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Abstract: This paper presents a review of the theory and applications of memristor cellular nonlinear
networks. By mapping the physical processes to the memristive framework, all resistive switching
devices can be modeled. The idea is to find a state variable that presents with high accuracy the
important features of the system, its dynamics, and time evolution in response to the inputs of
the memristor. In order to develop a new design of memristor-based cellular nonlinear networks
(MCNN), new circuital and mathematical memristor models need to be introduced. In this way,
implementation into new software packages for computer-aided integrated circuit realization can
be achieved. Another challenging problem is studying the complex behavior of MCNN models
by means of local activity theory and generalizing it for various test cases. An application of the
hardware implementation of these models can be found in nanostructures.
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1. Introduction

Classical computers have the unique property to be algorithmically programmable,
which was invented by J. von Neumann and which means they use mainly binary logic
and arithmetic on discrete valued data (binary codes). It is known that the Turing machine
is based on the mathematical concept of a universal machine in which the neurons work as
threshold logic, using the main structure of the brain. In 1948, transistors were invented, as
well as integrated circuits in 1960, and this made computer architecture a very practical,
cheap and ubiquitous commodity. Soon after that, however, it was discovered that the
neurons operate in a different way. Since, at this time, the electronic industry was developed
using a huge number of transistors, a nanoscale size and many pixels, new characteristics of
modern computers appeared [1]: parallel processors using the two-dimensional structure
of silicon and optical technology; two-dimensional cellular structures together with a
sub-100 nm size, giving power dissipation and wire length constraints; millions of analog
sensory signals, which were organized in arrays and embedded in sensory computing
devices; image flows, such as multi-spectral visual and tactile, becoming typical data;
bionic array interfaces appearing, which made possible the mimicking of complex living
organisms, such as muscle or retina prostheses; spatiotemporal devices, which made
it possible to produce high complexity in time and space; software systems with high-
performance grids and mobile communications with standardized interfaces. Nowadays,
we find many dynamically programmable tiny sensor processors arranged in fixed arrays or
on ad hoc platforms. For this reason, a new architecture is needed to develop spatiotemporal
control and processing software. The invention of cellular nonlinear networks (CNN) [1]
makes all this possible.
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CNN consist of cells [1] that are connected to each other within small neighborhoods.
This is the algorithm for the construction of the programmable cellular dynamics of CNN
by elementary instruction:

(a) we take a dynamical system; let us call it a cell (with input u, state x and output y);
(b) we place the cells into the spatial grid with their neighborhood relations;
(c) we process the spatial interactions between the dynamic cells, being programmable

(called the cloning template or gene, or simply the template);
(d) we add cellular sensors for the application of CNN in image processing.

In this review, we shall present the theory and applications of memristor cellular
nonlinear networks (MCNN) for pattern formation. Memristor devices can be integrated
into the CNN architecture [2] in a standard way by incorporating their dynamics into the
state equation of the CNN cell. We can assume that the default parameter values of the
memristor models are obtained by analyzing different charge transportation phenomena.
In the investigations of memristor models [3,4], a standard resistor of the RC subcircuit is
replaced by a memristor. However, in this case, the well-known internal driving point plot
analysis [3], which is applied for the derivation of most of all the templates of standard CNN,
cannot be considered. For this reason, second-order cells are realized by taking first-order
memristors into account. Applying techniques from the theory of nonlinear dynamics [5]
in a comprehensive investigation of cell state equations enables a full characterization of
the dynamic behavior of MCNN. Several cell topologies can be obtained by taking different
memristor devices into account. The preliminary investigations [4] have shown that new
CNN information-processing algorithms with clearly improved calculation efficiency can be
derived for non-volatile memristor networks. The variability of circuit elements, especially
those of memristors, can be modeled by normal random values and can be assumed
in memristor cell simulations to determine admissible variation intervals ensuring local
activity in CNN cells. Therefore, if the variability causes locally passive cell behavior, new
cell topologies can be derived in order to ensure the emergence of complexity.

The true origin of emergent complexity in nanostructures needs a much deeper new
generalization of local activity [6]. The numerous complex phenomena unified under
this mathematically precise principle include self-organization, dissipative structures, syn-
ergetics, order from disorder, far from thermodynamic equilibrium, collective behavior,
edge of chaos, etc. Following the work of Leon Chua [6], in which the theory of local
activity is applied to reaction–diffusion CNN, there is only a small number of papers
on the generalization of this method for a broader class of CNN. Despite the impressive
growth of memristor-related papers [7–38], there are few results on networks of memristive
devices. Realized nano-scale CNN have been considered in the investigations dealing with
image processing problems [1]. Nano-scale CNN have, so far, been studied via numerical
integrations. No analytical results have been derived to date.

