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Abstract: This paper is dedicated to the setting and analysis of an optimal control problem for a
two-phase system composed of two non-linearly coupled Chan–Hilliard-type equations. The model
describes the evolution of a tumor cell fraction and a nutrient-rich extracellular water volume fraction.
The main objective of this paper is the identification of the system’s physical parameters, such as
the viscosities and the proliferation rate, in addition to the controllability of the system’s unknowns.
For this purpose, we introduce an adequate cost function to be optimized by analyzing a linearized
system, deriving the adjoint system, and defining the optimality condition. Eventually, we provide a
numerical simulation example illustrating the theoretical results. Finally, numerical simulations of a
tumor growing in two and three dimensions are carried out in order to illustrate the evolution of
such a clinical situation and to possibly suggest different treatment strategies.

Keywords: diffuse interface; tumor growth; Cahn–Hilliard equations; reaction diffusion equations;
optimal control; optimization; adjoint system; optimality condition
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1. Introduction

Consider the following two-phase Cahn–Hilliard equations (see for instance [1–4]) on
a bounded domain Ω ⊂ R3 with smooth boundary ∂Ω := Γ

ϕt = ν∆µ + P p(ϕ)(ψ− µ),

µ = −∆ϕ + F
′
(ϕ),

ψt = κ∆ψ−P p(ϕ)(ψ− µ),

∂nψ = ∂n ϕ = ∂nµ = 0, on Γ,

ϕ(t = 0) = ϕ0, ψ(t = 0) = ψ0.

(1)

Equation (1) describes the evolution of the tumor. The term P p(ϕ)(ψ− µ) justifies the
existence of proliferative cells. Cell proliferation (cell growth) refers to the rate at which
a cancer cell replicates its DNA and divides into two cells. If the tumor cells divide
more quickly, it describes that the cancer is developing fast or is more aggressive. In
clinical experiments, the rate of tumor cell proliferation is determined by conducting
particular tests. In some cases, clinical measurements to define cell proliferation can
be helpful to plan treatment or estimate treatment outcomes. Equation (1)3 describes
diffusive and proliferative terms. The negative sign beside the term P p(ϕ)(ψ− µ) justifies
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the consumption of nutrients during the tumor growth mechanism. Cells need enough
biomass to grow and divide in order to proliferate. Tumorous cells require a sufficient
quantity of nutrients, and this may be varying from a normal tissue to another one. In
system (1), the function ϕ ∈ [−1, 1] denotes the tumor cell volume fraction; that is ϕ = 1
in the fully tumorous case and −1 in the fully healthy case. In Equation (1)2, µ denotes a
chemical potential depending on ϕ and F, where F denotes the homogeneous Helmholtz
free energy density that is a term of the absolute temperature θ and a defined critical
temperature θ∗ when phase separation occurs. Generally, the potential function F takes the
form of a logarithmic potential

F(s) =
θ

2

(
(1 + s) log(

1 + s
2

) + (1− s)log(
1− s

2
)

)
− θ∗

2
(1− s2), (2)

where 0 < θ < θ∗. The potential function F is frequently approximated by a smooth
double-well potential with minima at ±1, which is associated with the Ginzburg–Landau
free-energy functional defining cell adhesion. For numerical simulation, the function F will
have the following form

F(s) =
1
4
(s2 − 1)2.

The second unknown in system (1) is the nutrient-rich extracellular water fraction ψ.
Eventually, p denotes a positive function modeling the proliferation rate. The most common
example for such a function is p(ϕ) = (1− ϕ2). In system (1), we introduced the parameters
ν (SI unit: kg.m−1.s−1) and κ (SI unit: kg.m−1.s−1) to model the tumorous phase viscosity
and nutrient phase viscosity, respectively. The parameter P is introduced as an amplitude-
type parameter of the proliferation rate. Eventually, ∂n denotes the normal derivative,
where n is the outer unit normal on the boundary Γ. For more details about the modeling
aspects and the mathematical well-posedness of system (1), we refer to [1] where a detailed
discussion is provided.

Formally, it is rather easy to see that defining the total energy as

E :=
1
2

∫
Ω
|∇ϕ|2dx +

1
2

∫
Ω
|ψ|2dx +

∫
Ω

F(ϕ) dx, (3)

The energy E is the total Ginzburg–Landau free energy. It consists of the spatial
variation of the tumor fraction, the variation of the nutrient fraction and the spatial average
of the homogeneous Helmholtz free energy density representing cell adhesion over the
time interval [0, T].

The system (1) enjoys the following energy balance

d E
dt

+ ν
∫

Ω
|∇µ|2dx + κ

∫
Ω
|∇ψ|2dx + P

∫
Ω

p(ϕ)(µ− ψ)2 dx = 0.

In this paper, we shall focus on the finite energy solutions of system (1) assuming finite
energy initial data. The existence and uniqueness of these solutions were obtained in [1].
The optimal control and parameters identification theory we shall develop for system (1)
relies in part on arguments developed there. It is worth mentioning that system (1) enjoys
as well the total mass conservation property. Indeed, we have∫

Ω
(ϕ(t) + ψ(t)) dx =

∫
Ω
(ϕ0 + ψ0) dx, for all t ≥ 0.

Mention that although system (1) admits weak solutions satisfying the total mass
conservation and the energy balance above, it is still not clear when starting with initial
data such that |ψ0| ≤ 1 and |ϕ0| ≤ 1 whether this property is propagated by the dynamics
or not. To the best of our knowledge, this property was shown only for a very simplified
Cahn–Hilliard model in [4]. In the numerical simulation, we observed that this property
holds as well for system (1), but we were not able to prove it rigorously.
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Nowadays, tumor growth mechanisms are subject to intensive studies, particularly
based on multiphase Cahn–Hilliard equations. It is merely impossible to provide an ex-
haustive literature review regarding the subject; we refer to [5–12] and references therein
for shortness. Very briefly, in the literature, there are two different models concerning appli-
cations of the Chan–Hilliard equations for tumor growth: continuum models (for instance,
see [9,13,14]) and cellular automata models (for more details, see [15–17]). The model we
are investigating in this paper belongs to the first family. The model at hand consists in a
coupling of an equation modeling tumor cell volume fraction ϕ with a diffusive equation
describing the evolution of the nutrient-rich extracellular water volume fraction ψ subjected
to the tumor through the chemical potential µ. Recently, different mathematical models
were introduced to model tumor growth evolution such as in [18–20]. In this contribution,
we introduce a multiplicative amplitude-type parameter P > 0 to the proliferation rate
modeled through the term p(ϕ)(ψ− µ) in comparison to the system investigated in [1].
In addition, instead of considering a dimensionless model, we consider the tumor phase
viscosity ν and the nutrient phase viscosity κ as in [21] where the continuous dependence
on the initial data and the system’s parameters ν, κ and P was shown.

The objective of this paper of a series dedicated to tumor growth is to investigate
the controllability of the system’s parameters and solution. The ultimate aim is to show
that the Cahn–Hilliard type and related models can be personalized depending on clinical
patient data. In a forthcoming work [22], we were able to use a feedback control approach
to nudge the theoretical solution toward the real tumor state of the patient based on the
clinical data; further development and application of these theoretical results are in process.
In this paper, we develop a classical control approach by introducing and optimizing
a cost function depending on a target solution and parameters. First, we linearize the
system (1) around specific constants (uP , uν, uκ) and use a Faedo–Galerkin approximation
to prove the existence of solutions to this system. Second, based on the cost function and its
Fréchet differentiability, we derive an adjoint system and deduce an optimality condition.
Eventually, we provide some numerical simulations illustrating the theoretical results.

It is worth mentioning that the vast majority of research related to the model presented
in this paper consists of establishing well-posedness and studying the existence of attractors.
Here, we focus on the validation of a Cahn–Hilliard-type model adapted to different
applications of tumor growth. We extend the approach of [1] to a parameter identification
problem. The associated minimization problem is based on the optimization of a cost
function defining reference states. The treatment of the optimal problem assumes specific
conditions for the proliferation function p and the potential function F. We obtain mainly
three significant results: the well-posedness of a linearized model, the derivation of an
adjoint system and the establishment of its well-posedness, and the verification of the
Fréchet differentiability of a particular operator solution. These results lead to the derivation
of the necessary optimal condition.

The paper is organized as follows: we start by introducing various definitions and
notations useful for the rest of this work. We also recall the well-posedness result of
the tumor growth model (1) given in [1]. In the third section, the study is structured
in four parts: we establish the existence and uniqueness of a solution to the linearized
problem. Then, we derive the adjoint system using the regularity of the solution of the
initial model (1) and treat its well-posed nature. We check the Fréchet differentiability
of the control to state map. Finally, the optimal necessary condition is also obtained. A
computational simulation of equations describing tumor growth in two and three space
dimensions are carried out using well-known numerical techniques. More specifically, we
used a Gauss–Newton type scheme to solve the control problem. The convergence of the
proposed approach is illustrated by a model test case. Then, we present a clinical case
developed in [3]. We illustrate the evolution of such a typical scenario to possibly suggest
different treatment strategies.
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2. Functional Setting, Assumptions and Previous Results

In this section, we summarize already known results on system (1) and the assump-
tions they are subjected to. Along this paper, we shall assume implicitly the following on
the double well and the proliferation rate functions F and p, respectively.

