x1x3 + c22x2

2 + c23x2x3 + c33x2
3 ∈ Z2(A), we have

0 =∂A[c11x2
1 + c12x1x2 + c13x1x3 + c22x2

2 + c23x2x3 + c33x2
3]

=c12(m11x2
1 + m12x2

2 + m13x2
3)x2 − c12x1l1(m11x2

1 + m12x2
2 + m13x2

3)

+c13(m11x2
1 + m12x2

2 + m13x2
3)x3 − c13x1l2(m11x2

1 + m12x2
2 + m13x2

3)

+c23l1(m11x2
1 + m12x2

2 + m13x2
3)x3 − c23x2l2(m11x2

1 + m12x2
2 + m13x2

3)

=− (c12l1 + l2c13)m11x3
1 + (c12 − c23l2)m11x2

1x2 + (c13 + c23l1)m11x2
1x3

−(c12l1 + c13l2)m12x1x2
2 − (c12l1 + c13l2)m13x1x2

3 + (c12 − c23l2)m12x3
2

+(c13 + c23l1)m12x2
2x3 + (c12 − c23l2)m13x2x2

3 + (c13 + c23l1)m13x3
3.

Since (m11, m12, m13) 6= 0, we obtain
c12l1 + l2c13 = 0
c12 − c23l2 = 0
c13 + c23l1 = 0

⇔

 l1 l2 0
1 0 −l2
0 1 l1

 c12
c13
c23

 = 0.

We obtain c12 = tl2, c13 = −tl1, c23 = t, for some t ∈ k. Thus,

Z2(A) = kx2
1 ⊕ kx2

2 ⊕ kx2
3 ⊕ k(l2x1x2 − l1x1x3 + x2x3).

Since B2(A) = k(m11x2
1 + m12x2

2 + m13x2
3), we have

H2(A) =
kx2

1 ⊕ kx2
2 ⊕ kx2

3 ⊕ k(l2x1x2 − l1x1x3 + x2x3)

k(m11x2
1 + m12x2

2 + m13x2
3)

.

Moreover, we claim that dimk Hi(A) = i + 1, for any i ≥ 0. We prove this claim as follows.
Let I = (m11x2

1 + m12x2
2 + m13x2

3) be the DG ideal of A generated by the central
coboundary elements ∂A(x1). Then, the DG quotient ring Q = A/I has trivial differen-
tial and

dimk Hi(Q) = dimk Qi =

{
0, i < 0
2i + 1, i ≥ 0.
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The short exact sequence

0→ I ι→ A π→ Q→ 0

induces the cohomology long exact sequence (Seq 4.3):

0→ H0(A) H0(π)→ H0(Q)
δ0
→ H1(I)

H1(ι)→ H1(A) H1(π)→ H1(Q)
δ1
→ H2(I)

H2(ι)→ H2(A) H2(π)→ H2(Q)
δ2
→ · · · δi−1

→ Hi(I)
Hi(ι)→ Hi(A) Hi(π)→ Hi(Q)

δi
→ · · · .

Since m11x2
1 + m12x2

2 + m13x2
3 = ∂A(x1) is a central coboundary element in A, we have

Hi(I) = dm11x2
1 + m12x2

2 + m13x2
3eHi−2(A) and Hi(ι) = 0 for any i ≥ 2. The cohomology

long exact sequence (Seq 4.3) implies that

dimk Hi(A) + dimk Hi+1(I) = dimk Hi(Q) = 2i + 1, i ≥ 2.

Then, dimk Hi(A) + dimk Hi−1(A) = 2i + 1 since

dimk Hi+1(I) = dimk{dm11x2
1 + m12x2

2 + m13x2
3eHi−1(A)}

= dimk Hi−1(A), i ≥ 2.

Since dimk H1(A) = 2, we can inductively obtain dimk Hi(A) = i + 1, for any i ≥ 0. In
order to accomplish the computation of H(A), we make a classification chart as follows:

m12l2
1 + m13l2

2 6= m11,

{
l1l2 6= 0;
l1l2 = 0;

m12l2
1 + m13l2

2 = m11,


l1l2 6= 0;
l1 6= 0, l2 = 0;
l2 6= 0, l1 = 0;
l1 = l2 = 0.

We will compute H(A) case by case according to this classification chart. We have the
following proposition.

