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Abstract: In order to increase the accuracy and improve the performance of the power system
stabilizer (PSS) controller compared to the methods presented in other studies, this paper presents a
new method for tuning sliding mode control (SMC) parameters for a PSS using a deep neural network.
This controller requires fast switching which can create unwanted signals. To solve this problem, a
boundary layer is used. First, the equations of a multi-machine power system are converted into
the standard form of sliding mode control, and then the sliding surfaces are determined with three
unknown parameters. Calculating and determining the optimal values (at any moment) for these
parameters are fundamental challenges. A deep neural network can overcome this challenge and
adjust the control system regularly. In the simulation, a power system with 4 machines and 11 buses
is implemented and both phase-to-ground and three-phase errors are applied. The simulation results
clearly show the good performance of the proposed method and especially the importance of the
deep neural network in the SMC structure compared to other methods.

Keywords: deep neural network; sliding mode control; power system stabilizer; faults

MSC: 93-08

1. Introduction

The stability and robustness of the voltage in a power system are essential issues
and the priorities of every electric company. In recent years, various methods have been
proposed to increase the dynamic stability of power systems. Modern voltage regulators
and quick-response excitation systems can be used to improve transient stability in the
system by increasing the car’s synchronizing torque but may adversely affect the damping
of rotor oscillations. A suitable solution to this problem is to equip the generator with a
controller that inserts an additional signal at the reference voltage input in the automatic
voltage regulator. This device is called a power system stabilizer (PSS) [1–6]. Numerous
control methodologies have been proposed for PSS design, among which classic PSSs with
after-phase-pre-phase compensators have been used by most companies due to their simple
structure, flexibility, and reasonable implementation. Although, the efficiency of these
stabilizers is significantly reduced by changing the operating conditions of the system in
normal operation. Because power systems are highly nonlinear, classical PSSs with fixed
parameters cannot withstand drastic changes in system operating conditions. Additionally,
changes in the automatic voltage regulating parameters cause drastic changes in the state
of the system. Therefore, in practice, the classical stabilizer will not work well [7–9]. There
are many research studies on PSS in power systems, including the optimal placement of
PSSs, coordination of PSSs, and the use of more efficient methods in PSS design [10]. In the
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recent context, the use of optimal control theory [11], adaptive controllers [12], as well as
methods such as the use of artificial neural networks [13–15] was presented.

Recently, with the development of artificial intelligence (AI), many studies have been
conducted in the field of using them to design PSSs [16–18]. Although using this method
has many advantages in improving system performance, it has disadvantages such as
increasing the number of layers in each neuron and also increasing its training time [19–21].
Another method that has recently received great attention and is used to design PSSs is
fuzzy logic [22–25]. In this method, with the previous knowledge of the system, researchers
have proceeded to design PSSs. The fuzzy logic method has been used to design PSSs
in [26–28]. Along with artificial intelligence, as mentioned, optimization algorithms are
also being used a lot recently. In [29], simulated annealing (SA) is introduced to tuning the
coefficients of PSSs. Of course, the possibility of failure of this method is also very high.
In order to determine PSSs, in [10], an improved atom search optimization algorithm was
proposed, which has very good performance and accuracy. Other optimization methods
such as tabu search (TS) and genetic algorithm (GA) have also been mentioned in many
studies [16,30–32].

One of the methods used in designing controllers of nonlinear systems is the sliding
mode control (SMC) method. This method has been utilized to control robots, motors, and
mechanical systems, and has been shown to ensure the optimal behavior of the closed-loop
system [33,34]. The application of sliding mode control theory to design a power system
stabilizer using the linearized model of the system has been used in [35,36]. Today, neuro-
sliding mode control is used in much research and for various applications. For example,
this method has been used to design and control quadrotor UAVs [37–41]. neuro-sliding
mode controls have also shown a very good response in several studies for controlling
nonlinear systems with uncertainty and have many advantages over other methods [42,43].
In addition to all these applications, with the growth of renewable systems, neuro-sliding
mode controls have been recently used in renewable systems [44–46]. In [47,48], this method
was proposed to control DFIGs. One of the disadvantages of using the linearized model of
the system to design the controller is the reduction in the controller efficiency in the event
of large disturbances which also cause severe changes in the system parameters. In this
paper, the proposed sliding controller was designed using a nonlinear system model that
was converted to a normal shape using a suitable converter. Since this controller requires
a very fast switching mechanism, it produces undesirable fluctuations in the system, and
the presence of these fluctuations may activate unmodulated system dynamics. A suitable
method to eliminate these fluctuations employed in this paper was to use a boundary layer.

The headline innovations are:

1. Introducing a new delayed deep neural network.
2. Designing a sliding mode control system with six adjustable parameters (in previous

works, there were usually two or three adjustable parameters).
3. The development of the proposed control system for synchronizing a power system.

The contents of this article are as follows: In the second part, the dynamic model of
the synchronous generator will be explained. In the third part, the design principles of
sliding mode controllers will be stated. In the fourth part, to facilitate the design of the
nonlinear controller for the system, using a suitable conversion, the nonlinear model of
the synchronous generator will be converted to normal, and then the proposed sliding
controller for the system will be introduced. In the fifth part, the stabilizer of the classical
power system, which is based on post-phase-pre-phase compensators, will be introduced.
Finally, in the sixth part, the results of computer simulations performed on the nonlinear
system using the proposed method and the classical design method will be presented
and compared.
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2. Dynamic Model of Synchronous Generator

A standard multi-machine power system consisting of two synchronous generators
is shown in Figure 1. This system has two zones, each of which has one synchronous
generator (G1 or G2) equipped with excitation control systems. Buses 1 and 2 are connected
to generators, and buses 3 to 7 form the network topology. In the following analysis, while
expressing the relationships governing the power system (generators), they will be also
explained. Note that the symbols are described in Table A1 in the Appendix A. Equation (1)
represents the state space equation of generators, which is expressed in three states.

d
dt δ(t) = ω(t)−ωo

d
dt ω = −KD

2H (ω(t)−ωo) +
wo
2H (Pm − Pe(t))

d
dt E′q(t) =

1
T′do

(
EF(t)− Eq(t)

) (1)
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All symbols are defined in Table A1 in the Appendix A. Equation (2) represents the
state that the magnetic driving force of the q-axis of the generator is equivalent to the
excitation coil of the generator are:

Eq(t) =
Xd
X′d

E′q(t)−
xd − x′d

X′d
Vscos(δ(t)) (2)

Additionally, electric power is equal to:

EF(t) = kCuF(t)

Pe(t) =
VsEq(t)

Xd
sin(δ(t))

