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Abstract: The control of micro- and nanoscale systems is a vital yet challenging endeavor because of
their small size and high sensitivity, which make them susceptible to environmental factors such as
temperature and humidity. Despite promising methods proposed for these systems in literature, the
chattering in the controller, convergence time, and robustness against a wide range of disturbances
still require further attention. To tackle this issue, we present an intelligent observer, which accounts
for uncertainties and disturbances, along with a chatter-free controller. First, the dynamics of a carbon
nanotube (CNT) are examined, and its governing equations are outlined. Then, the design of the
proposed controller is described. The proposed approach incorporates a self-evolving neural network-
based methodology and the super-twisting sliding mode technique to eliminate the uncertainties’
destructive effects. Also, the proposed technique ensures finite-time convergence of the system. The
controller is then implemented on the CNT and its effectiveness in different conditions is investigated.
The numerical simulations demonstrate the proposed method’s outstanding performance in both
stabilization and tracking control, even in the presence of uncertain parameters of the system and
complicated disturbances.

Keywords: carbon nanotubes; Chebyshev Neural Network; self-evolving algorithm; vibration control;
super-twisting sliding mode

MSC: 34H05; 37N35; 93C40; 92B20

1. Introduction

CNTs have a high aspect ratio, high tensile strength, and high thermal and electrical
conductivity, which makes them ideal for use in advanced materials and devices [1,2]. They
have been used to create strong and lightweight materials, as well as in high-performance
electronics. They can also be used as a catalyst in chemical reactions and have been studied
as a potential solution for environmental problems such as air and water purification [3,4].

The control of CNTs has been an active area of research in recent years, and many
studies have been conducted on developing control strategies for CNTs in different fields
such as mechanical systems, chemical systems, and electrical systems [5,6]. One of the
main challenges is the lack of understanding of the dynamics and properties of CNTs
at the nanoscale, which can make it difficult to predict and control their behavior [7,8].
Additionally, the high aspect ratio of CNTs makes them very flexible and sensitive to
external forces, which can make them difficult to control. Furthermore, the control of CNTs
requires the ability to account for the effects of uncertainties and disturbances, which can
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be challenging [9]. Due to these issues, research in this field is ongoing and new control
schemes are being developed to address these challenges [10].

Nowadays, machine learning approaches have revolutionized technologies in many
fields of study. With the advancement of computing power and the availability of large
datasets, machine learning algorithms can learn patterns, make predictions, and automate
decision-making processes with remarkable accuracy [11]. This has led to significant
breakthroughs in various fields [12–14]. Also, as a stepping stone in most machine learning-
based techniques, neural networks have been widely used in various control applications to
tackle complex and nonlinear systems [15,16]. For instance, Chen et al. [17] have used neural
networks in their study to identify the generalized kernel representations and to design
the intelligent fault diagnosis schemes. Neural networks are also used to approximate
the mathematical model of the system and improve the control performance [18,19]. The
ability of neural networks to learn and generalize from data makes them particularly useful
in the control of systems that are difficult to model or have a large number of uncertain
parameters [20,21]. In the control of nano/microsystems, neural networks have been used
to compensate for the effects of uncertainties and disturbances on the system’s behavior.
They can also be used to estimate the system’s dynamic, which can be used to improve
the performance of the system [22,23]. Neural networks can be used in combination
with traditional control methods such as feedback control, adaptive control, and model
predictive control to improve control performance [24]. Furthermore, neural networks can
also be used in the identification of system parameters, which can be used to improve the
accuracy of the control strategy [25].