I. The potential function F ∈ R is such that F = F0(s) + λ(s), where F0 ∈ C2(R) and
λ ∈ C2(R) satisfying |λ′′(s)| ≤ α for all s ∈ R and α ≥ 0. In addition, we assume
that for all s ∈ R, c1, c2, c3 > 0 and c4 ∈ R

c1

(
1 + |s|ρ−2

)
≤ F

′′
0 (s) ≤ c2

(
1 + |s|ρ−2

)
,

F(s) ≥ c3|s|2 − c4,

for all ρ ∈ [2, 6).
II. The proliferation function p ∈ C0,1

loc(R) satisfies either one of the following proper-
ties for all s ∈ R

0 ≤ p(s) ≤ c5(1 + |s|q) and q ∈ [1, 9), c5 > 0,

|p′(s)| ≤ c6(1 + |s|q−1) and q ∈ [1, 4], c6 > 0.

Before going further, let us introduce the definitions and functional setting of the paper.
Let T > 0 be an arbitrary time, and define the following Sobolev spaces

H := L2(Ω) and V := H1(Ω),

associated with their usual scalar products (u, v)H :=
∫

Ω uv dx, and (u, v)V := (u, v)H +∫
∇u · ∇v dx, respectively, and the equivalent norms. The topological dual space of V is

V′ := H−1(Ω) and is endowed with its standard product. The dual product between V
and V′ will be noted 〈·, ·〉. Next, the Riez isomorphism A : V −→ V′ is defined by

〈Au, v〉 := (u, v)V , for all u, v ∈ V,

where the domain of the operator A by

D(A) =
{

ϕ ∈ H2(Ω) : ∂n ϕ = 0 on ∂Ω
}

Considering u ∈ D(A), the operator A is given by Au = −∆u + u. The restriction
of A to D(A) is an isomorphism from D(A) onto H, and we have 〈Au, A−1v∗〉 = 〈u, v∗〉
for all u ∈ V and v∗ ∈ V′, and 〈u∗, A−1v∗〉 = (u∗, v∗)V′ for all u∗, v∗ ∈ V′. Observe that
we have

〈v∗, u〉 =
∫

Ω v∗u dx if v∗ ∈ H, and d
dt‖v

∗‖2
V′ := 2〈∂tv∗, A−1v∗〉 for all v∗ ∈ H1(0, T; V′).

Now, we are able to recall the existence and uniqueness of the weak solution to
system (1) from [1]. More precisely, we have the following

Theorem 1 ([1]). For all (ϕ0, ψ0) ∈ V × H, problem (1) has a unique weak solution such that

ϕ ∈ L2(0, T; H3(Ω)), ψ ∈ L∞(0, T; V) ∩ L2(0, T, V),

F(ϕ) ∈ L∞(0, T; L1(Ω)),
√

p(ϕ)(ψ− µ) ∈ L2(0, T; H),
(4)

for all T > 0. Furthermore, if q ≤ 4, it follows that

ϕt, ψt ∈ L2
(

0, T; V
′)

.
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In addition, we recall the following from [21].

Theorem 2 ([21]). Let i = 1, 2. Then, for all (ϕ0,iψ0,i) ∈ V × H, the respective weak solutions
(ϕi, ψi) to system (1) with respective parameters νi, κi and Pi, satisfy for all t ∈ [0, T]

||ϕ2(t)− ϕ1(t)||V′ +||ψ2(t)− ψ1(t)||V′ + ν||ϕ2(t)− ϕ1(t)||L2(0,T;V)

+ κ||ψ2 − ψ1||L2(0,T;H) ≤ Λ(t)
(
||ϕ02 − ϕ01||V′ + ||ψ02 − ψ01||V′

)
+Const.

(∣∣P2 −P1
∣∣2 + ∣∣ν2 − ν1

∣∣2 + ∣∣κ2 − κ1
∣∣2),

where Λ is a continuous positive function depending on the norms of the initial data, F, p, Ω and
T. Const denotes a non-negative constant depending on the initial data and the parameters of
the system.

3. Parameters Identification and Optimal Problem

The parameters identification process is based on the following optimal problem.
Consider the functions ϕQ : Q −→ R and ϕΩ : Ω −→ R in L2(Q) and L2(Ω),

respectively. Let βQ, βΩ βν, βP and βκ non-negative constants. Let νd,Pd and κd be fixed
non-negative values. Eventually, let ν∞, P∞ and κ∞ be fixed values, and introduce the
admissible space

Uad =

{
(ν,P , κ) ∈ R3, such that 0 6 ν 6 ν∞, 0 ≤ P ≤ P∞, 0 6 κ 6 κ∞

}
.

Then, the optimal control problem reads

min J(ϕ, ν,P , κ) := min
{

βQ

2
||ϕ− ϕQ||2L2(Q) +

βΩ

2
||ϕ(T)− ϕΩ||2L2(Ω)

+
βν

2
|ν− νd|2 +

βP
2
|P − Pd|2 +

βκ

2
|κ − κd|2

}
,

where ϕ is solution of (1), and (ν,P , κ) ∈ Uad.

(5)

Let ϕ and ψ be solutions of the initial problem (1) with given boundary conditions. The
inverse problem of parameters identification (5) is to find the values of constants ν, P , and
κ. Since the functions ϕQ and ϕΩ are in L2(Q) and L2(Ω), respectively, the cost functional
J is therefore well-defined thanks to the regularity of the solutions ϕ and ψ provided by
Theorem 1. For the stability of the inverse problem (5), a separate study is planned in a
further work. Now, Theorems 1 and 2 allow us to define the following operator (denoted (1)
by abuse of notation)

S(ν,P , κ) = (ϕ, µ, ψ),

where (ϕ, µ, ψ) is the unique solution to system (1) corresponding to parameters (ν,P , κ)
and fixed initial data (ϕ0, ψ0) ∈ V × H. In the sequel, we shall use the notation
S1(ν,P , κ) = ϕ for the first component of S(ν,P , κ). Now, we are able to state the following

Theorem 3. Let ϕΩ ∈ H, and ϕQ ∈ L2(Q). Then, there exists at least one minimizer (ν∗,P∗, κ∗)
to the functional J such that ϕ∗ = S1(ν∗,P∗, κ∗), and we have

J(ϕ∗, ν∗,P∗, κ∗) = inf
(a, b, c) ∈ Uad
s.t. φ = S1(a, b, c)

J(φ, a, b, c). (6)
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Proof. We prove Theorem 3 using a direct minimization argument. Let

βν > 0, βχϕ > 0, βχψ > 0.

The functional J being positive, there exists a minimizing sequence (νn,Pn, κn) ∈ Uad
associated to the solution (ϕn, ψn) of system (1) with initial data (ϕ0, ψ0) ∈ H×V such that

J(ϕn, νn,Pn, κn) = inf
(a, b, c) ∈ Uad
s.t. φ = S1(a, b, c)

J(φ, a, b, c).

Using the property of compactness and the regularity of ϕn, and ψn along with the definition
of the space Uad, we infer that

ϕnj → ϕ∗ strongly in L2(Q) ∩ C0([0, T]; L2(Ω))

νnj → ν∗, Pnj → P∗, κnj → κ∗.

Thanks to the regularity of the parameter ϕ, the definition of the limit parameters (ν∗,P∗, κ∗)
in Uad and using the weak lower semicontinuity of the L2(Q) and L2(Ω) norms, we
obtain (3).

Now, we show the differentiability of the operator S and derive the optimality condi-
tions. First, we derive the linearized system and establish the associated
well-posedness result.

3.1. Study of the Linearized-State System

Let (ν,P , κ) ∈ Uad be fixed values associated to the solution (ϕ, µ, ψ) of system (1). Let
u = (uP , uν, uκ) ∈ R3 be an arbitrary vector and define (Pu, νu, κu) ∈ Uad as follows

Pu = P + uP , νu = ν + uν, κu = κ + uκ .

Next, let (ϕ, µ, ψ) and (ϕu, µu, ψu) be solutions of the following systems, respectively,
and ∂t denotes the partial derivative with respect to time

ϕt = ν∆µ + P p(ϕ)(ψ− µ),

µ = −∆ϕ + F′(ϕ),

ψt = κ∆ψ−P p(ϕ)(ψ− µ),

∂nψ = ∂n ϕ = ∂nµ = 0,

and



∂t ϕu = νu∆µu + Pu p(ϕu)(ψu − µu),

µu = −∆ϕu + F′(ϕu),

∂tψu = κu∆ψu −Pu p(ϕu)(ψu − µu),

∂nψu = ∂n ϕu = ∂nµu = 0.