Note that δ(t) is the rotor angle, ω(t) is the rotor angular speed, Pe(t) is the mechanical
power of generator input, xd is the generator reactance in the d direction, x′d is the transient
generator reactance in the d direction, Xd is the total generator reactance in the d direction,
X′d is the transient total generator reactance in the d direction, uF(t) is the amplifier input
of the excitation system with kC gain, T′do is the short circuit transient time, Vs is the infinite
bus voltage, ωo is the synchronous velocity of the generator, H is the inertia constant of the
generator, and KD is the damping constant of the generator. The system states for the j-th
generator are determined as follows:

x1j(t) = δj(t)

x2j(t) = ωj(t)−ωoj (3)

x3j(t) = E′qj(t)
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Therefore, the system state vector for each of the generators will be as follows:

xj(t) =
[
x1j(t)x2j(t)x3j(t)

]T (4)

To express the nonlinear equations of the system more clearly, the constants are defined
as follows for each of the generators:

α1j = −
KDj

2Hj

α2j = −
ωoj

2HjX′dj
VS

α3j =
ωoj

(
xdj − x′dj

)
4HjXdjX′dj

V2
S (5)

α4j =
ωoj

2Hj
Pmj

α5j = −
1

T′doj

Xdj

X′dj

α6j =
xdj − x′dj

T′dojX
′
dj

VS

Therefore, by placing Equation (5) in (1) and (2), the equations represent the j-th
synchronous generator will be as follows:

ẋ1j(t) = x2j(t)

ẋ2j(t) = α1jx2j(t) + α2jx3j(t)sin
(

x1j(t)
)
+α3jsin(2x1j(t)) + α4j (6)

ẋ3j(t) = α5jx3j(t) + α6jcos(x1j(t)) + uj(t)

where uj(t) is the controller input of the system and is considered as follows:

uj(t) =
kcj

T′doj
uFj(t) (7)

We also show the desired values of the system states of each of the synchronous
generators with the parameters x1dj, x2dj and x3dj. Therefore, the optimal state vector of the
system is given by:

xDj = [x1dj x2dj x3dj]
T

The deviation of the power angle from its desired value is also considered as the
controlled output of each of the generators, so:

yj(t) = x1j(t)− x1dj (8)

Additionally, using Equations (6), the values of x1dj, x2dj and x3dj must be true in the
following equations:

(
− α1jα6j

2α5j
+ α3j

)
sin (2x1dj)−

α2j
α5j

udjsin(x1dj) + α4j = 0

x2dj = 0

x3dj = −
α6j
α5j

cos(x1dj)− 1
α5j

udj

(9)
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The udj is the input of the system controller so that the system states achieve the
desired values.

3. Sliding Mode Control

One of the methods used in the design of controllers of nonlinear systems is the
sliding mode control method. This method is defined based on system state variables.
This technique is commonly used in systems that do not have accurate knowledge of their
characteristics or the system may be affected by unforeseen variables. The main advantage
of this method is to make the system resistant to change. Sliding state control has shown
that it can achieve the desired performance despite the uncertainty in the system parameters
as well as the existence of sources of external disturbance. In this method, by using the
infinitely fast switching of a part of the control signal, a stable resistive controller can be
designed. On the other hand, switching causes undesirable fluctuations in the system, the
existence of which may cause the activation of unmodulated system dynamics. A suitable
method to eliminate these fluctuations is to use a boundary layer [49,50].

The proposed sliding mode controller is based on a three-step algorithm. The first
step is to transform the original nonlinear system into a normal one. The second step is to
design a linear sliding surface for the system, and the third step is to design a control signal
so that it first moves the state path from the initial state to the sliding surface, and secondly,
when it reaches this level, the state path remains on that surface. To describe this method,
we consider the following nonlinear system of order n multi-input multi-output (MIMO):{

ẋ = f (x) + G(x)u

y = h(x)
(10)

where x ∈Rn×1, u ∈Rm×1, and y ∈Rm×1 are the state vector, the input vector, and the output
vector of the system, respectively, and also f (x) ∈ Rn×1, G(x) ∈ Rm×m and h(x) ∈ Rm×1

are smooth vector fields. In the following the three stages, the algorithm of sliding mode
controller design will be described.

3.1. Converting the System to Normal Form

Converting the given system to normal is the first step in the design process of the
proposed sliding mode controller, to do this using a suitable conversion such as (t) = T(x).
The nonlinear system (10) is normalized as follows:

ż1(t) = z2(t)
ż2(t) = z3(t)

...
żn−1(t) = zn(t)

żn(t) = f (z) + G(z)u

‘ y(t) = z1(t) (11)

3.2. Designing Sliding Surfaces:

In the second step, to design a sliding mode controller, a surface called sliding surface
is defined. The sliding surface is the surface on which the state variables are placed to
bring themselves to a steady state. Therefore, with any initial condition, the system state
variables must first reach this level and then bring them to the source by referencing this
level after the oscillations. The equation of each sliding level is selected in such a way that
its degree is one degree less than the order of the system. A common form for determining
sliding levels is as follows:

Si(x) = ∑n−1
k=0 ρiky(k)i (t) = 0 ∀i =

——
1‘m (12)

In this equation, n is the system order and ρik are tunable coefficients for obtaining
desired transient response for the system outputs. m is the number of sliding surfaces.
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3.3. Design of Control Functions

Control functions are selected in such a way that, firstly, from each initial state, each
state x reaches the sliding surface in a limited time, and secondly, after reaching this level,
the state path remains on that surface. In the sliding state control method, each of the
components of the control function, ui, which has a switching mechanism, are very fast
and have a nonlinear structure as follows:

ui =

{
u+

i (t‘x) Si(x) > 0
u−i (t‘x) Si(x) < 0

∀i =
——
1‘m (13)

These control functions must be selected in such a way as to satisfy the condition of
sliding control. A very common form of this condition is as follows:

Si(x)Ṡi(x) < 0 ∀i =
——
1‘m (14)

4. Sliding Controller Design

The purpose of this section is to introduce a design of a controller based on the sliding
control theory for the synchronous generator. Consequently, it adjusts the state of the
system to its desired values and maintains the stability of the network at the point of
operation in the presence of uncertainties. Equations (6) and (8), which represent the
synchronous generator system, are strictly nonlinear. Thus, in the first step, to facilitate
the design of the nonlinear controller, a suitable variable change xj(t) = zj(t) is used to
convert the system to normal. This variable change for each of the generators is as follows:

z1j(t) = x1j(t)− x1dj

z2j(t) = x2j(t)

z3j(t) = α1jx2j(t) + α2jx3j(t)sin
(
x1j(t)

)
+ α3jsin

(
2x1j(t)

)
+α4j

(15)

