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Abstract: This paper generalizes the structural Markov properties for undirected decomposable
graphs to arbitrary ones. This helps us to exploit the conditional independence properties of joint
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1. Introduction

A probabilistic graphical model (PGM) or a structured probabilistic model (SPM) is
a statistical model that consists of a graph and a distribution family for which the graph
encodes the conditional independence information between random variables. Such models
always associate with independence models, arise naturally in multivariate analysis and
can provide certain versatility and convenience in analyzing complex data with large scales,
while independence models are the sets of conditional independence constraints encoded
by graphs via the global Markov property.

It is known that different classes of graphs with different interpretations of inde-
pendence have been developed in the past decades, and the reader can refer to [1–4] for
details. One of the most important classes of graphs in graphical models is undirected
graphs (UGs). Their corresponding Markov models are often known as undirected graph-
ical models or Markov networks [1,2]. These models have been found to have many
applications in a wide range of areas such as econometrics, medical science, artificial
intelligence [5–7] and so on. Our research in this paper is related to the work in the area of
the structure determination of these models with the Bayesian method.

The main objective of Bayesian structure learning is to learn the structure of a graph
from data. Meanwhile, Bayesian structure learning requires a clear illustration of a prior
distribution about graphical structures, which is termed as a graph law. Statisticians have
proposed some approaches to calculate the prior law of a graph. The simplest graph law is
the uniform distribution in [8]. Additionally, the Erdős-Rényi random graph model is also
used to indicate the graph law in [9]. Furthermore, a characterization of graph law with the
form of exponential family is proposed by [10]. However, how to simplify this prior law is
a significant task for us, especially in the posterior inference of graphical structures. In view
of this, the structural Markov property is first proposed for the purpose of characterizing
the conditional independence of the structure of a graph. The structural Markov properties
require that the structures of distinct components of graphs are conditionally independent
given the existence of a separating component; see [10]. These properties reflect the
conditional independence at the structural level. It has been proved that a graph law is
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structural Markov if and only if it is a member of the clique exponential family given
the support condition as the set of decomposable undirected graphs; see [10]. Further, a
weaker support condition of equivalent characterization for graph laws is given via closure
operation of graphical structures in [11].

Indeed, the structural Markov property is an extension of the hyper Markov property,
which was proposed in [12] and reflects the global Markov property at the parameter
level. These hyper Markov properties are used to describe the conditional independence
properties of a distribution of random variables or statistical quantities in graphical models.
The hyper Markov laws arise naturally as sampling distributions of maximum likelihood
estimators and as prior or posterior distributions in Bayesian inference.

Recently, a weaker version of the structural Markov properties for decomposable
graphs was introduced in [13], where the authors provided an analogous clique-separator
factorization for the graph law. These weakly structural Markov properties require that the
separator is complete. It has been shown that this provides a more flexible family of graph
prior laws to use in full Bayesian posterior updating.

It should be pointed out that all the work in [8,10,13] only focuses on decomposable
graphical models. However, based on conditional independence and graphical separation,
the structural Markov properties might be extended to non-decomposable undirected
graphical models. The aim of this paper is filling this gap in the field of graphical models.
Further, we focus on a full Bayesian method for the posterior updating of graph laws via
the observed data from a certain distribution, and we also prove that this full Bayesian
posterior of graph law is feasible and reasonable. Finally, as examples, we illustrate our
theory with detailed investigations of two significant cases based on the graphical Gaussian
models and the multinomial models, respectively.

The outline of this paper is organized as follows. In Section 2, we introduce the
terminologies and conceptions used in this paper. Section 3 first investigates the structural
Markov properties for non-decomposable graphs, and then exploits the joint prior laws of a
random sample distribution for full Bayesian inference. Section 4 gives two examples such
as the inverse Wishart distribution and the Dirichlet distribution to study the posterior
updating of graph laws in details. Further, we discuss some details about the computation
for the structural Markov graph laws in Section 5. Finally, in Section 6, we give the
conclusion of this paper.

2. Preliminaries

For terms and symbols, we follow the references [10,12] as many theoretical frame-
works of this paper are constructed and developed based on them. Several concrete
notions and terminologies used in this paper will be given in the following for clarity and
consistency.

2.1. Graphical Terminologies and Notation

A graph G = (V, E) consists of a finite set of vertices V(G) = {v1, v2, . . . , vp} and the
set of edges E(G) ⊆ V(G)×V(G) = {(u, v) : u, v ∈ V(G)}. An edge (u, v) of G is said to
be undirected if (u, v) is an unordered pair. A graph G is said to be an undirected graph if
all its edges are undirected. Unless otherwise specified, here G is always assumed to be
undirected, simple and connected throughout the paper.

For A ⊆ V(G), an induced subgraph of G on A will be denoted by GA = (A, E(GA)),
where E(GA) = {(u, v) ∈ E(G) : u, v ∈ A}. All subgraphs in this paper are induced
subgraphs. A is complete (or a clique) if any two different vertices u, v ∈ A are adjacent,
i.e., (u, v) ∈ E(G). A graph is a clique if its vertex set is a clique. For A, B ⊆ V(G), a clique
GA is a maximal clique if GB is incomplete for any superset B ⊃ A. Two vertices u and v
are considered to be neighbors if (u, v) ∈ E(G). For A ⊆ V(G), the boundary bd(A) is the
set of vertices in V(G) \ A that are neighbors of vertices in A. G can be collapsible onto A
if every connected component of V(G) \ A has a complete boundary in G.
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For any subsets A, B and C of V(G), we say that C separates A from B, and write
A |= B|C[G], if any path in G between some u ∈ A and v ∈ B contains a vertex in C. Usually,
we call C a separator of A and B. Separators that are cliques are called clique separators.

For any disjoint subsets A, B and S of V(G), we say (A, B, S) forms a decomposition if
(i) A∪ B∪ S = V(G); (ii) A |= B|S[G], and (iii) S is a clique separator in G. A decomposition
(A, B, S) is said to be proper if the sets A ∪ S and B ∪ S are both proper subsets of V(G).

Definition 1 ([14]). Let G = (V, E) be an undirected graph. A graph G is reducible if its vertex
set contains a clique separator, otherwise G is said to be prime. E.g., G is prime if G is a clique,
while G is reducible if G is a disconnected graph. An induced subgraph GU is a maximal prime
subgraph of G if it satisfies

(i) GU is prime, and
(ii) ∀W ⊆ V(G) s.t. U ⊂W, GW is reducible.