Some of the achievements in the literature include the development of control schemes
that can effectively deal with the small size and unique properties of CNTs. For instance,
recently in [26], an adaptive sliding mode control scheme has been developed which is
able to work well under highly uncertain cases in which all parameters are uncertain
and the uncertainties cannot be separated from the control force. In that study, a double
electrostatic actuators scheme has been used and a decoupling scheme that can suppress
the vibration of CNTs in multiple directions has been designed. Also, in [27], piezoelectric
patches have been used as sensors to measure the displacement of the beam and actuators
to implement control forces for vibration control. A model-free adaptive fuzzy sliding
mode controller has been utilized to suppress the vibration of the rotating CNT-reinforced
composite beam. In addition, since the state vector cannot be measured for control purposes
and only the piezoelectric sensor’s output is available, a model-free adaptive fuzzy sliding
mode observer has been proposed here to estimate the system’s state vector. These control
schemes have been successful in achieving precise control of CNTs and have been shown
to have excellent performance in numerical simulations. Despite these advances, there are
still areas where improvements can be made. Chattering and handling various types of
uncertainties remain persistent challenges for control engineers. This is particularly true for
discontinuous disturbances, which many of the existing methods are unable to effectively
deal with. The high sensitivity of nanosystems means that even small disturbances can have
a significant impact on their performance, and the presence of chattering can significantly
detract from their performance [28]. As a result, further research is needed to develop
control methods that can effectively handle chattering and deal with a wide range of
uncertainties, including discontinuous disturbances, to ensure the optimal performance of
nano- and microscale systems.

Motivated by the aforementioned factors, in the current study we take advantage of
the universal approximation of neural networks and propose an intelligent and smooth
controller for stabilization and tracking control of CNT. We use Chebyshev Neural Network
(ChNN) which is a specific type of artificial neural network that utilizes the Chebyshev
polynomial as the activation function [29]. It has been demonstrated to have faster con-
vergence and superior approximation ability compared to traditional neural networks.
The Chebyshev polynomial activation function can approximate the complex function to
an arbitrary degree of accuracy and its simple form reduces the risk of overfitting and
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enhances the robustness of the network. The ChNN has been successfully used in various
areas such as system identification, function approximation, and control systems, and has
shown impressive results in terms of accuracy, generalization ability, and stability [30,31].

The proposed control method for CNTs tackles the challenges posed by the small
size of these systems and their sensitivity to environmental factors like temperature and
humidity. This approach improves the performance of the controller and makes it more
robust to changes in the system’s properties. The numerical results of the implementation
of the controller on CNTs are a testament to the proposed method’s superior performance.
The finite-time control strategy guarantees the closed-loop system to converge to the
desired state in a finite time, regardless of the initial conditions, making them more robust
in unknown conditions. This feature is especially important in the case of CNTs as the
properties of CNTs can change with time due to environmental factors.

The rest of the article is structured as follows: Section 2 covers the modeling and
mathematical representation of a CNT. In Section 3, the design process of the controller and
its guaranteed stability are discussed. Then, in Section 4, the proposed controller is applied
to the system in various uncertain scenarios for stabilization and tracking control. Finally,
Section 5 concludes with summarizing remarks and prospects.

2. Modeling and Mathematical Formulation of the System

This section presents an overview of the system model of the CNT and the mathe-
matical formulation used to describe its dynamics. The governing equations of motion
for the CNT and the continuum mechanics principles applied to the CNT system are also
presented. The scheme of a clamped–clamped single-walled CNT that uses electrostatic
actuation to transport viscous fluid is illustrated in Figure 1.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

work (ChNN) which is a specific type of artificial neural network that utilizes the Cheby-

shev polynomial as the activation function [29]. It has been demonstrated to have faster 

convergence and superior approximation ability compared to traditional neural networks. 

The Chebyshev polynomial activation function can approximate the complex function to 

an arbitrary degree of accuracy and its simple form reduces the risk of overfitting and 

enhances the robustness of the network. The ChNN has been successfully used in various 

areas such as system identification, function approximation, and control systems, and has 

shown impressive results in terms of accuracy, generalization ability, and stability [30,31]. 

