
Citation: Leon, J.F.; Li, Y.; Peyman,

M.; Calvet, L.; Juan, A.A. A

Discrete-Event Simheuristic for

Solving a Realistic Storage Location

Assignment Problem. Mathematics

2023, 11, 1577. https://doi.org/

10.3390/math11071577

Academic Editor: Petr Stodola

Received: 25 February 2023

Revised: 20 March 2023

Accepted: 22 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Discrete-Event Simheuristic for Solving a Realistic Storage
Location Assignment Problem
Jonas F. Leon 1,2 , Yuda Li 3 , Mohammad Peyman 1 , Laura Calvet 4 and Angel A. Juan 3,*

1 Department of Computer Science, Multimedia and Telecommunication, Universitat Oberta de Catalunya,
08018 Barcelona, Spain

2 Spindox España S.L., Calle Muntaner 305, 08021 Barcelona, Spain
3 Department of Applied Statistics and Operations Research, Universitat Politècnica de València,

03801 Alcoy, Spain
4 Department of Telecommunication and Systems Engineering, Autonomous University of Barcelona,

08202 Sabadell, Spain
* Correspondence: ajuanp@upv.es

Abstract: In the context of increasing complexity in manufacturing and logistic systems, the combi-
nation of optimization and simulation can be considered a versatile tool for supporting managerial
decision-making. An informed storage location assignment policy is key for improving warehouse
operations, which play a vital role in the efficiency of supply chains. Traditional approaches in
the literature to solve the storage location assignment problem present some limitations, such as
excluding the stochastic variability of processes or the interaction among different warehouse activi-
ties. This work addresses those limitations by proposing a discrete-event simheuristic framework
that ensures robust solutions in the face of real-life warehouse conditions. The approach followed
embraces the complexity of the problem by integrating the order sequence and picking route in the
solution construction and uses commercial simulation software to reduce the impact of stochastic
events on the quality of the solution. The implementation of this type of novel methodology within a
warehouse management system can enhance warehouse efficiency without requiring an increase in
automation level. The method developed is tested under a number of computational experiments
that show its convenience and point toward future lines of research.

Keywords: simheuristics; storage location assignment problem; managerial decision-making; simulation
commercial software

MSC: 90-08; 68T20; 90B06; 68U20; 90B05; 65C05

1. Introduction

Very often, people in charge of managing the daily operations of a warehouse face
challenging decisions such as: «What would be the best way to organize the products
in the warehouse?», «what products should I place differently to increase overall ware-
house productivity?», «do I have enough resources to fulfill tomorrow’s orders?». These
questions are difficult to answer due to (i) the vagueness of some terms, such as “best
way”; (ii) the non-mentioned aspects, which are, in fact, relevant, such as considering the
variability in the x and y parameters; and (iii) the interconnection between all the activities
that take place in the warehouse, such as assigning a product to a place due to its own
characteristics (weight, fragility, etc.), and the frequency with which this place is visited
by workers. Nonetheless, science and technology can illuminate and guide managerial
decisions of this sort if the questions are properly framed, and the appropriate tools are
employed. As pointed out by Zhang et al. [1], warehouse daily operations can be improved
by different approaches, including: (i) by assigning items to appropriate storage locations

Mathematics 2023, 11, 1577. https://doi.org/10.3390/math11071577 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11071577
https://doi.org/10.3390/math11071577
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2521-9207
https://orcid.org/0000-0001-8031-6555
https://orcid.org/0000-0003-4734-2414
https://orcid.org/0000-0001-8425-1381
https://orcid.org/0000-0003-1392-1776
https://doi.org/10.3390/math11071577
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11071577?type=check_update&version=1


Mathematics 2023, 11, 1577 2 of 24

(storage location assignment); (ii) by determining the optimal retrieval route for the items
in an order (retrieval operation); and (iii) by picking orders in batches (batching). These
points are always present for warehouse management as a single problem (i.e., improving
warehouse efficiency), but very often, they are treated as separate problems in the scientific
literature. Separating a complex problem into smaller problems is a natural consequence
of applying an analytical approach. For instance, focusing on the question of where to
best place items in the available storage locations gave rise to the storage location assign-
ment problem (SLAP) definition. However, isolating this product assignment decision has
impacts on other operational areas of the warehouse, such as the product picking routes.
Since some operational areas are removed from the scope of the SLAP, the particular solu-
tion found to the isolated problem can potentially result in an overall drop in warehouse
efficiency. This shows a sharp conflict between the current scientific methods and the
warehouse’s real-world needs. Having that in mind, the main objective of this paper is to
develop a solving methodology that involves the combined use of heuristics and simulation
(simheuristics) to improve the storage location assignment of products in a warehouse,
integrating (rather than isolating) different aspects of the warehouse operations, such as
routing planning and order fulfillment. It is worth noting that the use of simulation in order
to address an optimization problem can have a number of advantages: (i) it allows the
creation and evaluation of complex scenarios with little effort, where many interconnected
systems interact with each other; (ii) it generates additional data that can be employed
for a stochastic evaluation, or even as a guide, of the optimization component; and (iii) it
allows integration of different optimization problems in a single framework. It also has
some disadvantages: (i) it significantly increases the total computing time, since simulation
can be a resource-hungry activity; and (ii) it can be difficult to replicate by the scientific
community since most high-quality simulation software is proprietary and require licensing
to be employed.

There are three original contributions of this study. The first one is the modeling of
a realistic version of the storage location assignment problem (SLAP) [2] that includes
orders as the driving factor for optimization. As discussed in the literature review section,
a popular approach is to treat the SLAP in isolation and to model it using mixed-integer
linear programming (MILP). Nonetheless, this approach has some limitations when dealing
with realistic warehouse conditions, such as including stochastic variables or considering
the interaction with other warehouse activities (retrieval routing strategies, order dispatch-
ing, etc.). Here, a generic object-oriented formulation is proposed to allow for stochastic
conditions and the incorporation of the SLAP in a wider warehouse optimization context.
The second contribution is an integrated heuristic-simulation methodology, or simheuris-
tic [3], built on the developed model to solve the SLAP. This methodology makes intensive
use of the Python programming language [4] and the well-established commercial simu-
lation software FlexSim [5]. FlexSim relies mainly on the discrete-event (DE) simulation
paradigm, in which the modeled system evolution is considered to occur as a sequence
of events as opposed to a continuous evolution in time. This simulation approach has
some advantages, such as the use of simple decision rules at event points (instead of
differential equations), or the possibility of modeling large and highly complex systems
with potentially limited use of computer resources since the continuous dynamic of the
system does not need to be computed at each time step [6]. On the other hand, Python
is a general-purpose programming language that will be employed to govern the logic
of the solving methodology. The use of Python has notable advantages, such as the use
of advanced libraries, which are open and validated by the scientific community. The
third contribution is a comprehensive set of computational experiments that include a
sensitivity analysis to verify the convenience of the approach followed in this study on a
set of benchmark problem instances.