(7)

Now, we linearize system (7)1 around the parameters (uν, uP , uκ). For this purpose,
let the variables (Φu, Σu, Ψu) be the solution to the following system

∂tΦu = ν∆Σ + uν∆µ + P p′(ϕ)(ψ− µ)Φu + P p(ϕ)(Ψu − Σu) + uP p(ϕ)(ψ− µ),

Σu = −∆Φu + F
′′
(ϕ)Φu,

∂tΨu = κ∆Ψu + uκ∆ψ−P p′(ϕ)(ψ− µ)Φu −P p(ϕ)(Ψu − Σu)− uP p(ϕ)(ψ− µ),

(8)

The system (8) is obtained using the linearization around the constants associated to
the system (1). The resulting system consists of two diffusive equations of the tumor phase
fraction and nutrient phase fraction. Both equations represent the spatial and temporal
variations of tumor cells and nutrient. A linear proliferation term is introduced into the
system by combining the measurements and using the regularity of the initial tumor
model (1).
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The system of Equation (8) is supplemented with the following initial and bound-
ary conditions

(Φu(0), Ψu(0)) = (Φu,0, Ψu,0), in Ω,

∂nΦu = ∂nΨu = ∂nΣu = 0, in Γ× [0, T].
(9)

Now, we are able to state the following result.

Theorem 4. Let (Φu,0, Ψu,0) ∈ V × H be a given initial datum. Then, systems (8)–(9) admit a
unique weak solution satisfying

Φu ∈ L∞(0, T; H) ∩ L2(0, T; H2(Ω)), Ψu ∈ L∞(0, T; H) ∩ L2(0, T; V),

Σu ∈ L2(0, T; L2(Ω)).

Proof. The existence of solutions can be achieved using classical approximation methods
such as Faedo–Galerkin and then passing to the limit in the obtained approximating smooth
solutions using compactness arguments. For shortness, we shall focus in the sequel on
the derivation of the a priori estimates necessary for the compactness arguments. Testing
Equation (8)1 against Φu, Equation (8)2 against −∆Φu as well as against DΣu (where
D denotes an arbitrary non-negative constant to be determined later on), and testing
Equation (8)3 against Ψu, we obtain after summing up the result of this formal calculation

1
2

d
dt
||Φu||2 +

1
2

d
dt
||Ψu||2 + ν||∆Φu||2 + κ||∇Ψu||2 + D||Σu||2

= uν

∫
Ω

µ∆Φu dx + P
∫

Ω
p(ϕ)(Ψu − Σu)Φu dx + P

∫
Ω

p′(ϕ)(ψ− µ)Φ2
u dx

+ uP
∫

Ω
p(ϕ)(ψ− µ)Φu dx + ν

∫
Ω

F
′′
(ϕ)Φu∆Φu dx + D

∫
Ω

F
′′
(ϕ)ΦuΣu dx

− D
∫

Ω
∆ΦuΣu dx− P

∫
Ω

p(ϕ)(Ψu − Σu)Ψu dx− P
∫

Ω
p′(ϕ)(ψ− µ)ΦuΨu dx

− uP
∫

Ω
p(ϕ)(ψ− µ)Ψu dx− uκ

∫
Ω
∇ψ · ∇Ψu dx

:= I1 + I2 + I3 + ... + I11. (10)

Now, we provide estimates for the terms Ik, for k = 1, · · · 11, in (10). We shall use implicitly
Cauchy–Schwarz and Young inequalities. The first and second terms can be estimated
as follows

|I1| =
∣∣∣∣uν

∫
Ω

µ∆Φu

∣∣∣∣ 6 ν

8
||∆Φu||2 +

2
ν
||µ||2|uν|2,

|I2| =
∣∣∣∣P ∫Ω

p(ϕ)(Ψu − Σu)Φu

∣∣∣∣ 6 P2β2
1,ϕ(t)

(
2
D

+
1
4

)
||Φu||2 +

D
8
||Σu||2 + ||Ψu||2,

where, thanks to [1]

β1,ϕ(t) = Const.(1 + ||ϕ(t)||qL∞(Ω)
) ∈ L2(0, T) for q 6 4.

Next, we can straightforwardly write

|I3| =
∣∣∣∣P ∫Ω

p′(ϕ)(ψ− µ)Φ2
u

∣∣∣∣ 6 Pβ2,ϕ(t)
∫

Ω
|ψ− µ| |Φu| |Φu| dx

6 Pβ2,ϕ(t)||ψ− µ||L6(Ω)||Φu||L3(Ω)||Φu||L2(Ω)

6
ν

8
(||∆Φu||2 + ||Φu||2) +

2
ν
P2β2

2,ϕ(t)
((
||ψ||2V + ||µ||2V

)
||Φu||2

)
,
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and

|I4| =
∣∣∣∣uP ∫Ω

p(ϕ)(ψ− µ)Φu

∣∣∣∣ 6 |uP |β1,ϕ(t)||ψ− µ|| ||Φu||

6
1
2
|uP |2 +

1
2

β2
1,ϕ(t)

(
||ψ||2V + ||µ||2V

)
||Φu||2,

where
β2,ϕ(t) = Const.(1 + ||ϕ(t)||q−1

L∞(Ω)
) ∈ L2(0, T) for q 6 4.

Estimates of the terms depending on the potential function F are also based on Cauchy–
Schwarz and Young inequalities and read as follows

|I5| =
∣∣∣∣ν ∫Ω

F
′′
(ϕ)Φu∆Φu 6

ν

8
||∆Φu||2 + 2νβ2

3,ϕ(t)||Φu||2,

|I6| =
∣∣∣∣D ∫

Ω
F
′′
(ϕ)ΦuΣu 6

D
8
||Σu||2 + 2Dβ2

3,ϕ(t)||Φu||2,

where
β3,ϕ(t) = Const.(1 + ||ϕ||ρ−2

L∞(Ω)
) ∈ L2(0, T) for ρ 6 6.

Equivalently, we have

|I7| =
∣∣∣∣D ∫

Ω
∆ΦuΣu

∣∣∣∣ 6 D
8
||Σu||2 + 2D||∆Φu||2,

and

I8 = −P
∫

Ω
p(ϕ)(Ψu − Σu)Ψu = −P

∫
Ω

p(ϕ)Ψ2
u + P

∫
Ω

p(ϕ)ΣuΨu

6
D
8
||Σu||2 + 2

P2

D
β2

1,ϕ(t)||Ψu||2 −P
∫

Ω
p(ϕ)Ψ2

u,

and

|I9| =
∣∣∣∣P ∫Ω

p′(ϕ)(ψ− µ)ΦuΨu

∣∣∣∣
6

ν

8
||∆Φu||2 +

ν

8
||Φu||2 +

2
ν
P2β2

2,ϕ(t)
(
||ψ||2V + ||µ||2V

)
||Ψu||2.

The last couple of terms can be estimated as follows

|I10| =
∣∣∣∣uP ∫Ω

p(ϕ)(ψ− µ)Ψu

∣∣∣∣ 6 1
2
|uP |2 +

1
2

β2
1,ϕ(t)

(
||ψ||2V + ||µ||2V

)
||Ψu||2,

|I11| =
∣∣∣∣uκ

∫
Ω
∇ψ · ∇Ψu

∣∣∣∣ 6 1
2κ
||∇ψ||2|uκ |2 +

κ

2
||∇Ψu||2.

Collecting all the previous estimates, and picking up D such that D 6
ν

4
, we obtain

d
dt
||Φu||2 +

d
dt
||Ψu||2 + ν||∆Φu||2 + κ||∇Ψu||2 + D||Σu||2 + P

∫
Ω p(ϕ)Ψ2

u

6 γ1(t)||Φu||2 + γ2(t)‖Ψu‖2 + 2|uP |2 +
2
ν
||µ||2|uν|2 +

1
2κ
||∇ψu||2|uκ |2,

(11)

with
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γ1(t) := β2
1,ϕ(t)

(
||ψ||2V + ||µ||2V + P2

(
2
D

+
1
4

))
+

2
ν
P2β2

2,ϕ(t)
(
||ψ||2V + ||µ||2V

)
+ 2(D + ν)β2

3,ϕ(t) +
ν

4
,

γ2(t) := β2
1,ϕ(t)

(
2
D
P2 +

(
||ψ||2V + ||µ||2V

))
+

2
ν
P2β2

2,ϕ(t)
(
‖ψ‖2

V + ‖µ‖2
V
)
+ 1.

