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systems with logic impulses. Firstly, a class of nonlinear stochastic delay differential systems with
logic impulses is constructed. Then, the logic impulses are transformed into an equivalent algebraic
expression by using the semi-tensor product method. Thirdly, the mean square exponential stability
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1. Introduction

Stochastic differential systems are widely used in many fields, such as physics, biology,
economics and finance. For example, option pricing in the financial economy, wide-area
security in the electrical power system, and mechanisms of tumor evolution in biology, etc.
can be well analyzed and controlled by stochastic differential systems. In recent years, the
stability problems of stochastic systems have received extensive attention, such as in [1–3]
and references therein. Furthermore, the research of stochastic delay systems has also been
developed rapidly, such as [4–8] and references therein. On the other hand, the impulsive
effects are widely encountered in engineering application areas and natural systems, so
stochastic systems with impulsive effects have always been one of the focused issues in
research, such as [9–17] and references therein.

Meanwhile, the study of hybrid systems, including logics developed rapidly (see [18–26]
and references therein) after the semi-tensor product method was proposed in [18]. In recent
years, the impulsive effects suffered by logic choices have attracted the attention of some
researchers, such as [27–31]. As far as we know, few studies have been done on stochastic
systems with logic impulses. To date, only [30] has constructed a class of scalar linear stochastic
delay differential systems with logic impulses and analyzed their stability in published papers.
Therefore, it is necessary to construct and analyze more general stochastic delay differential
systems with logic impulses.

It is widely known that the Lyapunov function and Itô’s formula are common tradi-
tional methods used to study the stability of stochastic systems. However, the Itô formula
cannot be used effectively in stochastic delay differential systems with logic impulses since
it is difficult to integrate the equation over the interval containing the impulsive points. At
the same time, it is not easy to construct Lyapunov functions from stochastic differential
equations, and most of the results are given in terms of matrix inequalities or differential
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inequalities which are not easy to apply in practice, see [5,6,32,33]. Therefore, we aim to
give some stability criteria for stochastic delay differential systems with logic impulses that
can overcome the above two difficulties, i.e., relatively easy to verify.

In view of the above considerations, we think that it is meaningful to construct a
stochastic delay differential system with logic impulses and give its stability criteria which
are not involved in Lyapunov functions and are relatively easy to verify. The main purpose
and work of this paper can be concluded as follows: (i) Construct a class of nonlinear
stochastic delay differential systems with logic impulses. (ii) By constructing a nonlinear
transformation, the connection between stochastic delay differential systems with logic
impulses and non-impulsive stochastic delay differential systems is established. Thus,
the difficulty that Itô formula cannot be integrated at the impulsive points are overcome.
(iii) Obtained some stability criteria. It is worth noting that the stability criteria do not
require the construction of Lyapunov functions. (iv) The stability results are applied to two
kinds of stochastic delay differential systems with logic impulses and uncertain parameters,
and the coefficient conditions ensuring the mean square exponential stability of these
systems are obtained.

This paper is organized as follows: In Section 2, some basic concepts and lemmas
are collected. In Section 3, a class of n-dimensional nonlinear stochastic delay differential
systems with logic impulses is constructed, and the logic impulses are transformed into
an equivalent algebraic expression by using the semi-tensor product method. Then, the
stability of the nonlinear stochastic delay differential systems with logic impulses is studied,
and some stability criteria, especially the mean square exponential stability criteria are
obtained in Section 4. In Section 5, two kinds of stochastic delay differential systems with
logic impulses and uncertain parameters are discussed, and the coefficient conditions
guaranteeing the mean square exponential stability of these systems are obtained. Lastly, a
discussion is given in Section 6.

2. Preliminaries

Let {Ω, F, {Ft}t≥0, P} be a complete probability space with a filtration {Ft}t≥0 satis-
fying the usual conditions (i.e., right continuous and F0 containing all p-null sets). Let
w(t) = (w1(t), w2(t), · · · , wm(t))T be an m-dimensional Brownian motion defined on
{Ω, F, {Ft}t≥0, P}, Eξ denotes the expectation of stochastic process ξ, and ‖ · ‖ denotes the
Euclidean norm on Rn. Let C([t0− r, t0], Rn) denote the Banach space of all functions which
are real-valued absolutely continuous on [t0 − r, t0], with the norm ‖ξ‖ = sup

t0−r≤s≤t0

‖ξ(s)‖.

Let Cb
F0
([t0 − r, t0], Rn) denotes the family of Ft0-measurable bounded C([t0 − r, t0], Rn)-

valued random variables , satisfying sup
t0−r≤s≤t0

E‖φ‖p < ∞.

Let A = (aij)n×m and B = (bij)n×m be two n×m matrices, Rn×m denotes the set of all
n×m matrices. In this paper, A ≥ B means that aij ≥ bij, i = 1, 2, · · · , n, j = 1, 2, · · · , m.
In particular, A ≥ 0 means that aij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , m, and Rn×m

+ denotes
the set of all nonnegative n × m matrices. A � B means that aij > bij, i = 1, 2, · · · , n,
j = 1, 2, · · · , m. In particular, A � 0 means that aij > 0, and A � 0 means that aij < 0,
i = 1, 2, · · · , n, j = 1, 2, · · · , m. A matrix A = (aij)n×n ∈ Rn×n is called a Metzler matrix, if
its off-diagonal elements are all non-negative, i.e. aij ≥ 0, i 6= j. A matrix A ∈ Rn×n is said
to be Hurwitz stable, if max{<z : det(zIn − A) = 0} < 0.

Let δi
n denotes the ith column of the identity matrix In, i = 1, 2, · · · , n, and ∆n =

{δi
n|i = 1, 2, · · · , n}. A matrix L ∈ Rn×m is called logical matrix, if Col(L) ⊂ ∆n. Let
Ln×m denotes the set of all n× m logical matrices. For a logical matrix L ∈ Lm×n, L =

(δi1
m, δi2

m, . . . , δin
m) is denoted by L = δm(i1, i2, . . . , in) for simplicity. D = {0, 1} denotes the

family of logical values. Moreover, we identify logical values with equivalent vectors as:
T = 1 ∼ δ1

2 , F = 0 ∼ δ2
2 .