This review paper is organized as follows. In Section 2, we present the basic definitions
of memristors, together with a survey of their investigations. In this section, we give some
basic equations concerning the dynamics of memristors. In Section 3, we make a survey of
investigations of CNN. Because of the applications of CNN for pattern generation, which
will be discussed later, we shall consider the reaction–diffusion CNN model. Section 4
presents the local activity theory and its applications in studying the dynamics of reaction–
diffusion systems. In Section 5, we consider one model of reaction–diffusion memristor
cellular nonlinear networks, and we shall study its dynamics by applying the local activity
theory. One of the possible applications of MCNN is pattern formation. This is why a short
survey on pattern generation in MCNN is provided in Section 6. The main types of patterns
arising in the study of MCNN models will be presented.

2. Memristors Basic Definitions

Memristors were introduced by Leon Chua in [7], and, since then, they have become
an important emerging element for memory and neuromorphic computing applications
(see Figure 1). Novel materials and technologies for these nanostructures [12] have been
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found and developed for industry. Many mathematical models involving memristors
have been presented [13], which reproduce the complex dynamics in nano-devices. For
the investigation of the nonlinear dynamics [1] of memristor-based circuits [14,15], it is
important to have accurate, general and simple models in order to develop novel hybrid [16]
hardware architectures. In this way, memory storage is combined with data processing
in the same physical location, which leads to an explanation of the behavior of biological
systems. Several physical models have been obtained [17–21] that can study the phenomena
characterizing these nano-devices. In [19], some mathematical models of memristors have
been presented. Applying mathematical methods, the dynamic behavior of different
MCNN models has been studied [31,32,34,35,39]. The first model of a titanium dioxide-
based nanostructure was introduced by Williams in [20]. It is a simple model in which
the boundary conditions in the state equation are not specified. More complex models
appeared after that, in which the nonlinear effects on ionic transport and the definition of
the behavior at the boundaries were taken into account. For example, the model proposed
by Joglekar in [21] allows only single-valued state flux characteristics under any sign-
varying periodic input. In Biolek’s model [22], only multi-valued state flux characteristics
are considered with the same excitation type. In [23], a comparison of the dynamic behavior
of titanium dioxide memristor circuits under different boundary models, such as the BCM
model [12], is provided. All these nonlinear circuits are very sensitive to the accuracy
of modeling. Moreover, in [20–22], memristor models based on other materials, such as
tantalum oxide and niobium dioxide, are developed. In recent investigations, numerical
solutions for the strongly nonlinear differential-algebraic equations occur, such as SPICE
(Simulation Program with Integrated Circuit Emphasis) simulation [2].
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Figure 1. Memristor presentation. Four elements are given: resistor, capacitor, inductor and memris-
tor, with their circuit representations (https://www.britannica.com/technology/memristor).

In order to give completeness to this review paper, we shall introduce memristor
dynamics [7,14]. Memristors are invented as single electrical port systems, with the de-
pendence of their conduction properties on the memory of the port variables—current
or voltage.

Let us denote, by ϕ(t), the memory of port voltage v(t) by

ϕ(t) =
∫ t

−∞
v(τ)dτ. (1)

https://www.britannica.com/technology/memristor
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In the literature, this is known as voltage momentum or flux [7]. We shall denote, by
q(t), the memory of port current i(t)

q(t) =
∫ t

−∞
i(τ)dτ (2)

or the current momentum, which physically corresponds to the charge; i is the current.
In [7], the ideal memristor is introduced as a bipole with its constitutive relation given by
an algebraic equation:

F(ϕ(t), q(t)) = 0

We now show the analytical expressions for both a flux-controlled ideal memristor
and a charge-controlled ideal memristor:

q(t) = f (ϕ(t)) (3)

ϕ(t) = g(q(t)) (4)

Equations (3) and (4) describe the ideal behavior of these two main classes of mem-
ristive systems. Let us consider the flux-controlled class (3); then, we can obtain the
current–voltage (i− v) expression by means of derivatives of the flux-charge (ϕ− q) with
respect to time

dq
dt

=
d f
dϕ

dϕ

dt
(5)

In (5), we see that i = dq
dt is the current through the bipole, and v = dϕ

dt is the voltage
across its terminals; therefore, it can be rewritten as follows:

i(t) = G(ϕ(t))v(t) (6)

where G(ϕ) is the memductance of the flux-controlled ideal memristor.
If we want to study the dynamics of a larger circuit made of ideal memristors, it is not

important that the initial condition of the memristor state variable is explicitly presented in
the (i− v) domain.