Proposition 3. (a) If m12l2
1 + m13l2

2 6= m11 and l1l2 6= 0, then H(A) is

k〈dl1x1 − x2e, dl2x1 − x3e〉
(m12dl1x1 − x2e2 + m13dl2x1 − x3e2 − dl1x1−x2edl2x1−x3e+dl2x1−x3edl1x1−x2e

2l1 l2
m12 l21+m13 l22

)
;

(b) If m12l2
1 + m13l2

2 6= m11 and l1l2 = 0, then

H(A) = k〈dl1x1 − x2e, dl2x1 − x3e〉
(dl1x1 − x2edl2x1 − x3e+ dl2x1 − x3edl1x1 − x2e)

;

(c) If m12l2
1 + m13l2

2 = m11 and l1l2 6= 0, then

H(A) = k〈dl1x1 − x2e, dl2x1 − x3e〉
(m12dl1x1 − x2e2 + m13dl2x1 − x3e2)

;

(d) If m12l2
1 + m13l2

2 = m11, l1 6= 0 and l2 = 0, then
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H(A) =
k〈dl1x1 − x2e, dx3e, dx2

1e〉
m12dl1x1 − x2e2 + m13dx3e2

dx2
1edl1x1 − x2e − dl1x1 − x2edx2

1e
dx2

1edx3e − dx3edx2
1e

dl1x1 − x2edx3e+ dx3edl1x1 − x2e


;

(e) If m12l2
1 + m13l2

2 = m11, l2 6= 0 and l1 = 0, then

H(A) =
k〈dl2x1 − x3e, dx2e, dx2

1e〉
m13dl2x1 − x3e2 + m12dx2e2

dx2
1edl2x1 − x3e − dl2x1 − x3edx2

1e
dx2

1edx2e − dx2edx2
1e

dl2x1 − x3edx2e+ dx2edl2x1 − x3e


;

( f ) If m12l2
1 + m13l2

2 = m11, l1 = 0 and l2 = 0, then

H(A) =
k〈dx3e, dx2e, dx2

1e〉
m12dx2e2 + m13dx3e2
dx2

1edx3e − dx3edx2
1e

dx2
1edx2e − dx2edx2

1e
dx3edx2e+ dx2edx3e


.

Proof. (a) Note that x1x2 + x2x1 = 0, x1x3 + x3x1 = 0 and x2x3 + x3x2 = 0 in A. We have
(l1x1 − x2)

2 = l2
1 x2

1 + x2
2,

(l2x1 − x3)
2 = l2

2 x2
1 + x2

3,
(l1x1 − x2)(l2x1 − x3) + (l2x1 − x3)(l1x1 − x2) = 2l1l2x2

1.

It is straight forward to check that

Z2(A) = kx2
1 ⊕ k(l1x1 − x2)

2 ⊕ k(l2x1 − x3)
2 ⊕ k(l1x1 − x2)(l2x1 − x3).

Since

m12(l1x1 − x2)
2 + m13(l2x1 − x3)

2 − (m12l2
1 + m13l2

2 −m11)x2
1

= m12x2
2 + m13x2

3 + m11x2
1 ∈ B2(A),

we have

H2(A) = kdl1x1 − x2e2 ⊕ kdl2x1 − x3e2 ⊕ kd(l1x1 − x2)(l2x1 − x3)e. (6)

We claim that

k〈dl1x1 − x2e, dl2x1 − x3e〉
(m12dl1x1 − x2e2 + m13dl2x1 − x3e2 − dl1x1−x2edl2x1−x3e+dl2x1−x3edl1x1−x2e

2l1 l2
m12 l21+m13 l22

is a subalgebra of H(A). It suffices to show that
(l1x1 − x2)

n 6∈ Bn(A)
(l2x1 − x3)

n 6∈ Bn(A)
(l1x1 − x2)

i(l2x1 − x3)
j 6∈ Bi+j(A)

for any n ≥ 2 and i, j ≥ 1. Indeed, if (l1x1 − x2)
n ∈ Bn(A) then we have
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(l1x1 − x2)
n =

{
∂A[x1x2 f + x1x3g + x2x3h], if n = 2j + 1 is odd
∂A[x1 f + x2g + x3h + x1x2x3u], if n = 2j is even,

where f , g, h and u are all linear combinations of monomials with non-negative even
exponents. When n = 2j is even, we have