Setting γ(t) and δ(t) as

γ(t) = max
06t6T

[γ1(t), γ2(t)], and δ(t) = max
06t6T

[
1,

2
ν
||µ||2,

1
2κ
||∇ψ||2

]
,

leads, thanks to (11) along with Gronwall’s lemma, to

‖Φu(t)‖+ ‖Ψu(t)‖+ ν‖Φ‖L2(0,T;H2(Ω)) + κ‖Ψu‖L2(0,T;V)

6 2e
∫ t

0 γ(s) ds max
{

1,
∫ t

0
δ(s) ds

}
[ ‖Φu,0‖+ ‖Ψu,0‖+ |uP |+ |uν|+ |uκ | ].

All in all, we infer the following

||Φu||L∞(0,T;L2(Ω))∩L2(0,T;H2(Ω)) 6 Const.(‖Φu,0‖+ ‖Ψu,0‖+ |uP |+ |uν|+ |uκ |),

||Ψu||L∞(0,T;L2(Ω))∩L2(0,T;H1(Ω)) 6 Const.(‖Φu,0‖+ ‖Ψu,0‖+ |uP |+ |uν|+ |uκ |),

||Σu||L2(0,T.L2(Ω)) 6 Const.(‖Φu,0‖+ ‖Ψu,0‖+ |uP |+ |uν|+ |uκ |).

These bounds are sufficient to pass to the limit in the approximating solutions, and they
consequently show the existence of solutions on [0, T] for an arbitrary T > 0.

The uniqueness of these solutions follows from the linearity of the difference system
obtained from the systems associated to solutions (Φu,i, Ψu,i) for i = 1, 2. The same
argument used in Section 3.1 leads to the desired result. Indeed, assuming uP = uν =
uκ = 0 for simplicity, then we obtain Φu = Φu,2 −Φu,1 = 0, Ψu = Ψu,2 − Ψu,1 = 0, and
Σu = Σu,2 − Σu,1 = 0 where Φu,i, Ψu,i, and Σu,i for i = 1, 2 denote two solutions system (8)
with initial conditions

Φu,i(0) = Φ0
u,i, Ψu,i(0) = Ψ0

u,i, for i = 1, 2.

More precisely, for given two solutions of system (8), we have
∂tΦu = ν∆Σ + ûν∆µ + P p′(ϕ)(ψ− µ)Φu + P p(ϕ)(Ψu − Σu) + ûP p(ϕ)(ψ− µ),

Σu = −∆Φu + F
′′
(ϕ)Φu,

∂tΨu = κ∆Ψu + ûκ∆ψ−P p′(ϕ)(ψ− µ)Φu −P p(ϕ)(Ψu − Σu)− ûP p(ϕ)(ψ− µ),

where
ûν = uν2 − uν1 , ûP = uP2 − uP1 , ûκ = uκ2 − uκ1 .

Following the estimates of the previous section, we readily obtain

||Φu||L∞(0,T;L2(Ω))∩L2(0,T;H2(Ω))

6 Const.
(
‖Φ0

u,1 −Φ0
u,2‖+ ‖Ψ0

u,1 −Ψ0
u,2‖+ |ûP |+ |ûν|+ |ûκ |

)
,
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||Ψu||L∞(0,T;L2(Ω))∩L2(0,T;H1(Ω))

6 Const.
(
‖Φ0

u,1 −Φ0
u,2‖+ ‖Ψ0

u,1 −Ψ0
u,2‖+ |ûP |+ |ûν|+ |ûκ |

)
,

||Σu||L2(0,T.L2(Ω)) 6 Const.
(
‖Φ0

u,1 −Φ0
u,2‖+ ‖Ψ0

u,1 −Ψ0
u,2‖+ |ûP |+ |ûν|+ |ûκ |

)
.

In particular, setting

Φ0
u,1 = Φ0

u,2, Ψ0
u,1 = Ψ0

u,2, and ûP = ûν = ûκ = 0,

the uniqueness follows, and the proof of Theorem 4 is completed.

3.2. Fréchet Differentiability of the Control to State Map

This section is dedicated to the proof of the following result regarding the Fréchet
differentiability of the control to state map.

Theorem 5. Let (uν, uP , uκ) ∈ R3 such that (νu,Pu, κu) ∈ Uad. Then, there exists a non-negative
constant, independent of (uν, uP , uκ), such that

||(θu, ρu, ξu)||Y 6 Const.,

where θu = ϕu − ϕ−Φu, ρu = µu − µ− Σu, ξu = ψu − ψ−Ψu, and Y is the product space

Y =
[
L2(0, T; H2(Ω)) ∩ H1(0, T; (H2

N(Ω))
′
) ∩ C0([0, T]; L2(Ω))

]
×L2(Q)×

[
L2(0, T; L2(Ω)) ∩ L∞(0, T; V) ∩ H1(0, T; L2(Ω))

]
.

In particular, the solution operator S : R3 → Y is Fréchet differentiable.

Proof. The starting point is Taylor’s theorem with an integral remainder for an arbitrary
function g ∈ C2(R), and all a, x ∈ R,

g(x) = g(a) + g′(a)(x− a) + (x− a)2
∫ 1

0
g′′(a + z(x− a))(1− z) dz.

For the function F, using the definitions of (θu, ρu, ξu), we can write

F(ϕu)− F(ϕ)− F′(ϕ)Φu = F′(ϕ)θu + (ϕu − ϕ)2RF,

with

RF =
∫ 1

0
F′′(ϕ + z(ϕu − ϕ))(1− z) dz.

This property holds for both functions p and F. First, notice that

Pu p(ϕu)(ψu − µu)−P p(ϕ)(ψ− µ)−P p(ϕ)(Ψu − Σu)−P p′(ϕ)Φu(ψ− µ)

− uP p(ϕ)(ψ− µ) = (Pu −P)(p(ϕu)− p(ϕ))(ψu − ψ− (µu − µ))

+ P(p(ϕu)− p(ϕ))(ψu − ψ− (µu − µ)) + (Pu −P)(p(ϕu)− p(ϕ))(ψ− µ)

+ P(p(ϕu)− p(ϕ)− p′(ϕ)Φu)(ψ− µ) + (Pu −P)p(ϕ)(ψu − ψ− (µu − µ))

+ P p(ϕ)(ψu − ψ− µu + µ−Ψu + Σu) + (Pu −P − uP )p(ϕ)(ψ− µ).
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Formal calculation leads to

Pu p(ϕu)(ψu − µu)−P p(ϕ)(ψ− µ)−P p(ϕ)(Ψu − Σu)−P p′(ϕ)Φu(ψ− µ)

− uP p(ϕ)(ψ− µ) = (Pu −P)(p(ϕu)− p(ϕ))(ξu − ρu) + P(p(ϕu)− p(ϕ))(ξu − ρu)

+ (Pu −P)(p(ϕu)− p(ϕ))(ψ− µ) + P
(

p′(ϕ)θu + (ϕu − ϕ)2Rp
)
(ψ− µ)

+ Pu p(ϕ)(ξu − ρu) =: Xϕ,ψ,ν,P ,κ .

Using the regularity in Theorems 1 and 4, we have

θu ∈ L∞(0, T, V) ∩ L2(0, T; H2(Ω) ∩ H3(Ω)),

ρu ∈ L2(0, T; L2(Ω)), and ξu ∈ L∞(0, T; V) ∩ L2(0, T; H2(Ω)),

with (θu, ρu, ξu) satisfying

∂tθu = ν∆ρu + Xϕ,ψ,ν,P ,κ , in Q,

ρu = F′′(ϕ)θu + (ϕu − ϕ)2RF − ∆θu, in Q,

∂tξu = κ∆ξu − Xϕ,ψ,ν,P ,κ , in Q,

(12)

with initial and boundary conditions

∂nθ = ∂ρu = ∂nξu = 0, on Γ× [0, T],

θu(0) = 0, ξu(0) = 0.

Using Cauchy–Schwarz and Young inequalities, we infer the following estimate for Xϕ,ψ,ν,P ,κ,

||Xϕ,ψ,ν,P ,κ ||2L2(0,s,L2(Ω)) 6 Const.
(
||θu||2L2(0,s,L2(Ω)) + ||ξu||2L2(0,s,L2(Ω)) + ||ρu||2L2(0,s,L2(Ω)) + 1

)
.

Next, testing Equation (12)3 against ξu, we obtain

1
2

d
dt
||ξu||2 + κ||∇ξu||2 = −

∫
Ω

Xϕ,ψ,ν,P ,κξu dx.

Using Young’s inequality, we obtain

1
2

d
dt
||ξu||2 + κ||∇ξu||2 6 Const.

(
||θu||2 + ||ξu||2 + ||ρu||2 + 1

)
. (13)

Integrating the previous equation from 0 to s ∈ [0, T], we infer

||ξu(s)||2L2(Ω) + κ||∇ξu||2L2(0,s,L2(Ω))

6 Const.
(
||θu||2L2(0,s,L2(Ω)) + ||ξu||2L2(0,s,L2(Ω)) + ||ρu||2L2(0,s,L2(Ω)) + 1

)
.