The formal mathematical definition of the memristor, together with its circuit theoreti-
cal properties, is given in [7]. In general, the description of memristor can be described by
the system [7]:

v = R(x, i)i (7)

dx
dt

= f (x, i) (8)

where the voltage across the memristor is denoted by v, the current of the memristor
is denoted by i, the state variable is x = (x1, x2, · · · , xn), which depends on external
voltages or currents, and the memristance is R(x, i); f (x, i) is a real function.

As stated at the beginning of this section, in the literature, different memristor models
have been proposed. The voltage v–current i relationship expressed by (7) can be found
in many of the models in which the control waveform is in current form. When the mem-
ristance is presented as the series between two variable resistances, which are associated
with the insulating and conductive layers of the nano-film, the state of the system is given
in the form x = w

D ∈ [0, 1]. Here, w is the width of the conductive layer, normalized with
respect to the entire length, D, of the device. The linear drift model, introduced by Williams
in [20], with the time derivative of the state proportional to the input waveform in the
current form, is considered under the assumption of low electric fields. It does not take
into account the boundary behavior, whereas the nonlinear drift models from [10,11] have
the rate of change of the state proportional to the product between the input waveform
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in a current form and a window function, accounting for nonlinear dynamical behavior.
Suitable boundary conditions are imposed upon it.

3. Cellular Nonlinear Networks

CNN were invented by L. Chua and L. Yang in their papers [1,40] and formed a
new class of system that processes information in real-time. Soon after, CNN showed
very promissive and important applications [41–43]. CNN copy some properties from
neurobiology and are arranged in integrated circuits (see Figure 2). The spatial structure
of CNN consists of simple dynamical systems, which are called cells. The state equa-
tions of CNN are described by dynamical systems, which present the local dynamic law,
the coupling law between the cells. Additionally, there are some initial and boundary
conditions. Usually, the cell coupling is considered within the frame of the local neigh-
borhood of each cell. The dynamics of CNN are nonlinear, because they are described by
nonlinear ordinary differential equations. Therefore, CNN [42,44] have a very compact
representation, given by a system of coupled ordinary differential equations. Nevertheless,
CNN can present very complex dynamical behavior, such as chaos, self-organization and
pattern formation. Moreover, nonlinear oscillations and wave propagation can appear.
Reaction–diffusion CNN [40,45–47] have been studied and applied for modeling different
complex phenomena [48–53]. In this way, novel approaches for information processing are
developed [2,31–33,35,47,51,54] through the dynamics of complex nonlinear systems.
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Figure 2. CNN architecture: (a) spatial interactions; (b) circuit implementation; (c) output.

The CNN Universal Machine (CNN-UM) was invented by T. Roska for a single CNN
with local and logical memory [41,50,55]. Some time ago, analog CNN-UM chip hardware
implementation was developed, as well. In this chip, a parallel computer with stored
programmability is included, which allows the possibility for real-time processing of
multivariate data. The applications of CNN in image processing and pattern recognition
are given in [41,56]. The developed systems, such as the EyeRis 1.3 system, the MIPA4k and
SCAMP—5, are mainly sensor-processor systems for high-speed vision, with rates of more
than 20 kHz. However, they have low resolution, as, for example, 176X144 pixels in the
EyeRis 1.3 system, which makes their application limited in practice. In the future, CNN-
UM chip-realization nano-elements can be implemented instead of the conventional CMOS
technology, which has a big cell size. In this sense, the memristors [7] with the synaptic
connections in the first realization [20] will play a very important role in future CNN-UM
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sensor-processor systems. This is because they have complex dynamical behavior. For
the development of CNN-based computational methods, it is important to determine the
parameter space of the memristor CNN [57,58].