The Hadamard product and the Kronecker product of matrices are two kinds of
classical matrix operations. In this paper, ′◦′ represents the Hadamard product of matrices,
and ′⊗′ represents the Kronecker product of matrices. Furthermore, for two matrices A ∈
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Rn×m and B ∈ Rp×q, the semi-tensor product of A and B is: A n B = (A⊗ Iα/m)(B⊗ Iα/p),
where α = lcm(m, p) denotes the least common multiple of m and p, see [18]. When m = p,
the semi-tensor product degenerates into the traditional matrix product.

Lemma 1 (see [27]). Given a logical function f (p1, p2, · · · , pr) ∈ ∆2 with logical variables
p1, p2, · · · , pr ∈ ∆2, there exists a unique 2× 2r logical matrix M f called the structure matrix of
f , such that

f (p1, p2, · · · , pr) = M f n p1 n p2 n · · ·n pr = M f nr
i=1 pi

Moreover, Col(M f ) ⊂ ∆2. We note that nr
i=1 pi ∈ ∆2r .

Lemma 2 (see [6]). Let matrix A ∈ Rn×n be a Metzler matrix. Then, A is Hurwitz stable if, and
only if, Ap� 0 for some p ∈ Rn

+, p� 0.

3. Stochastic Delay Differential Systems with Logic Impulses Model

Consider the following nonlinear stochastic delay differential systems with logic impulses:{
dy(t) = f (t, y(t), y(t− h(t)))dt + g(t, y(t), y(t− τ(t)))dw(t), t ≥ t0, t 6= tk

∆y(tk) = Ψk(y(tk)), k ∈ N
(1)

with the initial condition:

y(t) = ξ(t), t ∈ [t0 − r, t0] (2)

where the fixed impulsive points {tk}∞
k=1 satisfying 0 ≤ t0 < t1 < · · · < tk < · · · , and

lim
k→∞

tk = ∞, y(t) = (y1(t), · · · , yn(t))T , ∆y(t) = (∆y1(t), · · · , ∆yn(t))T , ξ ∈ Cb
Ft0
([t0 −

r, t0], Rn), f : R+ × Rn × Rn → Rn and g : R+ × Rn × Rn → Rn×m are measurable contin-
uous functions, f (t, 0, 0) ≡ 0 and g(t, 0, 0) ≡ 0 for any t ≥ t0, h(t) ∈ C([0,+∞), [0, h]),
τ(t) ∈ C([0,+∞), [0, τ]), here h = sup

t≥t0

h(t), τ = sup
t≥t0

τ(t), r = max{h, τ}.

The logic impulses Ψk(y(tk)), which are affected by the logical relationship between
yi(tk), i = 1, 2, · · · , n, can be described as follows:

∆yi(tk) = yi(t+k )− yi(tk) = ui(tk)Ik(yi(tk)) + ui(tk)Jk(yi(tk)).

where, for ∀k ∈ N, continuous function Ik and Jk satisfy Ik(0) = Jk(0) = 0. And for ∀s ∈ R,
s 6= 0, Ik(s) 6= −s, Jk(s) 6= −s. ui : {δ1

2 , δ2
2}n → {0, 1} is a logical function related to

y1(t), y2(t), · · · , yn(t), and ūi denotes the negation logical function of ui, can be expressed
as follows:

ui(t) = ui(p1(y1(t)), · · · , pn(yn(t))), ui(t) = ui(p1(y1(t)), · · · , pn(yn(t))).

The piecewise logical function pi : R→ {0, 1} is defined as follows:

pi(s) =
{

δ2
2 ∼ 0, |qi(s)| ≥ ci,

δ1
2 ∼ 1, |qi(s)| < ci.

where, qi ∈ C(R, R), ci > 0 is the threshold.
Then, the impulses will be selected from Ik and Jk based on the values of the logical

functions ui and ūi. It is also assumed that for a given initial function ξ ∈ Cb
Ft0
([t0 −

r, t0], Rn), systems (1)–(2) always has a unique solution in this paper.
Next, by using the method of semi-tensor product, we transform the impulses that

contain logical functions in system (1) into algebraic expressions. Because ui and ūi are
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logical functions, and ūi is the negation logical function of ui, the logical impulse effect can
be expressed in the following form:

∆yi(tk) = [Ik(yi(tk)), Jk(yi(tk))]Li(p1(y1(tk)), · · · , pn(yn(tk))),

where, Li : {δ1
2 , δ2

2}n → {δ1
2 , δ2

2} is logical function. According to Lemma 1, there exists a
unique 2× 2n structural matrix Mi such that

Li(p1(y1(tk)), · · · , pn(yn(tk))) = Mi nn
i=1 pi(yi(tk))

Let p(y(tk)) := nn
i=1 pi(yi(tk)), thus p(y(tk)) ∈ ∆2n .

Thus, the logic impulses of system (1) can be described by the following algebraic expression:

∆yi(tk) = [Ik(yi(tk)), Jk(yi(tk))]Mi p(y(tk)) := φk(yi(tk))Mi p(y(tk)),

or

∆y(tk) = Ψk(y(tk)) := Φk(y(tk))Mp(y(tk)),

where, φk(yi(tk)) = [Ik(yi(tk)), Jk(yi(tk))], M = [MT
1 , MT

2 , · · · , MT
n ]

T ∈ R2n×2n
,

Φk(y(tk)) = diag(φk(y1(tk)), φk(y2(tk)), . . . , φk(yn(tk)))

=

 Ik(y1(tk)) Jk(y1(tk))
. . .

Ik(yn(tk)) Jk(yn(tk))


n×2n

.