(l2
1 x2

1+x2
2)

j = (l1x1 − x2)
n

= ∂A[x1 f + x2g + x3h + x1x2x3u]

= (m11x2
1 + m12x2

2 + m13x2
3) f + l1(m11x2

1 + m12x2
2 + m13x2

3)g

+ l2(m11x2
1 + m12x2

2 + m13x2
3)h + (m11x2

1 + m12x2
2 + m13x2

2)x2x3u

− x1l1(m11x2
1 + m12x2

2 + m13x2
3)x3u + x1x2l2(m11x2

1 + m12x2
2 + m13x2

3)u.

Considering the parity of exponents of the monomials that appear on both sides of the
equation above implies that

(l2
1 x2

1 + x2
2)

j = (m11x2
1 + m12x2

2 + m13x2
3) f + l1(m11x2

1 + m12x2
2 + m13x2

3)g

+ l2(m11x2
1 + m12x2

2 + m13x2
3)h

= ∂A(x1)[ f + l1g + l2h]

and

∂A(xyzu) = (m11x2
1 + m12x2

2 + m13x2
3)x2x3u− l1x1(m11x2

1 + m12x2
2 + m13x2

3)x3u

+ x1x2l2(m11x2
1 + m12x2

2 + m13x2
3)u = 0.

Hence, (l2
1 x2

1 + x2
2)

j is in the graded ideal (∂A(x1)) of k[x2
1, x2

2, x2
3]. By Lemma 10, (∂A(x1),

∂A(x2), ∂A(x3)) = (∂A(x1)) is a graded prime ideal of k[x2
1, x2

2, x2
3]. So, l2

1 x2
1 + x2

2 ∈
(∂A(x1)). Hence, there exist a1 ∈ k such that

l2
1 x2

1 + x2
2 = a1∂A(x1) = ∂A(a1x1).

However, this contradicts with the fact that l2
1 x2

1 + x2
2 6∈ B2(A), which we have proved

above. Thus, (l1x1 − x2)
n 6∈ Bn(A) when n is even.

When n = 2j + 1 is odd, we have

(l1x1 − x2)(l2
1 x2

1 + x2
2)

j = (l1x1 − x2)
n = ∂A[x1x2 f + x1x3g + x2x3h]

= (m11x2
1 + m12x2

2 + m13x2
3)x2 f − l1x1(m11x2

1 + m12x2
2 + m13x2

3) f

+ (m11x2
1 + m12x2

2 + m13x2
3)x3g− l2x1(m11x2

1 + m12x2
2 + m13x2

3)g

+ l1(m11x2
1 + m12x2

2 + m13x2
3)x3h− l2x2(m11x2

1 + m12x2
2 + m13x2

3)h

= x2(m11x2
1 + m12x2

2 + m13x2
3)( f − l2h)− x1(m11x2

1 + m12x2
2 + m13x2

3)(l1 f + l2g)

+ x3(m11x2
1 + m12x2

2 + m13x2
3)(g + l1h)

= (m11x2
1 + m12x2

2 + m13x2
3)[x2( f − l2h)− x1(l1 f + l2g) + x3(g + l1h)]

= x1[−∂A(x2) f − ∂A(x3)g] + x2[∂A(x1) f − ∂A(x3)h] + x3[∂A(x2)h + ∂A(x1)g].

This implies that
l1(l2

1 x2
1 + x2

2)
j = −(l1 f + l2g)(m11x2

1 + m12x2
2 + m13x2

3)

(l2
1 x2

1 + x2
2)

j = (m11x2
1 + m12x2

2 + m13x2
3)(l2h− f )

0 = g + l1h.
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Then, (l2
1 x2

1 + x2
2)

j = (l1x1 − x2)
2j ∈ B2j(A), which contradicts with the proved fact that

(l1x1 − x2)
n 6∈ Bn(A) when n is even. Therefore, (l1x1 − x2)

n 6∈ Bn(A) when n is odd.
Then, (l1x1 − x2)

n 6∈ Bn(A) for any n ≥ 3. Similarly, we can show that
(l2x1 − x3)

n 6∈ Bn(A), for any n ≥ 3
(l1x1 − x2)

2i+1(l2x1 − x3)
2j 6∈ B2i+2j+1(A), for any i, j ≥ 1

(l1x1 − x2)
2i(l2x1 − x3)

2j+1 6∈ B2i+2j+1(A), for any i, j ≥ 1
(l1x1 − x2)

2i(l2x1 − x3)
2j 6∈ B2i+2j(A), for any i, j ≥ 1.