The proposed control method for CNTs tackles the challenges posed by the small size 

of these systems and their sensitivity to environmental factors like temperature and hu-

midity. This approach improves the performance of the controller and makes it more ro-

bust to changes in the system’s properties. The numerical results of the implementation 

of the controller on CNTs are a testament to the proposed method’s superior performance. 

The finite-time control strategy guarantees the closed-loop system to converge to the de-

sired state in a finite time, regardless of the initial conditions, making them more robust 

in unknown conditions. This feature is especially important in the case of CNTs as the 

properties of CNTs can change with time due to environmental factors. 

The rest of the article is structured as follows: Section 2 covers the modeling and 

mathematical representation of a CNT. In Section 3, the design process of the controller 

and its guaranteed stability are discussed. Then, in Section 4, the proposed controller is 

applied to the system in various uncertain scenarios for stabilization and tracking control. 

Finally, Section 5 concludes with summarizing remarks and prospects. 

2. Modeling and Mathematical Formulation of the System 

This section presents an overview of the system model of the CNT and the mathe-

matical formulation used to describe its dynamics. The governing equations of motion for 

the CNT and the continuum mechanics principles applied to the CNT system are also 

presented. The scheme of a clamped–clamped single-walled CNT that uses electrostatic 

actuation to transport viscous fluid is illustrated in Figure 1. 

 

Figure 1. An illustration of a single-walled CNT. 

The tubular structure being analyzed has a slender shape and undergoes planar mo-

tions, represented by 𝑤(𝑥, 𝑡) where 𝑥 is the location and 𝑡 is the time variable. The fluid 

flow velocity inside the CNT is represented by 𝑈. The governing nonlinear partial differ-

ential equation (PDE) and its appropriate boundary conditions have been derived by uti-

lizing Hamilton’s principle to study the CNT dynamics, taking into account the nonlocal 

effects. The following equation represents this governing equation and its corresponding 

boundary conditions [32]: 

Figure 1. An illustration of a single-walled CNT.

The tubular structure being analyzed has a slender shape and undergoes planar
motions, represented by w(x, t) where x is the location and t is the time variable. The
fluid flow velocity inside the CNT is represented by U. The governing nonlinear partial
differential equation (PDE) and its appropriate boundary conditions have been derived by
utilizing Hamilton’s principle to study the CNT dynamics, taking into account the nonlocal
effects. The following equation represents this governing equation and its corresponding
boundary conditions [32]:(

1 + c
∂

∂t

)
EI

∂4w
∂x4 +

[
MU2 − N + PA(1− 2υ) + M

∂U
∂t

(L− x)
]

∂2w
∂x2 + (M + m)

∂2w
∂t2 + 2MU

∂2w
∂x∂t

−rA
(

U
∂3w
∂x3 +

∂3w
∂x2∂t

)
− (e0a)2

[
(M + m)

∂4w
∂x2∂t2 + MU2 ∂4w

∂x4 + 2MU
∂4w

∂x3∂t

]
= qelec − (e0a)2 ∂2qelec

∂x2

(1)

{
w = w′ = 0atx = 0
w = w′ = 0atx = L

(2)

where L signifies the length of the CNT, while EI represents its flexural rigidity. The
viscoelastic nature of the CNT is denoted by c, and its Poisson ratio is shown as υ. The
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CNT’s mass per unit length is indicated by m, and the impact of the nonlocal elastic stress
field on its behavior is symbolized by e0. The static tension in the pipe is designated as N.
For the fluid being conveyed at the end of the CNT, A stands for the cross-sectional area, M
for its mass per unit length, r for its viscosity, and P for its internal pressure. The external
electrostatic force affecting the CNT is represented by qelec [33].

qelec =
πε0v2√

(d− w)(d− w + 2R)arccosh2
(

1 +
d− w

R

) , (3)

In the equation, ε0 is the permittivity of the vacuum coefficient, with a value of
8.854× 10−12 (C2/Nm2). The applied electrostatic voltage is represented by v, and the dis-
tance between the two electrodes is represented by d. The nonlinear PDE governing the CNT
(1) was converted into a dimensionless form using the following dimensionless quantities.