Now, the nonlinear stochastic delay differential system with logic impulses (1)–(2) can
be expressed as follows:

dyi(t) = fi(t, y(t), y(t− h(t)))dt +
m

∑
j=1

gij(t, y(t), y(t− τ(t)))dwj(t), t ≥ t0, t 6= tk

∆yi(tk) = φk(yi(tk))Mi p(y(tk)), k ∈ N

(3)

or {
dy(t) = f (t, y(t), y(t− h(t)))dt + g(t, y(t), y(t− τ(t)))dw(t), t ≥ t0, t 6= tk

∆y(tk) = Φk(y(tk))Mp(y(tk)), k ∈ N
(4)

where f = ( f1, · · · , fn)T ∈ Rn, g = (gij)n×m ∈ Rn×m, i = 1, 2, · · · , n.

Definition 1 (see [30]). A function y(t) = (y1(t), · · · , yn(t))T is called a solution of (1)–(2) on
[t0 − r, ∞), if

(i) yi(t) is absolutely continuous on each interval (tk−1, tk], k ∈ N.
(ii) For any tk, k ∈ N, yi(t+k ) and yi(t−k ) exist, and y(t−k ) = y(tk).
(iii) y(t) satisfies the differential Equation (1) almost everywhere on [t0,+∞)\{tk}k∈N and

the impulsive condition at every tk, k ∈ N.
(iv) y(t) satisfies the initial condition (2) on [t0 − r, t0].

Obviously, system (1) admits a trivial solution y(t) ≡ 0. Throughout this paper, we
assume that any solution y(t) = (y1(t), · · · , yn(t))T of system (1) in addition to the zero
solution satisfies yi(tk) 6= 0 ,i = 1, 2, · · · , n.
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Definition 2 (see [30]). The trivial solution of (1)–(2) is said to be mean square exponentially
stable if there exist a pair of positive constants λ and K such that,

E‖y(t)‖2 ≤ Ke−λ(t−t0)E‖ξ‖2, t ≥ t0,

for any initial function ξ(t) ∈ Cb
F0
([t0 − r, t0], Rn).

4. Stability Criteria

In this section, by constructing a nonlinear transformation, the relation between a
stochastic delay differential system with logic impulses and a stochastic delay differential
system without impulses is established, and some stability criteria are given.

Introduce the following functions:

αi(t) = ∏
t0≤tk<t

yi(tk)

yi(tk) + φk(yi(tk))Mi p(y(tk))
,

for i = 1, 2, · · · , n. If the number of factors in a product is zero, we set the product to be
equal to 1. Let α(t) = (α1(t), α2(t), · · · , αn(t))T ∈ Rn, and α−1(t) = (α−1

1 (t), · · · , α−1
n (t))T ∈

Rn. It can be seen that, αi(t) is a piecewise constant function, so α̇i(t) = 0, i = 1, 2, · · · , n, is
hold almost everywhere on the interval [t0 − r, ∞).

By now, a stochastic delay differential system without impulses can be proposed
as follows:

dxi(t) =αi(t) fi(t, x(t) ◦ α−1(t), x(t− h(t)) ◦ α−1(t− h(t)))dt

+ αi(t)
m

∑
j=1

gij(t, x(t) ◦ α−1(t), x(t− τ(t)) ◦ α−1(t− τ(t)))dwj(t),
(5)

for t ≥ t0, i = 1, 2, · · · , n. Or

dx(t) = f̃ (t, x(t) ◦ α−1(t), x(t− h(t)) ◦ α−1(t− h(t)))dt

+ g̃(t, x(t) ◦ α−1(t), x(t− τ(t)) ◦ α−1(t− τ(t)))dw(t),
(6)

where f̃ = α ◦ f = (α1 f1, · · · , αn fn)T := ( f̃1, · · · , f̃n)T ∈ Rn, g̃ = α? ◦ g = (αigij)n×m :=
(g̃ij)n×m ∈ Rn×m, α? := (α, α, · · · , α)n×m ∈ Rn×m.

The initial condition for (5) or (6) is defined by

x(t) = ξ(t), t ∈ [t0 − r, t0] (7)

An absolutely continuous function x(t) is called a solution of systems (5)–(7), if x(t)
satisfies system (5) almost everywhere on the interval [t0 − r, ∞), and satisfies initial
conditions (7). Similar to Definition 2, the definition of mean square exponential stability
for systems (5)–(7) can be given, which is omitted here.

System (1) is a hybrid system, which suffers from time-delay effects, impulsive effects,
stochastic effects and logic effects simultaneously. It is very difficult to make a qualitative
analysis of it directly. By applying the semi-tensor product method and introducing
the piecewise constant function α(t), we construct system (5) with only time delay and
stochastic effects, which is much simpler than system (1). Therefore, we aim to get some
properties of system (1) through the study of system (5), and provide an effective and
feasible method for the study of system (1).

Lemma 3. (i) if x(t) is a solution of (5)–(7), then y(t) = α−1(t) ◦ x(t) is a solution of (1)–(2) on
[t0 − r,+∞).
(ii) if y(t) is a solution of (1)–(2), then x(t) = α(t) ◦ y(t) is a solution of (5)–(7) on [t0 − r,+∞).

Proof of Lemma 3. Step 1. We give the proof of conclusion (i).
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Let x(t) = (x1(t), x2(t), · · · , xn(t))T be a possible solution of systems (5)–(7), so that
yi(t) = α−1

i (t)xi(t), i = 1, 2, · · · , n, is absolutely continuous on each interval (tk−1, tk) ⊂
[t0, ∞), k ∈ N. Further, because αi(t), i = 1, 2, · · · , n, is a piecewise constant function, for
any t 6= tk, we have

dyi(t) =d(α−1
i (t)xi(t))

=α−1
i (t)d(xi(t))

= fi(t, x(t) ◦ α−1(t), x(t− h(t)) ◦ α−1(t− h(t)))dt

+
m

∑
j=1

gij(t, x(t) ◦ α−1(t), x(t− τ(t)) ◦ α−1(t− τ(t)))dwj(t)

= fi(t, y(t), y(t− h(t)))dt +
m

∑
j=1

gij(t, y(t), y(t− τ(t)))dwj(t)

Thus, y(t) = α−1(t) ◦ x(t) satisfies system (1) almost everywhere on the interval
[t0,+∞)\tk.