It remains to prove (l1x1 − x2)
2i+1(l2x1 − x3)

2j+1 6∈ B2i+2j+2(A) for any i, j ≥ 1. If (l1x1 −
x2)

2i+1(l2x1 − x3)
2j+1 ∈ B2i+2j+2(A), then

(l1l2x2
1 − l1x1x3 + l2x1x2 + x2x3)(l2

1 x2
1 + x2

2)
i(l2

2 x2
1 + x2

3)
j

= (l1x1 − x2)
2i+1(l2x1 − x3)

2j+1 = ∂A[x1 f + x2g + x3h + x1x2x3u]

= (m11x2
1 + m12x2

2 + m13x2
3) f + l1(m11x2

1 + m12x2
2 + m13x2

3)g

+ l2(m11x2
1 + m12x2

2 + m13x2
3)h + (m11x2

1 + m12x2
2 + m13x2

3)x2x3u

− x1l1(m11x2
1 + m12x2

2 + m13x2
3)x3u + x1x2l2(m11x2

1 + m12x2
2 + m13x2

3)u.

where f , g, h and u are all linear combinations of monomials with non-negative even
exponents. Hence

l1l2x2
1(l

2
1 x2

1 + x2
2)

i(l2
2 x2

1 + x2
3)

j = (m11x2
1 + m12x2

2 + m13x2
3) f

+ l1(m11x2
1 + m12x2

2 + m13x2
3)g + l2(m11x2

1 + m12x2
2 + m13x2

3)h

and
(l2

1 x2
1 + x2

2)
i(l2

2 x2
1 + x2

3)
j = (m11x2

1 + m12x2
2 + m13x2

3)u ∈ (∂A(x1)).

Since (∂A(x1)) is a prime ideal in k[x2
1, x2

2, x2
3], we conclude that (l2

1 x2
1 + x2

2) ∈ (∂A(x1)) or
l2
2 x2

1 + x2
3 ∈ (∂A(x1)). This contradicts with (6). By the discussion above,

k〈dl1x1 − x2e, dl2x1 − x3e〉
(m12dl1x1 − x2e2 + m13dl2x1 − x3e2 − dl1x1−x2edl2x1−x3e+dl2x1−x3edl1x1−x2e

2l1 l2
m12 l21+m13 l22

)

is a subalgebra of H(A). On the other hand, we have dimk Hi(A) = i + 1. Then, we can
conclude that H(A) is

k〈dl1x1 − x2e, dl2x1 − x3e〉
(m12dl1x1 − x2e2 + m13dl2x1 − x3e2 − dl1x1−x2edl2x1−x3e+dl2x1−x3edl1x1−x2e

2l1 l2
m12 l21+m13 l22

)
.

(b) In this case, m12l2
1 + m13l2

2 6= m11 and l1l2 = 0. One sees that
(l1x1 − x2)

2 = l2
1 x2

1 + x2
2,

(l2x1 − x3)
2 = l2

2 x2
1 + x2

3,
(l1x1 − x2)(l2x1 − x3) + (l2x1 − x3)(l1x1 − x2) = 2l1l2x2

1 = 0.

It is straight forward to check that

Z2(A) = kx2
1 ⊕ k(l1x1 − x2)

2 ⊕ k(l2x1 − x3)
2 ⊕ k(l1x1 − x2)(l2x1 − x3).

Since
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m12(l1x1 − x2)
2 + m13(l2x1 − x3)

2 − (m12l2
1 + m13l2

2 −m11)x2
1

= m12x2
2 + m13x2

3 + m11x2
1 ∈ B2(A),

we have

H2(A) = kdl1x1 − x2e2 ⊕ kdl2x1 − x3e2 ⊕ kd(l1x1 − x2)(l2x1 − x3)e.