In Figure 1, it is easy to find that G1 is prime since there is no clique separator in G1.
However, G2 is reducible because of a clique separator S = {a, c} in G2.

Figure 1. G1 is a prime graph and G2 is a reducible graph.

Definition 2 ([14]). A proper decomposition (A, B, S) of an undirected graph G is stated to form a
prime decomposition if GA∪S and GB∪S are prime, or GA∪S and GB∪S can be recursively decomposed
into pairwise different maximal prime subgraphs of G.

In particular, G is decomposable if GA∪S and GB∪S are complete, or they are both
decomposable subgraphs of G. Note that the prime decomposition of arbitrary undirected
graphs is a generalization of that of chordal graphs. For instance, in Figure 2, G is a non-
decomposable undirected graph with V(G) = {a, b, c, d, e}, which involves two maximal
prime subgraphs GU1 and GU2 , with U1 = {a, b, c} and U2 = {b, c, d, e}, respectively, and a
clique separator S = U1 ∩U2 = {b, c}. It is obvious that ({a}, {d, e}, {b, c}) forms a prime
decomposition of G. Additionally, we find that GU1 is complete since all its pairs of vertices
are joined, while GU2 is incomplete because the vertices between b and d, or c and e, are
not joined.

Figure 2. A prime decomposition for an undirected graph G.
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It is worthwhile to point out that all the maximal prime subgraphs of an undirected
graph can form a perfect sequence in a certain way. If there exists a proper decomposition
of an undirected graph G, then G admits a perfect sequence (U1, U2, . . . , Uk) of maximal
prime subgraphs, so that for each j = 2, . . . , k, there exists some h ∈ {1, 2, . . . , j− 1}, and
we have

Sj = Uj ∩ (
j−1⋃
i=1

Ui) ⊆ Uh,

where Sj are clique separators actually. Specifically, G is decomposable if its all maximal
prime subgraphs are complete (cliques).

In a PGM, a vertex v denotes a random variable Xv, which takes values in a space
Xv. Let X = XV(G) = (Xv)v∈V(G) be a p-dimensional random vector on some product
space ∏v∈V(G) Xv with P or θ representing its distribution. All the concerned distributions
in the present paper are assumed to be positive and closed under marginalization and
conditioning with respect to the type of a joint distribution family. For the sake of simplicity,
we use P to represent the set of all positive distributions over X. For A, B ⊆ V(G), θA will
denote the marginal distribution of XA and θB|A the conditional distribution of XB given
XA = xA.

Let U be the set of undirected graphs with fixed vertex set V(G). A probability
distribution of a random graph G, which takes values in U, is said to be a law, denoted
by G. Further, define U(A, B, S) to be the set of undirected graphs for which (A, B, S) is a
prime decomposition.

2.2. Independence Model and Collapsibility

Given a finite set N, for A, B, C ⊆ N, an independence model, denoted by I , is the set
of triplets of the form 〈A, B|C〉, which are termed as conditional independence statements.
A graphical independence model is an independence model induced by a graph. For a
graph G ∈ U, the graphical independence model of G can be defined as

I(G) = {〈A, B|C〉 : A |= B|C[G] for A, B, C ⊆ V(G)}.

Obviously, I(G) is the set of triples 〈A, B|C〉, encoding its global Markov property
over G.

It should be pointed out that the conditional independence of a statistical model
in [15,16] shares the same properties of graph separation in [2], i.e., for a graphical indepen-
dence model I(G), it has the following properties:

1. for all A, B ⊆ V(G), 〈A, B|A〉 ∈ I(G), 〈A, B|B〉 ∈ I(G) and 〈A, B|A ∩ B〉 ∈ I(G);
2. if 〈A, B|C〉 ∈ I(G), then 〈B, A|C〉 ∈ I(G);
3. if 〈A, B|C〉 ∈ I(G), and U ⊆ A, then 〈U, B|C〉 ∈ I(G);
4. if 〈A, B|C〉 ∈ I(G), and U ⊆ A, then 〈A, B|C ∪U〉 ∈ I(G);
5. if 〈A, B|C〉 ∈ I(G), and 〈A, W|B ∪ C〉 ∈ I(G), then 〈A, B ∪W|C〉 ∈ I(G).

In particular, the following property holds when A, B, C are disjoint.

If 〈A, B|C〉 ∈ I(G) and 〈A, C|B〉 ∈ I(G), then 〈A, B ∪ C|∅〉 ∈ I(G).

Further, a graphical independence model I(G) has a natural projection operation on
D ⊆ V(G) that

I(G)D = {〈A, B|C〉 ∈ I(G) : A, B, C ⊆ D}.

It is worthwhile to point out that I(G)D ⊆ I(GD), where I(GD) is the independence
model induced by the induced subgraph GD.

Definition 3 (CI-collapsibility). Let G be a fixed undirected graph in U. For D ⊆ V(G), I(G)
can be conditional independence collapsible (CI-collapsible) onto D if I(G)D = I(GD).
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CI-collapsibility reflects the consistence of conditional independence relations induced
by GD and those induced by G, but constrained on D.

We say a distribution P is Markov with respect to G if for A, B, C ⊆ V(G), it holds that

〈A, B|C〉 ∈ I(G)⇒ XA |= XB|XC [P],

where XA |= XB|XC[P] represents the assertion that XA is independent of XB given XC
under P.

In order to ensure that various distributions and those of statistical quantities are
Markov with respect to G, we now are in a position to review the graphical models within
the framework of undirected graphs. A graphical model, denoted by P(G), is a statistical
model such that

P(G) = {P ∈ P : XA |= XB|XC[P] for 〈A, B|C〉 ∈ I(G)}.

For the Markov distribution family P(G), we say that it is faithful to G if there exists a
distribution P∗ ∈ P(G) such that I(P∗) = I(G), where

I(P) = {〈A, B|C〉 : XA |= XB|XC[P] for A, B, C ⊆ V(G)}.

All the graphical models concerned throughout this paper are assumed to be faithful to
G. Such an assumption is called “Faithfulness Assumption” [17]. In fact, this assumption is
broad and mild since Gaussian distribution families and multinomial distribution families
satisfy the faithfulness assumption.

Moreover, a statistical model P(G) also admits a natural projection operation on
D ⊆ V(G), denoted by P(G)D, which is defined as follows:

P(G)D =

{
PD =

∫
V(G)\D

dP : P ∈ P(G)

}
.

Generally, P(G)D is not equal to P(GD), but it is obviously shown that P(G)D ⊇
P(GD).