Testing Equation (12)1 against θu and Equation (12)2 against Dθu and Eρu as well (where D
and E denote arbitrary non-negative constants to be determined later on), we obtain

1
2

d
dt
||θu||2 + (ν− E)||∆θu||2 + E||ρu||2 + D||∇θu||2 =

∫
Ω

Xϕ,ψ,ν,P ,κθu dx + D
∫

Ω
ρuθu dx

− D
∫

Ω

(
F
′′
(ϕ)θu + (ϕu − ϕ)2RF

)
θu dx + E

∫
Ω

(
F
′′
(ϕ)θu + (ϕu − ϕ)2RF

)
ρu dx

+ (ν− E)
∫

Ω

(
F
′′
(ϕ)θu + (ϕu − ϕ)2RF

)
∆θu dx.

Using once more Young’s inequality and optimizing in E, we obtain
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1
2

d
dt
||θu||2 +ν||∆θu||2 + E||ρu||2 + D||∇θu||2 6 Const.

(
||θu||2 + ||ρu||+ ||ξu||2 + 1

)
. (14)

Combining the inequalities (13) and (14), and integrating from 0 to s ∈ [0, T], and optimizing
in E, we obtain

||θu(s)||2L2(Ω) +||ξu(s)||2L2(Ω) + κ||∇ξu||2L2(0,s;L2(Ω) + ν||∆θu||2L2(0,s;L2(Ω) + E||ρu||2L2(0,s;L2(Ω)

+ D||∇θu||2L2(0,s;L2(Ω) 6 Const.
(∫ s

0

(
||θu||2 + ||ξu||2 + ||ρu||2

)
dt + 1

)
.

Thanks to Growall’s Lemma, we infer

||θu||L∞(0,T;L2(Ω)∩L2(0,T;H2(Ω)) + ||ξu||L∞(0,T;L2(Ω)∩L2(0,T;H1(Ω)) + ||ρu||L2(Q) 6 Const.

Next, testing Equation (12)3 against (ξu)t, we obtain

||(ξu)t||2L2(Q) + κ||∇ξu||L∞(0,T;L2(Ω)) 6 Const.

Now, using elliptic regularity and Equations (12)1 and (12)3, we can write

||ξu||L2(0,T;H2(Ω)) 6 ||(ξu)t||L2(Q) + ||Xϕ,ψ,ν,P ,κ ||L2(Q) 6 Const.

||θu||L2(0,T;H2(Ω))

6 Const.
(
||θu||L2(0,T;H1(Ω)) + ||ρu||L2(Q) + ||F′′(ϕ)θu + (ϕu − ϕ)2RF||L2(Q)

)
6 Const.

Eventually, testing Equation (12)1 against any arbitrary function η ∈ L2(0, T; H2(Ω))
leads to ∫ T

0
〈(θu)t, η〉dt =

∫ T

0

∫
Ω

(
ρu∆η + Xϕ,ψ,ν,P ,κη

)
6
(
||ρu||L2(Q) + ||Xϕ,ψ,ν,P ,κ ||L2(Q)

)
||η||L2(0,T;H2(Ω)).

In particular,

||ξu||L2(0,T;H2(Ω)) + ||θu||L2(0,T;H2(Ω))∩H1(0,T;(H2
N(Ω))′ ) 6 Const.

This finishes the proof of Theorem 5.

3.3. The Adjoint System

This section is dedicated to the setting and the mathematical analysis of the adjoint
system associated to system (1). First, we define (φ, χ, σ) ∈ (L2(0, T; V))3 as test functions,
and we write the weak formulation of the state system (1) reading as:

Find (ϕ, µ, ψ) ∈ (L2(0, T; V))3 such that:

〈ϕt, φ〉+ ν(∇µ,∇φ) = P (p(ϕ)(ψ− µ), φ),

(µ, χ) = (∇ϕ,∇χ) + (F′(ϕ), χ), (15)

〈ψt, σ〉+ κ(∇ψ,∇σ) = −P (p(ϕ)(ψ− µ), σ).
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Let T > 0 be an arbitrary time, and define the following function

A(ϕ, µ, ψ, ν,P , κ, φ, χ, σ) =
∫ T

0

∫
Ω

ϕtφ dtdx + ν
∫ T

0

∫
Ω
∇µ · ∇φ dtdx +

∫ T

0

∫
Ω

ψtσ dtdx

+ κ
∫ T

0

∫
Ω
∇ψ · ∇σ dtdx−

∫ T

0

∫
Ω
P p(ϕ)(ψ− µ)φ dtdx

+
∫ T

0

∫
Ω
P p(ϕ)(ψ− µ)σ dtdx.

Now, let (ϕ, ψ) be solutions of system (1); then, we claim that the adjoint system,
derived according to the state system (1), reads

−φt + ν∆χ− νF
′′
(ϕ)χ = P p′(ϕ)(ψ− µ)φ−P p′(ϕ)(ψ− µ)σ + P∆(p(ϕ)φ)

−P p(ϕ)F
′′
(ϕ)φ−P∆(p(ϕ)σ) + P p(ϕ)F

′′
(ϕ)σ + βQ(ϕ− ϕQ), in Q,

χ = ∆φ, in Q,

−σt = κ∆σ−P p(ϕ)σ + P p(ϕ)φ, in Q,

φ(T) = βΩ(ϕ(T)− ϕΩ), σ(T) = 0, in Ω,

∂nφ = ∂nχ = ∂nσ = 0, in Γ× [0, T].
(16)

Indeed, integrate (15) by part to obtain

∫ T

0

∫
Ω

ϕtφ dtdx =
∫

Ω

[
ϕφ

]T

0
dx−

∫ T

0

∫
Ω

ϕφt dtdx,

∫ T

0

∫
Ω
∇µ · ∇φ dtdx =

∫ T

0

∫
Γ

µ
∂φ

∂n
dtdγ−

∫ T

0

∫
Ω

µ∆φ dtdx

=
∫ T

0

∫
Γ

µ
∂φ

∂n
dtdγ +

∫ T

0

∫
Ω

∆ϕ∆φ−
∫ T

0

∫
Ω

F′(ϕ)∆φ dtdx,

and ∫ T

0

∫
Ω

ψtσ dtdx =
∫

Ω

[
ψσ

]T

0
dx−

∫ T

0

∫
Ω

ψσt dtdx,

∫ T

0

∫
Ω
∇ψ · ∇σ dtdx =

∫ T

0

∫
Γ

ψ
∂σ

∂n
dtdγ−

∫ T

0

∫
Ω

ψ∆σ dtdx.

Now, we define the following Lagrangian function

L(ϕ, µ, ψ, ν,P , κ, φ, χ, σ) = J(ϕ, ν,P , κ)−A(ϕ, µ, ψ, ν,P , κ, φ, χ, σ).

Therefore, differentiating L with respect to the state variable ϕ, we obtain

−φt + ν∆χ− νF
′′
(ϕ)χ = P p′(ϕ)(ψ− µ)φ−P p′(ϕ)(ψ− µ)σ + P∆(p(ϕ)φ)

−P p(ϕ)F
′′
(ϕ)φ−P∆(p(ϕ)σ) + P p(ϕ)F

′′
(ϕ)σ + βQ(ϕ− ϕQ), in Q,

χ = ∆φ, in Q,

φ(T) = βΩ(ϕ(T)− ϕΩ), in Ω,

∂nφ = ∂nχ = 0, in Γ× [0, T].
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Equivalently, differentiating L with respect to the state variable ψ leads to
−σt = κ∆σ−P p(ϕ)σ + P p(ϕ)φ, in Q,

σ(T) = 0, in Ω,

∂nσ = 0. in Γ× [0, T],

Gathering the latter systems together gives Sa. Next, we have the following well-
posedness result regarding system Sa.

Theorem 6. The adjoint system Sa has a unique solution (φ, χ, σ), associated to the unique weak
solution (ϕ, µ, ψ) of system (1), satisfying for any arbitrary time T > 0

φ ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; H2(Ω)), χ ∈ L2(0, T; L2(Ω)),

σ ∈ L∞(0, T; L2(Ω)) ∩ L∞(0, T; H1(Ω)) ∩ L2(0, T; H2(Ω)),

and for all t ∈ [0, T] and η ∈ H2
N(Ω) :=

{
ϕ ∈ H2(Ω); ∂n ϕ = 0 on Γ

}
, we have

0 = 〈−φt, η〉H2 + ν
∫

Ω
χ∆η dx− ν

∫
Ω

F
′′
(ϕ)χη dx−P

∫
Ω

p′(ϕ)(ψ− µ)φη dx

+ P
∫

Ω
p′(ϕ)(ψ− µ)ση dx−P

∫
Ω

p(ϕ)φ∆η dx + P
∫

Ω
p(ϕ)F

′′
(ϕ)φη dx

+ P
∫

Ω
p(ϕ)σ∆η dx−P

∫
Ω

p(ϕ)F
′′
(ϕ)ση dx− βQ

∫
Ω
(ϕ− ϕQ)η dx.