As hinted at above, the existing literature covers the SLAP in isolation, which is
probably not the best strategy for optimizing the operations of a realistic warehouse since
the routing and order-picking problems are highly interrelated with it [7]. The formulation



Mathematics 2023, 11, 1577 3 of 24

presented in this study incorporates an adjustable routing and order sequence definition
while solving a deterministic version of SLAP. The purely deterministic solution to the
SLAP can give fast and high-quality results. However, for being high-quality solutions in a
real-life environment, they require that the stochastic variability in the problem conditions is
not present, or in other words, they require great simplification that reality sometimes does
not allow. Being able to find solutions that are robust when faced with real-life warehouse
conditions is important for decision-makers. For this reason, a simheuristic framework has
been developed that ensures that the SLAP solution found is able to perform in a realistic
simulation context. Therefore, the approach followed in this study goes in the direction of:
(i) considering an integrated approach that embraces the complexity of the problem; and
(ii) using simulation to reduce the impact of stochastic events on the quality of the SLAP
solution in a real-life application. To the best of the authors’ knowledge, this is the first
time that a DE model developed with FlexSim is seamlessly integrated into a simheuristic
algorithm for realistic SLAP optimization.

The rest of the paper is structured as follows: Section 2 presents a short literature review
on some of the key topics analyzed in this paper. Section 3 provides a formal definition of
the problem addressed, while Section 4 explains the proposed solving approach. Section 5
describes the computational experiments used to validate the approach, followed by the
result presentation and discussion. Finally, Section 6 draws the main conclusions of this
work and points out lines of future research.

2. Literature Review

This section covers some of the relevant research performed on the SLAP, identifying
the most common strategies to solve it and exploring different versions of the problem
proposed in the literature. Since it is not always possible to solve realistic versions of the
SLAP by using traditional approaches, advanced optimization techniques are presented.
In particular, we focus on those combining heuristics and metaheuristics with simula-
tion. Finally, this section also covers the use of FlexSim in the scientific literature and its
advantages as simulation software.

2.1. The Storage Location Assignment Problem

Several versions of the SLAP have been considered in the literature. Hence, its
definition can be vague, and it varies depending on the researchers, and the particular
case faced. The differences between SLAP formulations lie in the objective function (e.g.,
minimization of the traveled distances, maximization of the available space, etc.), in the
scope (e.g., including orders or not, including picking or not, etc.), the characteristics of the
products, the type of warehouse (e.g., manual vs. automated), or the specific constraints
considered (e.g., available storage capacity, order-picking resource capacities, dispatching
policies, etc.). In Reyes et al. [2], a detailed literature review is provided, covering the
seminal papers that classify the SLAP within the NP-Hard type of complexity to the most
recent works in the field. In that study, the SLAP is defined as “an operational decision
associated with the accommodation [of products] and picking process, influencing batch
definition, classification, routing, and order sequencing”, which reflects the width of the
problem. Similarly, Kofler [8] constitutes an extensive review of the SLAP, taking into
account many relevant aspects of the problem definition and its integration into warehouse
operations. It also provides some industrial case studies.

One of the most common and practical approaches for effectively solving the SLAP
in a warehouse is the use of predefined policies for placing the products in storage loca-
tions. The most representative policies, which are visually depicted in Figure 1, include
random storage, class-based storage, and dedicated storage. The minimum and maximum
performance expected for each policy when trying to maximize the space are studied in
Fumi et al. [9]. Their version of the SLAP problem is converted to a vertex coloring problem
(VCP) and solved with the use of the mathematical programming language AMPL. They
find that the random policy performs best and that the dedicated-storage policy is the



Mathematics 2023, 11, 1577 4 of 24

underperforming one in this case. The use of integer linear programming (ILP) is very ex-
tended for this type of problem since it allows modeling the problem in a simple way. Due
to the fact that the SLAP grows in difficulty as the size of instances increases, heuristics and
metaheuristics have become popular solving approaches. For instance, both Xie et al. [10]
and Chen et al. [11] employ ILP to describe the problem, with the former using a genetic
algorithm (GA) and the latter a tabu search (TS) algorithm for solving it.

Figure 1. Different SLAP policies: (a) random—products are assigned to storage locations ran-
domly; (b) class-based—the warehouse is divided into product class zones, and each product is
placed randomly within its class zone; (c) dedicated—products are assigned strictly based on certain
characteristics, such as volume, turnover, or (as in this study) picking frequency.

While most studies identify the picking as the critical operation affected by the storage
location assignment in terms of efficiency impact, some researchers have also identified
the orders as a very important factor to take into account. The orders are potentially
the main source of dynamism (change in time), which is becoming more important as
markets demand higher responsiveness and flexibility [8]. Nonetheless, without having to
overcomplicate the SLAP problem by dynamically incorporating the orders, there is still
plenty of value in incorporating orders into the SLAP in a static fashion. Using a dynamic
version would require that the corresponding real-world warehouse is technologically
prepared to handle the inputs and outputs of the dynamic solution, which is oftentimes
out of reach, except for very large companies [12]. On the other hand, solving the static
SLAP with orders (i.e., the orders to be served within a fixed planning horizon are defined
in detail and incorporated in the optimization) increases the fidelity of the modeled system
at a lower cost and allows the enhancing of the decision-making process in all kinds of
real-world warehouses, including those with a more traditional setting. For instance,
Silva et al. [13] describe a very similar problem to the one studied here: the static SLAP is
solved in combination with the order-picking problem. This means that the performance
of the SLAP and the order picking are evaluated together. In Mantel et al. [14], an order-
oriented slotting is proposed, where the decision on where to store the items is only based
upon the orders that are to be served. In fact, the overall approach followed is similar to the
one we use in our approach: given a routing strategy and a set of orders, items are allocated
trying to minimize the total traveled distance. The main difference between these studies
and our work is the use of deterministic linear mixed-integer programming formulations
and predefined routing strategies. In our study, while sharing the same motivation for
problem integration, the best route is calculated at the same time as the solution is evaluated,
and the robustness of the solution is improved using the simheuristic framework.

Looking at the most recent scientific literature on the SLAP, it can be observed that
researchers show a growing interest in a more holistic and integrated approach to the
storage location assignment problem instead of treating the SLAP in isolation. This was
identified as a gap in the established SLAP literature. For instance, in Keung et al. [15],
a version of the storage location assignment problem is addressed by analyzing patterns
in orders in a highly automated warehouse using robotic systems, which can adapt their
navigation (based on the A* algorithm, as in our paper) depending on the inputs. The same
researchers extend the application to incorporate even more elements of the SLAP within
the Internet of Things paradigm [16]. In Zhang et al. [17], the storage location assignment



Mathematics 2023, 11, 1577 5 of 24

problem is addressed by considering the production planning (static on a fixed planning
horizon) and the storage location policy in the same model. The researchers found that
the random policy can be, in fact, the most suited policy for reducing cost in a real-world
warehouse case when an integrated approach is considered. Related to a real-case scenario,
in Lanza et al. [18], the SLAP is solved considering the sequencing decisions that take place
in their warehouse after the products are allocated. In Xu and Ren [19], the SLAP problem
is solved for a traditional (not-automated multi-picker) warehouse, with a special focus on
the congestion within the aisle and the demand correlation between products. In particular,
the picking routes can be adapted to reduce congestion, being the validation performed by
means of a network numerical model. It is clear that, in order to increase the effectiveness
of their proposed SLAP-solving methods, researchers are progressively incorporating
operational areas beyond the isolated SLAP. The role of simulation is also something that
seems incipient in the literature, specifically the use of very simplified simulation models
to validate the proposed algorithms. For instance, in Guo et al. [20], a dynamic version
of the SLAP is considered for a real industrial case, where products arrive and are to be
located within the warehouse. In order to validate the algorithm proposed and compare the
solutions to the real case, Monte Carlo simulation was employed. In Montanari et al. [21],
the interaction between a novel SLAP solution method and the routing policy is studied.
To evaluate the efficiency of the proposed solution, a simulation based on Microsoft Excel
was applied.