Definition 4 (M-collapsibility). Let G be a fixed undirected graph in U. For D ⊆ V(G), P(G)
can be model collapsible (M-collapsible) onto D if P(G)D = P(GD).

M-collapsibility indicates that the marginal distribution family is identical to the
distribution family induced by GD.

Theorem 1. Let G be a fixed undirected graph in U and D ⊆ V(G). Then, the following statements
are equivalent.

1. G is graphical collapsible onto D;
2. I(G) is CI-collapsible onto D;
3. P(G) is M-collapsible onto D.

Proof. See Appendix A.

Let Hj =
⋃j

i=1 Ui denote the histories set for each j = 1, 2, . . . , k. By Theorem 1, we can
obtain the following result.

Proposition 1. Let G be a fixed graph in U and G has a perfect sequence (U1, U2, . . . , Uk) of
maximal prime subgraphs. Then, the following statements hold for each j ∈ {1, 2, . . . , k}.
1. G can be graphical collapsible onto Hj;
2. I(GHj) = I(G)Hj ;
3. P(GHj) = P(G)Hj .
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Proof. This can be easily obtained from the meaning of collapsibility and Theorem 1.

3. Structural Markov Graph Laws for Full Bayesian Inference
3.1. Basic Concepts and Properties

We begin with the definition of the structural Markov property of [10].

Definition 5. A graph law G(G) over U is structural Markov if

GA∪S |= GB∪S|{G ∈ U(A, B, S)} [G],

where G(U(A, B, S)) > 0 and U(A, B, S) is the set of undirected graphs for which (A, B, S) is a
prime decomposition.

Specifically, if G is decomposable in U, Definition 5 degenerates to that defined in [10].
The structural Markov property indicates that the structures of different induced

subgraphs are conditionally independent when the event {G ∈ U(A, B, S)} happens; see
Figure 3 as an illustration.

Figure 3. A representation of the structural Markov property for non-decomposable undirected
graphs: A ∩ B is complete and separates A from B.

Proposition 2. Let G be a fixed undirected graph in U. For any subsets A, B and S of V(G)
satisfying A ∪ B ∪ S = V(G), if G(G) is structural Markov, then

GA∪S |= GB∪S

whenever S is complete and separates A from B in G.

Proof. By Definition 5, the existence of the remaining edges in GA∪S is independent of those
in GB∪S since S is complete and separates A from B in G. Therefore, we are naturally left
with a statement of marginal independence GA∪S |= GB∪S since the term GS is redundant.
Hence, the result follows.

Proposition 2 indicates that different components of undirected graphs are condition-
ally independent provided that their corresponding separators are complete. In order to
illustrate our results with detailed investigations, we give a non-decomposable graph G in
which A ∩ B separates A from B while A ∩ B is incomplete in Figure 4. We can easily find
that the two subgraphs GB and GA have possible common edges in A ∩ B, which make the
existence of the remaining edges in GA dependent of those in GB. In other words, these
dependencies will disappear as long as A ∩ B is complete.
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Figure 4. A ∩ B separates A from B while A ∩ B is incomplete.

It also implies that an arbitrary undirected graph can be denoted by the graph product
of its induced subgraphs as

G = GA∪S ⊗ GB∪S, G ∈ U(A, B, S).

The structural Markov property can be well-characterized by the above operation.

Proposition 3. Let π be the density of a graph law G with respect to the counting measure on U.
Suppose that G, G′ ∈ U(A, B, S). Then,

1. GA∪S ⊗ G′B∪S ∈ U(A, B, S) and G′A∪S ⊗ GB∪S ∈ U(A, B, S);
2. if G is structural Markov on U, then

π(G)π(G′) = π(GA∪S ⊗ G′B∪S)π(G′A∪S ⊗ GB∪S).

Proof. See Appendix A.

For any subset C ⊆ A, define G(C)
A to be the graph on A such that G(C)

A is complete in
C and empty otherwise.

Proposition 4. Let G be a fixed graph in U and G has a perfect sequence (U1, U2, . . . , Uk) of
maximal prime subgraphs. If G has a structural Markov graph law G with the density π, then the
density π can be factorized as

π(G) =

k
∏
j=1

π(GUj)

k
∏
j=2

π(GSj)

. (1)

Proof. See Appendix A.

3.2. Joint Distribution Law

In this section, we will investigate how the structural Markov laws interact with the
hyper Markov laws when they are considered as the joint prior laws.

Hyper Markov laws are motivated by the property that graph decomposition allows
one to decompose a prior or posterior distribution into the product of marginal distributions
on corresponding maximal prime subgraphs. For a fixed graph G ∈ U(A, B, S), any prior
or posterior distribution of θ ∈ P(G) is uniquely characterized by its marginals θA∪S and
θB∪S, taking values in P(GA∪S) and P(GB∪S), respectively.

Following [12], to be specific, a probability distribution of a random distribution θ,
which takes values in P(G), is said to be a law, denoted by L. For A ⊆ V(G), the marginal
law of θA will be denoted by LA and LB|A will denote the conditional law of θB|A.
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Here, we give the definitions of weak and strong hyper Markov properties.

Definition 6 ([12], Weak and strong hyper Markov). Suppose that G is a fixed graph in
U(A, B, S) and θ ∈ P(G). Let L(θ) be a law of θ. We say that L(θ) is weak hyper Markov
over G if

θA∪S |= θB∪S|θS [L].

Further, we say that L(θ) is strong hyper Markov over G if

θA∪S |= θB∪S|S [L].

Let X be a random sample from θ ∈ P(G). The conditional independence property of
the joint distribution law (P,L) for the pair (X, θ) on G ∈ U can be characterized as follows.

Proposition 5. Let G be a fixed undirected graph in U with a prime decomposition (A, B, S). X is
a random sample from θ ∈ P(G). Then, the joint distribution law of (X, θ) satisfies:

1. if L(θ) is weak hyper Markov with respect to G, then

(XA∪S, θA∪S) |= (XB∪S, θB∪S)|(XS, θS) [P,L];

2. if L(θ) is strong hyper Markov, then

(XA∪S, θA∪S|S) |= (XB∪S, θB∪S)|XS [P,L].

Proof. See Appendix A.

It is worth mentioning that the hyper Markov property does not hold for the cases
where separators are not complete. For instance, the graph G1 in Figure 1 is incomplete, and
we do not have θ{a,b,c} |= θ{a,d,c}|θ{a,c} or θ{b,a,d} |= θ{b,c,d}|θ{b,d}. However, it is worthwhile to
point out that the corresponding pairwise Markov property Xb |= Xd|X{a,c} or Xa |= Xc|X{b,d}
holds under P if P is Markov with respect to G1.