Proof. As in the proof of Theorem 4, we focus only on the a priori estimates. First, we test
(Sa)3 agaisnt σ, and use Cauchy–Schwarz and Young inequalities to obtain

1
2

d
dt
||σ(s)||2 + κ||∇σ||2 + P

∫
Ω

p(ϕ)σ2 dx = P
∫

Ω
p(ϕ)σφ dx

6 Pβ1,ϕ(t)‖σ‖‖φ‖ 6 ‖φ‖2 +
1
4
P2β2

1,ϕ(t)‖σ‖2.

Integrating this inequality with respect to time from s ∈ [0, T) to T, we infer

||σ(s)||2 + κ||∇σ||2L2(s,T;L2(Ω)) + P
∫ T

s

∫
Ω

p(ϕ)σ2 dtdx

6 2||φ||2L2(s,T;L2(Ω)) + C(s)||σ||2L2(s,T;L2(Ω)),

where C(s) is a non-negative constant depending on P and the proliferation function p.
Next, testing the equation (Sa)1 against φ and the equation (Sa)2 against Dχ, with D being
a non-negative constant to be determined later, and summing up the obtained equalities,
we obtain

−1
2

d
dt
||φ||2 + ν||∆φ||2 + D||χ||2 = ν

∫
Ω

F
′′
(ϕ)χφ dx + P

∫
Ω

p′(ϕ)(ψ− µ)φ2 dx

− P
∫

Ω
p′(ϕ)(ψ− µ)σφ dx + P

∫
Ω

p(ϕ)φ∆φ dx−P
∫

Ω
p(ϕ)F

′′
(ϕ)φ2 dx

− P
∫

Ω
p(ϕ)σ∆φ dx + P

∫
Ω

p(ϕ)F
′′
(ϕ)σφ dx + βQ

∫
Ω
(ϕ− ϕQ)φ dx + D‖∆φ‖2

:= J1 + J2 + J3 + ... + J9. (17)
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The terms Jk for k = 1, . . . , 9 can be easily estimated, thanks to Cauchy–Schwarz and Young
inequalities, as follows: to derive the a priori estimates for the terms Jk, for k = 1, · · · , 9,
we use Cauchy–Schwartz and Young inequalities and proceed,

|J1| =
∣∣∣∣ν ∫Ω

F
′′
(ϕ)χφ dx

∣∣∣∣ 6 D
2
||χ||2 + ν2

2D
β2

3,ϕ(t)||φ||
2,

|J2| =
∣∣∣∣P ∫Ω

p′(ϕ)(ψ− µ)φ2 dx
∣∣∣∣ 6 ν

6
||∆φ||2 +

(
ν

6
+

3P2

2ν
β2

2,ϕ(t)(||ψ||
2
V + ||µ||2V)

)
||φ||2,

|J3| =
∣∣∣∣P ∫Ω

p′(ϕ)(ψ− µ)φσ dx
∣∣∣∣ 6 1

2
||σ||2 + 1

2
P2β2

2,ϕ(t)(||ψ||
2
V + ||µ||2V)||φ||

2,

|J4| =
∣∣∣∣P ∫Ω

p(ϕ)φ∆φ dx
∣∣∣∣ 6 ν

6
||∆φ||2 + 3P2

2ν
β2

1,ϕ(t)||φ||
2,

|J5| =
∣∣∣∣P ∫Ω

p(ϕ)F
′′
(ϕ)|φ|2 dx

∣∣∣∣ 6 P2 (β2
1,ϕ(t) + β2

3,ϕ(t)
)
||φ||2,

|J6| =
∣∣∣∣P ∫Ω

p(ϕ)σ∆φ dx
∣∣∣∣ 6 ν

6
||∆φ||2 + 3P2

2ν
β2

1,ϕ(t)||σ||
2,

and

|J7| =
∣∣∣∣P ∫Ω

p(ϕ)F
′′
(ϕ)σφ dx

∣∣∣∣ 6 P4 (β2
1,ϕ(t) + β2

3,ϕ(t)
)(
||φ||2 + ||σ||2

)
,

|J8| =
∣∣∣∣βQ

∫
Ω
(ϕ− ϕQ)φ dx

∣∣∣∣ 6 βQ

2
‖ϕ− ϕQ‖2 +

βQ

2
‖φ‖2.

Gathering the previous estimates together, and picking a D such that D 6
ν

4
, along

with (17), we obtain

− d
dt

(
||φ||2 + ||σ||2

)
+ν||∆φ||2 + D||χ||2 + κ||∇σ||2 6

βQ

2
||ϕ− ϕQ||2L2(Ω)

+Const.
(

1 + β2
1,ϕ(t) + β2

2,ϕ(t) + β2
3,ϕ(t)

)(
||φ||2 + ||σ||2

)
.

(18)

Integrating (18) from s ∈ [0, T] to T leads to

||φ(s)||2 +||σ(s)||2 + ν||∆φ||2L2(s,T;H) + D||χ||2L2(s,T;H) + κ||∇σ||2L2(s,T;H)

6 Const.
∫ T

s

(
||φ||2 + ||σ||2

)
dτ +

βQ

2
||ϕ− ϕQ||2L2(Q) + Const.||ϕ(T)− ϕΩ||2L2(Ω).

(19)

Eventually, thanks to Gronwall’s lemma, we obtain

||φ||L∞(0,T;L2(Ω))∩L2(0,T;H2(Ω)) 6 Const. ||σ||L∞(0,T;H1(Ω)) 6 Const.

Uniqueness: Now, we show the uniqueness of the weak solutions of the adjoint system
Sa. Let φi, σi, for i = 1, 2, be a solution of the adjoint system Sa, and set Φ = φ2 − φ1,
Ψ = σ2 − σ1, and Σ = χ2 − χ1. Straightforward calculation leads to the following system
of difference
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−Φt + ν∆Σ− νF
′′
(ϕ)Σ = P p′(ϕ)(ψ− µ)Φ−P p′(ϕ)(ψ− µ)Ψ + P∆(p(ϕ)Φ)

−P p(ϕ)F
′′
(ϕ)Φ−P∆(p(ϕ)Ψ) + P p(ϕ)F

′′
(ϕ)Ψ, in Q,

Σ = ∆Φ, in Q,

−Ψt = κ∆Ψ−P p(ϕ)Ψ + P p(ϕ)Φ, in Q,

Φ(T) = 0, Ψ(T) = 0, in Ω,

∂nΦ = ∂nΣ = ∂nΨ = 0, in Γ× [0, T].

Similar estimates to the ones developed in the part of the existence of solution, namely for
the J terms above, we end up with an equivalent inequality to (19). Specifically, we obtain

||Φ(s)||2 + ||Ψ(s)||2 + ν||∆Φ||2L2(s,T;H) + D||Σ||2L2(s,T;H) + κ||∇Ψ||2L2(s,T;H)

6 Const.
∫ T

s

(
||Φ||2 + ||Ψ||2

)
dτ,

which gives the uniqueness of the solutions of system Sa.

3.4. Necessary Optimality Condition

This section is dedicated to the formulation of the optimality condition. Specifically,
the main result of this section is the following:

Theorem 7. Let (ϕ0, ψ0) ∈ V × H be an initial data, and (ϕΩ, ϕQ) ∈ H × L2(Q). In addition,
let (ν∗,P∗, κ∗) ∈ Uad denote a minimizer to (5) with corresponding state variables (ϕ∗, µ∗, ψ∗)
and adjoint variables (φ, χ, σ). Then, (ν∗,P∗, κ∗) necessarily satisfies∫ T

0

∫
Ω
(ν− ν∗)∇µ∗∇φ dtdx +

∫ T

0

∫
Ω
(P −P∗)p(ϕ∗)(ψ∗ − µ∗)φ dtdx

−
∫ T

0

∫
Ω
(P −P∗)p(ϕ∗)(ψ∗ − µ∗)σ dtdx +

∫ T

0

∫
Ω
(κ − κ∗)∇ψ∗∇σ dtdx

+ βν(ν∗ − νd)(ν− ν∗) + βP (P∗ −Pd)(P −P∗) + βκ(κ∗ − κd)(κ − κ∗) > 0, (20)

where (ν,P , κ) ∈ Uad.