Finally, while it is important to keep up with the most recent technological advance-
ments and market trends (such as e-commerce [15,20]), the assumption that these technolo-
gies are extensive and easily implemented in real-world cases (specifically the expensive
hardware, such as automated racks and robots) could be increasing the competitive dis-
advantage of more traditional warehouses, which are the majority [12]. The adaptation of
advanced computational solutions, such as simheuristics, to the most common types of
warehouses is completely justified in order to close the gap between cutting-edge academic
research and the real-world industry.

2.2. Solving Complex Optimization Problems: Simheuristics and Biased Randomization

The SLAP, as described in the previous subsection, is frequently modeled as an NP-
Hard problem that, considered in its most realistic version, is also subjected to stochastic
conditions. This type of problem is very difficult to solve using exclusively exact methods,
and even if it is achieved, the necessary simplifications would very likely lead to poor
real-life implementation and performance [22]. For this reason, exact methods have been
substituted, in some applications, with heuristic and metaheuristic methods. Heuristics are
problem-specific methods that allow an effective exploration of the solution space at the cost
of optimality. In contrast, metaheuristics are problem-independent methods. Examples of
metaheuristics are GA, TS, and simulated annealing, among many others [23]. Furthermore,
heuristic and metaheuristic methods can be combined with even better-suited techniques
for dealing with real-life complexity, such as simulation. As pointed out by Rabe et al. [24],
simulation is an excellent tool for describing, understanding, testing, and improving many
complex systems. However, simulation on its own cannot optimize the performance of
those modeled systems. For this reason, simulation-optimization methods have emerged
to bring together the best of both worlds [25]. The simheuristic concept can be considered
part of this taxonomy. Still, also being flexible and wide in its scope, it allows different
combinations of simulation and metaheuristic optimization methods within an integrated
framework. The basic assumption of the simheuristic methods is that there is some degree
of correlation between the deterministic version of the problem (i.e., the one obtained
after removing any random components) and the stochastic version, which is evaluated
through simulation. Their advantage is that simheuristics allow complex problems to
be analyzed and solved, for which a deterministic solution would perform poorly [3].
Some refinements of the simheuristic concept also incorporate machine learning and fuzzy
logic [26]. Simheuristic methods have been successfully applied in many fields, such as



Mathematics 2023, 11, 1577 6 of 24

smart grids [27], scheduling [28], etc. Nonetheless, to the best of our knowledge, it has
never been applied to solve the SLAP in warehouse logistics.

Typically, the optimization component of a simheuristic algorithm relies on a powerful
technique called biased randomization, which allows the improvement of the search pro-
cess [29]. This technique allows the transformation of a greedy constructive heuristic into a
probabilistic pseudo-greedy algorithm that facilitates the exploration of the solution space.
Further, since it is based on a fast constructive heuristic, it could help to generate a large
number of high-quality solutions in a very short time. Biased-randomized algorithms have
been successfully applied to solve problems in transportation or insurance [30], among
many others.

2.3. FlexSim as Discrete-Event Simulation Research Tool

FlexSim (https://www.flexsim.com, accessed on 22 February 2023) is a simulation
modeling software used to analyze, visualize, and improve real-world processes. It has
a library of common warehouse elements (racks, cranes, etc.) that help users quickly
create discrete-event simulation models. Although there are many commercial simulation
software available in the market with similar characteristics (such as Anylogic, Simio, etc.),
there are some advantages that make FlexSim more suitable for the scope of this project.
One of them is the focus on warehouse and manufacturing applications. In spite of being
conceived as a generic discrete-event simulation tool for many purposes [31], most applica-
tions of FlexSim have taken place in the industrial (manufacturing, warehousing, material
handling processes) and health sectors. Another important point was the visual aspect,
which is central to FlexSim. The simulation is linked to 3D objects, which helps during vali-
dation and also aids managerial decision-making by explicitly showing the content of the
model and the progress of the simulation. Lastly, FlexSim is an object-oriented programmed
software that provides some degree of connectivity to external programming languages.
For instance, using dynamic link libraries (DLLs) written in the C++ programming lan-
guage, it is possible to extend the software’s capabilities. More importantly, from 2022,
FlexSim is also able to communicate with Python, making this simulation software a very
suitable tool for the present study. As demonstrated in Leon et al. [32], the connection to
Python using sockets provides some advantages. Sockets are a robust, standard, and poten-
tially secure way for applications to communicate with each other, and FlexSim provides
native functions for effectively handling socket connections. Additionally, the popularity
of Python in recent years makes it an attractive programming language selection since
programmers and data scientists have created numerous advanced libraries, which are
validated and readily available as open source to the scientific community.

In the scientific literature, there are a number of examples that employ FlexSim as a
simulation component in order to describe and improve complex logistic systems. For in-
stance, in Zhu et al. [33], the authors use FlexSim to pinpoint bottlenecks and idle resources
during the operation of a cold-chain logistics distribution center. In Wu et al. [34], FlexSim
allows researchers to compare different methods while optimizing an automobile assembly
workshop. Specifically in the warehouse context, both Pan et al. [35] and Jiao et al. [36]
use a GA to improve the storage location assignment of products and then perform a final
validation using a FlexSim simulation model.

3. Problem Definition

This section focuses on the description of the SLAP version we consider in this work.
It begins with a formal definition of the problem in its most generic form, with the main
concepts being laid out. The second part is devoted to the specific assumptions that define
our case study.

3.1. A Generic Formulation for the Static SLAP with Orders

Let warehouse W under consideration have M storage locations where products can
be stored. Typically, warehouse locations are specified using addresses referring to “racks”,

https://www.flexsim.com


Mathematics 2023, 11, 1577 7 of 24

“aisles”, “slots”, “positions”, etc. For instance, in a simple grid-like warehouse, one could
identify locations using rows (R) and columns (C). In general, however, there could also be
different heights (H) and all sorts of subdivisions, so a broader concept of storage location
M will be used (M = R× C × H × ...). Each location within the warehouse could then
be expressed as li, such that: li ∈ W = {l1, l2, . . . , lM}. The warehouse has an associated
assortment of N types of products pk ∈ P = {p1, p2, . . . , pN}, such that N ≤ M (i.e., there
are more locations than product types). A storage location assignment can then be defined
as the binary relationR such that:

R ⊂W× P = {(li, pk) | li ∈W, pk ∈ P} (1)

Therefore, the relationR of ordered pairs location-product (li, pk), is a subset of W× P,
denoting the latter the Cartesian product of the sets W and P. With this definition, solving
the SLAP, in its general form, means finding the binary relationR that satisfies a certain
condition or set of conditions. It can be noted that additional constraints could be imposed
on the sets and the binary relation. Depending on the problem at hand, the relation could
be injective, surjective, or bijective. For instance, the relation might be required to cover the
domain of the definition of W (all locations should have an allocated product or be empty
∅), and some products could be left unallocated.