Let Θ be the family of Markov distributions over U and L the family of hyper Markov
laws over U. For the sake of discussion, it is necessary for us to reconsider the notion of
hyper compatibility, which was first proposed by [10], to characterize families of laws for
every graph.

Definition 7 (Hyper compatibility). Let L,L′ ∈ L be the laws of θ ∈ Θ with respect to G and
G′ on U, respectively. For A ⊆ V(G), we say L is hyper compatible on U if LA(θ) = L′A(θ)
whenever G, G′ are collapsible onto A and GA = G′A.

Here L is always assumed to be hyper compatible over U. Based on the arguments
above, some significant conditional independence properties of such joint law (L,G) can
be investigated as the following.

Proposition 6. Suppose that G has a graph law G over U. If θ has a law L from a hyper compatible
family L over U, then

θA∪S |= GB∪S|(GA∪S, {G ∈ U(A, B, S)}) [L,G].

Proof. Suppose that G ∈ U(A, B, S). Since G is collapsible onto both A ∪ S and B ∪ S, by
hyper compatibility, LA∪S can only take values in L(GA∪S) for any L ∈ L.

Theorem 2. Suppose that G(G) is structural Markov over U. For any L ∈ L,

1. if L(θ) is weak hyper Markov, then

(θA∪S, GA∪S) |= (θA∪S, GB∪S)|(θS, {G ∈ U(A, B, S)}) [L,G];
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2. if L(θ) is strong hyper Markov, then

(θA∪S, GA∪S) |= (θB∪S|S, GB∪S)|{G ∈ U(A, B, S)} [L,G].

Proof. See Appendix A.

Theorem 2 reflects the conditional independence properties at both parameter and
structural level.

Further, for any G ∈ U, let X be a random sample from a distribution θ ∈ Θ on U. If G
is assigned the prior law G and θ is assigned the prior law L, then a joint distribution law
is thereby created for (X, θ, G).

Proposition 7. Suppose that G(G) is structural Markov on U. Let X be a random sample from
θ ∈ Θ. For L ∈ L,

1. if L(θ) is weak hyper Markov, then

(XA∪S, θA∪S) |= GB∪S|(XS, θS, {G ∈ U(A, B, S)}) [Θ,L,G];

2. if L(θ) is strong hyper Markov, then

(XA∪S, θA∪S|S) |= GB∪S|(XS, {G ∈ U(A, B, S)}) [Θ,L,G].

Proof. See Appendix A.

The conditional independence property of any such joint distribution law of (X, θ, G)
can be characterized as follows.

Theorem 3. Suppose that G(G) is structural Markov on U. Let X be a random sample from θ ∈ Θ
on U. For L ∈ L,

1. if L(θ) is weak hyper Markov, then

(XA∪S, θA∪S, GA∪S) |= (XB∪S, θB∪S, GB∪S)|(XS, θS, {G ∈ U(A, B, S)}) [Θ,L,G];

2. if L(θ) is strong hyper Markov, then

(XA∪S, θA∪S, GA∪S) |= (XB∪S, θB∪S|S, GB∪S)|(XS, {G ∈ U(A, B, S)}) [Θ,L,G].

Proof. See Appendix A.

Theorem 3 reflects that a random sample can be determined by both hyper and
structural parameters, which will play a significant role in full Bayesian inference.

Corollary 1. Suppose that G(G) is structural Markov on U. Let X be a random sample from
θ ∈ Θ on U. For L ∈ L,

1. if L(θ) is weak hyper Markov, then

(XA∪S, θA∪S) |= (XB∪S, θB∪S)|(XS, θS, {G ∈ U(A, B, S)}) [Θ,L,G];

2. if L(θ) is strong hyper Markov, then

(XA∪S, θA∪S) |= (XB∪S, θB∪S|S)|(XS, {G ∈ U(A, B, S)}) [Θ,L,G].

Proof. It can be easily obtained from Theorem 3.

Corollary 1 can be considered as a generalization of Proposition 5 since G is a random
undirected graph on U with a prime decomposition (A, B, S). Without loss of generality,
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when the event {G ∈ U(A, B, S)} happens, i.e., given a graph G with a prime decomposition
(A, B, S), we can deduce from Corollary 1 that

(XA∪S, θA∪S) |= (XB∪S, θB∪S)|(XS, θS) [P,L].

3.3. Posterior Updating for Graph Law

Our research in this section aims to identify the structure of models via the Bayesian
approach. Based on our results in Section 3.2, in the following, we will use data from a
certain distribution to learn the structure of a graph.

We assume that G has a structural Markov graph law G over U. For θ ∈ Θ,
let θ have a law from a hyper compatible family L. Let X(n) = (X1, X2, . . . , Xn) denote a
random sample of n observations from θ. If we focus on the density of posterior graph
law π(G|x(n), θ) with its conjugated prior graph law π(G), then the full Bayesian posterior
graph law follows:

π(G|x(n), ϑ) =
1
Z

π(G)`(θ|G)p(x(n)|θ; G), θ ∈ Θ, G ∈ U,

where Z is a normalizing constant and ϑ is a hyperparameter that characterizes the law
of θ. In general, it is hardly for us to estimate the structure of a graph G since the hyper
parameter ϑ is unknown.

In the following, we investigate the properties of structural Markov laws when used
as priors for models.

Proposition 8. If the prior graph law G(G) is structural Markov on U, then the posterior graph
law, obtained by conditioning on data X(n) = x(n), is structural Markov on U.

Proof. By the conditional independence and Theorem 3, we can easily find that

GA∪S |= GB∪S|(X(n), θ, {G ∈ U(A, B, S)}).

Proposition 9. Assume that the prior graph law G(G) is structural Markov and L(θ) is strong
hyper Markov on U. Then, the following properties hold:

1. The posterior graph law obtained by conditioning on data X(n) = x(n) is structural Markov
with respect to U;

2. The marginal data distribution of X(n) is Markov with respect to U;
3. The posterior law of θ conditioning on X(n) = x(n) is Markov with respect to U.

Proof. By the conditional independence and Theorem 3, we have

GA∪S |= GB∪S|(X(n), {G ∈ U(A, B, S)}).

This implies (i).
To prove (ii), by the conditional independence and Theorem 3, we have

X(n)
A∪S |= X

(n)
B∪S|(X(n)

S , {G ∈ U(A, B, S)}).

In particular, if G is given from U(A, B, S), then

X(n)
A∪S |= X

(n)
B∪S|X

(n)
S .