Just as the proof of (a), we can show that

k〈dl1x1 − x2e, dl2x1 − x3e〉
(dl1x1 − x2edl2x1 − x3e+ dl2x1 − x3edl1x1 − x2e)

is a subalgebra of H(A). On the other hand, we have dimk Hi(A) = i + 1. Then, we can
conclude that

H(A) = k〈dl1x1 − x2e, dl2x1 − x3e〉
(dl1x1 − x2edl2x1 − x3e+ dl2x1 − x3edl1x1 − x2e)

.

(c) In this case, m12l2
1 + m13l2

2 = m11 and l1l2 6= 0. So, we have

m12(l1x1 − x2)
2 + m13(l2x1 − x3)

2 = (m12l2
1 + m13l2

2)x2
1 + m12x2

2 + m13x2
3

= m11x2
1 + m12x2

2 + m13x2
3 = ∂A(x1)

and {
(l1x1 − x2)(l2x1 − x3) + (l2x1 − x3)(l1x1 − x2) = 2l1l2x2

1

(l1x1 − x2)(l2x1 − x3)− (l2x1 − x3)(l1x1 − x2) = 2[x2x3 − l1x1x3 + l2x1x2].

Hence, H2(A) is

k(l1x1 − x2)(l2x1 − x3)⊕ k(l2x1 − x3)(l1x1 − x2)⊕ k(l1x1 − x2)
2 ⊕ k(l2x1 − x3)

2

k[m12(l2
1 x2

1 + x2
2) + m13(l2

2 x2
1 + x2

3)]
.

Just as the proof of (a), we can show that

k〈dl1x1 − x2e, dl2x1 − x3e〉
(m12dl1x1 − x2e2 + m13dl2x1 − x3e2)

is a subalgebra of H(A). Since dimk Hi(A) = i + 1, we can conclude that

H(A) = k〈dl1x1 − x2e, dl2x1 − x3e〉
(m12dl1x1 − x2e2 + m13dl2x1 − x3e2)

.

(d) Since m12l2
1 + m13l2

2 = m11, l1 6= 0 and l2 = 0, we have m12l2
1 = m11,

m12(l1x1 − x2)
2 + m13x2

3 = m12l2
1 x2

1 + m12x2
2 + m13x2

3

= m11x2
1 + m12x2

2 + m13x2
3 = ∂A(x1)

and (l1x1 − x2)x3 + z(l1x1 − x2) = l1(x1x3 + x3x1)− (x2x3 + x3x2) = 0. Thus

H2(A) =
kx2

3 ⊕ k(l2
1 x2

1 + x2
2)⊕ k(l1x1 − x2)x3 ⊕ kx2

1
k[m12(l1x1 − x2)2 + m13x2

3]
.

Just as the proof of (a), we can show that
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k〈dl1x1 − x2e, dx3e, dx2
1e〉

m12dl1x1 − x2e2 + m13dx3e2
dx2

1edl1x1 − x2e − dl1x1 − x2edx2
1e

dx2
1edx3e − dx3edx2

1e
dl1x1 − x2edx3e+ dx3edl1x1 − x2e


is a subalgebra of H(A). Since dimk Hi(A) = i + 1, we obtain

H(A) =
k〈dl1x1 − x2e, dx3e, dx2

1e〉
m12dl1x1 − x2e2 + m13dx3e2

dx2
1edl1x1 − x2e − dl1x1 − x2edx2

1e
dx2

1edx3e − dx3edx2
1e

dl1x1 − x2edx3e+ dx3edl1x1 − x2e


.

(e) In this case, we have m12l2
1 + m13l2

2 = m11, l2 6= 0 and l1 = 0. So, m13l2
2 = m11,

m13(l2x1 − x3)
2 + m12x2

2 = m13l2
2 x2

1 + m12x2
2 + m13x2

3

= m11x2
1 + m12x2

2 + m13x2
3 = ∂A(x1)

and (l2x1 − x3)x2 + x2(l2x1 − x3) = l2(x1x2 + x2x1)− (x2x3 + x3x2) = 0. Thus

H2(A) =
kx2

2 ⊕ k(l2
2 x2

1 + x2
3)⊕ k(l2x1 − x3)x2 ⊕ kx2

1
k[m13(l2x1 − x3)2 + m12x2

2]
.