In the case studied here, the orders O placed by the customers play an important
role, since the optimization takes into account the cost of retrieving these orders in a
certain sequence. Each order om contains an array of products pk, and their correspond-
ing location li is given by the relation, R. Within the horizon of analysis, all orders
om ∈ O = {o1, o2, . . . , oZ} must be evaluated according to a cost function φ(R). This
function φ could be any metric, or combination of metrics, that the managerial personnel
deem relevant: from the typical traveled distance or time employed by the warehouse
workers to the energy consumption of the automated guided vehicles (AGVs) or the re-
ward associated with visiting certain locations. Note that it becomes critical to define
the sequence strategy, S, for visiting the different locations li that allow the completion
of order om. Once the strategy is defined, a sequence S(om) can be produced for each
order. Lastly, since the problem is formulated in its stochastic version, a vector of random
variables t, each following a certain probability distribution, is to be considered part of
the problem definition. These random variables could affect any aspect of the problem,
but typically, will be inserted in the cost function: the speed at which the retrieval system
moves, the probability of a product being non-available, etc. Therefore, the SLAP could be
written as findingR such that the overall expected cost for all orders is minimal, subject to
stochastic variability t and assuming a fixed strategy S:

opt

(
Z

∑
m=1

φ(R, t) |S(om)

)
(2)

Figure 2 summarizes the formulation and exemplifies the binary relation location-
product R as physical locations of the warehouse with its associated products. Each
order, om, indicates the products to be collected, being the associated sequence S(om)
required. This defines, for each product retrieval action, a stochastic operation cost dt

lp
that contributes to the cost function φ. In the example illustrated in Figure 2, it is a simple
linear relation. Finally, the total cost, aggregated for all orders, is the objective function to
optimize, as described in Equation (2).

This generic formulation, in its present form, is not useful for directly constructing a
linear or integer programming model, which is a common strategy for solving the SLAP
problem using exact methods. Instead, it helps to develop the structure of an object-oriented
programming code for studying the SLAP in a way that is compatible with a simulation
model. There are some advantages to following this modeling approach that might gain
traction in the future as increased computation power becomes even more accessible.
The necessary mathematical rigor is present in the definition of the model in order to
remove ambiguity and outline the hypothesis, but there is no need to overcomplicate the



Mathematics 2023, 11, 1577 8 of 24

model numerically. The simplicity helps on at least two fronts: (i) the greater interpretability
of the model, which is meant to aid managerial decision-making, and, therefore, can be
better explained in a natural and transparent manner; and (ii) the greater flexibility when
it comes to the practical implementation and adaptation of the model, specifically if it is
intended to be connected to different dedicated commercial simulation tools available in
the market, or employed in real use cases.

Figure 2. The different components of the SLAP studied, showing an instance as an illustrative example.

3.2. Additional Assumptions for the Considered SLAP Study

After formulating the generic static SLAP with orders, the purpose of this subsection
is to provide greater detail about the specific problem under consideration and to make its
assumptions explicit. In particular, this section discusses the type of warehouse, products,
orders, and solutions to be considered.

3.2.1. Warehouse

The SLAP in the present study is concerned with the placement of items in the so-
called “picking slots”. Picking slots are designated areas for storing products in a unit
or case format so that workers can retrieve (“pick”) the exact number of ordered units
associated with each product. These picking slots are assumed to be either at the ground
level or at the first level, with the rest of the rack height being dedicated to (non-picking)
storage. This implies that the problem could be modeled in two dimensions (2D). Therefore,
only the 2D characteristics of the warehouse were considered, i.e., the width and depth of
corridors and distances in the horizontal plane. The warehouse modeled corresponds to a
manual (i.e., non-automated) warehouse with a voice-assisted single-order picker-to-part
system. This means that workers move through the warehouse with their actions guided by
a warehouse management system (WMS), which tells them what products to collect next.
Although more elaborated scenarios and picking strategies exist, the decision for this type of
warehouse was based on the fact that this configuration is still very common in warehouses
all around the world and that the simpler case (single-order picker-to-part) should be solved
first before moving to more complex picking strategies. Figure 3 shows a very schematic
representation of the warehouse abstraction that guided our warehouse modeling.

The inbound and outbound areas (where products are loaded and orders are dis-
patched, respectively) are assumed to be located at a certain fixed place in the warehouse
and do not change within the studied planning horizon. Their position is, in that sense,
a parametric decision that will affect the evaluation of the solution. Changing the input
and output points generates a different solution space for the SLAP since changing where
the completed orders need to be placed, or where workers start picking the next order,



Mathematics 2023, 11, 1577 9 of 24

has an impact on the solution evaluation metrics (e.g., traveled distance). The effect of
these inbound and outbound positions in the SLAP solution is usually neglected in most
theoretical studies and is given as an unquestioned fixed input in the case studies in the
literature. In the present study, however, we will consider the sensibility of the solution to
the position of the input and output for the deterministic part of the simheuristic proposed.

Figure 3. Schematic 2D representation of the SLAP main ingredients: a space discretization, an initial
(IN) and final (OUT) point, a storage location assignment of product to slots, a number of products to
be retrieved (order products—letters in red color), and the corresponding picking route (IN, T, B, O,
Y, OUT).

3.2.2. Products

In this work, we assume that one type of product occupies exactly one storage location
and that one storage location holds only one type of product. Further, the physical space
of any storage location is sufficiently large for accommodating any quantity of items of
the same type. Thus, the picking location replenishment activity could be ignored (i.e.,
there is always enough product available for picking). Additionally, it is assumed that
there is enough capacity for the picker to retrieve all products from an order in a single
route. Finally, all products have the same physical requirements for their storage (light,
temperature, etc.), thus avoiding additional constraints that could be derived from this fact,
such as dedicated zones for specific products.

3.2.3. Orders

In the scope of this investigation, the orders are defined as the ordered sequence of
products to be retrieved from the warehouse in the form of lists. Each list contains a certain
number of product requests that come from the same client (i.e., one order per client).
The orders were assumed to follow the Pareto principle in the sense that roughly 80% of
the products that customers order correspond to just 20% of warehouse references (unique
products). Since the daily product demand from customers changes, the orders placed at
the warehouse are considered a primary source of variability. No commercial agreements
to serve fixed amounts of products according to a calendar were hypothesized.

3.2.4. Solution

In our study, the problem to be solved is a stochastic version of the static SLAP, which
takes into account the uncertainty associated with the order placement from clients and
the manual order-picking operation. The static SLAP considers that the proposed solution
is to be kept throughout the entire planning horizon. In a dynamic version, instead of
a fixed set of orders, these are received once they become available, and the system will
need to respond and adapt dynamically to them. The metric to be optimized is the total
distance covered by the warehouse workers in their picking routes. The potential sources



Mathematics 2023, 11, 1577 10 of 24

of stochasticity in the problem will be indicated throughout the different paper sections,
together with the parameters to be analyzed and tuned. For the Python model, the statistical
variability will be limited to the orders, and for a selected set of orders, the behavior of the
system will be fully deterministic. Within the FlexSim model, there will be multiple sources
of stochasticity, reflecting a more realistic behavior of the system, such as the outbound
point to place the finished orders or the interaction between workers.

4. Modeling Approach

This section presents the algorithmic implementation of the simheuristic framework
and its different components, such as order generation, warehouse navigation, picking
operation, and solution evaluation. In the final subsections, the FlexSim implementation is
briefly described, and the details of the solution method programmed are provided.

4.1. Simheuristic Framework

As outlined above, simheuristics belong to the family of simulation-optimization
methods, and since they are applicable in many fields, they allow different levels of
“intensity” in the interaction between the simulation and the optimization components.
In the present study, the communication between both components was established using
a well-established inter-process communication (IPC) protocol called “sockets”. This type
of connection enables synchronous and flexible communication between two pieces of
software, in this case, Python and FlexSim. All the details on how to establish this type of
connection are presented in Leon et al. [32]. In that work, the researchers presented a very
generic framework that allows information to be passed back and forth between a FlexSim
simulation and a Python script. An asynchronous version of that same framework is to
be used herein, where messages are passed at the beginning and the end of the FlexSim
simulation. Figure 4 depicts the overall architecture of the work presented in the current
study and the logic that its simheuristic part follows. In this case, we are calling simheuristic
the part in charge of generating and evaluating solutions to the SLAP, excluding the data
pre- and post-processing.