From Theorem 3, we have

θS∪S |= θB∪S|(X(n), θS, {G ∈ U(A, B, S)}),
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which implies (iii).

Our Bayesian approaches call for a strong hyper Markov prior law on θ with re-
spect to G ∈ U. By Proposition 9, the posterior law of θ, given G, has a density ` of the
following form:

`(θ|x(n), G) =
∏U∈U `(θU |x

(n)
U )

∏S∈S `(θS|x
(n)
S )

, θ ∈ Θ, (2)

where U is the set of maximal prime subgraphs of G and S is the set of corresponding
clique separators.

If G(G) is structural Markov and L(θ) is strong hyper Markov with respect to G, then
the posterior graph law of G will be given by

`(G|x(n), ϑ) ∝
∏U∈U π(GU)`(θU |x

(n)
U )

∏S∈S π(GS)`(θS|x
(n)
S )

, θ ∈ Θ, G ∈ U. (3)

It is worthwhile to point out that (3) indicates that the posterior graph law of G will
preserve the structural Markov property under the hyper compatible laws. This result
coincides with Proposition 8. Further, this updating may be performed locally by (3), which
implies that the posterior graph laws on each maximal prime subgraphs of G are only
dependent of the posterior of hyper compatible laws on the maximal prime subgraph.

4. Two Special Cases
4.1. Graphical Gaussian Models and the Inverse Wishart Law

A graphical Gaussian model is defined by a p-dimensional multivariate Gaussian
distribution with the expected value µ and covariance matrix Σ, i.e.,

P(X) = Np(µ, Σ).

For simplicity, we assume that the model has zero mean in the following. Define
K = Σ−1 to be the precision matrix of G, where

K ∈ M+
p : Kuv = 0 for all (u, v) /∈ E(G),

where M+
p denotes the set of p× p positive definite matrices. For any matrix M ∈ M+

p ,
MA will denote the |A| × |A| matrix obtained by (Muv)(u,v)∈A2 . It has been shown that the
global, local and pairwise Markov properties are equivalent in graphical Gaussian models;
see [2]. We therefore conclude that the graphical Gaussian distribution P is Markov with
respect to G if and only if

Kuv = 0 ⇔ Xu |= Xv|XV(G)\{u,v}. (4)

Let x(n) be observations of n× p sample matrix X(n), a random sample of size n from
the graphical Gaussian distribution Np(0, Σ), and let S = x(n)(x(n))T denote the observed
sum-of-products matrix. Then, for any U ∈ U ,

p(x(n)U |ΣU) =
1

(2π)|U|
|ΣU |−

n
2 exp

{
−1

2
tr(Σ−1

U SU)

}
,

where |U| is the cardinality of U, and |ΣU | is the determinant of ΣU . It is similar for
p(x(n)S |ΣS), S ∈ S .

The inverse Wishart distribution is also termed inverse Wishart law, denoted by
IW(δ, Φ). It is as the prior for the graphical Gaussian distribution Np(0, Σ). Conditioning
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on (4), Σ has a hyper inverse Wishart prior law, denoted by HIW(δ, Φ). The marginal
density `(ΣU |ΦU) is of the form

`(ΣU |ΦU) = |ΣU |−
δ+|U|−1

2 exp
{
−1

2
tr(Σ−1

U ΦU)

}
.

It is already shown in [12] that the hyper inverse Wishart law satisfies the strong hyper
Markov property, which would allow us to compute the posterior updating of Σ by the
margins of maximal prime subgraphs of the graph G. That is, for any U ∈ U ,

`(ΣU |X(n) = x(n)) = `(ΣU |X
(n)
U = x(n)U )

with the density

`(ΣU |x
(n)
U ) ∝ ΣU |−

δ+n+|U|−1
2 exp

{
−1

2
Σ−1

U (ΦU + SU)

}
.

We conclude that

L(ΣU |X
(n)
U = x(n)U ) = IW((δ + n; SU + ΦU).

Consequently, if we assign a prior law of form (1) for G, then from Proposition 8 we
can conclude that the posterior graph law of G, given data X(n) = x(n) from the Gaussian
distribution Np(0, Σ), can be obtained through (3) with a density of the following form:

π(G|x(n), Φ) ∝ ∏U∈U π(GU)`(ΣU |ΦU + SU)

∏S∈S π(GS)`(ΣS|ΦS + SS)
, G ∈ U. (5)

4.2. Multinomial Models and the Dirichlet Law

Suppose that all the variables (X1, X2, . . . , Xp) are discrete-valued. Let V(G) de-
note the contingency table by I = I1 × I2 × · · · × Ip, where Ih is a finite set for each
h ∈ {1, 2, · · · , p}. An element i ∈ I is referred to as a cell in this table. Based on this,
(X1, X2, . . . , Xp) will take value in finite sets I = (I1, I2, . . . , Ip). Indeed, I is a discrete-
valued random vector whose distribution θ is assumed to be Markov with respect to G.
Then,

θ(i) = ∏U∈U θ(iU)
∏S∈S θ(iS)

, i ∈ I, (6)

where θ(iU) ∈ (0, 1), θ(iS) ∈ (0, 1) and ∑
i∈I

θ(i) = 1.

Let x(n) be observations of X(n), a random sample from θ. X(n) is an n× p matrix
where each row denotes an observation of I. The distribution of X(n) is the multinomial
distribution with index n and probabilities θ, denoted by M(n, θ). Then, the likelihood
function p(x(n)|θ, G) has the form

p(x(n)U |θU) = ∏
iU∈IC

θ(iU)n(iU), U ∈ U ,

where IU = ∏u∈U Iu, θU = (θ(iU))iU∈IU
, and n(iU) counts the number of elements of x(n)U

from the marginal cell iU . It is similar for p(x(n)S |θS), S ∈ S .
The Dirichlet distribution is also termed Dirichlet law, denoted by D(α), where α =

(α(i))i∈I are hyper parameters. It is used as the prior for multinomial distribution M(n, θ).
It is shown that the Dirichlet law satisfies strong hyper Markov property; see [12]. Thus,
we have

`(θU |αU) = ∏
iU∈IU

θ(iU)α(iU)−1, U ∈ U ,
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and then the posterior law can be written as

`(θU |x(n), αU) = ∏
iU∈IU

θ(iU)α(iU)+n(iU)−1, U ∈ U .

Based on the above arguments, we can conclude that L(θU |x
(n)
U ) = D(αU + nU).