Just as the proof of (1), we can show that

k〈dl2x1 − x3e, dx2e, dx2
1e〉

m13dl2x1 − x3e2 + m12dx2e2
dx2

1edl2x1 − x3e − dl2x1 − x3edx2
1e

dx2
1edx2e − dx2edx2

1e
dl2x1 − x3edx2e+ dx2edl2x1 − x3e


is a subalgebra of H(A). Since dimk Hi(A) = i + 1, we have

H(A) =
k〈dl2x1 − x3e, dx2e, dx2

1e〉
m13dl2x1 − x3e2 + m12dx2e2

dx2
1edl2x1 − x3e − dl2x1 − x3edx2

1e
dx2

1edx2e − dx3edx2
1e

dl2x1 − x3edx2e+ dx2edl2x1 − x3e


.

(f) In this case m11 = 0, and hence


∂A(x1) = m12x2

2 + m13x2
3

∂A(x2) = 0
∂A(x3) = 0.

So,

H2(A) =
kx2

1 ⊕ kx2
2 ⊕ kx2

3 ⊕ kx2x3

k(m12x2
2 + m13x2

3)
.

Just as the proof of (a), we can show that

k〈dx3e, dx2e, dx2
1e〉

m12dx2e2 + m13dx3e2
dx2

1edx3e − dx3edx2
1e

dx2
1edx2e − dx2edx2

1e
dx3edx2e+ dx2edx3e
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is a subalgebra of H(A). Since dimk Hi(A) = i + 1, we conclude

H(A) =
k〈dx3e, dx2e, dx2

1e〉
m12dx2e2 + m13dx3e2
dx2

1edx3e − dx3edx2
1e

dx2
1edx2e − dx2edx2

1e
dx3edx2e+ dx2edx3e


.

5. Some Applications

Let A be a connected cochain DG algebra such that its underlying graded algebra A#

is the graded skew polynomial algebra

k〈x1, x2, x3〉/

 x1x2 + x2x1
x2x3 + x3x2
x3x1 + x1x3

, |x1| = |x2| = |x3| = 1.

Then, ∂A is determined by a matrix M ∈ M3(k) such that ∂A(x1)
∂A(x2)
∂A(x3)

 = M

 x2
1

x2
2

x2
3

, for some M ∈ M3(k).

By the computations in Section 4, we reach the following conclusion.

Proposition 4. H(A) is an AS-Gorenstein graded algebra when r(M) 6= 1.

Proof. If r(M) = 0, then H(A) = A# is obviously an AS-Gorenstein graded algebra since
A# is an AS-regular algebra of dimension 3. By Proposition 1, we have H(A) = k if
r(M) = 3. So, the statement of the proposition is also right when r(M) = 3.

For the case r(M) = 2, let k(s1, s2, s3)
T and k(t1, t2, t3)

T be the solution spaces of
homogeneous linear equations MX = 0 and MTX = 0, respectively. By Proposition 2,
H(A) = k[dt1x1 + t2x2 + t3x3e] if s1t2

1 + s2t2
2 + s3t2

3 6= 0; and H(A) equals to

k[dt1x1 + t2x2 + t3x3e, ds1x2
1 + s2x2

2 + s3x2
3e]/(dt1x1 + t2x2 + t3x3e2)

when s1t2
1 + s2t2

2 + s3t2
3 = 0. Since

k[dt1x1 + t2x2 + t3x3e, ds1x2
1 + s2x2

2 + s3x2
3e]/(dt1x1 + t2x2 + t3x3e2)

∼=
k[dt1x1 + t2x2 + t3x3e]
(dt1x1 + t2x2 + t3x3e2)

[ds1x2
1 + s2x2

2 + s3x2
3e],

it is AS-Gorenstein by Lemma 1. Thus, H(A) is an AS-Gorenstein graded algebra when
r(M) = 2.

Now, it remains to consider the case that r(M) = 1. We may assume that

M =

 m11 m12 m13
l1m11 l1m12 l1m13
l2m11 l2m12 l2m13

, with l1, l2 ∈ k and (m11, m12, m13) 6= 0.

We have the following proposition.