Using Equations (9) and (15), it can be proved that if zj(t) converges to zero at t→ ∞ ,
then xj(t) converges to xdj at t→ ∞ . If sin

(
x1j(t)

)
6= 0, the inverse of (15) is as follows:

x1j(t) = z1j(t) + x1dj

x2j(t) = z2j(t)

x3j(t) = 1/(α2jsin
(

zij(t) + xidj

)
)(z3j(t)− αijz2j(t)− α3jsin

(
2(z1j(t) + xidj

)
)−α4j)

(16)

The condition of sin
(

x1j(t)
)
6= 0 means that:

x1j(t) = δj(t) 6= nπ n = 0.± 1.± 2. . . . (17)

Since the operating area of the power angle of the synchronous generator is in the
range (0, π), the condition sin

(
x1j(t)

)
6= 0 is always in the operating area. It should be

noted, however, that if δj(t) is not in the range (0, π), synchronism is lost. By placing
Equation (6) in (15), the equations of the synchronous generator are obtained as follows:

ż1j(t) = z2j(t)

ż2j(t) = z3j(t)

ż3j(t) = f j(z) + Gj(z)uj

(18)

yj(t) = z1j(t)
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where:

f j(z) =

( (
α1j + α5j

)
z3j − α1jα5jz2j

+
(

1
2 αijα6j − α3jα5j

)
sin(2

(
zij + x1dj

)
)

)
+ 2α3jz2jcos

(
2
(

zij + x1dj

))

+z2jcot
(

zij + x1dj

)( z3j − α1jz2j

+α3jsin
(

2
(

zij + x1dj

))
− α4j

)
− α4jα5j

(19)

Gj(z) = α2jsin
(

z1j + x1dj

)
(20)

It should also be noted that in the main system, the functions f j(z) = f1j(x) and
Gj(z) = G1j(x) are as follows:

f j(x) = α1j
(
α1jx2j + α2jx3jsin(x1j) + α3jsin

(
2x1j

)
+ α4j

)
+α2j(α5jx3j + α6jcos

(
x1j
)
)sin(x1j) + α2jx2jx3jcos

(
x1j
)
+ 2α3jx2jcos

(
2x1j

) (21)

and
G1j(x) = α2jsin

(
x1j
)

(22)

The model obtained for the synchronous generator described in Equation (18) is used
to design a sliding controller. The designed controller is then returned to the main device
using the conversion z−1 = Tjxj given in Equation (16). The second step in designing
a sliding controller is to determine the sliding surface. Using Equation (12), the sliding
surface for the desired system is obtained as follows:

Sj =
..
yj + ρ1jẏj + ρ2jyj = z3j + ρ1jz2j + ρ2jz1j (23)

The constants ρ1j and ρ2j are positive scalar numbers and are selected in such a way
that the desired transient response is obtained for the system output. Using Equation (15),
the sliding surface equation in terms of the variables x1j, x2j and x3j is obtained as follows:

Sj = α1jx2j + α2jx3jsin(x1j) + α
3j

sin
(
2x1j

)
+ α4j + ρ1jx2j + ρ2j(x1j − x1dj) (24)

It should be noted that by determining the sliding level as above, the output con-
vergence of the system output to zero is guaranteed when t → ∞ on the sliding plane
Sj(x) = 0. The third step in designing the proposed sliding mode controller is to select a
control function for the system, which is as follows:

uj(t) =
−1

Gj(z)
( f j(z) + ρ1jz3j + ρ2jz2j + ηjsign

(
z3j + ρ1jz2j + ρ2jz1j

)
) (25)

where ηj is a positive scalar number and its value is determined by the designer. To
investigate the condition of sliding state control by deriving Equation (23) and using
Equation (18), we have:

Ṡj =
...
y j + ρ1jӱj + ρ2jẏj = f j(z) + Gj(z)uj + ρ1jz3j + ρ2jz2j (26)

By placing Equation (25) in (26), we will have:

Ṡj = f j(z) + ρ1jz3j +ρ2jz2j

+
(
− f j(z)− ρ1jz3j − ρ2jz2j − ηjsign

(
z3j + ρ1jz2j + ρ2jz1j

))
= −ηjsign

(
z3j + ρ1jz2j + ρ2jz1j

)
= −ηjsign

(
Sj
)

(27)
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Thus,
SjṠj = −Sjηjsign

(
Sj
)
= −ηj

∣∣Sj
∣∣ < 0 (28)

As a result, by selecting the control function in the form (25), the condition of sliding
mode control for the system is met. Since ηj is a strictly positive value, each state of
the system, with any initial conditions, reaches a sliding surface in a limited time and
moves to the origin. Since the sliding plane S converges to zero at a finite time, the output
yj(t) = z1j(t) is also controlled based on

..
yj + ρ1jẏj + ρ2jyj = 0. Since z1j(t) converges to

zero at t→ ∞, then z2j(t) and z3j(t) also tend to zero at t→ ∞.
Using Equation (16), the control function given in Equation (25) in the main device is

obtained as follows:

uj =
1

α2jsin(x1j)
(−(α1j + ρ1j)

(
α1jx2j + α2jx3jsin(x1j)
+α3jsin

(
2x1j

)
+ α4j

)
+ 1

α2jsin(x1j)

(
−α2j(α5jx3j + α6jcos

(
x1j
)
sin (x1j)

−α2jx2jx3jcos
(
x1j
)
− 2α3jx2jcos(2x1j)

)
+ 1

α2jsin(x1j)

(
−ρ2jx2j − ηjsign

(
Sj
))

(29)

where:

Sj = α1jx2j + α2jx3j sin(x1j) + α
3j

sin
(
2x1j

)
+ α4j + ρ1jx2j + ρ2j(x1j − x1dj) (30)

Therefore, by applying the controller designed in Equations (29) and (30) and applying
it to the system given in Equations (6) and (8), asymptotic convergence of x1j(t), x2j(t) and
x3j(t) to their desired values in t→ ∞ is also guaranteed.

The design of the control function of the system by utilizing the signal function causes
undesirable fluctuations in the system. The presence of these fluctuations may activate the
unmodulated dynamics of the system. A suitable method to eliminate these fluctuations is
to use a boundary layer with width ε j at Sj(x) = 0. In this case, we will have:

uj =
1

α2jsin(x1j)

{
(−(α1j + ρ1j)

(
α1jx2j + α2jx3jsin(x1j)
+α3jsin

(
2x1j

)
+ α4j

)
+

(
−α2j(α5jx3j + α6jcos

(
x1j
)
sin (x1j)

−α2jx2jx3jcos
(

x1j
)
− 2α3jx2jcos(2x1j)

)
+ (−ρ2jx2j − ηjsat

( Sj
ε j

)
)

} (31)

where ε j > 0 determines the width of the boundary layer in the vicinity of the sliding
surfaces.