In order to implement a topographic sensory computer, we use the principles from
physics or biology. In optics, the spatial correlation is applied at the speed of light.
For the construction of the POAC [50]—programmable optoelectronic analogic CNN
computer—the 4 f focal plane system using two lenses and a programmable light value is
implemented with programmable light transmissivity in each pixel. The POAC laptop real-
ization is shown in Figure 3, in which two different lasers (red and green) are used together
with a local analog memory array. The templates are big enough. In this implementation,
the nano-device’s functions are introduced and defined. In this way, we can produce an
array that is locally active, as well as having some sparse global lines by means of optical
interconnection.
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Figure 3. POAC computer [59]. In the picture, a laptop hardware version of the programmable
optical analogic array computer (POAC) is shown, which provides high computing speed and full
parallelism, having a large input array and template array size.

Such a cellular architecture will be applied in many nano-systems, together with the
environment, via acting, communication and sensing. It is better to use some functions of
the nano-device that are defined by its layout. In a case when it is locally active, we can
make an array and produce local interaction using some sparse global or semi-global lines.
This can be obtained via radiation or optical interconnections.

Let us consider the following CNN architecture: a two-dimensional grid with a 3 × 3
neighborhood system, as shown in Figure 4. The cells are represented by squares, and
the coupling is presented by straight lines. One possible neighborhood of a cell (in red)
is shown by the blue squares and green straight lines, so the red cell has nine possible
neighbors [1].
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The cells are denoted by C(i,j), and the links between the cells show the interactions
between each cell and its neighbor cells. The dynamics of the cell are presented by nonlinear
dynamical systems. The interactions between cells are linear. In this sense, we can consider
the CNN as nonlinear systems with linear spatial dynamics [44]. That is why, in the
investigation of CNN dynamics, many technics from physics and engineering can be
applied.

The dynamics of CNN are described mathematically in [1] by its states equations,
which are obtained by applying Kirchhoff’s law to the circuit implementation of the CNN
given in Figure 2b:

.
xij(t) = −xij(t) + ∑C(k,l)∈Nr(i,j) Ãij,kl(ykl(t), yij(t)) + ∑C(k,l)∈Nr(i,j) B̃ij,kl

(
ukl , uij)

)
+ Iij,

yij(t) = f
(
xij
)
,

1 ≤ i ≤ M, 1 ≤ j ≤ M,

(9)

xij, yij and uij are the state, output and input voltages of a cell C(i, j) and (i, j) denote
a grid point associated with a cell on the 2-D grid; C(k, l) ∈ Nr(i, j) is a grid point (cell)
in the neighborhood within a radius, r, of the cell C(i, j); Iij is an independent current
source. Ã and B̃ are nonlinear cloning templates, which specify the interactions between
each cell and all its neighboring cells in terms of their input, state and output variables.
Reaction–diffusion CNN are usually described by the state equations in which the Laplace
operator is approximated by a CNN synaptic law with an appropriate A template:

- a one-dimensional discretized Laplacian template:

A1 : (1,−2, 1);

- a two-dimensional discretized Laplacian template:

A2 :

0 1 0
1 −4 1
0 1 0





Mathematics 2023, 11, 1601 8 of 19

As stated before, the most important application of CNN is in image processing [50].
In the one-dimensional case, there are two modes of information propagation existing in
the array: global propagation or local diffusion, meaning that two distant cells do or do
not influence each other and determine the corresponding range of coupling parameters.
The basic function of CNN for image processing is to map or transform an input image
into a corresponding output image. This means that our CNN must always converge to a
constant steady state. How can we guarantee the convergence of CNN? There are many
studies devoted to finding the conditions which ensure that each trajectory of the network
converges to an equilibrium point, depending on the initial conditions [41,42,48,49,55].

Our aim in this review is to consider MCNN and their dynamics, which will be
presented in Section 5, in which reaction–diffusion MCNN will be studied. Keeping in
mind that there are many works on the theory of MCNN, we aim to give just one example
of the mathematical investigation that is based on local activity theory.

4. Local Activity Theory

Complexity phenomena have been studied by many scientists, as well as emergence,
self-organization, synergetics, collective behavior nonequilibrium phenomena, etc. [43,56].
In the literature, only qualitative results of different examples from many fields are provided.
There is a lack of quantitative results concerning the complex behavior of the systems. In his
work, Schrödinger presented the necessary conditions for the complexity of the exchange
of energy from open systems. Prigogine [60] introduced a new principle of nature, which
he called the instability of the homogeneous. As an origin of morphogenesis, Turing
proposed symmetry breaking in [61]. In order to make the Turing interacting system
oscillate, Smale [62] tried to find the axiomatic properties of a reaction–diffusion system.