The simheuristic process begins by solving the deterministic version of the problem
using a metaheuristic method programmed in Python (for more details, refer to Section 4.5).
Given that the warehouse layout is known (as well as the assortment of products that it
can hold), the other input required is the set of orders to be picked up. They can be real
orders that are gathered and fed into the Python script, or they can be generated based,
for instance, on a demand forecast for the period to be analyzed. The metaheuristic will
produce candidate solutions that will be sent to FlexSim through the socket connection.
The simulation model is configured exactly the same way as the deterministic model (same
orders, warehouse layout, etc.), i.e., they share the same inputs. FlexSim then performs the
simulation on each candidate storage location assignment and obtains a realistic evaluation
of the objective function (total traveled distance). This process is repeated a certain number
of times (a relatively small set of simulation runs or replications), producing different results
due to its stochastic nature. These results are averaged and compared with one another in
order to generate a list of candidate solutions, where the best-performing storage locations
in both the deterministic and stochastic versions are kept. These elite candidate solutions are
evaluated again in the stochastic FlexSim simulator using a larger number of replications.
Finally, an analysis of the results is to be carried out. This final analysis, or post-processing,
aims to assess the quality of each storage location assignment solution in terms of its
performance and variability. It should be noted that the performance in the deterministic
part is only assumed to be a proxy indication of the stochastic solution, and thus the
performance of the solution in the stochastic simulator, after statistical treatment, is the true
output of the simheuristic.



Mathematics 2023, 11, 1577 11 of 24

Figure 4. Description of the simheuristic framework logic.

4.2. Order Generation

A Python module was created with the goal of simulating the orders that would be
received at the warehouse. The orders are produced based on a pseudo-random num-
ber generator that takes into account various parameters as a generator seed: the date,
the warehouse size, the number of products, and the number of orders (customers) to
be served. This way of producing plausible orders allows them to be reproducible if
the same parameters (same seed) are used. Creating exactly the same orders means that
the instances can be potentially validated by other researchers. The order generator also
takes into account the Pareto distribution associated with how frequently each product
is requested from customers. If the information is available, these orders can be replaced
with real orders from the warehouse under consideration. It is important to highlight the
difference between the set of orders O (i.e., the lists containing the products to be retrieved
for each customer) and the actual sequence of product retrieval S(om). The difference is
that sequence S(om), as formulated in Section 3.1, contains more information than order
om. Many equivalent orders can be generated by rearranging the products inside, but the
optimized sequence is only one. The sequence is obtained from an order by applying a
heuristic procedure at the same time that the solution is evaluated. This is explained in
detail in Section 4.4.



Mathematics 2023, 11, 1577 12 of 24

4.3. Warehouse Navigation

The Python algorithm employed for evaluating the quality of different solutions (see
Section 4.4) needs a deterministic way of calculating distances within the warehouse. These
distances could be calculated using a simple metric—e.g., the Euclidian distance or the
Manhattan distance. However, in order to make these distances realistic to some extent,
the obstacles (mainly the racks) in the warehouse must be considered. It should be noted
that the distances evaluated in the simulation component of the simheuristic (FlexSim) are
considered real in the sense that they correspond to a unit of measure (e.g., meters) that
has its own correspondence with the warehouse’s geometry. For the Python algorithm,
only a realistic comparison between distances (or costs) is required. An option for the
distance calculation that can consider obstacles could be the A-star (A∗) algorithm. This
well-known path-finding algorithm has the advantage of being optimal, but it also has a
major drawback, which is its exponential time and space complexity. Therefore, for large
warehouse instances, the use of the A∗ algorithm could be impracticable. It is worthwhile
to note that the term ‘path’ is used, in the context of this study, mainly to refer to the
segments that connect two target points in the warehouse. The term ‘route’ is employed as
the final path that joins the input and output points while collecting the products following
the order sequence.

Given the scope of this study, a specific algorithm for navigating the warehouse has
been proposed. The algorithm was dubbed W-star (W∗), where the W stands for warehouse
and the ‘∗’ symbol is a reminiscence of the A∗ navigating algorithm name. The main
geometrical assumption made for the warehouse geometry was that the warehouse is
“single-block”—i.e., made of same-length undivided racks. It was also assumed that there
is a two square distance between both sides of the aisle in the discretization grid, that
the start and end points are valid product positions, and that the racks are distributed
along the vertical axis of the 2D warehouse. All this is shown in Figure 3. The pseudocode
for the W∗ is shown in Algorithm 1. As opposed to A∗, the complexity of this algorithm
is independent of the path length (since alternative paths do not need to be stored with
every new node movement), allowing larger warehouse instances to be calculated within
reasonable computing times.

Algorithm 1 W* algorithm.
Inputs: warehouse, start, end
Output: path

1: for all direction: < up >, < down > do
2: while horizontal distance is not 0 do
3: if moving horizontally towards end is allowed then
4: move 1 step horizontally towards end
5: else
6: move 1 step vertically according to direction
7: while vertical distance is not 0 do
8: move vertically towards end
9: select shortest path: < up > or < down >

It can be proven that the proposed W∗ navigation algorithm provides high-quality
solutions. The proof consists of dividing the path into two parts and showing that no
better alternative is available for each part (see Figure 5). The first part is the movement
around the racks. Since the racks cannot be traversed, this movement cannot be avoided,
and it is performed in a straight horizontal line, which is the shortest path between the
two points right above/below the racks. The second part is movement inside the corridors.
This movement can be performed in multiple ways, but the traveled distance is minimal
with the selected strategy (as with many others, but it cannot be smaller because diagonal
movements are not allowed).



Mathematics 2023, 11, 1577 13 of 24

Figure 5. The movement around the racks (1) is the shortest, trivially. The movement within the aisle
(2) is also minimal. Other paths within the aisle can be found (2’) but the length would be the same
or larger.

4.4. Picking Operation and Solution Evaluation

The picking or product retrieval operation constitutes the way in which the “goodness”
of the storage location assignment performed can be evaluated, i.e., it is employed for
the evaluation of the objective function (total traveled distance). In real life, the picking
operation involves two elements: (i) the workers that perform the different tasks—their
number, position, and characteristics, including speed, ability to turn around, etc.; and
(ii) the strategy followed during the picking operation—the routing, the directions and
areas allowed, and the sequence of actions. In the case studied in this paper, the picking
operation was designed to be as similar as possible for both the optimization side of the
algorithm programmed in Python and the simulation part modeled in FlexSim. As it can
be expected, the picking operation on the simulation side would be much more detailed:
the effects of congestion could be present, the movements required to face the racks and to
remove items, although small, are taken into account, etc. In addition, on the optimization
side, several simplifications had to be made.

As for the picking strategy followed, the workers will always collect the items follow-
ing the sequence of orders S(om). This means that the lists of orders must be rearranged in
such a way that, when the picking operation is performed, a consistent and good strategy is
followed. In reality, as long as the strategy is kept consistent, two solutions can be compared.
In the literature, different picking or routing strategies have been proposed (S-shape, largest
gap, return, etc.). These heuristics are widely used in practical applications (even more than
optimal routing), and the strategy selection depends on the shape of the warehouse and
the sparsity of the items [37]. In this particular work, no explicit order-picking routing was
defined, but rather a simple set of rules from which the final strategy arises (Algorithm 2).
The set of rules to construct the picking route start from the input point and find the closest
location with a product using different strategies, always in the same order. If a product
is found, then it is fixed in the retrieval sequence, and the algorithm continues from that
location. If no product is found, then the search resumes using the next rule. The search
rules are (in order): (i) from the current location, look at the position right behind, in the
same aisle; (ii) from the current location, look for the closest product within the same aisle;
and (iii) from the current location, look for the closest product “radially”. Figure 6 shows a
graphical description of this picking route construction strategy.