η =
w
d

, ξ =
x
L

, τ =

(
EI

M + m

)1/2 t
L2 , R =

R
d

, u f =

(
M
EI

)1/2
LU, α =

(
EI

M + m

)1/2 c
L2 ,

T =
NL2

EI
− PAL2

EI
(1− 2υ), β =

rA

(EIM)1/2 , Mr =

(
M

M + m

)1/2
, en =

e0a
L

, V =
v√

d2EI
πε0L4

,
(4)

These non-dimensional parameters are used to simplify the equation of motion and
make it easier to analyze. By expressing the variables in a dimensionless form, it is possible
to compare the results from different scenarios and to understand the underlying physics
of the CNT’s behavior more clearly. This is particularly useful when studying nonlinear
systems such as the CNT, as it enables one to identify and analyze the key factors that affect
the system’s behavior. The dimensionless equation of motion is given by

α
∂5η

∂ξ4∂τ
+

∂4η

∂ξ4 +
[
u2

f − T + Mr
.
u f (1− ξ)

]∂2η

∂ξ2 +
∂2η

∂τ2 + 2Mru f
∂2η

∂ξ∂τ

−β

(
u f

∂3η

∂ξ3 + Mr
∂3η

∂ξ2∂τ

)
− e2

n

(
∂4η

∂ξ2∂τ2 + u2
f

∂4η

∂ξ4 + 2Mru f
∂4η

∂ξ3∂τ

)
=

+
V2√

(1− η)
(
1− η + 2R

)
arccosh2

(
1 +

1− η

R

)

−e2
n

∂2η

∂ξ2

 V2√
(1− η)

(
1− η + 2R

)
arccosh2

(
1 +

1− η

R

)
,

(5)

It has been assumed that the fluid’s velocity, u f , fluctuates in a periodic manner. To
simplify the analysis, this velocity has been transformed into a dimensionless form, which
is presented as:

αu f = u0[1 + µcos(ωτ)] (6)

In the equation, the fluid’s average speed is represented by u0, and the amplitude and
frequency of its harmonic fluctuation are represented by µ andω, respectively.

By applying the Galerkin method to the nonlinear PDE of the CNT, the complex and
highly nonlinear equation is reduced to a set of simple and manageable nonlinear ordinary
differential equations (ODEs). The Galerkin method is a mathematical technique that
is used to simplify the solution of partial differential equations. This makes it possible
to analyze the system and gain insights into its behavior. The equation of motion was
discretized using the first and most significant mode shape of the CNT. This means that
only the first and most significant pattern of vibration of the CNT has been considered in
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the analysis. This is a common practice in the analysis of linear and nonlinear systems,
as it enables one to focus on the most important aspect of the system and simplify the
analysis. It means that the governing PDE is broken down into smaller parts that can be
more easily solved.

η(ξ, τ) = ϕ(ξ)Q(τ) (7)

where the spatial and temporal parts of the deflection of the CNT are represented by ϕ(ξ)
and Q(τ), respectively, where ϕ(ξ) satisfies the boundary conditions of the CNT.

The Taylor series has been used to express the external electrostatic force of the CNT
as follows:

1√
(1− η)

(
1− η + 2R

)
arccosh2

(
1 + 1−η

R

)= 0.1537 + 0.2374η + 0.6081η2 + 2.1650η3 + . . . . (8)

The Taylor series is a mathematical tool that allows one to represent a function as
an infinite sum of terms, where each term is a function of one or more variables raised
to a certain power. In this case, the external electrostatic force of the CNT is represented
as a sum of infinite terms, each term depending on the electrostatic voltage, v, and the
electrode’s distance, d. By expressing the external electrostatic force in this way, it becomes
possible to study its properties and behavior in detail. Additionally, it allows one to analyze
how the force changes as the applied voltage and distance between electrodes change. This
leads to the final form of the nonlinear ODE as follows:

..
Q + (Cc + Cd)

.
Q + (Kc + Kd)Q = V2

[
a1 + a2Q + a3Q2 + a4Q3

]
(9)

For more details on the parameters in Equation (9) refer to [34]. The electrostatic
actuation which includes both a direct current voltage (vDC) and an alternating current
harmonic voltage (vAC) component is given by:

v = vDC + vACcos(Ωt) = vDC + vAC(t) (10)

Supposing vAC << vDC → v2
AC ≈ 0 , results in

v2 = v2
DC + 2vDCvAC(t) (11)

Thus, Equation (9) can be reformulated as

..
Q + (Cc + Cd)

.
Q + (Kc + Kd)Q = Ṽ

2[
a1 + a2Q + a3Q2 + a4Q3]

+2 Ṽ
2

vDC
vAC(t)

[
a1 + a2Q + a3Q2 + a4Q3] (12)

in which
Ṽ =

vDC√
d2EI

πε0L4

(13)

3. Proposed Control Methodology

In this section, a novel control method, referred to as a neural network-based finite-
time super-twisting sliding mode technique, has been proposed for the vibration control of
a CNT. This approach utilizes the electrostatic actuation as the implemented control signal
and utilizes a neural network to accurately estimate the system’s states. The stability of the
proposed controller design is also proven in this section.

The proposed technique has several advantages over traditional control methods,
including its ability to effectively handle the nonlinearity and uncertainty present in the
CNT system, as well as its robustness to external disturbances. Additionally, it utilizes
a finite-time convergence algorithm, which ensures that the system reaches the desired
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equilibrium state within a finite time (not exponential convergence), regardless of initial
conditions or system parameters. Furthermore, by using a self-evolving neural network,
it can improve control performance by reducing the effect of measurement noise and
system uncertainties.

The state space equation of the system by defining Q = x1,
.

Q =
.
x1 = x2 and vAC = u

has been rewritten as follows:
.
x1 = x2
.
x2 = −Ccx2 − Kcx1 + Ṽ

2[
a1 + a2x1 + a3x2

1 + a4x3
1
]
+

2 Ṽ
2

vDC

[
a1 + a2x1 + a3x2

1 + a4x3
1
]
u + d(τ)

(14)

where d(τ) = d0(τ)− Kdx1 − Cdx2 represents the compound disturbance, which includes
external disturbance and uncertainties. Without losing generality, we rewrite the general
state space of the system as follows:

.
xi = xi+1i = 1, 2, · · · , n− 1
.
xn = f (x) + g(x)u + d(t)
y = x1

(15)

3.1. ChNN

A ChNN is a type of neural network that is designed to work with signals represented
on a Chebyshev basis. In a ChNN, the input signal is first transformed into the Chebyshev
basis using Chebyshev polynomials. Chebyshev polynomials are a set of orthogonal
polynomials that are defined on a specific interval, usually [−1, 1]. They have several
useful properties, such as rapid convergence and a high degree of smoothness. Using
Chebyshev polynomials to represent the input signal allows the ChNN to take advantage
of these properties and achieve a high degree of accuracy.

The transformed signal is then processed by the neural network, which is typically
a feedforward network with one or more hidden layers. The weights and biases of the
network are trained using a suitable optimization algorithm, such as backpropagation.
ChNNs are particularly effective in nonlinear system modeling, where they can achieve
a high degree of accuracy with a relatively small number of parameters. This is because
Chebyshev polynomials are able to approximate nonlinear functions very well. Further-
more, ChNNs are able to handle signals with different scales, such as signals that contain
both low-frequency and high-frequency components. Overall, a ChNN is an effective
method for approximating nonlinear functions.