On the other hand, for every tj, j ∈ N, t ∈ [t0,+∞), we have

yi(t−j ) = lim
t→t−j

α−1
i (t)xi(t) = α−1

i (t−j )xi(t−j ) = α−1
i (tj)xi(tj) = yi(tj),

and yi(t+j ) = lim
t→t+j

α−1
i (t)xi(t)

= ∏
t0≤tk≤tj

yi(tk) + φk(yi(tk))Mi p(y(tk))

yi(tk)
xi(t+j )

=
(

1 +
φj(yi(tj))Mi p(y(tj))

yi(tj)

)
∏

t0≤tk<tj

yi(tk) + φk(yi(tk))Mi p(y(tk))

yi(tk)
xi(t+j )

=
(

1 +
φj(yi(tj))Mi p(y(tj))

yi(tj)

)
α−1(tj)xi(tj)

=
(

1 +
φj(yi(tj))Mi p(y(tj))

yi(tj)

)
yi(tj)

= yi(tj) + φj(yi(tj))Mi p(y(tj))

Meanwhile, note that a product is equal to 1 if the number of factors is zero in this
paper. Therefore, yi(t) = α−1

i (t)xi(t) = xi(t) = ξi(t), i = 1, 2, · · · , n, on the interval
[t0 − r, t0].

Thus, it can be inferred that y(t) = α−1(t) ◦ x(t) is the solution of systems (1)–(2).
Step 2. We give the proof of conclusion (ii).
Let y(t) = (y1(t), · · · , yn(t))T be a solution of system (1), then xi(t) = αi(t)yi(t),

i = 1, 2, · · · , n is absolutely continuous on the interval (tk, tk+1) ⊂ [t0,+∞), k ∈ N.
Furthermore, for ∀tj ∈ [t0,+∞), j ∈ N, we have

xi(t+j ) = lim
t→t+j

αi(t)yi(t)

= ∏
t0≤tk≤tj

yi(tk)

yi(tk) + φk(yi(tk))Mi p(y(tk))
yi(t+j )

=
(

∏
t0≤tk<tj

yi(tk)

yi(tk) + φk(yi(tk))Mi p(y(tk))

) yi(tj)

yi(tj) + φj(yi(tj))Mi p(y(tj))
yi(t+j )

= αi(tj)yi(tj)

= xi(tj),
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and xi(t−j ) = lim
t→t−j

αi(t)yi(t) = αi(t−j )yi(t−j ) = αi(tj)yi(tj) = xi(tj).

It can be seen that xi(t) is continuous on the interval [t0,+∞) and is easily verified to
be absolutely continuous. Similarly, xi(t) = yi(t) = ξi(t), t ∈ [t0 − r, t0], i = 1, 2, · · · , n.

Thus, x(t) = α(t) ◦ y(t) = (α1(t)y1(t), · · · , αn(t)yn(t))T is the solution of systems
(5)–(7) on interval [t0 − r,+∞).

Lemma 3 establishes the equivalence relation between the solutions of the stochastic
delay differential system with logic impulses (1)–(2) and the stochastic delay differential
system without impulses (5)–(7). Then, one obtains some properties of systems (1)–(2)
through the study of systems (5)–(7) possible.

Lemma 4. (i) For any t0 ≥ 0, assume that there exists a constant M > 0, such that

|α−1
i (t)| ≤ M, t ≥ t0, i = 1, 2, · · · , n,

or ‖α−1(t)‖ ≤ M, t ≥ t0
(8)

Then, if the trivial solution of (5) is exponentially stable in a mean square, the trivial solution of (1)
is also exponentially stable in the mean square.

(ii) For any t0 ≥ 0, assume that there exists a constant L > 0, such that

|αi(t)| ≤ L, t ≥ t0, i = 1, 2, · · · , n,

or ‖α(t)‖ ≤ L, t ≥ t0
(9)

Then, if the trivial solution of (1) is exponentially stable in a mean square, the trivial solution of (5)
is also exponentially stable in the mean square.

(iii) For any t0 ≥ 0, assume that both inequalities (8) and (9) hold, and then the trivial solution
of (1) is exponentially stable in a mean square if and only if the trivial solution of (5) is exponentially
stable in the mean square.

Proof of Lemma 4. The proof is similar to Theorem 3.1 in [30], omitted here.

The n-dimension nonlinear stochastic delay differential systems with logic impulses
proposed in this paper, i.e., system (1) is more general than the scalar system established
in [30]. Furthermore, Lemma 3 generalizes Lemma 3.1 in [30], and Lemma 4 generalizes
the mean square exponential stability part of Theorem 3.1 in [30].

Theorem 1. (i) Assume that there exist constant matrices A = (aij)n×n ∈ Rn×n, B =

(bij)n×n ∈ Rn×n
+ , Al = (al

ij)n×n ∈ Rn×n
+ , Bl = (bl

ij)n×n ∈ Rn×n
+ , l = 1, 2, · · · , m, such that

xi fi(t, x, z) ≤
n

∑
j=1

aijx2
j +

n

∑
j=1

bijz2
j , i = 1, 2, · · · , n, (10)

and

(gil(t, x, z))2 ≤
n

∑
j=1

al
ijx

2
j +

n

∑
j=1

bl
ijz

2
j , i = 1, 2, · · · , n, l = 1, 2, · · · , m, (11)

hold for any t ≥ t0, x = (x1, x2, · · · , xn)T ∈ Rn and z = (z1, z2, · · · , zn)T ∈ Rn;
(ii) For ∀tk, k ∈ N, assume that

Ik(yi(tk))

yi(tk)
> −1,

Jk(yi(tk))

yi(tk)
> −1, i = 1, 2, · · · , n; (12)
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(iii) Assume that there exists a constant vector χ = (χ1, χ2, · · · , χn)T ∈ Rn, and a constant
M > 0, such that for any t ≥ t0,

α(t) ≤ χ, ‖α−1(t)‖ ≤ M; (13)

(iv) Assume that matrix A + B + 1
2 χ∗ ◦ ∑m

l=1(Al + Bl) is Hurwitz stable, where χ∗ :=
(χ, · · · , χ) ∈ Rn×n.