5. Comparison of Proposed and Classical Power System Stabilizer

To show the superior performance of the proposed controller, the results of using
this controller are compared with the classical controller, which includes an automatic
voltage regulator and power system stabilizer (AVR + PSS). In the classical method, a
phase-to-phase compensator is used to dampen the electromechanical oscillations of the
generator. The transfer function that is commonly used for this type of PSS is as follows:

GPSS(s) = KPSS
(1 + sT1)

(1 + sT2)

(1 + sT3)

(1 + sT4)

sTw

(1 + sTw)
(32)

The block diagram of this controller is shown in Figure 2.
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Figure 2. AVR + PSS controller diagram block. 

This controller includes an IEEE standard ST1A thyristor excitation system with an 
automatic voltage regulator (AVR) and power system stabilizer (PSS). The power stabili-
zation block diagram of the power system is shown in Figure 3, the various parts of which 
are the gain block, which has a significant effect on the damping of the rotor oscillations, 
and the amount of damping created by the blocking state. It acts as a high-pass filter and 

Figure 2. AVR + PSS controller diagram block.

This controller includes an IEEE standard ST1A thyristor excitation system with an
automatic voltage regulator (AVR) and power system stabilizer (PSS). The power stabiliza-
tion block diagram of the power system is shown in Figure 3, the various parts of which
are the gain block, which has a significant effect on the damping of the rotor oscillations,
and the amount of damping created by the blocking state. It acts as a high-pass filter
and a compensating block, which pre-characterizes the after-phase compensation between
the exciter input (PSS output) and the electric torque of the generator and provides the
right phase. The time constants T1, T2, T3 and T4 must be adjusted so that an acceptable
attenuation is obtained in the frequency oscillations.
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Calculation of SMS Parameters with DNN

The first step in designing phase compensation is to calculate the frequency response
between the exciter input and the generator electrical torque. The frequency response de-
sired by each machine is sensitive to the impedance of the circuit equivalent to the tonnage
of its terminals but is almost independent of the dynamics of other machines. Therefore,
it can be assumed that all other machines operate as infinite busbars, thus eliminating
their dynamics from the response calculation. While the correct tonnage impedance is
maintained at the terminals of the machine under study. Thus, the resulting phase char-
acteristic has an almost simple shape free from the effect of the natural frequencies of
external machines. The terminal voltage converter transfer function and AVR/Exciter are
as follows [51–53]:

GTVT(s) =
1

1 + sTR
(33)

GAVR(s) = KA (34)

Therefore, the AVR + PSS control equation can be written as follows:

EF = KA

(
Vre f −V1 + Vsupp

)
(35)
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where V1 is the output of the terminal voltage converter, Vsupp is the output of the power
system stabilizer, and Vre f is the reference voltage of the system. Figure 4 displays a DNN
structure that can be used here. The basis of this structure is comprised of single neurons
its nature need not be determined. The state of this system in continuous time mode can be
calculated from Equation (36) [54–56].

.
r(t) = − ∝ r(t) + f (a(t)) (36)

where r(t) given by (37).

r(t) = p(t) + b(t) + ∑D
d=1 Md(t)r(t−τd) (37)

r(t): the state of neurons.
f (a(t)): combining the data signal P(t).
b(t): time-varying bias.
r(t− τd): time-delayed feedback signals modulated by the functions Md.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 18 
 

 

neural network is to calculate the SMC parameters online so that the system error becomes 
less and less. 

As seen in Figure 4, the output of the neural network is six unknown parameters of 
SMC. With the aim of minimizing the speed difference of the generators (synchroniza-
tion), the neural network is adjusted. 

 
Figure 4. Structure of a DNN to the online calculation of SMC parameters. 

It can be seen carefully in Equation (31) that six unknown parameters must be calcu-
lated at every moment to generate the control signal. These six parameters are 
a1, … , a2, p1, p2. In other words, the output of the neural network is these six parameters 
and its input is ∆ω and ∆ω̇. The weights of the neural network are adjusted so that the 
following cost function is minimized. 

Jk = 1
N
∑ |∆ω|k2N
k=1   (38) 

where N is the length of the neural network search window and k represents each itera-
tion. Therefore, the neural network calculates all six SMC parameters while adjusting its 
weights with the objective of minimizing the cost function (which is to minimize ∆ω 
here). 

As can be seen in the Figure 5, increasing the number of delays leads to increasing 
the number of delays (feedbacks) and the dynamics of the system can be extracted better. 

 
Figure 5. Deep neural network structure. 

  

Figure 4. Structure of a DNN to the online calculation of SMC parameters.

Methods that utilize only neural networks to fault the location must process large
amounts of data, which results in slowing down the system. This method is different
from other methods because in the impedance-based method is initially employed, a much
smaller number of data are processed by the neural network implying a high speed of
operation. Additionally, this method has a very high percentage of accuracy. Applying this
method, besides precisely specifying the distance to the fault location, the line where the
fault happened is also specified. As can be seen from Figure 4, the task of the deep neural
network is to calculate the SMC parameters online so that the system error becomes less
and less.

As seen in Figure 4, the output of the neural network is six unknown parameters of
SMC. With the aim of minimizing the speed difference of the generators (synchronization),
the neural network is adjusted.

It can be seen carefully in Equation (31) that six unknown parameters must be
calculated at every moment to generate the control signal. These six parameters are
a1, . . . , a2, p1, p2. In other words, the output of the neural network is these six parameters
and its input is ∆ω and ∆

.
ω. The weights of the neural network are adjusted so that the

following cost function is minimized.

Jk =
1
N∑N

k=1|∆ω|
2
k (38)

where N is the length of the neural network search window and k represents each iteration.
Therefore, the neural network calculates all six SMC parameters while adjusting its weights
with the objective of minimizing the cost function (which is to minimize ∆ω here).
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As can be seen in the Figure 5, increasing the number of delays leads to increasing the
number of delays (feedbacks) and the dynamics of the system can be extracted better.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 18 
 

 

neural network is to calculate the SMC parameters online so that the system error becomes 
less and less. 

As seen in Figure 4, the output of the neural network is six unknown parameters of 
SMC. With the aim of minimizing the speed difference of the generators (synchroniza-
tion), the neural network is adjusted. 

 
Figure 4. Structure of a DNN to the online calculation of SMC parameters. 

It can be seen carefully in Equation (31) that six unknown parameters must be calcu-
lated at every moment to generate the control signal. These six parameters are 
a1, … , a2, p1, p2. In other words, the output of the neural network is these six parameters 
and its input is ∆ω and ∆ω̇. The weights of the neural network are adjusted so that the 
following cost function is minimized. 