In [6,43,56], mathematical proofs of complexity are presented in order to show that
none of the emergent complex behavior in the reaction–diffusion system can be explained
without introducing local activity. It is a constructive analytical method for the determina-
tion of the edge of chaos region [6]. If we determine the domain of the cell parameters of
locally active cells, it is potentially able to exhibit complexity. By rigorous mathematical
criteria, emergence and complexity can be explained, which is the main goal of local activity
theory and the phenomena edge of chaos. The obtained locally active cell kinetic equations
can exhibit complex dynamics, for example, limit cycles or chaos, even if the cells are not
coupled with each other. This can be achieved by making all the diffusion coefficients
equal to zero. When the cells are coupled, then, complex spatiotemporal phenomena can be
observed, for example, scroll waves and spatiotemporal chaos [6,56]. Explicit mathematical
inequalities are derived in order to identify the edge of chaos region in the CNN parameter
space. If the cell parameter space is in the local activity domain, then the computation time
for the parameter search algorithms can be reduced [43,56]. For different CNN models,
the edge of chaos domain is obtained in the investigations. In [47,54], reaction–diffusion
CNN models are considered, and the domain of the cell parameters for locally active cells
is obtained, in which they can exhibit complexity.

5. Memristor Cellular Nonlinear Networks and Their Dynamics

Different models of memristive nanostructures have been studied [2,12,23,27–29,36,37,42].
The investigations into the implementation of memristors in integrated circuit design
include some of the most common learning rules based on brain functionalities. Optimized
mathematical models have been made to capture the dynamics when the parameters of
the Pickett model are fitted to experimental data. In [30] a polynomial model (PM) for a
niobium-dioxide-based memory device was introduced. In this model, the memductance
and the state evolution function are represented by a polynomial following the unfolding
theorem [25]. The coefficients of the polynomial series need to be fitted to the reference
model based on the given circuit and excitation.
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We shall integrate the memristor dynamics of (7) and (8) into a general reaction–
diffusion model. The well-known reaction–diffusion (RD) equation is

∂u
∂t

= g(u) + D ∇2u,

where u ∈ Rn, g ∈ Rn, D is a matrix with diffusion coefficients and ∇2 is the Laplacian
operator in R2. Instead of resistors for diffusion in analog RD large-scale integrators (LSIs),
we shall introduce memristors.

Let u(x) be represented by voltages on the RD-CNN hardware; then, the diffusion
terms in the RD model are represented by linear resistors. We shall discretize the Laplacian
∇2 as

∇2u(x) =
ui−1 + ui+1 − 2ui

∆x2

where ∆x is the discrete step in space.
Generally, we shall consider the RD system described by:

∂ u(x)
∂ t = gu∇2u(x) + fu(u(x), v(x))

∂ v(x)
∂ t = gv ∇2u(x) + fv(u(x), v(x))

where gu,v are the diffusion coefficients, and fu,v(.) are the functions of the states for the
reaction model.

In the RD system, u(x) and v(x) are represented by voltages on the RD hardware, and
the gradient is represented by linear resistors. We apply, below, one-dimensional spatial
discretization.

We discretize spatially the first equation of the RD system in the following way:

d uj(t)
dt

=
gu
(
uj−1 − uj

)
+ gu

(
uj+1 − uj

)
∆x2 + fu(.), (10)

where, by j, the spatial index is denoted, ∆x is the discrete step in space, terms gu
(
uj−1 − uj

)
and gu

(
uj+1 − uj

)
represent, respectively, the current flowing into the jth node from the

(j − 1)th and (j + 1)th nodes via two resistors whose conductance is represented by gu. Here,
we introduce the memristor model, in which the resistors are replaced with memristors.
The resulting point dynamics are given by

d uj

d t
=

gu

(
wl

j

)(
uj−1 − uj

)
+ gu

(
wr

j

)(
uj+1 − uj

)
∆x2 + fu(.), (11)

where gu(.) denotes the monotonically increasing function defined by:

gu(wl,r
j ) = gmin+(gmax − gmin)

1

1 + e−βwl,r
j

,

where β denotes the gain, gmin and gmax denote the minimum and maximum coupling
strengths, respectively, and wl,r

j denotes the variables for determining the coupling strength
(l—leftward, r—rightward).