Mathematics 2023, 11, 1577 14 of 24

Algorithm 2 Evaluate Deterministic Solution.
Inputs: SLA, orders . Storage Location Assignment
Outputs: cost, sequence . Per order

1: cost← 0
2: for all orders do
3: item← empty
4: while order 6= empty do
5: if item = empty then
6: next_item← find_closest(IN) . The route begins from the initial (“IN”) point
7: cost← cost+ distance(IN, next_item)
8: else
9: step← 0

10: while next_item = empty do
11: step← step +1 . Every loop iteration the search step increases
12: if behind(item) 6= empty then . First: search behind
13: next_item← behind(item)
14: else if length(item, step) ≤ aisle_length then . Second: search in the aisle
15: next_item← search_in_aisle(step)
16: else
17: next_item← search_round(step) . Third: search in a “round” fashion
18: cost← cost+ distance(item, next_item)
19: remove item from order
20: sequence← add(item)
21: item← next_item
22: cost← cost+ distance(item, OUT) . The route finishes at the final (“OUT”) point

It is important to notice that this strategy is a consistent (deterministic) and logical
one that tends to minimize the total length of the route in most cases, but that does not
guarantee its optimality. In fact, the process is a local greedy search process, and, in some
storage location configurations, it will perform movements that a warehouse manager
would deem inappropriate. Nonetheless, the advantage of following this approach is a
drastic reduction in the computation complexity since calculations of distance matrices
or performing various loops through the entire warehouse are avoided. The final shape
of the route has a strong resemblance to the S-shape picking strategy (since it will try to
complete an entire aisle before moving to the next), but depending on how scattered the
orders are or the position of the input and output points, other behavior can develop.
In fact, the algorithm allows for some tuning: in the phase where it searches for products
within the same aisle, it could be forced to start the “radial” search earlier if the next
product down the aisle is very far away. This is relevant for scattered storage locations in
big warehouses and will produce something similar to a mid-point strategy. It is important
to highlight that, apart from evaluating the cost of each SLAP solution in a deterministic
way, Algorithm 2 also provides the sequence in which items have to be picked up for
every order by the warehouse workers in the FlexSim simulation (and, potentially, in real
life). The route-construction algorithm could be further improved. These improvements,
which are outside the scope of this work, could include: (i) allowing the search pattern to
look slightly ahead to avoid unnatural turns within the aisle (e.g., see movements i, j, and
k in Figure 6, where items could have been picked up without turning inside the aisle),
but avoiding looking too far ahead since this will significantly increase the computational
time; and (ii) allowing an automatic adjustment of the search pattern shape instead of being
purely linear/radial, so it can change and adapt to different warehouse and storage location
assignment configurations.



Mathematics 2023, 11, 1577 15 of 24

Figure 6. Graphic description of the sequence followed to construct the picking route. From the start
point (step a) to the end point (step o), different search rules are applied, as explained in Algorithm 2:
search behind (steps b and m), search within the aisle (steps c, d, e, f, g, j, k and n) and search radially
(steps h, i and l).

4.5. A Simheuristic for Solving the Storage Location Assignment Problem

The core component for finding a satisfactory solution to the SLAP is the strategy
employed to generate good-quality storage location assignments. The strategies followed
for generating different SLAs are what allow the exploration of the solution space. In this
study, both the random strategy and the picking frequency-based storage strategy (PFS)
were adopted as the benchmark storage methods. In the former, items were assigned to a
storage location randomly. In the latter, items with higher picking frequency were assigned
to storage locations nearer to the input and output points. These two methods are some
of the most typical strategies adopted by warehouse managers when facing the SLAP,
and they represent two extremes of a spectrum—i.e., random assignment and dedicated
assignment, with the so-called class-based assignment strategy lying in between. The
picking frequency-based storage strategy represents a greedy (and deterministic) heuristic
for assigning items to storage locations. It follows this simple sequence: (1) items are sorted
in the provided set of orders by picking frequency; (2) locations are sorted by distance
to the input and output points (the two distances are added); (3) items and locations are
matched in strict order (i.e., the item with the higher picking frequency is assigned to the
location closer to both the input and output points) until all of them have been placed.
The simheuristic presented in this paper, which tries to improve the benchmark solutions, is



Mathematics 2023, 11, 1577 16 of 24

based on a biased-randomized algorithm (BRA). The idea behind BRA is the incorporation
of a certain degree of randomness into a greedy heuristic, thus only partially maintaining its
original logic, in order to explore the vicinity of the greedy solution. In particular, whereas
the greedy PFS algorithm builds solutions by sequentially selecting the items with the
highest picking frequency, BRA applies a skewed probability distribution to the task of
selecting the items. Specifically, the geometric probability distribution, with parameter
β ∈ (0, 1), was employed to introduce the biased-randomized behavior into the greedy
PFS. In practice, the ordered list of items by picking frequency is reconstructed assuming
that the probability of an item remaining at position x is given by:

P(X = x) = (1− β)x (3)

After a fine-tuning process, the value for the parameter β was selected randomly
in a range between 0.5 and 0.7. These values tend to provide a good trade-off between
uniformly randomizing the list (β = 1) and not affecting the ordered list (β = 0) in a
wide range of optimization problems. The pseudocode in Algorithm 3 shows how biased
randomization is applied to this particular storage location assignment problem. It follows
the logic described above for the PFS algorithm but with a randomization stage. As a
matter of fact, this randomization stage could also be used to generate a random storage
location assignment (by using β = 1) or to recover the strictly greedy PFS algorithm (by
using β = 0).

Algorithm 3 Biased Randomized Heuristic (BRA).
Inputs: warehouse, orders, β
Output: SLA . Storage Location Assignment

1: items_list← order_items_by_freq(orders) . Most frequent first
2: locations_list← order_locations_by_distance(warehouse) . Closer to input and output

first
3: while items_list 6= empty do
4: items_list← randomize(items_list, β) . Biased randomization using geometric

distribution with β
5: item← first(items_list)
6: location← first(locations_list)
7: sla← add(item, location)
8: remove item from items_list
9: remove location from locations_list

The pseudocode shown in Algorithm 4 illustrates how the simheuristic works by
utilizing the BRA and the FlexSim discrete-event simulation model. The overall scheme
is also shown in Figure 4. The main idea behind the simheuristic is to generate a list of
elite candidate solutions that will perform well both in the deterministic and stochastic
versions of the problem. For that, after an initialization phase where the PFS greedy
algorithm is used as a baseline, a number of improvement iterations are performed. In each
iteration, the BRA procedure is called to generate a solution. The solution is first evaluated
in terms of its deterministic performance, and only if the solution cost is reduced is the
stochastic evaluation undertaken. This stochastic evaluation is performed by running
a “short” simulation stage, where FlexSim is called a certain number of times, and the
stochastic cost obtained for each call is averaged. Once the improvement iterations are
finished, and the list of elite solutions is complete, an “intensive” evaluation stage takes
place. The objective of this evaluation phase is to extract a curated estimation of the
stochastic cost for each elite solution, so that the one with the smallest average cost can be
selected as the output. Therefore, the required inputs for the simheuristic are: the number
of iterations for computing BRA solutions, the β parameter for randomizing the product
lists, the warehouse instance with its layout, the orders to be processed, the number of
replications for a fast simulation stage, and the number of replications for a more intensive
simulation stage.