Jk = 1
N
∑ |∆ω|k2N
k=1   (38) 

where N is the length of the neural network search window and k represents each itera-
tion. Therefore, the neural network calculates all six SMC parameters while adjusting its 
weights with the objective of minimizing the cost function (which is to minimize ∆ω 
here). 

As can be seen in the Figure 5, increasing the number of delays leads to increasing 
the number of delays (feedbacks) and the dynamics of the system can be extracted better. 

 
Figure 5. Deep neural network structure. 

  

Figure 5. Deep neural network structure.

6. Simulation Results

The simulations performed in this paper were performed on the multi-machine power
system shown in Figure 1. The system transmitted 400MW of energy from zone one to
zone two through two transmission lines. The nominal parameters of the generators of
the system under study are given in Tables A2 and A3 in the Appendix A. To evaluate
the proposed algorithm for the proposed sliding model control power system stabilizer
(SMCPSS) and compare it with the classical controller (AVR + PSS) and without stabilizer
(NOPSS), we simulated the system under different operating conditions. It should be noted
that the nonlinear model of the system was used in all the simulations performed. To read
more about the theoretical relations of this discussion, you can refer to references [37,57].

Creating a Symmetric Three-Phase Error

In the first case, the system response to generating a symmetric three-phase error at
t = 5s in bus number 4 is examined. Here, it is assumed that the protection relays act on
time (about 0.1 s) and disconnect the damaged line from the circuit. Figure 5 shows the
results of a classical SMC, a neural-network-based SMC, and a deep-neural-network-based
SMC for damping fluctuations in generator rotor speeds. As can be seen in Figure 6, the
deep-neural-network-based SMC has the best performance, and the neural-network-based
SMC’s performance was better than the traditional SMC. One of the basic challenges of a
power system is increasing the load in it. In the following, the performance of the control
systems in the face of a short circuit fault and despite the load increase (up to 25% of the
nominal load) is measured.

Furthermore, it can be seen from Figure 7 that despite the increase in load, the per-
formance of the proposed control system was suitable. Although many times it caused
the synchronization of two generators to take some time, the proposed method showed
its effectiveness with high accuracy. In both previous scenarios, it was assumed that the
protective relays were healthy and the damaged line was cut within 0.1 s. However, in the
following, it is assumed that the relays do not work, and the fault remains in the power
system. To better compare the control systems, the power system is also simulated with the
traditional PID controller (Figure 8).
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Figure 8 shows interesting results: if the relay does not work, the PID controller cannot
synchronize the two generators. The SMC can synchronize two generators with extreme
fluctuations. However, as can be seen, the proposed method with the least fluctuation
performed the synchronization operation well. To compare the methods presented in this
section, the following two criteria were used: the figure of demerit (FD) and the integral of
the time-multiplied absolute-value error (ITAE).

FD = (5000×OS)2 + (5000×US)2 + T2
s (39)

ITAE = 1000
∫ tsim

0 t.(|w1 − w2|+ |w1 − w3|+ |w1 − w4|+ |w2 − w3|+
|w2 − w4|+ |w3 − w4|)dt

(40)

where OS is maximum overshoot value, while US is the undershoot, and Ts is the oscilla-
tions damping time. Table 1 shows the numerical results of FD and ITAE for six control
methods. As specified in Table 1, our proposed method in this article is much better than
other methods. By looking at Table 1, one can clearly understand the superiority of the
proposed method. The PID controller had the worst performance, which was caused by
the lack of adaptability of this control system. In [36], where the combination of fuzzy
logic with PID was used, some results were improved. In [37], MPC was used to stabilize
the power system. As can be seen in Table 1, the MPC results were far better than PID.
However, the main controller, which was also used in this article, was SMC. The online
adjustment of SMC parameters had a great effect on improving its performance. As can be
seen in the table, updating the SMC parameters with the neural network resulted in fewer
errors. At the end of the table, the use of a deep neural network had the best performance
in updating SMC parameters. The bus number 5 voltage diagram in three modes is shown
in Figures 9–11. As can be seen from Figures 9–11, the proposed method was significantly
superior to the PID, SMC, and neuro-SMC methods and had less time and more accuracy.

Table 1. Comparison of six control methods.

Control Method FD ITAE

PID 124 43
Method of [49] 109 31
Method of [50] 101 25

SMC 88 30
Neuro-SMC 76 20

Deep neuro-SMC 55 18
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7. Conclusions

Since power systems are highly nonlinear, the use of controllers that can maintain
system stability by changing the system operating conditions will increase the damping
speed of fluctuations and have good efficiency and performance in the face of uncertainty,
which seems mandatory. Based on the results of the simulations performed, the use of
sliding control theory in the design of the power system stabilizer increases the damping
speed of fluctuations in the rotor speed, terminal voltage, and load angle of each generator.
In this article, for the first time, a deep neural network was used to adjust SMC parameters.
The simulation results showed the superiority of the deep neural network over the ordinary
neural network in setting SMC parameters. A sliding mode control system with six
adjustable parameters was designed by the deep neural network and this control system
was used to synchronize the power system. In general, it was shown that the online
adjustment of SMC parameters had a great positive effect, and the performance of the
control system was far improved compared to the traditional SMC (no parameter updating).
It was also observed that the criterion of FD for the proposed method was 55, and the
criterion of the ITAE was equal to 18.



Mathematics 2023, 11, 1616 15 of 18

Author Contributions: Conceptualization, C.G. (Chan Gu), E.C., C.G. (Chujia Guo) and A.S.; method-
ology, C.G. (Chan Gu), E.C. and C.G. (Chujia Guo); software, C.G. (Chujia Guo), E.C. and C.G. (Chan
Gu); validation, C.G. (Chujia Guo), A.S. and M.M.S.; formal analysis, C.G. (Chan Gu), E.C. and
C.G. (Chujia Guo); investigation, all authors; resources, C.G. (Chujia Guo) and M.M.S.; data cu-
ration, M.M.S.; writing—original draft preparation, C.G. (Chan Gu), E.C. and C.G. (Chujia Guo);
writing—review and editing, C.G. (Chujia Guo), A.S. and M.M.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The system shown in Figure 1 consists of two similar regions with a weak correlation,
each of which has two units. Their nominal values are MVA900, KV20, and 60 Hz. The
parameters of generators on a unit basis based on nominal megavolts and kilovolts are
given in Tables A1 and A2.

Table A1. Nomenclature.

