# Conics from the Cartan Decomposition of SO(2,1)

## Abstract

**:**

## 1. Introduction

## 2. Conics Provided by the Cartan Decomposition of SO(2, 1)

**Definition**

**1.**

**Proposition**

**1.**

## 3. The Translated SO(2, 1)-Conics

**Definition**

**2.**

**Proposition**

**2.**

**Remark**

**1.**

**Example**

**1.**

**Remark**

**2.**

**Example**

**2.**

## 4. A Complex Approach to Translated SO(2, 1)-Conics

**Example**

**3.**

**Example**

**4.**

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Glaeser, G.; Stachel, H.; Odehnal, B. The Universe of Conics. From the Ancient Greeks to 21st Century Developments; Springer Spektrum: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Crasmareanu, M. Conics from symmetric Pythagorean triple preserving matrices. Int. Electron. J. Geom.
**2019**, 12, 85–92. [Google Scholar] [CrossRef] - Crasmareanu, M. Conics from the adjoint representation of SU(2). Mat. Vesn.
**2021**, 73, 256–267. [Google Scholar] - Crasmareanu, M. Magic conics, their integer points and complementary ellipses. An. Stiint. Univ. Al. I. Cuza Iasi Mat.
**2021**, 67, 129–148. [Google Scholar] [CrossRef] - Schmidt, M.U. Integrable systems and Riemann surfaces of infinite genus. Mem. Am. Math. Soc.
**1996**, 122, 581. [Google Scholar] [CrossRef][Green Version] - Constantinescu, O.; Crasmareanu, M. Exemples of conics arising in two-dimensional Finsler and Lagrange geometries. An. Ştiinţ. Univ. “Ovidius” Constanţa, Ser. Mat.
**2009**, 17, 45–60. [Google Scholar] - Seppala-Holtzman, D.N. A canonical conical function. Coll. Math. J.
**2018**, 49, 359–362. [Google Scholar] [CrossRef] - Crasmareanu, M. Quaternionic product of circles and cycles and octonionic product for pairs of circles. Iranian J. Math. Sci. Inform.
**2022**, 17, 227–237. [Google Scholar] [CrossRef] - Cortés, V.; Haupt, A.S. Mathematical Methods of Classical Physics; SpringerBriefs in Physics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Pamfilos, P. Conic homographies and bitangent pencils. Forum Geom.
**2009**, 9, 229–257. [Google Scholar] - Berndt, J. Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew. Math.
**1989**, 395, 132–141. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Crasmareanu, M.
Conics from the Cartan Decomposition of *SO*(2,1). *Mathematics* **2023**, *11*, 1580.
https://doi.org/10.3390/math11071580

**AMA Style**

Crasmareanu M.
Conics from the Cartan Decomposition of *SO*(2,1). *Mathematics*. 2023; 11(7):1580.
https://doi.org/10.3390/math11071580

**Chicago/Turabian Style**

Crasmareanu, Mircea.
2023. "Conics from the Cartan Decomposition of *SO*(2,1)" *Mathematics* 11, no. 7: 1580.
https://doi.org/10.3390/math11071580