Proposition 5. The graded algebra H(A) is AS-Gorenstein if we have any one of the following
conditions:
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1. m12l2
1 + m13l2

2 6= m11 and l1l2 = 0;
2. m12l2

1 + m13l2
2 = m11, l1 6= 0 and l2 = 0;

3. m12l2
1 + m13l2

2 = m11, l2 6= 0 and l1 = 0;
4. m12l2

1 + m13l2
2 = m11, l1 = 0 and l2 = 0;

5. m12l2
1 + m13l2

2 = m11, l1l2 6= 0 and m12m13 6= 0;
6. m12l2

1 + m13l2
2 6= m11, l1l2 6= 0 and 4m12m13l2

1 l2
2 6= (m12l2

1 + m13l2
2 −m11)

2.

Proof. By Proposition 3b, we have

H(A) = k〈dl1x1 − x2e, dl2x1 − x3e〉
(dl1x1 − x2edl2x1 − x3e+ dl2x1 − x3edl1x1 − x2e)

,

when m12l2
1 + m13l2

2 6= m11 and l1l2 = 0. In this case, H(A) is an AS-regular graded algebra
of dimension 2.

By Proposition 3d,

H(A) =
k〈dl1x1 − x2e, dx3e, dx2

1e〉
m12dl1x1 − x2e2 + m13dx3e2

dx2
1edl1x1 − x2e − dl1x1 − x2edx2

1e
dx2

1edx3e − dx3edx2
1e

dl1x1 − x2edx3e+ dx3edl1x1 − x2e


when m12l2

1 + m13l2
2 = m11, l1 6= 0 and l2 = 0. We have

H(A) =
k〈dl1x1 − x2e, dx3e, dx2

1e〉
m12dl1x1 − x2e2 + m13dx3e2

dx2
1edl1x1 − x2e − dl1x1 − x2edx2

1e
dx2

1edx3e − dx3edx2
1e

dl1x1 − x2edx3e+ dx3edl1x1 − x2e


∼=

k〈dl1x1 − x2e, dx3e〉(
m12dl1x1 − x2e2 + m13dx3e2

dl1x1 − x2edx3e+ dx3edl1x1 − x2e

) [dx2
1e].

By Rees Lemma, one sees that

k〈dl1x1 − x2e, dx3e〉(
m12dl1x1 − x2e2 + m13dx3e2

dl1x1 − x2edx3e+ dx3edl1x1 − x2e

)
is AS-Gorenstein. Applying Lemma 1, we obtain that H(A) is AS-Gorenstein. By Proposition 3e,f,
we can similarly show that H(A) is AS-Gorenstein if we have either

m12l2
1 + m13l2

2 = m11, l2 6= 0, l1 = 0

or
m12l2

1 + m13l2
2 = m11, l1 = 0, l2 = 0.

When m12l2
1 + m13l2

2 = m11, l1l2 6= 0 and m12m13 6= 0, we have

H(A) = k〈dl1x1 − x2e, dl2x1 − x3e〉
(m12dl1x1 − x2e2 + m13dl2x1 − x3e2)

by Proposition 3c. Since m12m13 6= 0, the graded algebra H(A) is AS-regular by [51]
(Proposition 1.1).
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When m12l2
1 + m13l2

2 6= m11, l1l2 6= 0 and 4m12m13l2
1 l2

2 6= (m12l2
1 + m13l2

2 −m11)
2, the

graded algebra H(A) is

k〈dl1x1 − x2e, dl2x1 − x3e〉
(m12dl1x1 − x2e2 + m13dl2x1 − x3e2 − dl1x1−x2edl2x1−x3e+dl2x1−x3edl1x1−x2e

2l1 l2
m12 l21+m13 l22

)

by Proposition 3a. Since 4m12m13l2
1 l2

2 6= (m12l2
1 + m13l2

2 − m11)
2, one sees that H(A) is

AS-regular by Proposition 1.1 in [51].

Theorem 2. Let A be a connected cochain DG algebra such that

A# = k〈x1, x2, x3〉/

 x1x2 + x2x1
x2x3 + x3x2
x3x1 + x1x3

, |x1| = |x2| = |x3| = 1,

and ∂A is determined by  ∂A(x1)
∂A(x2)
∂A(x3)

 = N

 x2
1

x2
2

x2
3

.