By taking the inputs of the ChNN as x1 and x2, which are the error and its time-
derivative, respectively, the calculation of Chebyshev polynomials can be done using the
commonly known recursive formula:

Φi+1(xi) = 2xiΦi(xi)−Φi−1(xi) (16)

in which the first Chebyshev polynomial is Φ0(xi) considered to be constant and equal to 1,
and the second one is considered as 2xi, 2xi + 1, or 2xi − 1, in the literature. Here we set
Φ1(xi) = 2xi. The basis function in the Chebyshev polynomial is considered as:

H = [Φ0(x1).Φ1(x1).Φ2(x1). . . . .Φn(x1). . . . Φ1(xm).Φ2(xm). . . . . Φn(xm)] (17)

The Chebyshev polynomials are ordered by n, and the neural network has m inputs
as they are illustrated in Figure 2. A non-linear function G(x) ∈ Rm is estimated by a
ChNN as

F̂(x) = W∗H(x) + ε (18)

where W∗ represents the optimal weight matrix of the ChNN and ε represents the ChNN’s
bounded approximation error.
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3.2. Super-Twisting Finite-Time SMC

The super-twisting algorithm, introduced in [35] is a widely sliding mode control
and observation technique. Here are some of the advantages of the super-twisting sliding
mode controllers:

• High accuracy in controlling dynamic systems,
• Robustness against uncertainties,
• Simplicity in implementation,
• Finite-time stability properties.

In this work, we present a reliable controller for CNTs by leveraging the universal
approximation capability of neural networks and the robustness of super-twisting sliding
mode controllers. By combining these two powerful techniques, we aim to achieve im-
proved control performance. The difference between the actual response and the desired
response of the system is represented by the tracking error as follows:

e(t) = x1(t)− xd(t) (19)

Here, xd (t) represents the desired value of the state x(t). The sliding surface is
defined as:

st(t) = τe(t) +
.
e(t), (20)

In this equation, the constant τ is a user-defined positive value. If the user-defined
parameter (τ) of the sliding surface satisfies the Routh–Hurwitz stability condition, then
the sliding surface will be considered stable. Our proposed solution for system (1) is a
self-evolving finite-time super-twisting controller which is given by:

uc = −g−1(x)
(

f (x)− .
x1d + ust1 + d̂ + τe(t)

)
,

ust1 = −k1|st|
1
2 sign(st) + ust2

.
ust2 = −k2sign(st)

(21)

The parameters k1 and k2 are both positive used-defined parameters in this equation.
Additionally, the difference between the estimated weights and the actual weights is
referred to as the error of weight estimation which is given by:

W̃ = W∗ − Ŵ (22)
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As it is shown in Figure 2, the neural network needs an updating law to evolve based
on the new condition. The following adaptive law describes the proposed process to evolve
the weights of the neural network:

.
Ŵ = −γ stφ (23)

where γ is a positive design parameter. It is noteworthy that the proposed control technique
eliminates the need for a training phase, which is typically required in many other control
techniques. This means that the system can start operating immediately without any prior
knowledge of the system’s dynamics or control parameters. This is achieved by using a
sophisticated updating law to adjust the network’s weights based on the current state of
the system and its desired output.

Theorem 1. The control law (21) ensures that the closed-loop system states (15) attain the desired
value within a specified time.

Proof. Equation (24) represents the time derivative of the sliding surface.

.
st =

(
τ

.
e(t) + f (x) + g(x)uc −

.
x1d

)
=
(

τ
.
e(t) + f (x) −

(
f (x)− .

x1d + ust1 + d̂ + τ
.
e(t)

)
− .

x1d

)
=
(
−ust1 + d− d̂

) (24)

In accordance with Equation (18), we know d− d̂ = d− Ŵφ = ε which results in

.
st = −ust1 + ε (25)

Hence, substituting the proposed ust1 one can reach the following equations:

.
st = −k1|st|

1
2 sign(st) + ust2 + ε

.
ust2 = −k2sign(st)