Proof. We start the proof by testing Equation (Sa)1 against Φu in L2(0, T; H2(Ω)). We
obtain∫

Ω
βΩ(ϕ∗(T)− ϕΩ)Φu(T) dx +

∫ T

0

∫
Ω

βQ(ϕ∗ − ϕQ)Φu dtdx =
∫ T

0
〈(Φu)t, φ〉H1(Ω) dt

+ ν∗

∫ T

0

∫
Ω
(∆Φu − F′′(ϕ∗)Φu)χ dtdx− P∗

∫ T

0

∫
Ω

p′(ϕ∗)(ψ∗ − µ∗)φΦu dtdx

+ P∗
∫ T

0

∫
Ω

p′(ϕ∗)(ψ∗ − µ∗)σΦu dtdx + P∗
∫ T

0

∫
Ω

p(ϕ∗)φ∆Φu dtdx

−P∗
∫ T

0

∫
Ω

p(ϕ∗)F
′′
(ϕ∗)φΦu dtdx−P∗

∫ T

0

∫
Ω

p(ϕ∗)σ∆Φu dtdx

+ P∗
∫ T

0

∫
Ω

p(ϕ∗)F
′′
(ϕ∗)σΦu dtdx.
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Using the definition of the linearized system, particularly Equation (8)2, we can write∫
Ω

βΩ(ϕ∗(T)− ϕΩ)Φu(T) dx +
∫ T

0

∫
Ω

βQ(ϕ∗ − ϕQ)Φu dtdx

=
∫ T

0
〈(Φu)t, φ〉H1(Ω)dt− ν∗

∫ T

0

∫
Ω

Σu∆φ dtdx

− P∗
∫ T

0

∫
Ω

p′(ϕ∗)(ψ∗ − µ∗)φΦu dtdx + P∗
∫ T

0

∫
Ω

p′(ϕ∗)(ψ∗ − µ∗)σΦu dtdx

− P∗
∫ T

0

∫
Ω

p(ϕ∗)φΣu dtdx + P∗
∫ T

0

∫
Ω

p(ϕ∗)σΣu dtdx.

Now, testing Equation (8)1 against φ, we obtain∫ T

0
〈(Φu)t, φ〉H1(Ω) dt− ν∗

∫ T

0

∫
Ω

Σu∆φ dtdx + uν

∫ T

0

∫
Ω
∇µ∇φ dtdx

= P
∫ T

0

∫
Ω

p(ϕ∗)(Ψu − Σu)φ dtdx + P∗
∫ T

0

∫
Ω

p′(ϕ∗)Φu(ψ∗ − µ∗)φ dtdx

+ uP
∫ T

0

∫
Ω

p(ϕ∗)(ψ∗ − µ∗)φ dtdx.

Moreover, testing Equation (Sa)3 against Ψu leads to

−
∫ T

0
〈σt, Ψu〉 dt = κ∗

∫ T

0

∫
Ω

∆σΨu dtdx−P∗
∫ T

0

∫
Ω

p(ϕ∗)σΨu dtdx

+ P∗
∫ T

0

∫
Ω

p(ϕ∗)φΨu dtdx.

Eventually, testing Equation (8)3 against σ, we obtain∫ T

0
〈(Ψu)t, σ〉 dt = κ∗

∫ T

0

∫
Ω

∆Ψuσ dtdx + uκ

∫ T

0

∫
Ω

∆ψσ dtdx

− P∗
∫ T

0

∫
Ω

p(ϕ∗)(Ψu − Σu)σ dtdx− P∗
∫ T

0

∫
Ω

p′(ϕ∗)Φu(ψ∗ − µ∗)σ dtdx

− uP
∫ T

0

∫
Ω

p(ϕ∗)(ψ∗ − µ∗)σ dtdx.

Gathering the previous inequalities, we infer

∫
Ω

βΩ(ϕ∗(T)− ϕΩ)Φu(T) dx +
∫ T

0

∫
Ω

βQ(ϕ∗ − ϕQ)Φu dtdx = uν

∫ T

0

∫
Ω
∇µ∗∇φ dtdx

+ uκ

∫ T

0

∫
Ω
∇ψ∗ · ∇σ dtdx + uP

∫ T

0

∫
Ω

p(ϕ∗)(ψ∗ − µ∗)φ dtdx

− uP
∫ T

0

∫
Ω

p(ϕ∗)(ψ∗ − µ∗)σ dtdx. (21)

Now, we define the function g as follows

g(ν,P , κ) = J(S1(ν,P , κ), ν,P , κ).

Using the convexity of the space Uad, we have

(g′(ν∗,P∗, κ∗),U ) > 0, with U =

 ν− ν∗
P −P∗
κ − κ∗.

.
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Furthermore, we have

g′(ν,P , κ) = J′ϕ(S1(ν,P , κ), ν,P , κ) ◦ S ′1(ν,P , κ) +

 J′ν(S1(ν,P , κ), ν,P , κ)
J′P (S1(ν,P , κ), ν,P , κ)
J′κ(S1(ν,P , κ), ν,P , κ)

,

where J′ϕ(S1(ν,P , κ), ν,P , κ) denotes the Fréchet derivative of J with respect to ϕ. In addi-
tion, J′ν, J′P and J′κ denote the Fréchet derivative of J with respect to ν,P and κ, respectively.
That is,

J′ϕ(S1(ν,P , κ), ν,P , κ)(ξ) = βQ

∫ T

0

∫
Ω
(ϕ− ϕQ)ξ dtdx + βΩ

∫
Ω
(ϕ(T)− ϕΩ)ξ(T) dx,

and

J′ν(S1(ν,P , κ), ν,P , κ)(w) = βν(ν− νd)w,

J′P (S1(ν,P , κ), ν,P , κ)(w) = βP (P −Pd)w,

J′κ(S1(ν,P , κ), ν,P , κ)(w) = βκ(κ − κd)w.

Thanks to system (8), we have

S ′1(ν∗,P∗, κ∗).U = Φu.

Combining these results to equality (21) leads to the optimal condition (20).

4. Numerical Illustration

In this section, we present a numerical simulation complementing the theoretical result
regarding the optimization problem. The simulation is performed based on the following
data: Ω is the square [−1, 1]2 or the cube [−1, 1]3 depending on the dimension. The target
parameters are set to

(νd,Pd, κd) = (0.01, 3, 0.02).

The code is implemented in FreeFem++ using a finite element method for space
meshing and Euler method for time discretization. More precisely,

ϕn+1 − ϕn

∆t
= ν∆µn + P p(ϕn)(ψn − µn),

µn = −∆ϕn + F
′
(ϕn),

ψn+1 − ψn

∆t
= κ∆ψn −P p(ϕn)(ψn − µn),

ϕn(t = 0) = ϕ0, ψn(t = 0) = ψ0,

(22)

where (ϕn, ψn), µn denote the approximate values of the solution (ϕ, ψ) to system (1) and
the chemical potential µ, respectively, at time tn = n ∆t with ∆t being the time step. Define
the vector solution for the optimal control (5) as

Xν,P ,κ =

 ν
P
κ

.

Let X(i)
ν,P ,κ be the ith iteration approximate solution of the optimization problem and ε

be a precision parameter for the stop criteria of the Gauss–Newton scheme (see Algorithm 1).
Set ν0, P0, and κ0 as initial guess values. The expression of the gradient matrix J′ is derived
using the system (16).
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Algorithm 1 Gauss-Newton scheme
procedure GAUSS–NEWTON(ϕ0, ψ0)

ν← ν0, P ← P0, κ ← κ0
i← 0
while (ν > 0 and ν 6 ν∞) and (P > 0 and P 6 P∞) and (κ > 0 and κ 6 κ∞) do

for t← 0, · · · , T do
Solve the problem (22)

end for
Find S(i) such that

(J f (X(i)
ν,P ,κ)

T J f (X(i)
ν,P ,κ)S

(i)
ν,P ,κ = −(J f (X(i)

ν,P ,κ))
T f (X(i)

ν,P ,κ) + r(i)

with

||r(i)|| 6 δ(i) ||(J f (X(i)
ν,P ,κ))

T f (X(i)
ν,P ,κ)||

X(i+1)
ν,P ,κ ← X(i)

ν,P ,κ + S(i)
ν,P ,κ

if (|ν− νd| 6 ε) and (|P − Pd| 6 ε) and (|κ − κd| 6 ε) then
Stop

end if
i← i + 1

end while
return (ν,P , κ)

end procedure

Denotes by β the vector

β =



βΩ

βQ

βν

βP

βκ


.

Here, we focus on unconstrained non-linear least-squares minimization

min
X∈R3

f (Xν,P ,κ) =
1
2

5

∑
i=1

βi × [ri(Xν,P ,κ)]
2,

where βi is the ith element of the vector β, and ri(Xν,P ,κ) is the ith element of the vector
function r defined as follows

r(Xν,P ,κ) =



||ϕ− ϕQ||L2(Q)

||ϕ(T)− ϕΩ||L2(Ω)

|ν− νd|

|P − Pd|

|κ − κd|


.