Mathematics 2023, 11, 1577 17 of 24

Algorithm 4 Simheuristic.
Inputs: iterations, warehouse, orders, β
Output: best_solution

1: initial_SLA← BRA(warehouse, orders, β = 0) . β = 0: greedy
2: best_solution.determ_cost← evaluate_determ_solution(initial_SLA, orders) . see

Algorithm 2
3: best_solution.stoch_cost← Simulation(best_solution, short) . fast simulation: short

number of replications
4: best_sol_list← add (best_solution) . list of elite solutions
5: for iterations do
6: new_SLA← BRA(warehouse, orders, β)
7: new_solution.determ_cost← evaluate_determ_solution(new_SLA, orders)
8: if new_solution.determ_cost < best_solution.determ_cost then
9: new_solution.stoch_cost← Simulation(new_solution, short)

10: if new_solution.stoch_cost < best_solution.stoch_cost then
11: best_solution← new_solution
12: best_sol_list← update (best_solution) . update elite list to include new best

solution
13: for all solution in best_sol_list do
14: solution.stoch_cost← Simulation(solution, long) . intensive simulation: long

number of replications
15: best_solution← best (best_sol_list) . return solution with minimum stochastic cost

5. Computational Experiments

This section presents a number of computational experiments to evaluate the proposed
method, i.e., the performance of the simheuristic is compared against three benchmark
methods, namely the greedy PFS, the BRA, and the random strategies. The traveled distance
covered to fulfill all order picking operations is used as the key performance indicator to
compare the solutions. All implemented algorithms are coded in Python v3.8.10 and run on
a Windows 10 operating system, with an i7-4500U CPU 2.40 GHz and 6 GB RAM. FlexSim
version 22.1.2 was employed for the simulation model. Section 5.1 describes the instances
and experiment settings. Section 5.3 provides the analysis of the computational results.

5.1. Experiment Setting

Two warehouse instances were tested for the numerical experiments. Instance A is
composed of 15 racks with 10 slots each, capable of storing 150 unique products. Instance B
is composed of 42 racks with 18 slots in each rack, capable of storing up to 756 unique prod-
ucts. The size of instance B is inspired by the one provided by Lee et al. [38]. The customer
orders were generated using an independent Python script, which uses a fixed random
seed for each calendar day to allow for reproducibility—i.e., on a given date and for a fixed
set of parameters, the same set of orders can be produced by using the script. As described
in Section 4.2, these orders follow the Pareto distribution, meaning that roughly 20% of
products will always be present in almost 80% of the customer orders. In Figure 7, the
implementation in FlexSim of instance A is shown. In terms of the number of runs, each
solution obtained from the different methods studied is evaluated in the stochastic FlexSim
environment using 10 replications, each of them employing a different random seed in or-
der to obtain its associated stochastic cost. In order to make a fair comparison between the
BRA method and the proposed simheuristic method, both were allowed to iterate 50 times
in search of the best solution.



Mathematics 2023, 11, 1577 18 of 24

Figure 7. FlexSim screenshot of instance A (15× 10).

5.2. FlexSim Modeling

The functioning of the FlexSim stochastic model mirrors all the hypotheses made on
the Python deterministic model, with some necessary differences. Those differences are,
as a matter of fact, what makes the FlexSim simulation more realistic than the deterministic
model. For instance, the navigation within the simulation model uses FlexSim’s own A∗

algorithm, which evaluates the minimum distances more truthfully since it can take into
account all the obstacles present, specifically other workers. Another difference between
both models is related to the start and end points of the picking routes. In the Python
warehouse model, there is a single input point and a single output point, where pickers start
collecting products and drop off collected products, respectively. In the FlexSim warehouse
model, multiple output points are situated at one side of the warehouse, representing what
in a real warehouse would be the dispatch area, being the starting point for picking up
the next order is the last place where the worker left the previous finished order. This is
indeed what happens in real life in most voice-assisted picking systems since there is no
need for the worker to go to a specific place to receive the next order list. Lastly, depending
on the instance used, the number of workers and output points varies. In a real-world
application, the number of workers available for order picking can vary depending on the
date (e.g., some workers might be on holiday or on sick leave), and, therefore, it could
potentially be considered an additional stochastic input for the model. In the present
case, the difference in the number of workers between instances and within the same
instance was assumed to have a negligible effect. This is because most of the traveled
distance is spent moving from item location to item location, and it would be only relevant
if congestion within aisles became critical. Finally, the effect of the multiple output points
in the simulation could be significant as the warehouse instances increase in size, thus
amplifying the difference between the simulation and the deterministic model. This point
will be discussed in Section 5.3.

5.3. Results and Discussion

Due to the stochastic nature of the problem in real life, the results obtained were
treated statistically by varying the set of orders. Warehouse instance A was tested using
10 different sets of orders, while instance B used only 3 different sets of orders because of
its increased computational cost. This avoids improving the storage location assignment
for a specific day or set of orders and increases confidence in the generated results. In order
to further challenge the robustness of the simheuristic method, nine different combinations
of input and output points were considered for the deterministic part of the simheuristic.



Mathematics 2023, 11, 1577 19 of 24

In particular, all possible combinations between left (L), center (C), and right (R) positions
for the input and output points were analyzed, as can be seen in Tables 1 and 2. These
tables show the traveled distance for each type of solution, for each combination of input
and output points, averaged across the set of orders considered for each instance. The gap
between the simheuristic solution and each of the benchmark solutions is computed as
the percentage difference between them in order to evaluate their performance. Since the
optimization goal is to minimize the traveled distances, a negative gap indicates that the
simheuristic algorithm performed better in that case.

Table 1. Results comparison between different methods and gap to the simheuristic solution for
instance A.

Warehouse Instance A

Input/Output Random Greedy BRA Simheuristic Gap Gap Gap
[1] [2] [3] [4] [1]–[4] [2]–[4] [3]–[4]

C / C 4163 4102 4058 3998 −4.0% −2.5% −1.5%
C / L 4171 3938 3905 3827 −8.2% −2.8% −2.0%
C / R 4128 4129 4074 3997 −3.2% −3.2% −1.9%
L / C 3985 3775 3710 3675 −7.8% −2.6% −0.9%
L / L 3978 3682 3658 3593 −9.7% −2.4% −1.8%
L / R 4003 3946 3936 3882 −3.0% −1.6% −1.4%
R / C 4167 4122 4076 4050 −2.8% −1.7% −0.6%
R / L 4191 4215 4197 4111 −1.9% −2.5% −2.0%
R / R 4214 4081 4059 4002 −5.0% −1.9% −1.4%

Average 4111 3999 3964 3904 −5.1% −2.4% −1.5%

Table 2. Results comparison between different methods and gap to the simheuristic solution for
instance B.