Symbol Definition Symbol Definition

δ(t) rotor angle ω(t) rotor angular speed

Pe(t)
mechanical power of

generator input xd
generator reactance in d

direction

x′d
transient generator reactance in

d direction Xd
total generator reactance in d

direction
X′d system with kC gain T′do short circuit transient time

Vs infinite bus voltage ωo
synchronous velocity of the

generator

H inertia constant of
the generator KD

damping constant of the
generator

r(t) state of neurons b(t) time varying bias

uj(t)
the controller input of

the system udj input of the system controller

f (a(t)) combining the data signal P(t) r(t− τd)
time-delayed feedback signals
modulated by the functions Md

x1dj desired value of state x1j

Table A2. Nominal parameters of synchronous generators of a two-zone system.

Gen Rs
p.u.

Xd
p.u.

X’
d

p.u.
Xq

p.u.
X’

q
p.u.

X1
p.u.

1 0.0025 1.8 0.3 1.7 0.55 0.2
2 0.0025 1.8 0.3 1.7 0.55 0.2
3 0.0025 1.8 0.3 1.7 0.55 0.2
4 0.0025 1.8 0.3 1.7 0.55 0.2

Table A3. Nominal parameters of synchronous generators of two-zone system.

Gen T’
do
s

T’
qo
s

H
s

KD
s

KA
s

TR
s

1 8 0.4 6.5 0 - 0.02
2 8 0.4 6.5 0 200 0.02
3 8 0.4 6.175 0 200 0.02
4 8 0.4 6.175 0 200 0.02



Mathematics 2023, 11, 1616 16 of 18

References
1. Senyuk, M.; Safaraliev, M.; Gulakhmadov, A.; Ahyoev, J. Application of the Conditional Optimization Method for the Synthesis of

the Law of Emergency Control of a Synchronous Generator Steam Turbine Operating in a Complex-Closed Configuration Power
System. Mathematics 2022, 10, 3979. [CrossRef]

2. Guesmi, T.; Alshammari, B.M.; Welhazi, Y.; Hadj Abdallah, H.; Toumi, A. Robust Fuzzy Control for Uncertain Nonlinear Power
Systems. Mathematics 2022, 10, 1463. [CrossRef]

3. Mohammadi, F.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B.; Ali, M.H.; Wei, W.; Erdinç, O.; Shirkhani, M. Robust Control
Strategies for Microgrids: A Review. IEEE Syst. J. 2022, 16, 2401–2412. [CrossRef]

4. Chitara, D.; Niazi, K.R.; Swarnkar, A.; Gupta, N. Cuckoo Search Optimization Algorithm for Designing of a Multimachine Power
System Stabilizer. IEEE Trans. Ind. Appl. 2018, 54, 3056–3065. [CrossRef]

5. Tavoosi, J.; Shirkhani, M.; Azizi, A.; Din, S.U.; Mohammadzadeh, A.; Mobayen, S. A hybrid approach for fault location in power
distributed networks: Impedance-based and machine learning technique. Electr. Power Syst. Res. 2022, 210, 108073. [CrossRef]

6. Danyali, S.; Aghaei, O.; Shirkhani, M.; Aazami, R.; Tavoosi, J.; Mohammadzadeh, A.; Mosavi, A. A New Model Predictive Control
Method for Buck-Boost Inverter-Based Photovoltaic Systems. Sustainability 2022, 14, 11731. [CrossRef]

7. Hatziargyriou, N.; Milanovic, J.; Rahmann, C.; Ajjarapu, V.; Canizares, C.; Erlich, I.; Hill, D.; Hiskens, I.; Kamwa, I.; Pal, B.; et al.
Definition and Classification of Power System Stability—Revisited & Extended. IEEE Trans. Power Syst. 2021, 36, 3271–3281.
[CrossRef]

8. Peng, Q.; Jiang, Q.; Yang, Y.; Liu, T.; Wang, H.; Blaabjerg, F. On the Stability of Power Electronics-Dominated Systems: Challenges
and Potential Solutions. IEEE Trans. Ind. Appl. 2019, 55, 7657–7670. [CrossRef]

9. Aazami, R.; Heydari, O.; Tavoosi, J.; Shirkhani, M.; Mohammadzadeh, A.; Mosavi, A. Optimal Control of an Energy-Storage
System in a Microgrid for Reducing Wind-Power Fluctuations. Sustainability 2022, 14, 6183. [CrossRef]

10. Izci, D. A novel improved atom search optimization algorithm for designing power system stabilizer. Evol. Intell. 2022, 15,
2089–2103. [CrossRef]

11. Huang, H.; Shirkhani, M.; Tavoosi, J.; Mahmoud, O. A New Intelligent Dynamic Control Method for a Class of Stochastic
Nonlinear Systems. Mathematics 2022, 10, 1406. [CrossRef]

12. Ray, P.K.; Paital, S.; Mohanty, A.; Eddy, F.S.; Gooi, H.B. A robust power system stabilizer for enhancement of stability in power
system using adaptive fuzzy sliding mode control. Appl. Soft Comput. 2018, 73, 471–481. [CrossRef]

13. Devarapalli, R.; Bhattacharyya, B. A hybrid modified grey wolf optimization-sine cosine algorithm-based power system stabilizer
parameter tuning in a multimachine power system. Optim. Control Appl. Methods 2020, 41, 1143–1159. [CrossRef]

14. Tavoosi, J.; Shirkhani, M.; Abdali, A.; Mohammadzadeh, A.; Nazari, M.; Mobayen, S.; Asad, J.H.; Bartoszewicz, A. A New General
Type-2 Fuzzy Predictive Scheme for PID Tuning. Appl. Sci. 2021, 11, 10392. [CrossRef]

15. Guo, X.; Shirkhani, M.; Ahmed, E.M. Machine-Learning-Based Improved Smith Predictive Control for MIMO Processes. Mathe-
matics 2022, 10, 3696. [CrossRef]

16. Abd Elazim, S.M.; Ali, E.S. Optimal power system stabilizers design via cuckoo search algorithm. Int. J. Electr. Power Energy Syst.
2016, 75, 99–107. [CrossRef]

17. Kumar, J.; Kumar, P.P.; Mahesh, A.; Shrivastava, A. Power system stabilizer based on artificial neural network. In Proceedings of
the 2011 International Conference on Power and Energy Systems, Chennai, India, 22–24 December 2011.