Then, the trivial solution of (1) is exponentially stable in the mean square.

Proof of Theorem 1. Step 1. Come to the conclusion that for ∀t ≥ t0, 0 < αi(t) ≤ χi, i =
1, 2, · · · , n. The proof goes as follows:

From inequality (12), one can get that for ∀tk, k ∈ N,

Ik(yi(tk)) + yi(tk)

yi(tk)
> 0,

Jk(yi(tk)) + yi(tk)

yi(tk)
> 0,

which implies that Ik(yi(tk)) + yi(tk) and Jk(yi(tk)) + yi(tk) have the same sign with yi(tk).
Thus, yi(tk) + φk(yi(tk))Mi p(y(tk)) has the same sign with yi(tk), that is

yi(tk)

yi(tk) + φk(yi(tk))Mi p(y(tk))
> 0, ∀t ≥ t0.

Then, αi(t) = ∏
t0≤tk<t

yi(tk)

yi(tk) + φk(yi(tk))Mi p(y(tk))
> 0, ∀t ≥ t0.

Taking into consideration the first inequality of (13), we get the conclusion that 0 <
αi(t) ≤ χi, ∀t ≥ 0, i = 1, 2, · · · , n.

Step 2. Come to the conclusion that A + B + 1
2 χ∗ ◦

m
∑

l=1
(Al + Bl) is a Metzler matrix.

The proof goes as follows:
Firstly, A is a Metzler matrix. In fact, in inequality (10), for any fixed i0 6= j0, let xi0 = 0;

xj0 = 1; xj = 0, j 6= j0; zi = 0, i = 1, · · · , n, thus ai0 j0 ≥ 0, that is A is a Metzler matrix.
Secondly, it is clear that χi > 0 in step 1, thus the vector χ∗ � 0. At the same time, note
that B, Al , Bl ∈ Rn×n

+ , l = 1, 2, · · · , m. Then, A + B + 1
2 χ∗ ◦ ∑m

l=1(Al + Bl) is a Metzler
matrix too.

Step 3. Come to the conclusion that for ∀t ≥ t0, x = (x1, x2, · · · , xn)T ∈ Rn, z =
(z1, z2, · · · , zn)T ∈ Rn, exist that

xi f̃i(t, x, z) ≤
n

∑
j=1

χiaijx2
j +

n

∑
j=1

χibijz2
j , i = 1, 2, · · · , n,

(g̃il(t, x, z))2 ≤
n

∑
j=1

χ2
i al

ijx
2
j +

n

∑
j=1

χ2
i bl

ijz
2
j , i = 1, 2, · · · , n, l = 1, 2, · · · , m.

The proof goes as follows:
For any t ≥ t0, x = (x1, x2, · · · , xn)T ∈ Rn, z = (z1, z2, · · · , zn)T ∈ Rn, due to

inequality (10) and the first inequality of (13), we have

xi f̃i(t, x, z) = xiαi fi(t, x, z) ≤ αi(
n

∑
j=1

aijx2
j +

n

∑
j=1

bijz2
j ) ≤

n

∑
j=1

χiaijx2
j +

n

∑
j=1

χibijz2
j .

From inequality (11) and the first inequality of (13), in the same way, we can have

(g̃il(t, x, z))2 ≤
n

∑
j=1

χ2
i al

ijx
2
j +

n

∑
j=1

χ2
i bl

ijz
2
j , i = 1, 2, · · · , n, l = 1, 2, · · · , m.
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Step 4. Come to the conclusion that matrix A∗ + B∗ + 1
2 ◦

m
∑

l=1
(A∗l + B∗l ) is Hurwitz

stable, where A∗ := (χiaij)n×n = χ∗ ◦ A, B∗ := (χibij)n×n = χ∗ ◦ B, A∗l := (χ2
i al

ij)n×n =

χ∗ ◦ χ∗ ◦ Al , B∗l := (χ2
i bl

ij)n×n = χ∗ ◦ χ∗ ◦ Bl , l = 1, 2, · · · , m. The proof goes as follows:
Because of χ∗ � 0, easy to see that B∗, A∗l , B∗l ∈ Rn×n

+ , l = 1, 2, · · · , m. Due to matrix

A + B + 1
2 χ∗ ◦

m
∑

l=1
(Al + Bl) := S = (sij)n×n is Hurwitz stable, according to Lemma 2, there

exists a vector p = (p1, p2, · · · , pn)T ∈ Rn
+, such that Sp � 0, i.e., ∑n

j=1 sij pj < 0, i =
1, 2, · · · , n.

Take account of χi > 0, we have

n

∑
j=1

χisij pj < 0, i = 1, 2, · · · , n,

that is

χ∗ ◦ Sp = χ∗ ◦ (A + B +
1
2

χ∗ ◦
m

∑
l=1

(Al + Bl))p

= (A∗ + B∗ +
1
2

m

∑
l=1

(A∗l + B∗l ))p

� 0.

Then, the matrix A∗ + B∗ + 1
2 ◦

m
∑

l=1
(A∗l + B∗l ) is Hurwitz stable.

Step 5. According to Theorem II.2 in ref [6], the trivial solution of (5) is exponentially
stable in a mean square. Furthermore, in view of Lemma 4 and the second inequality of
(13), we can come to the conclusion that the trivial solution of (1) is also exponentially
stable in the mean square.

Theorem 2. (i) Assume that there exist four constants γ1 < 0, γ2, γ3, γ4 ≥ 0, such that for
any t ≥ t0, x ∈ Rn, z ∈ Rn,

xT f (t, x, z) ≤ γ1‖x‖2 + γ2‖z‖2, (14)

m

∑
i=1
‖gi(t, x, z)‖2 ≤ γ3‖x‖2 + γ4‖z‖2; (15)

where gi = (g1i, g2i, · · · , gni)
T , i = 1, 2, · · · , m.