(26)

in which ε is a bounded estimation error. By introducing w1 = st and w2 = ust2 as new
variables and reformulating the equation, we obtain

.
w1 = −k1|w1|

1
2 sign(w1) + w2 + ε

.
w2 = −k2sign(w1)

(27)

Equation (27) represents a second-order super-twisting algorithm. According to
Theorem 2 in [36] we select the following Lyapunov function

V0 = ςTPς (28)

in which P is a symmetric and positive definite matrix, V0 is quadratic Lyapunov function,

and ς = [ς1, ς2]
T =

[
|w1|

1
2 sign(w1), w2

]T
in which the following equality is held for

symmetric and positive definite matrix Q

.
V0 = −|w1|

1
2 ςTQς (29)

In addition, the error trajectory will be globally ultimately bounded, and the conver-
gence time is given by t f as follows:

t f = ts∆ +
2λmax{P}

λ
1
2
min{P}λmin{Q}

V
1
2

0 (t0) (30)
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following the procedure outlined in [36], matrices P and Q in the Lyapunov function can
be chosen, ensuring that the variables w1 and w2 reach zero in finite time (t f ). �

Figure 3 depicts the process of implementing the proposed control scheme that in-
corporates the ChNN estimator. By leveraging the ChNN estimator and super-twisting
algorithm, the proposed scheme can achieve enhanced performance even when faced with
uncertainties in the model and external disturbance. In the following section, we will
employ this control scheme to regulate the nonlinear dynamic of the CNT.
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4. Simulation Results

The results of numerical simulations that demonstrate the proposed control method’s
outstanding performance on a CNT system are presented in this section. The system’s
parameters that have been made dimensionless are α = 0.001, β = 0.300, Mr = 0.800, T = 20,
and e2

n = 0.200. The proposed control technique’s parameters are selected using a trial-
and-error approach that is notably straightforward due to the technique’s versatility across
a broad range of parameters. This involves adjusting the control gains and evaluating
the system’s performance until the desired level of performance is attained. However,
to achieve the best possible performance with this controller, it is advisable to utilize an
evolutionary algorithm like a genetic algorithm to determine the controller’s parameters.
This approach considers the convergence time and control input value as objective functions
to optimize the controller’s performance.

4.1. Stabilization with Uncertain Parameters

In order to take to account the effects of uncertainties, the parameters Cc and Kc of
the system are treated as time-varying parameters and subject to unknown perturbations
as follows:

∆Cc = 0.5 sin
(

0.2t2
)

, ∆Kc = 50 cos(2sqrt(t)) (31)

The objective of this section is to maintain the stability of the CNT despite its con-
tinuously changing dynamic parameters. As shown in Figure 4, the states of the system
are stabilized in a very short amount of time. This figure is meant to demonstrate that
even though the parameters of the CNT system are continuously changing, the states
of the system quickly stabilize and reach a stable state within a short amount of time.
Figure 5, on the other hand, shows the control inputs that are applied to the CNT system
in order to maintain its stability. The control signal is illustrated over time, showing the
“chattering-free” behavior of the controller.
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4.2. Stabilization in the Presence of Discontinuous Disturbances

In this study, we take into account the CNT in the presence of external disturbances
that are complex and change over time, such as:

d(τ) = 2sign(sin(0.5t)) + 0.5 cos(0.2
√

t) (32)

The numerical results presented here effectively demonstrate the effectiveness of the
proposed control strategy in maintaining the stability of the CNT system. Figure 6 clearly
showcases the stabilized states of the system, even under complex disturbance conditions,
highlighting the robustness of the proposed approach. Figure 7, on the other hand, presents
the control signals obtained through the proposed control technique, which results in
chattering-free control signals. Chattering can cause unwanted oscillations and vibrations
in the system, negatively impacting its performance and reliability. The proposed control
strategy, by avoiding chattering, ensures stability without sacrificing performance.
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There is rigorous reason behind the smooth control signal of the proposed technique.
In the proposed control scheme, the sign function is not applied directly to the system.