18. Zhang, H.; Zhao, X.; Zhang, L.; Niu, B.; Zong, G.; Xu, N. Observer-based adaptive fuzzy hierarchical sliding mode control of
uncertain under-actuated switched nonlinear systems with input quantization. Int. J. Robust Nonlinear Control 2022, 32, 8163–8185.
[CrossRef]

19. Li, Y.; Wang, H.; Zhao, X.; Xu, N. Event-triggered adaptive tracking control for uncertain fractional-order nonstrict-feedback
nonlinear systems via command filtering. Int. J. Robust Nonlinear Control 2022, 32, 7987–8011. [CrossRef]

20. Tang, F.; Niu, B.; Zong, G.; Zhao, X.; Xu, N. Periodic event-triggered adaptive tracking control design for nonlinear discrete-time
systems via reinforcement learning. Neural Netw. 2022, 154, 43–55. [CrossRef]

21. Zhang, H.; Zou, Q.; Ju, Y.; Song, C.; Chen, D. Distance-based support vector machine to predict DNA N6-methyladenine
modification. Curr. Bioinform. 2022, 17, 473–482.

22. Bernal, E.; Lagunes, M.L.; Castillo, O.; Soria, J.; Valdez, F. Optimization of type-2 fuzzy logic controller design using the GSO and
FA algorithms. Int. J. Fuzzy Syst. 2021, 23, 42–57. [CrossRef]

23. Wang, M.; Yang, M.; Fang, Z.; Wang, M.; Wu, Q. A Practical Feeder Planning Model for Urban Distribution System. IEEE Trans.
Power Syst. 2022, 38, 1297–1308. [CrossRef]

24. Sharma, S.; Obaid, A.J. Mathematical modelling, analysis and design of fuzzy logic controller for the control of ventilation
systems using MATLAB fuzzy logic toolbox. J. Interdiscip. Math. 2020, 23, 843–849. [CrossRef]

25. Si, Z.; Yang, M.; Yu, Y.; Ding, T. Photovoltaic power forecast based on satellite images considering effects of solar position. Appl.
Energy 2021, 302, 117514. [CrossRef]

26. Sreedivya, K.M.; Jeyanthy, P.A.; Devaraj, D. Improved design of interval type-2 fuzzy based wide area power system stabilizer for
inter-area oscillation damping. Microprocess. Microsyst. 2021, 83, 103957. [CrossRef]

27. Rokni Nakhi, P.; Ahmadi Kamarposhti, M. Multi objective design of type II fuzzy based power system stabilizer for power system
with wind farm turbine considering uncertainty. Int. Trans. Electr. Energy Syst. 2020, 30, e12285. [CrossRef]

http://doi.org/10.3390/math10213979
http://doi.org/10.3390/math10091463
http://doi.org/10.1109/JSYST.2021.3077213
http://doi.org/10.1109/TIA.2018.2811725
http://doi.org/10.1016/j.epsr.2022.108073
http://doi.org/10.3390/su141811731
http://doi.org/10.1109/TPWRS.2020.3041774
http://doi.org/10.1109/TIA.2019.2936788
http://doi.org/10.3390/su14106183
http://doi.org/10.1007/s12065-021-00615-9
http://doi.org/10.3390/math10091406
http://doi.org/10.1016/j.asoc.2018.08.033
http://doi.org/10.1002/oca.2591
http://doi.org/10.3390/app112110392
http://doi.org/10.3390/math10193696
http://doi.org/10.1016/j.ijepes.2015.08.018
http://doi.org/10.1002/rnc.6269
http://doi.org/10.1002/rnc.6255
http://doi.org/10.1016/j.neunet.2022.06.039
http://doi.org/10.1007/s40815-020-00976-w
http://doi.org/10.1109/TPWRS.2022.3170933
http://doi.org/10.1080/09720502.2020.1727611
http://doi.org/10.1016/j.apenergy.2021.117514
http://doi.org/10.1016/j.micpro.2021.103957
http://doi.org/10.1002/2050-7038.12285


Mathematics 2023, 11, 1616 17 of 18

28. Chang, Y.; Niu, B.; Wang, H.; Zhang, L.; Ahmad, A.M.; Alassafi, M.O. Adaptive tracking control for nonlinear system in
pure-feedback form with prescribed performance and unknown hysteresis. IMA J. Math. Control Inf. 2022, 39, 892–911. [CrossRef]

29. Abido, M. Simulated annealing based approach to PSS and FACTS based stabilizer tuning. Int. J. Electr. Power Energy Syst. 2000,
22, 247–258. [CrossRef]

30. Guesmi, T.; Farah, A.; Abdallah, H.; Ouali, A. Robust design of multimachine power system stabilizers based on improved
non-dominated sorting genetic algorithms. Electr. Eng. 2018, 100, 1351–1363. [CrossRef]

31. Dasu, B.; Sivakumar, M.; Srinivasarao, R. Interconnected multi-machine power system stabilizer design using whale optimization
algorithm. Prot. Control Mod. Power Syst. 2019, 4, 2. [CrossRef]

32. Mustapha, H.; Buhari, M.; Ahmad, A.S. An improved genetic algorithm based power system stabilizer for power system
stabilization. In Proceedings of the 2019 IEEE AFRICON, Accra, Ghana, 25–27 September 2019.

33. Majidabad, S.S.; Shandiz, H.; Hajizadeh, A. Nonlinear fractional-order power system stabilizer for multi-machine power systems
based on sliding mode technique. Int. J. Robust Nonlinear Control 2015, 25, 1548–1568. [CrossRef]

34. Liu, S.; Niu, B.; Zong, G.; Zhao, X.; Xu, N. Adaptive fixed-time hierarchical sliding mode control for switched under-actuated
systems with dead-zone constraints via event-triggered strategy. Appl. Math. Comput. 2022, 435, 127441. [CrossRef]

35. Farahani, M.; Ganjefar, S. Intelligent power system stabilizer design using adaptive fuzzy sliding mode controller. Neurocomputing
2017, 226, 135–144. [CrossRef]

36. Al-Duwaish, H.N.; Al-Hamouz, Z.M. A neural network based adaptive sliding mode controller: Application to a power system
stabilizer. Energy Convers. Manag. 2011, 52, 1533–1538. [CrossRef]

37. Bingöl, Ö.; Güzey, H.M. Finite-Time Neuro-Sliding-Mode Controller Design for Quadrotor UAVs Carrying Suspended Payload.
Drones 2022, 6, 311. [CrossRef]

38. Zhao, Y.; Tang, F.; Zong, G.; Zhao, X.; Xu, N. Event-Based Adaptive Containment Control for Nonlinear Multiagent Systems With
Periodic Disturbances. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 5049–5053. [CrossRef]

39. Bingöl, Ö.; Güzey, H.M. Neuro sliding mode control of quadrotor UAVs carrying suspended payload. Adv. Robot. 2021, 35,
255–266. [CrossRef]

40. Tan, J.; Liu, L.; Li, F.; Chen, Z.; Chen, G.Y.; Fang, F.; Guo, J.; He, M.; Zhou, X. Screening of endocrine disrupting potential of
surface waters via an affinity-based biosensor in a rural community in the Yellow River Basin, China. Environ. Sci. Technol. 2022,
56, 14350–14360. [CrossRef]

41. Lin, X.; Shi, X.; Li, S.; Nguang, S.K.; Zhang, L. Nonsingular fast terminal adaptive neuro-sliding mode control for spacecraft
formation flying systems. Complexity 2020, 2020, 1–5. [CrossRef]

42. Raja, B.M.; Houda, R.; Khadija, D.; Said, N.A. A discrete adaptive second order neuro sliding mode control for uncertain nonlinear
system. In Proceedings of the 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer
Engineering (STA), Sousse, Tunisia, 24–26 March 2019; pp. 518–523.