Finally, we introduce the following memristive dynamics for wl,r
j :

τ
dwl,r

j

dt
= gu(wl,r

j ).η1.(uj−1 − uj), (12)

where the right-hand side represents the current of the memristors, and η1 denotes the
polarity coefficient—η1 = +1: wl

j, η1 = −1: wr
j .
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As an example, we shall consider the Oregonator CNN model [9]:

duij
dt = D1 A2 ∗ uij

(
1− uij

)
− avij

uij−b
b+uij

= G1
(
uij, vij

)
dvij
dt = D2 A2 ∗ vij + uij − vij = G2

(
uij, vij

) (13)

According to the above theory, we shall incorporate memristor dynamics in the
Oregonator CNN model in the following way:

duij
dt = D1(w

l,r
ij )A2 ∗ uij

(
1− uij

)
− avij

uij−b
b+uij

= G1
(
uij, vij

)
dvij
dt = D2(w

l,r
ij )A2 ∗ vij + uij − vij = G2

(
uij, vij

) (14)

We present the Oregonator model, above, because we shall study a new reaction–
diffusion-type excitable medium. The Oregonator describes the kinetic chemical reaction
model of morphogenesis.

We apply a constructive algorithm for the determination of the locally active region
and the edge of chaos in our model [6]. First, we find the equilibrium points of (14),
i.e., G1

(
uij, vij

)
= 0 and G2

(
uij, vij

)
= 0. We obtain three equilibrium points: E1 = (0, 0),

E2 = (b, b), and E3 = (−b,−b). Then, we find the four cell coefficients: a11, a12, a21 and a22.
The locally active region for each equilibrium point can be defined as follows:

LAR(Ep) : a22 > 0, or 4a11a22 < (a12 + a21)
2

An additional stability condition in this case is:

Tr(Ep
)
< 0 and D

(
Ep
)

After checking the above conditions, we obtain the following results: In the equilib-
rium point E1 = (0, 0), we have a stable and locally active region; in the equilibrium points
E2 = (b, b), and E3 = (−b,−b), we obtain unstable regions. The simulation of the above
analysis is presented in Figure 5 below:
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Some comments on the results obtained in Figure 5 follow: For the numerical simu-
lations, we should have information for the behavior of the solutions. One advantage of
the above algorithm is its robustness. Therefore, we are able to calculate all the necessary
processing steps in real-time due to the MCNN programmable realization. Our simula-
tions shown in Figure 5 are obtained via MATLAB simulations based on the fourth-order
Runge–Kutta integration.

The results we obtain after simulating of Oregonator model (14) are as follows:

(1) the Oregonator model exhibits limit-cycle oscillations and excitatory behaviors, which
depend on the reaction parameters;

(2) non-uniform spatial-pattern generation is observed, which depends on the initial
condition of the Oregonator’s state, memristor polarity and stimulation.

This will be shown and commented on in Section 6, below. The answer to the question:
“what happens if one replaces resistors in analog RD LSIs with memristors?” will be given.

6. Applications of MCNN for Pattern Formation

In this section, we present an application of MCNN considered in the previous section
to pattern generation. It is important to point out that the following analysis is based on
the local activity theory [6]. We consider the reaction–diffusion model in our investigation.

Dynamical systems arising in engineering, biology, fluids, chemistry and plasmas can
develop various patterns. The formation of patterns in hydra was described in the famous
paper by Turing [61]. There are many patterns in nature, such as seashells [63] and animal
coats [64], which are modeled by the dynamics of spatial pattern formation. The mechanism
for fingerprints [65] is described by methods of pattern generation in engineering.

Pattern generation is usually studied theoretically, experimentally or via simulations.
Direct evidence of reaction–diffusion in physical systems is studied experimentally, but it is
difficult to control the parameters in these cases. The evolution of the dynamics in chemical
and biological substrates is very slow. In order to find insights into the effects, we must vary
the parameters for controlling the reaction and diffusion components arbitrarily, by means
of theoretical and simulation studies. These investigations are quite long because of the
modeling assumptions, such as approximations and discretization in time and amplitude.