(ii) Assume that there exist two sequences of real number {µik}k∈N and {µ
ik
}k∈N satisfing

µik ≥ µ
ik
> −1 and inf

k∈N
µ

ik
> −1, such that

µ
ik

yi(tk) ≤ Ik(yi(tk)), Jk(yi(tk)) ≤ µikyi(tk), i = 1, 2, · · · , n, (16)

for ∀tk, k ∈ N, and series ∑∞
k=1 µ

ik
, ∑∞

k=1 µik are convergent.

(iii) Let γ∗ = max
i=1,2,··· ,n

{ sup
k0∈N

∏k0
k=1

1
1+µ

ik
}, assume that

γ1 + γ2 +
1
2

γ∗(γ3 + γ4) < 0. (17)

Then, the trivial solution of (1) is exponentially stable in the mean square.

Proof of Theorem 2. Firstly, we can get a conclusion that αi(t) and α−1
i (t) are bounded

functions, 0 < αi(t) ≤ γ∗, for ∀t ≥ t0, i = 1, 2, · · · , n.
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According to the inequality of (16), for ∀tk, k ∈ N,

1
1 + µik

≤ yi(tk)

yi(tk) + φk(yi(tk))Mi p(y(tk))
≤ 1

1 + µ
ik

.

Thus, for any t ≥ t0,

∏
t0≤tk<t

1
1 + µik

≤ αi(t) ≤ ∏
t0≤tk<t

1
1 + µ

ik

,

that is

∏
t0≤tk<t

(1 + µ
ik
) ≤ α−1

i (t) ≤ ∏
t0≤tk<t

(1 + µik).

Since the series ∑∞
k=1 µ

ik
and ∑∞

k=1 µik are convergent, and µik ≥ µ
ik
> −1, inf

k∈N
µ

ik
>

−1, then there exist two constants S1 ≥ S2 > 0 such that

S2 ≤ α−1
i (t) ≤ S1,

1
S1
≤ αi(t) ≤

1
S2

.

In addition, due to the boundness of αi(t), the following inequality can be given:

αi(t) ≤ ∏
t0≤tk<t

1
1 + µ

ik

≤ sup
k0∈N

k0

∏
k=1

1
1 + µ

ik

.

Then, for any t ≥ t0,

0 < αi(t) ≤ max
i=1,2,··· ,n

{ sup
k0∈N

k0

∏
k=1

1
1 + µ

ik

} := γ∗, i = 1, 2, · · · , n.

Secondly, come to the conclusion that for any t ≥ t0, x, z ∈ Rn,

xT f̃ (t, x, z) ≤ γ∗γ1‖x‖2 + γ∗γ2‖z‖2,

m

∑
i=1
‖g̃i(t, x, z))‖2 ≤ (γ∗)2γ3‖x‖2 + (γ∗)2γ4‖z‖2.

Since for any t ≥ t0, x, z ∈ Rn, according to inequality (14), one has

xT f̃ (t, x, z) = xT [α(t) ◦ f (t, x, z)] ≤ γ∗xT f (t, x, z) ≤ γ∗γ1‖x‖2 + γ∗γ2‖z‖2.

By appling inequality (15), one can have the following inequality in the same way,

m

∑
i=1
‖g̃i(t, x, z)‖2 ≤ (γ∗)2γ3‖x‖2 + (γ∗)2γ4‖z‖2.

Next, take into account inequality (17), we have

γ∗γ1 + γ∗γ2 +
1
2
(γ∗)2(γ3 + γ4) < 0.

Then, according to Theorem II.4 in [6], the trivial solution of (5) is exponentially stable
in the mean square. Finally, in view of Lemma 4, we can come to the conclusion that the
trivial solution of (1) is also exponentially stable in the mean square.
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Remark 1. In fact, αi(t) and α−1
i (t), ∀t ≥ t0, are bound under the conditions of Theorem 1–2,

then the equivalence of the mean square exponential stability of system (1) and system (5) solutions
can be obtained by applying Lemma 4.

5. Numerical Examples

In this section, we discuss two kinds of systems with uncertain coefficients: scalar lin-
ear stochastic delay differential systems with logic impulses, and 2-dimensional nonlinear
stochastic delay differential systems with logic impulses. By applying the stability results
in Section 4, the coefficient conditions guaranteeing the mean square exponential stability
of these two systems are obtained.

Example 1. Consider the scalar linear stochastic delay differential systems with logic impulses
as follows:

ẏ(t) = (a(t)y(t) + b(t)y(t− h(t)))dt + c(t)y(t− τ(t))dw(t), t ≥ t0, t 6= tk,

∆y(tk) = (y(tk))
2k+1u(tk) +

1
2k y(tk)u(tk), t = tk, k ∈ N,

y(t) = ξ(t), t ∈ [t0 − r, t0].

(18)

where 0 ≤ t0 < t1 < . . . < tk < . . . are fixed impulsive points, lim
k→∞

tk = ∞. a(t), b(t), c(t),

τ(t) and h(t) are ontinuous functions in [t0, ∞). a := sup
t≥t0

a(t), b := sup
t≥t0

|b(t)|, c := sup
t≥t0

|c(t)|,

h := sup
t≥t0

h(t), τ := sup
t≥t0

τ(t), r := max{h, τ}. Initial function ξ(t) ∈ Cb
F0
([t0 − r, t0], R).

The logical function u(t) = p(y(t)), u(t) denotes the negation logical function of u(t),
i.e., u(t) = ¬p(y(t)), p : R→ {0, 1} is a piecewise function as follows:

p(s) =

{
δ2

2 ∼ 0, |s−
√

2
4 | ≥

√
2

4 ,
δ1

2 ∼ 1, |s−
√

2
4 | <

√
2

4 .

that is

p(s) =

{
δ2

2 ∼ 0, otherwise,
δ1

2 ∼ 1, 0 < s <
√

2
2 .

It can be seen that, the impulses will be selected from (y(tk))
2k+1 and

1
2k y(tk). Notice

that the condition for choosing (y(tk))
2k+1 for impulsive effect is 0 < y(tk) <

√
2

2
, which

implies (y(tk))
2k+1 ≤ 1

2k y(tk). Then, for ∀tk, k ∈ N, i = 1, 2, · · · , n,

0 ≤ Ik(y(tk)) = (y(tk))
2k+1 ≤ 1

2k y(tk), Jk(y(tk)) =
1
2k y(tk).