43. Ben Mohamed, R.; Dehri, K.; Elhajji, Z.; Nouri, A.S. A discrete terminal neuro-sliding mode control with adaptive switching gain
for an uncertain nonlinear system. Iran. J. Sci. Technol. Trans. Electr. Eng. 2021, 8, 1–4. [CrossRef]

44. Iranmehr, H.; Aazami, R.; Tavoosi, J.; Shirkhani, M.; Azizi, A.R.; Mohammadzadeh, A.; Mosavi, A.H.; Guo, W. Modeling the price
of emergency power transmission lines in the reserve market due to the influence of renewable energies. Front. Energy Res. 2022,
9, 944. [CrossRef]

45. Kenné, G.; Fotso, A.S.; Lamnabhi-Lagarrigue, F. A new adaptive control strategy for a class of nonlinear system using RBF
neuro-sliding-mode technique: Application to SEIG wind turbine control system. Int. J. Control 2017, 90, 855–872. [CrossRef]

46. Fang, Q.; Liu, X.; Zeng, K.; Zhang, X.; Zhou, M.; Du, J. Centrifuge modelling of tunnelling below existing twin tunnels with
different types of support. Undergr. Space 2022, 7, 1125–1138. [CrossRef]

47. Hiremath, R.; Moger, T. LVRT enhancement of DFIG-driven wind system using feed-forward neuro-sliding mode control. Open
Eng. 2021, 11, 1000–1014. [CrossRef]

48. Habib, B. Comparison Study between FPWM and NSVM Inverter in Neuro-Sliding Mode Control of Reactive and Active Power
Control of a DFIG-based Wind Energy. Majlesi J. Energy Manag. 2017, 6.

49. Ghanamijaber, M. A hybrid fuzzy-PID controller based on gray wolf optimization algorithm in power system. Evol. Syst. 2019,
10, 273–284. [CrossRef]

50. Sokólski, P.; Rutkowski, T.; Ceran, B.; Horla, D. Złotecka, Power System Stabilizer as a Part of a Generator MPC Adaptive
Predictive Control System. Energies 2021, 14, 6631. [CrossRef]

51. Sreedivya, K.M.; Jeyanthy, P.A.; Devaraj, D. An effective AVR-PSS design for electromechanical oscillations damping in power
system. In Proceedings of the 2019 IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for
Sustainable Development (INCCES), Krishnankoil, India, 18–20 December 2019; pp. 1–5.

52. Liu, Z.; Zheng, Z.; Sudhoff, S.D.; Gu, C.; Li, Y. Reduction of common-mode voltage in multiphase two-level inverters using
SPWM with phase-shifted carriers. IEEE Trans. Power Electron. 2015, 31, 6631–6645. [CrossRef]

53. Cao, C.; Wang, J.; Kwok, D.; Cui, F.; Zhang, Z.; Zhao, D.; Li, M.J.; Zou, Q. webTWAS: A resource for disease candidate susceptibility
genes identified by transcriptome-wide association study. Nucleic Acids Res. 2022, 50, 1123–1130. [CrossRef]

54. Salgado, I.; Yañez, C.; Camacho, O.; Chairez, I. Adaptive control of discrete-time nonlinear systems by recurrent neural networks
in quasi-sliding mode like regime. Int. J. Adapt. Control Signal Process. 2017, 31, 83–96. [CrossRef]

http://doi.org/10.1093/imamci/dnac015
http://doi.org/10.1016/S0142-0615(99)00055-1
http://doi.org/10.1007/s00202-017-0589-0
http://doi.org/10.1186/s41601-019-0116-6
http://doi.org/10.1002/rnc.3159
http://doi.org/10.1016/j.amc.2022.127441
http://doi.org/10.1016/j.neucom.2016.11.043
http://doi.org/10.1016/j.enconman.2010.06.060
http://doi.org/10.3390/drones6100311
http://doi.org/10.1109/TCSII.2022.3200053
http://doi.org/10.1080/01691864.2020.1870557
http://doi.org/10.1021/acs.est.2c01323
http://doi.org/10.1155/2020/5875191
http://doi.org/10.1007/s40998-021-00454-5
http://doi.org/10.3389/fenrg.2021.792418
http://doi.org/10.1080/00207179.2016.1213423
http://doi.org/10.1016/j.undsp.2022.02.007
http://doi.org/10.1515/eng-2021-0100
http://doi.org/10.1007/s12530-018-9228-x
http://doi.org/10.3390/en14206631
http://doi.org/10.1109/TPEL.2015.2499380
http://doi.org/10.1093/nar/gkab957
http://doi.org/10.1002/acs.2685


Mathematics 2023, 11, 1616 18 of 18

55. Yuan, Z.; Li, X.; Wu, D.; Ban, X.; Wu, N.-Q.; Dai, H.-N.; Wang, H. Continuous-time prediction of industrial paste thickener system
with differential ODE-net. IEEE/CAA J. Autom. Sin. 2022, 9, 686–698. [CrossRef]

56. Li, P.; Yang, M.; Wu, Q. Confidence interval based distributionally robust real-time economic dispatch approach considering
wind power accommodation risk. IEEE Trans. Sustain. Energy 2020, 12, 58–69. [CrossRef]

57. Chaib, L.; Choucha, A.; Arif, S. Optimal design and tuning of novel fractional order PID power system stabilizer using a new
metaheuristic Bat algorithm. Ain Shams Eng. J. 2017, 8, 113–125. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/JAS.2022.105464
http://doi.org/10.1109/TSTE.2020.2978634
http://doi.org/10.1016/j.asej.2015.08.003

	Introduction 
	Dynamic Model of Synchronous Generator 
	Sliding Mode Control 
	Converting the System to Normal Form 
	Designing Sliding Surfaces: 
	Design of Control Functions 

	Sliding Controller Design 
	Comparison of Proposed and Classical Power System Stabilizer 
	Simulation Results 
	Conclusions 
	Appendix A
	References