According to the definition given in [6], MCNN are working in the edge of chaos (EC)
domain if we can find at least one equilibrium point in the locally active and stable region.
Depending on the parameters, it is possible to obtain different patterns in the EC domain.
In the case when there is only one diffusion coefficient in the EC region, static patterns are
generated. With two diffusion coefficients, it is possible for Turing-like static patterns to
develop. In this case, the coupling coefficient should be taken, depending on the location
of the cell parameter point in the boundary region between the locally active and unstable
domain and the EC domain. It is known that Turing-like patterns can be generated in CNN
when the cells are in the EC region only for the two-diffusional case. Then, the possibility
of the emergence of complexity [6] is very high when the cell parameters are in the EC
domain in both the one-diffusion and two-diffusion cases.

Below, in Figures 6–9, different kinds of patterns generated in MCNN models under
consideration are given.

In Figure 6, Turing patterns arising in a reaction–diffusion system are generated when
the dynamical system is changed by replacing u2 → u2

1+ku2 . In this case, with the change of
the parameter, k, Turing instability occurs, and we obtain the variety of patterns shown in
the figure. In the simulations λ, µ and ρ are the parameters of the RD system.
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Figure 9. Chaotic patterns arising in the locally active and unstable region on the boundary of the
edge of chaos region for different cell parameter sets.

As we pointed out in Section 5 for the Oregonator MCNN model, we can determine
the edge of chaos domain of the parameter sets in which complex behavior can emerge.
Nonuniform spatial patterns are generated in this model, and they are presented in Figure 7.
The initial state of all the Oregonator’s cells is set to be the inactive state. After stimulating
the center node, the excitable waves propagated outwards, as shown in Figure 8. Among
the demonstrated behaviors, the nonuniform spatial-pattern generation is applied to in-
vestigations detecting the pattern generation due to the memristors. Therefore, if one has
proper (non-memristive) RD media and a 2-D array of memristors without any reaction
circuit, and the point dynamics of the RD media are given to the memristor array, one may
detect the global motions of the RD media. This application is not limited to the analysis
of RD systems, but the idea can be transferred to analyzing much more complex systems,
such as brain networks, social networks and so on.

After the simulations of the Oregonetor model presented in Figures 7 and 8, we make
the following conclusions: (a) the memristor’s conductances are modulated by excitable
waves propagating on the memristor, depending on the memristor’s polarity; and (b) the
velocity of the excitable wave propagation is thus modulated by the change of memristor
conductance, and the degree of the modulation is inversely proportional to the time constant
of the memristor’s model.
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Dynamic patterns are usually obtained [6] within the locally active and unstable region.
Complex behavior can emerge when the cell parameter points are located on the boundary
between the edge of chaos region and the locally active and unstable region [6]. In this sense,
the chaotic dynamic patterns, presented in Figure 9, are generated for the cell parameter
points. Usually, they are very close to the edge of chaos region and within the locally active
and unstable region. According to the local activity theory [6], when the cell parameter
points are within the locally passive region, complex behavior is observed in MCNN, with
some particular cases when the initial conditions are near the equilibrium point. Usually,
the stability analysis does not give the exact cell parameter domain in which the cells are
locally passive [6]. Two kinds of pseudo-color codes were introduced to graphically exhibit
the complex dynamic behavior of the Oregonator array. Extensive computer simulations
have tested the effectiveness of the local activity theory and have displayed the extremely
complex behavior of the cells of the reaction–diffusion array equations.

It is well known [65] that some complex systems can self-organize into spatially
structured states independent of the initial states, which can be unstructured or spatially
homogeneous. Such phenomena are observed in all scientific fields, for example, in physics,
biology, social science, etc. In order to explain how such behavior occurs, we need some
explanation. The experimental simulations are close to the behavior observed in the
associated set of reaction–diffusion equations. By applying our theoretical analysis of
MCNN, which is provided for the example of the Oregonator system, we can predict with
accuracy the dependence of the experimental measures of the obtained patterns on the
input parameters. By studying the two-layer MCNN, we can understand better the pattern
formation dynamics of the chip. In this case, we have a stable diffusion process, which
results in the evolution of such an array of different spatial patterns.

As a conclusion to this section, we would like to point out that oscillatory patterns,
static (convergent) patterns and unbounded (divergent) patterns can be formed only in
cases where the parameter set is determined in the edge of chaos domain. In some particular
cases, complex patterns can be generated if the cell parameters are in the locally active
unstable domain, but in the border of the edge of chaos domain. This proves that the local
activity theory gives us an explicit analytical method for the study of complexity.