Let µ
ik
= 0, µik =

1
2k . Hence, γ∗ = 1, and

∞
∑

k=1

1
2k is convergent.

On the other hand, for t ≥ t0, x, z ∈ Rn, we have

x f (t, x, z) = a(t)x2 + b(t)xz

≤ (a(t) +
|b(t)|

2
)x2 +

|b(t)|
2

z2

≤ (a +
b
2
)x2 +

b
2

z2,
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and

(g(t, x, z))2 = (c(t)z)2 ≤ c2z2.

Let γ1 = a +
b
2

, γ2 =
b
2

, γ3 = 0, γ4 = c2. Then, according to Theorem 2, the trivial

solution of (18) is exponentially stable in a mean square if a +
b
2
+

b
2
+

1
2
(0 + c2) < 0, i.e.,

a + b +
1
2

c2 < 0.

For instance, consider the following linear stochastic delay differential systems with
logic impulses:

ẏ(t) = (−2y(t) + sin ty(t− | sin t|)dt + cos ty(t− | cos t|)dw(t), t ≥ t0, t 6= tk,

∆y(tk) = (y(tk))
2k+1u(tk) +

1
2k y(tk)u(tk), t = tk, k ∈ N,

y(t) = 0.5, t ∈ [−1, 0].

(19)

where tk = 2k, k = 1, 2, 3, · · · are fixed impulsive points. Let a(t) = −2, b(t) = sin t,
c(t) = cos t, h(t) = | sin t|, τ(t) = | cos t|, then a = −2, b = c = h = τ = r = 1. Obviously,

a + b +
1
2

c2 < 0. According to the above analysis, system (19) is exponentially stable in a
mean square, as shown in Figure 1.

Example 2. Consider the 2-dimensional nonlinear stochastic delay differential systems with logic
impulses as follows:

dy1(t) = (−a1y1(t)− a2y3
1(t) + a3y2(t− h(t)))dt + a4y2(t− τ(t))dw1(t),

dy2(t) = (−b1y2(t)− b2y3
2(t) + b3y1(t− h(t)))dt + b4y1(t− τ(t))dw2(t), t 6= tk,

∆y1(tk) =
1
3k y1(tk)u1(tk)−

1
3k y1(tk)u1(tk),

∆y2(tk) =
1
4k y2(tk)u2(tk)−

1
4k y2(tk)u2(tk), k ∈ N.

(20)

where ai, bi, i = 1, 2, 3, 4 is real numbers, 0 ≤ t0 < t1 < . . . < tk < . . . are fixed impulsive
points, lim

k→∞
tk = ∞, h(t), τ(t) are continuous functions on [t0, ∞), h = sup

t≥t0

h(t), τ = sup
t≥t0

τ(t),

r = max{h, τ}.

The logical functions ui, ūi : {δ1
2 , δ2

2}2 → {0, 1} are as follows:

u1(t) = p1(y1(t))∨p2(y2(t)), u1(t) = ¬u1(t) = p1(y1(t))↔ p2(y2(t));

u2(t) = p1(y1(t)) ∧ p2(y2(t)), u2(t) = ¬u2(t) = p1(y1(t)) ↑ p2(y2(t)).

The piecewise function pi : R→ {0, 1} has the following form:

p1(s) =
{

δ2
2 ∼ 0, |s− 0.1| ≥ 0.05,

δ1
2 ∼ 1, |s− 0.1| < 0.05.

p2(s) =
{

δ2
2 ∼ 0, |s− 0.05| ≥ 0.15,

δ1
2 ∼ 1, |s− 0.05| < 0.15.

that is

p1(s) =
{

δ2
2 ∼ 0, otherwise,

δ1
2 ∼ 1, 0.05 < s < 0.15.
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p2(s) =
{

δ2
2 ∼ 0, otherwise,

δ1
2 ∼ 1, −0.1 < s < 0.2.

here, q1(s) = s− 0.1, q2(s) = s− 0.05, 0.05 and 0.15 are the threshold values.

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

y(t)

Figure 1. The trajectory of y(t) in system (19).

Let p(y(tk)) = n2
i=1 pi(yi(tk)), φk(y1(tk)) = [

1
3k , − 1

3k ]y1(tk), φk(y2(tk)) =

[
1
4k , − 1

4k ]y2(tk), M1 = δ2(2, 1, 1, 2), M2 = δ2(1, 2, 2, 2). By applying the semi-tensor

product method, we have ∆yi(tk) = φk(yi(tk))Mi p(y(tk)), i = 1, 2.
Furthermore, for t ≥ 0,

e−
1
2 ≤ ∏

t0≤tk<t

1
1 + 1

3k

≤ α1(t) ≤ ∏
t0≤tk<t

1
1− 1

3k

≤ e
1
2 ,

e−
1
3 ≤ ∏

t0≤tk<t

1
1 + 1

4k

≤ α2(t) ≤ ∏
t0≤tk<t

1
1− 1

4k

≤ e
1
3 .

Obviously, α−1
1 (t) and α−1

2 (t) are bounded. Thus, there exists a constant M > 0 such

that ‖α−1(t)‖ ≤ M. Let χ = (e
1
2 , e

1
3 )T , α(t) = (α1(t), α2(t))T , it is easy to see that α(t) ≤ χ

for any t ≥ 0.
Assume that a2, b2 > 0. Then, for any t ≥ 0, x = (x1, x2)

T , z = (z1, z2)
T ,

x1 f1(t, x, z) = −a1x2
1 − a2x4

1 + a3x1z2

≤ −a1x2
1 +
|a3|

2
(x2

1 + z2
2)

= (−a1 +
|a3|

2
)x2

1 +
|a3|

2
z2

2,

and

x2 f2(t, x, z) = −b1x2
2 − b2x4

2 + b3x2z1

≤ −b1x2
2 +
|b3|

2
(x2

2 + z2
1)

= (−b1 +
|b3|

2
)x2

2 +
|b3|

2
z2

1.
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Meanwhile, g12(t, x, z) = 0, g21(t, x, z) = 0, g11(t, x, z) = a4z2, g22(t, x, z) = b4z1. Thus,

g2
11(t, x, z) = a2

4z2
2, g2

12(t, x, z) = 0, g2
21(t, x, z) = 0, g2

22(t, x, z) = b2
4z2

1.