The map r: R3 −→ R5 is continuously differentiable with a 5× 3 Jacobian matrix

[J f (Xν,P ,κ)]i,j =
∂ri(Xν,P ,κ)

∂jXν,P ,κ
.
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Define

B :=

y =

y1
y2
y3

 ∈ R3 :
0 6 y1 6 ν∞
0 6 y2 6 P∞
0 6 y3 6 κ∞

, (23)

to be the closed subspace in R3. In the classical Gauss–Newton method (refer to [23]), we
approximate r in the neighborhood of an iterate X(i)

ν,P ,κ by its linearization

r(y) ≈ r(X(i)
ν,P ,κ) + J f (X(i)

ν,P ,κ)(y− X(i)
ν,P ,κ),

where J f (Xν,P ,κ) ∈ Rm×n is the Jacobian matrix of first derivatives of r. Denote by δ(i) a
specified boundary tolerance that depends on the maximum bound of the subspace B given
in (23). Denote by Q(X)

Q(X) =
5

∑
i=1

ri(X)∇2 ri(X),

where ∇2 stands for the Hessian matrix. Thus, the iterate constant δ(i) must verify the
following inequality for fixed 0 < δ < 1

0 6 δ(i) 6
δ− ||Q(X(i)

ν,P ,κ)(J f (X(i)
ν,P ,κ))

T J f (X(i)
ν,P ,κ))

−1||

1 + ||Q(X(i)
ν,P ,κ)(J f (X(i)

ν,P ,κ))
T J f (X(i)

ν,P ,κ))
−1||

.

A natural condition criterion for the iterative process is that the relative residue satisfies

||(J f (X(i)
ν,P ,κ))

T J f (X(i)
ν,P ,κ)S

(i)
ν,P ,κ + (J f (X(i)

ν,P ,κ))
T f (X(i)

ν,P ,κ)||

||(J f (X(i)
ν,P ,κ))

T f (X(i)
ν,P ,κ)||

6 δ(i).

4.1. Validation Test

The initial data of the tumor cell parameter ϕ0 and the nutrient fraction ψ0 are de-
fined as

ϕ0 = −0.5× e−x2−y2−z2
,

ψ0 = 0.5× e−x2−y2−z2
,

where x, y, and z are the coordinates of the space meshing. The parameters (βQ, βΩ), (ε, δ)
and (βν, βP , βκ) are set to

βν = 0.3, βP = 0.4, βκ = 0.35,
ε = 10−6, δ = 0.8,
βΩ = 0.25, βQ = 0.25.

(24)

These particular choices are justified by a sensitivity analysis of the solutions with
respect to the system’s parameters [21]. More specifically, the optimal regularization
parameters in Tikhonov regularization are deduced according to the discrepancy principle
based on an error estimators to control the convergence accuracy [24–26].

Figures 1–6 show the evolution of the solutions ϕ and ψ of the Cahn–Hilliard system
at T = 0, 5, 15, 30, 40 and eventually 50, where it can be seen that the solution goes to a
stationary point state which is in full alignment with the theoretical results (see also [1,2]).
The optimal parameters that the algorithm converges to (associated to these figures) are

ν = 0.0099591, P = 2.999607, κ = 0.01995.
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The simulation shows that picking up large values of βν = βP = βκ (in the simulation,
these values were set as in (24)), and βΩ and βQ being set to 0.25 leads to a rather fast
convergence (algebraic) to the target parameters (νd,Pd, κd). However, we observed that
picking up larger values for βΩ and βQ, the algorithm we developed does not converge to
the target values. We believe that a deeper numerical analysis of this algorithm is needed to
provide a suitable range of the ”guess” parameters for the convergence to hold. Eventually,
in the case of νd = Pd = κd = 0, the algorithm is still converging, but by definition of the
cost functional, toward the values set to have the solutions (ϕΩ, ϕQ) with a suitable choice
of the constants βΩ and βQ.

Figure 1. The fraction ϕ (left), and ψ (right) after T = 0.

Figure 2. The fraction ϕ (left) and ψ (right) after T = 5.

Figure 3. The fraction ϕ (left) and ψ (right) after T = 15.

Figure 4. The fraction ϕ (left) and ψ (right) after T = 30.
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Figure 5. The fraction ϕ (left) and ψ (right) after T = 40.

Figure 6. The fraction ϕ (left) and ψ (right) after T = 50.

Eventually, Figures 7 and 8 show the evolution of the physical parameters in terms
of the algorithm iterations. The initial parameters ν and κ are chosen about 10−3 and P
about 2.2, and one can see (power type) convergence toward the target values

(νd,Pd, κd) = (0.01, 3, 0.02).

Figure 7. The variation of the viscosity ν (left) and κ (right) in terms of algorithm iterations.

Figure 8. The proliferation rate P in terms of algorithm iterations.
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4.2. Tumor Growth Computation
4.2.1. Two-Dimensional (2D) Case

In this section, we present a tumor growth example introduced in [3]. The simulation
is performed based on the following data: the domain Ω is considered as the square [−1, 1]2.
The target parameters are set as (νd,Pd, κd) = (0.01, 3, 0.02). The initial data of the tumor
cell parameter ϕ0 and the nutrient fraction ψ0 are defined as

ϕ0 = −
(

1
2.1

x2 +
1

1.9
y2
)
∈ [−0.3, 0.3],

ψ0 = 1,

where x and y are the coordinates of the space meshing. The parameters (βΩ, βQ),
(βν, βP , βκ), and (ε, δ) are set to

βν = 0.05, βP = 0.025, βκ = 0.075,

βΩ = 0.2, βQ = 0.25,

ε = 10−6, δ = 0.8.

Figures 9–13 show the evolution of the solutions ϕ and ψ of the Cahn–Hilliard system
at T = 0, 5, 15, 30 and eventually 50 related to the following optimal parameters

ν = 0.009981, P = 2.998602, κ = 0.019905.

Note that the fraction ψ describing the nutrient phase in the system is decreasing. This
is justifying the nutrient consumption through the evolution of the tumor.

Figure 14 shows the total energy in the system. The total energy in system (1) decreases
with respect to the evolution of time.

Figure 9. The fraction ϕ (left) and ψ (right) after T = 0.

Figure 10. The fraction ϕ (left) and ψ (right) after T = 5.
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Figure 11. The fraction ϕ (left) and ψ (right) after T = 15.

Figure 12. The fraction ϕ (left) and ψ (right) after T = 30.

Figure 13. The fraction ϕ (left) and ψ (right) after T = 50.

Figure 14. The total energy defined in (3) of the system.

4.2.2. Three-Dimensional (3D) Case

In this section, we provide the 3D version of the previous example of tumor growth as
defined in [3]. The simulation is carried out of the basis of the data below. The domain Ω
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is considered as the cube [−1, 1]3. The initial data of the tumor cell parameter ϕ0 and the
nutrient fraction ψ0 are defined as

ϕ0 = −
(

1
2.1

x2 +
1

1.9
y2 +

1
1.9

z2
)
∈ [−0.3, 0.3],

ψ0 = 1,

where x, y, and z are the coordinates of the space meshing. The parameters (δ, ε), (βΩ, βQ),
and (βν, βP , βκ) are set to

βν = 0.05, βP = 0.025, βκ = 0.075,

βΩ = 0.25, βQ = 0.25,

ε = 10−6, δ = 0.8.

Figures 15–19 show the evolution of the tumor parameter ϕ and nutrient concentration
ψ solutions of the Cahn–Hilliard system (1) at times T = 0, 15, 30, 40 and eventually 50.
Note that the profile of the cell nutrient phase fraction is converted to tumor behavior
at the end of the simulation. This explains the introduction of the proliferation function
describing the evolution of the tumor by the consumption of nutrients.

Figure 15. The fraction ϕ (left) and ψ (right) after T = 0.

Figure 16. The fraction ϕ (left) and ψ (right) after T = 15.

Figure 17. The fraction ϕ (left) and ψ (right) after T = 30.
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Figure 18. The fraction ϕ (left) and ψ (right) after T = 40.

Figure 19. The fraction ϕ (left) and ψ (right) after T = 50.

Figures 15–19 illustrate the profile of the solutions ϕ and ψ of the Cahn–Hilliard system
related to the following optimal parameters

ν = 0.009901, P = 2.99892, κ = 0.019987.

We observe in Figure 20 that the total energy E defined in (3) of system (1) decreases in
terms of time.

Figure 20. The total energy defined in (3) of the system.

5. Conclusions

This paper is part of a series dedicated to the optimal control and data assimilation
applied to tumor growth modeled by Cahn–Hilliard-type equations. In this contribution,
we developed an optimal control theory coupled to the physical parameters identification
process for the Cahn–Hilliard-type model (1). This was achieved by introducing and
optimizing a cost function depending on both the functional solutions of system (1) and its
physical parameters. This approach was inspired and motivated by the well-posedness
results regarding system (1) in [1] and the sensitivity analysis results in [21]. We use a
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gradient descent method to solve the optimal problem (5). The derivation of the adjoint
system allows us to express the gradient formula of the objective function in an easy way.
Numerical computations show a fast convergence of the algorithm. The scheme is always
stable with an appropriate CFL condition on the time step ∆t and mesh size h. The inclusion
of the confidence region variation into the Newton–Gauss method ensures the convergence
of the optimal problem in the Uad admissible space. The numerical simulation is in full
alignment with the theoretical results developed in this paper.
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