Then, the graded algebra H(A) is not left (right) Gorenstein if and only if there exists some
C = (cij)3×3 ∈ QPL3(k) satisfying N = C−1M(c2

ij)3×3, where

M =

 1 1 0
1 1 0
1 1 0

 or M =

 m11 m12 m13
l1m11 l1m12 l1m13
l2m11 l2m12 l2m13


with m12l2

1 + m13l2
2 6= m11, l1l2 6= 0 and 4m12m13l2

1 l2
2 = (m12l2

1 + m13l2
2 −m11)

2.

Proof. First, let us prove the ‘if’ part. Suppose that there exists some C = (cij)3×3 ∈
QPL3(k) satisfying N = C−1M(c2

ij)3×3, where

M =

 1 1 0
1 1 0
1 1 0

 or M =

 m11 m12 m13
l1m11 l1m12 l1m13
l2m11 l2m12 l2m13


with m12l2

1 + m13l2
2 6= m11, l1l2 6= 0 and 4m12m13l2

1 l2
2 = (m12l2

1 + m13l2
2 −m11)

2. Note that
A = AO−1(k3)(N). In both cases, AO−1(k3)(M) ∼= AO−1(k3)(N) by [1] (Theorem B). When

M =

 1 1 0
1 1 0
1 1 0

, we have

H(AO−1(k3)(M)) =
k〈dx1 − x2e, dx1 − x3e〉

(dx1 − x2e2)

by Proposition 3c. By Lemma 3, H(AO−1(k3)(M)) is not left (right) Gorenstein. If

M =

 m11 m12 m13
l1m11 l1m12 l1m13
l2m11 l2m12 l2m13

, m12l2
1 + m13l2

2 6= m11, l1l2 6= 0

and 4m12m13l2
1 l2

2 = (m12l2
1 + m13l2

2 −m11)
2, then H(AO−1(k3)(M)) is
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k〈dl1x1 − x2e, dl2x1 − x3e〉
(m12dl1x1 − x2e2 + m13dl2x1 − x3e2 − dl1x1−x2edl2x1−x3e+dl2x1−x3edl1x1−x2e

2l1 l2
m12 l21+m13 l22

)

by Proposition 3a. Since 4m12m13l2
1 l2

2 = (m12l2
1 + m13l2

2 − m11)
2, the graded algebra

H(AO−1(k3)(M)) is not left (right) graded Gorenstein by Lemma 2. Thus, H(A) is not
left (right) graded Gorenstein in both cases.

It remains to show the ‘only if’ part. If H(AO−1(k3)(N)) is not left (right) Gorenstein,
then r(N) = 1 by Proposition 4. By [1] (Remark 5.4), we have AO−1(k3)(N) ∼= AO−1(k3)(M),
where

M =

 m11 m12 m13
l1m11 l1m12 l1m13
l2m11 l2m12 l2m13

,

(0, 0, 0) 6= (m11, m12, m13) ∈ k3 and l1, l2 ∈ k. By Propositions 3d–f and 5, we have either

l1l2 6= 0, m12m13 = 0 and m12l2
1 + m13l2

2 = m11

or
l1l2 6= 0, m12l2

1 + m13l2
2 6= m11, 4m12m13l2

1 l2
2 = (m12l2

1 + m13l2
2 −m11)

2.

By [1] (Proposition 5.8), there exists B = (bij)3×3 ∈ QPL3(k) such that

B−1M(b2
ij)3×3 =

 1 1 0
1 1 0
1 1 0

,

if l1l2 6= 0, m12m13 = 0 and m12l2
1 + m13l2

2 = m11. In this case,

AO−1(k3)(N) ∼= AO−1(k3)(M) ∼= AO−1(k3)(Q)

by [1] (Theorem B), where

Q =

 1 1 0
1 1 0
1 1 0

.

Now, we obtain the following concrete counter-examples to disprove Conjecture 1.

Example 1. Let A be a connected cochain DG algebra such that

A# = k〈x1, x2, x3〉/

 x1x2 + x2x1
x2x3 + x3x2
x3x1 + x1x3

, |x1| = |x2| = |x3| = 1,

and ∂A is determined by  ∂A(x1)
∂A(x2)
∂A(x3)

 = M

 x2
1

x2
2

x2
3

.

Then, by Proposition 2, H(A) is not left (right) Gorenstein when M is one of the following three
matrixes:  1 1 0

1 1 0
1 1 0

,

 0 1 1
0 1 1
0 1 1

,

 1 1 1
1 1 1
2 2 2

.
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