Further, if we assign a prior law of form (1) for G, by Proposition 8, the posterior graph law
of G, given data X(n) = x(n) obtained from θ, has density in the following way:

π(G|x(n), α) ∝ ∏U∈U π(GU)`(αU + n)
∏S∈S π(GS)`(αS + n)

, G ∈ U.

4.3. An Example on Simulated Data
4.3.1. Dataset Description

In this section, we present the results for one application to a real dataset. We analyze
a labor force survey dataset, which is available from [18]. This dataset is used to analyze the
multivariate associations among income, education and family background on 1002 males
in the American labor force. Here, we briefly describe these variables in this dataset.

• inc: The income of the respondents.
• deg: Tespondents’ highest educational degree.
• chi: The number of children of the respondents.
• pin: The income of the respondents’ parents.
• pde: The highest educational degree of respondents’ parents.
• pch: The number of children of respondents’ parents.
• age: Respondents’ age in years.

4.3.2. Experiments and Results

We consider the posterior graph law of G in Equation (5), a Gibbs sampler can then be
formed by using the following conditional posteriors:

1. X ∼ Np(0, Σ);
2. Σ|X, Φ ∼ IW(n + δ− 1, S + Φ).

For the prior graph law of G, following from Example 3.5 in [10], we consider an
Erdős-Rényi random graph model prior on each edge (u, v) with

π(G) ∝
(

ϕ

1− ϕ

)|E(G)|
,

where the parameter ϕ ∈ (0, 1) is a prior probability of existing edges. In this case, we set
ϕ = 0.5. We use the inverse Wishart law IW(δ, Φ) as a prior for the covariance matrix over
the graph G, with δ = 7 and Φ = I7 as an identity matrix here.

By using the function above, we simulate n = 1002 observations. The experimental
results are implemented by R package for 5000 iterations with 2500 as burn-in as follows:

The experimental results on this dataset are displayed in Figures 5 and 6. The estimated
posterior probabilities of the size of the graphs are shown in the left of Figure 5, which
shows that our algorithm mainly visits graphs with sizes between nine and twelve edges.
The figure on the right exhibits the estimated posterior probabilities of all visited graphs
with various sizes, and also shows that more than 15 different graphs are visited. The
graph in Figure 6 is the selected graph with the highest posterior probability from these
visited graphs.
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Figure 5. The figure in the left is the estimated posterior probabilities of the size of the graphs. The
figure in the right is the estimated posterior probabilities of all visited graphs.

Figure 6. The figure is the inferred graph with the highest posterior probability.

The results also suggest that the respondents’ income has relationships with their own
education and age. It is also shown that the income of respondents’ parents is only related
to their education.

5. Computations

In this section, we aim to design an algorithm to take samples that we are interested in,
such as decomposable undirected graphs, from the structural Markov graph law G on U.

5.1. Ratio for Graph Law

Model comparison plays an important role in statistical analysis, especially in solving
the problem of the ratio of distributions of variables in different states. We consider a
graph itself as a random variable into the construction of this ratio between two undirected
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graphs G′ and G, where G′ is obtained from G by removing or adding one edge. This ratio
can be written as

Λ(G′ : G) =
π(G′)
π(G)

.

The main objective of this next section is to greatly simplify this complex calculation
under the assumption that the graph law G is structural Markov on U. For the sake of
convenience, we define ηU = π(GU) and ζS = π(GS) for U ∈ U and S ∈ S .

In Figure 7, it is a special case where G′ is obtained from G by removing the edge
(u, v), which is exactly in one prime component U ∈ U of G.

Figure 7. G′ is obtained from G by removing the edge (u, v).

Proposition 10. Let G be a fixed graph in U and G has a perfect sequence (U1, U2, . . . , Uk) of
maximal prime subgraphs. Suppose that G′ is obtained from G by removing the edge (u, v). Then,

1. if u and v are contained in exactly one maximal prime subgraph Uj of G, then

Λ(G′ : G) =
ηU′j

ηUj

, j = 1, 2, . . . , k;

2. if u and v are contained in both two neighboring maximal prime subgraphs Uj, Uj+1 of G,
then

Λ(G′ : G) =
ηW ′

ηW
, (7)

where W = Uj ∪Uj+1 in G.

Proof. See Appendix A

In Figure 8, it is a certain case where G′ is obtained from G by adding the edge (u, v)
within two neighboring prime components Ui and Uj of G such that u ∈ Ui and v ∈ Uj.

Figure 8. G′ is obtained from G by adding the edge (u, v).

Proposition 11. Let G be a fixed graph in U and G has a perfect sequence (U1, U2, . . . , Uk) of
maximal prime subgraphs. Suppose that G′ is obtained from G by adding the edge (u, v). Then,

1. if u and v are contained in exactly one incomplete prime subgraph Uh, then

Λ(G′ : G) =
ηU′h
ηUh

.
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2. if Ui 3 u and Uj 3 v are the two distinct maximal prime subgraphs of G, then there are some
prime components Ui = Uh1 , Uh2 , . . . , Uhm = Uj such that

Λ(G′ : G) =
ηT′

ηT
, (8)

where T = Uh1 ∪Uh2 ∪ · · · ∪Uhm .

Proof. See Appendix A.

In particular, if G is a decomposable graph in U, then we have the following results.

Lemma 1 ([19]). Let G be a decomposable graph in U and G has a perfect cliques sequence
(U1, U2, . . . , Uk). Suppose that G′ is decomposable, obtained from G by removing or adding one
edge (u, v). Then,

1. If G′ is obtained from G by removing the edge (u, v), then u and v must belong to a clique Uj
of G;

2. If G′ is obtained from G by adding the edge (u, v), then there exist two different cliques Ui 3 u
and Uj 3 v such that S = Ui ∩Uj is complete and separates Ui and Uj.

Corollary 2. Let G be a decomposable graph inU and G has a perfect cliques sequence (U1, U2, . . . , Uk).
Suppose that G′ is decomposable, obtained from G by removing or adding one edge (u, v). Then,

1. If G′ is obtained from G by removing the edge (u, v) within Uj, then

Λ(G′ : G) =
ηUu ηUv

η0ηU
,

where Uu = Uj \ {v}, Uv = Uj \ {u} and U0 = Uj \ {u, v};
2. If G′ is obtained from G by adding the edge (u, v) such that u ∈ Ui and v ∈ Uj, then the ratio

Λ(G′ : G) is

Λ(G′ : G) =
ζSζS0

ζSu ζSv

,

where S = Ui ∩Uj, Su = S ∪ {u}, Sv = S ∪ {v} and S0 = S ∪ {u, v}.