7. Discussion

There are many models of physical, chemical and biological systems using CNN
architecture. Because of its continuous-time analog operation, it is possible to provide real-
time signal processing with high precision. This is due to the local interconnection between
the processing elements, which leads to several digital and analog implementations of
CNN architecture in the form of very large-scale integrated chips (VLSI). Several powerful
applications for CNN are reported in the literature, which include pattern and image
analysis, such as vertical line detection, noise reduction, edge detection, feature detection,
character recognition, etc. [41–43,45,46,48–50,55].

In order to improve the resolution in static and dynamic image processing, it is nec-
essary to reduce the size of the processing elements and the connectivity between these
elements describing the feedforward and feedback templates in the CNN models. It is
known that the current versions of CNN arrays in CMOS VLSI chips are limited to 16K
processing elements [66,67]. Recently, some new technologies, such as resonant-tunneling
diode and quantum dots, implement processing elements in a more compact way to
improve the resolution of CNN computation. For example, in [68], it is shown that photo-
reversible photochromic compounds are presented and used for the implementation of
optical synapsis and memory effects which improve pattern recognition significantly. The
introduction of memristors offers the possibility to significantly enhance the resolution of
the CNN model of computation [69,70]. The main properties of memrsitors (nonvolatility,
binary and multiple memory states and nanometer geometries) are important for nanofab-
rication technology. These promising properties of memristors have been exploited in
their applications in nonvolatile memory, artificial neural networks, etc. [71–74]. Their
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conductance can change in response to the applied voltage or current like a biological
synapse, and that is why they are applied for biological signal processing. In [4,38], a
compact memristor bridge synapse is presented in order to perform weighting and weight
programming at different time slots. All resistive switching devices can be modeled by
mapping the physical processes that underpin their operation to the memristive framework.
The key is in identifying a state variable that accurately captures the important aspects of
the system and then describing its dynamic, time evolution in response to the memristor’s
inputs. The first use of the memristive framework was to describe resistive switching,
characterizing the behavior of TiO2 devices. Here, the memristor was composed of two
adjacent regions, doped and undoped, with oxygen vacancies, with a movable boundary
between the regions while keeping the overall film thickness fixed.

Memristor devices have a two-terminal nature and the ability to change conductance
when they are stimulated with voltage pulses and evolve into states which are based
on the input history. For this reason, they become almost ideal electronic analogies of
the biological synapses. Moreover, since memristors can be implemented in a crossbar
architecture, they are adaptive, with high density and large connectivity which leads to
neuromorphic applications. Memristors can store a static weight as an analog resistance
value, unlike the conventional artificial neural networks, which offer more complex internal
dynamics, and, in this way, they can be used to implement different bio-mimicking learning
rules. Memristors can be applied to the direct implementation of learning rules, which is a
very challenging approach.

8. Conclusions

In this paper, we present a review of memristor cellular nonlinear networks from
the point of view of the theory and applications. We discuss the developments in both
fields—memristors and cellular nonlinear networks. Then, we present, as an example,
an MCNN model of the Oregonator system, and we apply local activity theory in order
to study its dynamics. The locally active domain of the parameter space of this model
is determined, as well as the edge of chaos region. A short presentation of the pattern
formation in MCNN models is presented at the end of the paper, showing a possible
application. The solutions calculated in these models can be compared to those of known
phenomena in excitable media. Furthermore, different excitations are applied to generate
non-uniform spatial patterns, depending also on the initial condition of the CNN cell state
and the memristor polarity.

The local activity theory for reaction–diffusion equations could be generalized to
other systems. In particular, it is applicable to any system whose cells and couplings
are described by deterministic mathematical models. In such generalizations, it is very
important to derive testable necessary and sufficient conditions, which guarantee that the
system has a unique steady-state solution at t→∞. In the case of equilibrium states, each
cell must be defined by a strictly monotone increasing function of the port state variables.
The fact is that a strictly monotone increasing function imposes stronger mathematical
conditions than a homeomorphic function in Rn, n ≥ 2. One can interpret this definition as
a generalization of the concept of a strictly monotone increasing function to the function
space. The general conditions for the case n > 2 are obtained during the simulation
procedure of reaction–diffusion MCNN and can be based on the following conjecture: A
homogeneous non-conservative medium cannot exhibit complexity unless the cell or the
coupling network is locally active.
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