Instead, only terms containing k1|st|
1
2 sign(st) and the integral of k2sign(st) are present,

both of which are smooth (refer to Equation (21) in the manuscript). Furthermore, since the
controller stabilizes the system in finite time, the sliding surface converges to zero within
a finite time. This means that the sign(s_t) function becomes zero after a short period,
resulting in reduced or eliminated chattering and vibration during the stabilization process.
Hence, the proposed finite-time controller offers two benefits: (a) it stabilizes the system
within a finite time, and (b) it reduces or eliminates chattering in the control input signal,
thereby reducing vibration in the system.

These results demonstrate the robustness and effectiveness of the proposed super-
twisting sliding mode algorithm in maintaining the stability of the CNT system and have
significant implications for the design of control systems in practical applications. Discon-
tinuous disturbances can cause instability in the system and lead to poor performance,
making it crucial to design a controller that can effectively handle these disturbances. It
is noteworthy that many conventional controllers struggle to handle such disturbances,
either due to stability criteria that they cannot meet or an increased convergence time.
This highlights the importance of the proposed super-twisting sliding mode algorithm,
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which is able to handle discontinuous disturbances and maintain the stability of the CNT
system even in challenging conditions. The results presented in the figures demonstrate
the robustness and effectiveness of the proposed algorithm in these scenarios, making it a
valuable contribution to the field of control systems design.

4.3. Tracking Control

To examine the efficiency of the proposed control scheme, we set a specific desired state
trajectory for the system. This desired state trajectory acts as a benchmark for evaluating
the performance of the proposed scheme and allows us to determine how well the system
is able to track the desired path. By comparing the actual state of the system with the
desired state, we can evaluate the accuracy and reliability of the proposed control strategy
in achieving the desired state. This step is crucial in validating the proposed control scheme
and provides insight into its ability to track a desired trajectory, a key requirement for many
control systems applications.

xd = 0.3sin(3t) + 0.1cos(0.5t) (33)

Figures 8 and 9 show the system’s states and chatter-free control input. The tracking
control results demonstrate the proposed control scheme’s ability to reach the desired
performance. This is evidenced by the stable and smooth behavior of the system, as well as
the control input, which does not exhibit any “chatter” or erratic behavior. This suggests
that the proposed control method is effective in controlling the system and producing stable
and consistent results, even in the presence of disturbances or other challenging conditions.
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In summary, this new control method provides a promising solution for the control of
CNTs, which are widely used in various fields such as electronics, energy, and medicine,
and the ability to control them accurately and efficiently is of great importance.
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5. Conclusions

We studied the stabilization and control of CNTs with dynamic parameters and
unknown discontinuous uncertainties. The proposed control scheme extends the super-
twisting sliding mode control and offers chattering-free and finite-time responses by lever-
aging the universal approximation capabilities of neural networks. The self-evolving neural
network was utilized in the control algorithm to take into account the effects of disturbances
and uncertainties, which helped to provide a chattering-free and finite-time response. The
Lyapunov stability theorem was used to prove the finite-time convergence and stability
of the system. The disturbances and uncertainties were taken into consideration in the
stability analysis of the proposed control scheme. The effectiveness of the proposed scheme
was assessed through various numerical simulations in different scenarios, including stabi-
lization with time-varying parameters, stabilization in the presence of disturbances, and
tracking control. Numerical simulation results confirmed the proposed control technique’s
theoretical claims and showed its excellent performance. Given the promising results of
the proposed solution in our study, we recommend considering its application in practical
scenarios in the future. Also, future enhancements to the proposed controller can include
the integration of self-tuning algorithms, making it versatile and adaptable for use in
various systems. Also, by incorporating fractional-order elements, the proposed controller
can achieve improved performance and accuracy in capturing complex dynamic behaviors,
making it more suitable for use in a wider range of systems.
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