Proof. We first give the proof of 1. If (u, v) ∈ E(G) and (u, v) /∈ E(G′), by Lemma 1, the
deleted edge (u, v) must belong to a single clique Uj. It is worthwhile to point out that all
of Uu, Uv and U0 are cliques in G and G′. Then,

ηU′j
=

ηUu ηUv

ηU0

,

which combines with (A19) gives the result. The proof of 2 is similar.

5.2. Sampling Decomposable Graphs from Structural Markov Graph Laws

We now take a random graph on U as the initial state to design the Markov chain
Monte Carlo (MCMC) sampler for sampling from a structural Markov graph law. This
technique relies on small perturbations to the edge set of a graph, indicating that one edge
could be removed or added.

A reversible jump MCMC sampler is introduced for posterior sampling of decompos-
able graphical models, which relies on making single edge additions and removals; see [8].
We now use this jump MCMC methodology for our sample from structural Markov law in
further details.

Let G denote a state variable and G′ the destination variable where G′ is obtained from
a random graph G by removing or adding one edge, and so G would take the chain to the
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destination G′ with probability q(G, G′), which ensures detailed balance with respect to the
target distribution π(G). Then, the Metropolis–Hastings acceptance ratio can be written as

α(G′, G) = min
{

1,
π(G′)q(G′, G)

π(G)q(G, G′)

}
. (9)

In fact, the Equation (9) is not the only choice yielding detailed balance. In particular,
in order to reduce the error caused by excessive proportion, we can make the following
adjustment that

α(G′, G) = min
{

1,
π(G′)
π(G)

}
×min

{
1,

q(G′, G)

q(G, G′)

}
.

In general, since the proposal kernel, which we will set as symmetric, that is, q(G, G′) =
q(G′, G). Consequently, it is indicated that the acceptance probability is only dependent on
the relative densities, which will only require us to compute

α(G′, G) = min
{

1, Λ(G′ : G)
}

.

We randomly select a pair of vertices u, v ∈ V(G). If (u, v) ∈ E(G), then it is removed.
If (u, v) /∈ E(G), then it is added. Let G+(u,v) denote the graph, which is obtained from G
by adding the edge (u, v), and similarly for G−(u,v). Let G(t) denote the state of G at time t
and let U∗ be the set of decomposable undirected graphs with vertex set V(G). We begin
with an ER random graph as its initial state, and then a Metropolis–Hastings algorithm for
sampling decomposable graphs from a structural Markov graph law G can be constructed
in the following Algorithm 1:

Algorithm 1 A Metropolis–Hastings algorithm for sampling decomposable graphs from a
structural Markov graph law.

Input: An ER random graph G ∈ U.
Output: A set of decomposable graph from U.

Set G(0) = G
for t = 0, 1, 2, . . . . do

if (u, v) ∈ E(G(t)) and G−(u,v) ∈ U∗ then
set G(t+1) = G−(u,v) with probability min

(
ηUu ηUv
ηU0 ηU

, 1
)

else if (u, v) /∈ E(G(t)) and G+(u,v) ∈ U∗ then

set G(t+1) = G+(u,v) with probability min
(

ζSζS0
ζSu ζSv

, 1
)

else
G(t+1) = G(t)

end if
end for
return A set of decomposable graphs.

Based on our results in Section 5.1, this algorithm implies that the acceptance probabil-
ity can be obtained by only evaluating the marginal likelihood of corresponding subsets of
V(G) at each step when sampling from a posterior graph law in Proposition 8 or Proposi-
tion 9.

6. Conclusions

The main contribution of this paper is to define the structural Markov properties
of [10] for non-decomposable undirected graphs. It is shown that an arbitrary undirected
graph can be primely decomposed into the sum of several prime subgraphs. Based on the
prime decomposition of undirected graphs and conditional independence, the structural
Markov properties can be naturally extended to arbitrary undirected graphs.
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Then, we propose a full Bayesian method for estimating the structure of a graph. This
method requires that our observed data are from a certain distribution. By using our results,
we have shown that the computation of posterior updating of graph law can be determined
by the prime components margins, which would make the computation of the posterior
graph law greatly simplified.

It should be pointed that all our research only focuses on undirected graphs. However,
other classes of graphs, such as chain graphs or ancestral graphs, may have more interesting
and valuable properties that can reflect the conditional independence of the graph structure
in the problem of models determination. In the future, we will detail them at length.
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Appendix A. Proofs of Some Main Theorems and Propositions

Proof of Theorem 1. The equivalence of (i) and (ii) can be implied by [Corollary 2.5] [20].
So, it suffices to show that (ii)⇔ (iii). We first give the proof of (ii)⇒ (iii). Firstly, we know
that

P(G) = {P : I(G) ⊆ I(P)}.

By the meaning of P(G), we define

P(GD) = {Q : I(GD) ⊆ I(Q)}. (A1)

For P ∈ P(G), let R = PD ∈ P(G)D. By CI-collapsibility, we have

I(GD) = I(G)D ⊆ I(R). (A2)

So, we implied that R ∈ P(GD) by (A1) and (A2). From which, it follows that
P(G)D ⊆ P(GD). Hence, the result follows by P(G)D ⊇ P(GD). Conversely, under
the “Faithfulness Assumption”, there is a P∗ ∈ P(G) such that I(P∗) = I(G), implying
I(P∗D) = I(P∗)D = I(G)D. By M-collapsibility, we know that P∗D ∈ P(GD), which gives
I(GD) ⊆ I(P∗D). Hence, we have I(GD) ⊆ I(G)D. The result follows since it is easy to
obtain that I(G)D ⊆ I(GD).

Proof of Proposition 3. By the graph product operation, since S is complete and separates
A from B, then for any G, G′ ∈ U(A, B, S), (A, B, S) is a prime decomposition of the graph
GA∪S ⊗ G′B∪S with vertex set V(G), and so is G′A∪S ⊗ GB∪S. They imply that (i) holds. As
for (ii), if G is structural Markov on U, then

π(G) = π(GA∪S ⊗ GB∪S)

= π(GA∪S|{G ∈ U(A, B, S)})π(GB∪S|{G ∈ U(A, B, S)}),

and similarly we can have the same result for π(G′). From (i), we have

π(GA∪S ⊗ G′B∪S) =π(GA∪S|{G ∈ U(A, B, S)})
× π(G′B∪S|{G ∈ U(A, B, S)}),
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and so is π(G′A∪S ⊗ GB∪S). Thus, our results by the above arguments follow.