The constant matrices are taken as follows:

A =

[
−a1 +

1
2 |a3| 0

0 −b1 +
1
2 |b3|

]
, B =

[
0 1

2 |a3|
1
2 |b3| 0

]
,

A1 = A2 = 0, B1 =

[
0 a2

4
0 0

]
, B2 =

[
0 0
b2

4 0

]
.

Then, according to Theorem 1, the trivial solution of (20) is exponentially stable in the
mean square if the following matrix is Hurwitz stable:

A + B +
1
2

χ∗ ◦ (A1 + A2 + B1 + B2) =

[
−a1 +

1
2 |a3| 1

2 |a3|+ 1
2 a2

4e
1
2

1
2 |b3|+ 1

2 b2
4e

1
3 −b1 +

1
2 |b3|

]
:= Ξ

where χ∗ := (χ, χ) ∈ R2×2.
We can set the conditions of the Hurwitz-stable matrix according to Lemma 2, two

examples are given below.
Case I. Let vector p = (1, 1)T , then Ξp� 0 holds if and only if

− a1 +
1
2
|a3|+

1
2
|a3|+

1
2

a2
4e

1
2 < 0,

1
2
|b3|+

1
2

b2
4e

1
3 − b1 +

1
2
|b3| < 0.

To solve the above inequalities, when the coefficients satisfy the following conditions:

a2 > 0, b2 > 0, a1 > |a3|+
1
2

a2
4e

1
2 , b1 > |b3|+

1
2

b2
4e

1
3 , (∗)

the trivial solution of (20) is exponentially stable in the mean square.
For instance, consider the following nonlinear stochastic delay differential systems

with logic impulses:

dy1(t) = (−1.9y1(t)− 0.9y3
1(t) + y2(t−

1
4
| sin t|))dt− y2(t−

1
2
| cos t|)dw1(t),

dy2(t) = (−1.8y2(t)− 0.8y3
2(t)− y1(t−

1
4
| sin t|))dt + y1(t−

1
2
| cos t|)dw2(t), t 6= tk,

∆y1(tk) =
1
3k y1(tk)u1(tk)−

1
3k y1(tk)u1(tk),

∆y2(tk) =
1
4k y2(tk)u2(tk)−

1
4k y2(tk)u2(tk), k ∈ N.

(21)

where tk = 2k, k = 1, 2, 3, · · · are fixed impulsive points. The initial condition is:
y1(t) = −0.3, y2(t) = 0.5, t ∈ [− 1

2 , 0]. Let a1 = 1.9, a2 = 0.9, a3 = 1, a4 = −1,
b1 = 1.8, b2 = 0.8, b3 = −1, b4 = 1 which are satisfying inequality condition (∗),
then, system (21) is exponentially stable in the mean square, showed in Figure 2.



Mathematics 2023, 11, 1613 15 of 17

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y(t)

 

 

y1(t)

y2(t)

Figure 2. The trajectory of y(t) in system (21).

Case II. Let vector p = (e−
1
3 , e−

1
2 )T , then Ξp� 0 holds if and only if

− e−
1
3 a1 +

1
2

e−
1
3 |a3|+

1
2

e−
1
2 |a3|+

1
2

a2
4 < 0,

1
2

e−
1
3 |b3|+

1
2

b2
4 − e−

1
2 b1 +

1
2

e−
1
2 |b3| < 0.

To solve the above inequalities, when the coefficients satisfy the following conditions:

a2 > 0, b2 > 0, a1 >
1
2
(1 + e−

1
6 )|a3|+

1
2

e
1
3 a2

4, b1 >
1
2
(1 + e

1
6 )|b3|+

1
2

e
1
2 b2

4, (∗∗)

the trivial solution of (20) is exponentially stable in the mean square.
For instance, consider the following nonlinear stochastic delay differential systems

with logic impulses:

dy1(t) = (−1.7y1(t)− 0.7y3
1(t) + y2(t−

1
2
| sin t|))dt− y2(t− | cos t|)dw1(t),

dy2(t) = (−2y2(t)− y3
2(t)− y1(t−

1
2
| sin t|))dt + y1(t− | cos t|)dw2(t), t 6= tk,

∆y1(tk) =
1
3k y1(tk)u1(tk)−

1
3k y1(tk)u1(tk),

∆y2(tk) =
1
4k y2(tk)u2(tk)−

1
4k y2(tk)u2(tk), k ∈ N.

(22)

where tk = 4k, k = 1, 2, 3, · · · are fixed impulsive points. The initial condition is: y1(t) = 0.5,
y2(t) = −0.3, t ∈ [−1, 0]. Clearly, a1 = 1.7, a2 = 0.7, a3 = 1, a4 = −1, b1 = 2,
b2 = 1, b3 = −1, b4 = 1, which satisfy inequality condition (∗∗), then, system (22) is
exponentially stable in the mean square, as shown in Figure 3.
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Figure 3. The trajectory of y(t) in system (22).

6. Discussion

In this paper, the mean square exponential stability of nonlinear stochastic delay
differential systems with logic impulses has been investigated. First of all, the nonlinear
stochastic delay differential system with logic impulses is constructed, and the impulsive
effects including logic function are transformed into algebraic expressions by using the
semi-tensor product method. Then, some stability criteria, which do not require the
construction of the Lyapunov functions, are provided for the nonlinear stochastic delay
differential systems with logic impulses by establishing the equivalence relation between
the solutions of the nonlinear stochastic delay differential systems with logic impulses
and a corresponding nonlinear stochastic delay differential system without impulses. At
last, two kinds of stochastic delay differential systems with uncertain parameters and
logic impulses are discussed. The coefficient conditions guaranteeing the mean square
exponential stability of these two systems are obtained by using our stability criteria.
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