Proof of Proposition 4. Let Hj =
j⋃

i=1
Ui, Sj = Uj ∩ Hj−1, j ∈ {2, 3, . . . , k}. Since (Hj−1 \

Sj, Uj \ Sj, Sj) forms a prime decomposition of GHj , for each j ∈ {2, 3, . . . , k}, we have

GHj = GUj ⊗ GHj−1 .

For j = k, since Sk = Uk ∩ Hk−1 is complete, then

GSk = G(Sk)
Hk

= G(Sk)
Uk
⊗ G(Sk)

Hk−1
.

Whence we have

π(GHk )π(GSk ) = π(GUk ⊗ GHk−1)π(G(Sk)
Uk
⊗ G(Sk)

Hk−1
).

By Proposition 3, we can obtain

π(GHk )π(GSk ) = π(GUk ⊗ G(Sk)
Uk

)π(GHk−1 ⊗ G(Sk)
Hk−1

)

= π(GUk )π(GHk−1).

The equation (1) can be obtained recursively.

Proof of Proposition 5. Suppose that (A, B, S) forms a prime decomposition of G. Since G
can be graphical collapsible onto A ∪ S, by Theorem 1, θA∪S only takes values in P(GA∪S).
This implies that XA∪S can be obtained from θA∪S actually. Then, we obtain

XB∪S |= θA∪S|θB∪S. (A3)

From (A3), we deduce
XB∪S |= θA∪S|(θB∪S, θS). (A4)

By the meaning of the hyper Markov property, it follows that θA∪S |= θB∪S|θS. Combing
this with (A4) and the axioms of conditional independence gives

θA∪S |= (XB∪S, θB∪S)|(XS, θS), (A5)

which implies that
XA∪S |= (XB∪S, θB∪S)|(XS, θA∪S). (A6)

Together, (A5) and (A6) yield the result. The proof for the strong case follows similar
steps.

Proof of Theorem 2. The weak hyper Markov property states that

θA∪S |= θB∪S|(θS, G, {G ∈ U(A, B, S)}). (A7)

Since G ∈ U(A, B, S), then G = GA∪S ⊗ GB∪S. Thus, from (A7) we deduce

θA∪S |= θB∪S|(θS, GA∪S, GB∪S, {G ∈ U(A, B, S)}). (A8)

From Proposition 6, we obtain

θA∪S |= GB∪S|(θS, GA∪S, {G ∈ U(A, B, S)}),

which gives the result that

θA∪S |= (θB∪S, GB∪S)|(θS, GA∪S, {G ∈ U(A, B, S)}) (A9)
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by combining with (A8).
Again, by Proposition 6 and the structural Markov property, we have

GA∪S |= (θB∪S, GB∪S)|{G ∈ U(A, B, S)}.

Then, we have

GA∪S |= (θB∪S, GB∪S)|(θS, {G ∈ U(A, B, S)}). (A10)

Thus, our result follows from (A9) and (A10). The proof for the strong case follows
similar steps.

Proof of Proposition 7. By Theorem 2, we obtain

(θA∪S, GA∪S) |= (θB∪S, GB∪S)|(θS, {G ∈ U(A, B, S)}). (A11)

From (A11), we deduce

θA∪S |= GB∪S|(θS, {G ∈ U(A, B, S)}).

Whence we have

θA∪S |= GB∪S|(XS, θS, {G ∈ U(A, B, S)}). (A12)

By conditional independence property and Theorem 2,

XA∪S |= GB∪S|(XS, θS, {G ∈ U(A, B, S)}).

Thus, we have

XA∪S |= GB∪S|(XS, θS, θA∪S, {G ∈ U(A, B, S)}), (A13)

which combines with (A12) to give the result. The proof of the strong case is similar, so we
omit it for simplicity.

Proof of Theorem 3. Since X is a random sample from θ and L(θ) is hyper Markov with
respect to G, then by Proposition 5,

(XA∪S, θA∪S) |= (XB∪S, θB∪S)|(XS, θS, G, {G ∈ U(A, B, S)}). (A14)

Since G ∈ U(A, B, S), G = GA∪S ⊗ GB∪S. Then, from (A14) we can find that

(XA∪S, θA∪S) |= (XB∪S, θB∪S)|(XS, θS, GA∪S, GB∪S, {G ∈ U(A, B, S)}). (A15)

From Proposition 7, we obtain

(XA∪S, θA∪S) |= GB∪S|(XS, θS, GA∪S, {G ∈ U(A, B, S)}),

which combines with (A15) to give the result that

(XA∪S, θA∪S) |= (XB∪S, θB∪S, GB∪S)|(XS, θS, GA∪S, {G ∈ U(A, B, S)}). (A16)

Additionally, from the structurally Markov property and Proposition 7, we have

GA∪S |= (XB∪S, θB∪S, GB∪S)|(XS, θS, {G ∈ U(A, B, S)}). (A17)

From (A17), we deduce

GA∪S |= (XB∪S, θB∪S, GB∪S)|(XB∪S, θA∪S, XS, θS, {G ∈ U(A, B, S)}). (A18)
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So, the result follows from (A16) and (A18). Similar proof can be given for the case of
the strong hyper Markov law.

Proof of Proposition 10. We first give the proof of (i). Suppose that G, G′ ∈ U. If G is
structural Markov on U, then we have

Λ(G′ : G) =
π(G′)
π(G)

=

k
∏
j=1

π(G′Uj
)

k
∏
j=2

π(G′Sj
)

×

k
∏
j=2

π(GSj)

k
∏
j=1

π(GUj)

=
ηU′j

ηUj

, j ∈ {1, 2, . . . , k}.

(A19)

The proof of (ii) is given as follows. It is obvious that W ′ is prime in G′. Consequently,
G′ has a perfect maximal prime subgraphs sequence (U1, . . . , Uj−1, W ′, Uj+2, . . . , Uk), and
then the Equation (7) follows by using (i).

Proof of Proposition 11. The proof of (i) follows similar steps to that of Proposition 10.
To give the proof of (ii), let T be the junction tree with vertices being all maximal prime
subgraphs of G. The construction of T can be referred to [21]. Since u, v are in two different
maximal prime subgraphs of G, we then connect the Ui and Uj in T . Then, we will obtain
a unique cycle. Without a loss of generality, the vertices on this cycle are denoted by
(Ui = Uh1 , Uh2 , . . . , Uhm = Uj), where Uht and Uht+1 are connected by an edge in T . Then,
it is easy to see that U \ {Ui = Uh1 , Uh2 , . . . , Uhm = Uj} ∪ T is the set of all the maximal
prime subgraphs of G′. So, by applying (i), Equation (8) follows.
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