Warehouse Instance B

Input/Output Random Greedy BRA Simheuristic Gap Gap Gap
[1] [2] [3] [4] [1]–[4] [2]–[4] [3]–[4]

C / C 30,013 29,497 29,272 29,317 −2.3% −0.6% 0.2%
C / L 29,996 28,718 28,741 28,502 −5.0% −0.8% −0.8%
C / R 30,333 30,088 29,816 29,710 −2.1% −1.3% −0.4%
L / C 29,242 27,923 27,799 27,799 −4.9% −0.4% 0.0%
L / L 29,320 27,414 27,322 27,106 −7.6% −1.1% −0.8%
L / R 29,629 28,647 28,434 28,330 −4.4% −1.1% −0.4%
R / C 30,049 29,964 29,768 29,814 −0.8% −0.5% 0.2%
R / L 30,113 29,638 29,385 29,263 −2.8% −1.3% −0.4%
R / R 30,038 29,979 30,016 29,763 −0.9% −0.7% −0.8%

Average 29,859 29,096 28,950 28,845 −3.4% −0.9% −0.4%

As can be seen in both tables, the simheuristic method consistently outperforms
other methods, i.e., in the practical totality of cases, the traveled distance is less for the
simheuristic method. However, in instance B, this difference in performance, even though
it is present and globally in favor of the simheuristic, is much smaller. This can be seen
graphically in both Figures 8 and 9. The impact on the solutions of other parameters,
such as the number of orders to be picked, was analyzed, but no significant effect was
observed. The case where the number of products per order can be modified was also
studied, but only the gap between the random method and the rest of the methods was
affected. This means that, for shorter orders (fewer items to collect), the random policy
could be a good option since it provides comparable results and its implementation is much
simpler. On the other hand, with more items to collect per order, the greedy, BRA, and
simheuristic methods showed a clear advantage. Nonetheless, the relative improvement



Mathematics 2023, 11, 1577 20 of 24

between these three methods remained the same, with the simheuristic being the best
among them.

Figure 8. The average distance of stochastic versions of various methods for instance A.

Figure 9. The average distance of stochastic versions of various methods for instance B.

It can be noticed that the random strategy results were less scattered when compared
to the other methods. Moreover, the evaluation of the other methods had a similar level of
variability. One reason for this is that the random solution will perform equally well (or
poorly) with the independence of the stochastic variability present in the FlexSim simulator
and hence be less sensitive. On the other hand, solutions that are more optimal in the
deterministic version of the problem could suffer from higher variability in the results when
evaluated in a stochastic environment. For instance, the deterministic solution could rely
on workers always starting their picking route close to one side of the warehouse, but in
the stochastic model, products might be required to be sometimes dropped at the other end
of the warehouse, destroying the advantage of the deterministic solution. Although the
simheuristic has a similar level of variability, it tends to be biased towards minimizing the
traveled distance.

The results also show that the capacity of the simheuristic to improve the BRA results
in warehouse instance B (the larger one) is reduced when compared to warehouse A.
The main reason for this could be the presence of additional input and output points in the
FlexSim model compared to the three points in the deterministic model (left, center, right).
Nonetheless, this is a direct consequence of the size of the warehouse, i.e., in most real
situations, the bigger the warehouse, the larger the outbound area. It is very unlikely to find



Mathematics 2023, 11, 1577 21 of 24

studies in the literature that do consider this fact: in a real warehouse, the outbound area
looks more like a continuous section of the warehouse rather than a single point. This study
considers that the FlexSim stochastic environment represents a closer-to-reality picture of
the warehouse, and the deterministic model is the tool that allows the efficient exploration
of the optimization space. It is clear that, as the deterministic and stochastic models become
more dissimilar, the correlation between them will diminish, as will the effectiveness of
the method.

Lastly, the fact that the optimization results will depend on the set of orders analyzed
has very interesting consequences. On the one hand, if this fact were assumed rigidly, it
would not be practical since it would mean changing the warehouse configuration with
every set of orders received. On the other hand, a more flexible interpretation of this fact
could result in a very useful managerial tool. For instance, the set of orders to be analyzed
could be prepared beforehand to represent the historical demand in the warehouse or
could be used to analyze “what-if” scenarios. In those cases, the methodology used in this
study provides a robust storage location assignment that tends to minimize warehouse
traveled distance for that given set of orders. As a result, decision-makers could compare
the warehouse’s current configuration to the results proposed by the simheuristic and
take appropriate action. In other words, it allows the investigation of stochastically robust
solutions for a profile of orders of interest.

6. Conclusions and Future Work

This paper provides a simheuristic algorithm based on a static and deterministic
formulation of the storage location assignment problem (i.e., orders are processed for a
fixed time horizon, as opposed to orders received dynamically), which considers the picking
frequency of products in the orders as the main optimization driver. Multiple deterministic
solutions are generated using a biased randomization procedure and evaluated in a FlexSim
simulator in order to extract a number of candidate solutions that minimize the stochastic
traveled distance. These elite solutions are thoroughly tested in the same commercial
simulator in order to find the best configuration. This method represents a simple and
natural way to improve the deterministic solution by ensuring that it will also perform
well under realistic conditions. The capacity of our simheuristic approach to finding high-
quality solutions depends crucially on the similarity between the deterministic model and
the stochastic model. Trying to achieve greater similarity between both could mean that
the deterministic model needs to be more complex (and hence more difficult to optimize)
or that the stochastic model needs to be simplified (and hence less realistic). Finding a
sweet spot between both is difficult. In this study, a relatively complex deterministic model
was developed in order to keep a stochastic model as realistic as possible (e.g., multiple
input and output points, large-size instances, etc.). The positive results found have been
verified under different input conditions and warehouse instances, with the simheuristic
outperforming the benchmark methods considered in the practical totality of them.

In practical terms, the simheuristic algorithm allows managers to obtain a robust
solution to the configuration of locations and products in a warehouse while also consid-
ering the uncertainty associated with the stochastic processes involved. This means that
a decision-maker could obtain, for the evaluated time horizon, an improved warehouse
configuration with the goal of minimizing total worker travel distance. Based on this
proposed configuration and the current state of the warehouse and its associated busi-
ness metrics (e.g., the cost of changing a product’s location, the risk of a supply shortage,
relationships with clients, etc.), the decision-maker could then choose the best course of
action. The implementation of the proposed solution as part of a warehouse management
system (WMS) could be considered a very interesting practical application of the research
presented here.

From the presented results and conclusions, a number of future lines of work can
be highlighted. These lines of work could be separated into three areas: (i) improving
the deterministic model; (ii) improving the simheuristic algorithm; and (iii) improving



Mathematics 2023, 11, 1577 22 of 24

the applicability of the method. Regarding improvements in the deterministic model,
the SLAP formulation could be extended in multiple ways, with the aim of achieving
a higher level of realism. In this paper, a basic version of a voice-assisted single-order
picker-to-part square warehouse was modeled, which is a common configuration, but it
is recognized that in practical use cases, more complicated warehouse configurations can
be found. For instance, the model could include more complex picking strategies, such as
multi-order (batch) picking, or include additional restrictions, such as considering different
degrees of compatibility between products and locations. In relation to the simheuristic
framework, it could be improved by exploiting the data available in the simulation more
effectively, with the objective of guiding the metaheuristic procedure better. In the present
work, the traveled distance was used, but there is a good deal of unexplored information
available in the simulation (e.g., resource utilization, average speed, etc.) that could be
potentially employed. This is indeed a very promising research line, but one that requires
careful design and implementation, specifically the communication between the two pieces
of software and the simulation-optimization framework selected. An example of this line
of research could be developing a metaheuristic procedure that invokes the simulation
environment at specific points of the solution search in order to evaluate the current
solution, extract some metrics from the simulation model, and decide, in consequence, the
next area to explore in the solution space. With regard to the integration and application of
this work, it could be extended by defining a complete data workflow, from inputs to final
output formats, which could be most useful for managers to make decisions or for allowing
the integration of the simheuristic into a warehouse management system, as pointed out
previously. Finally, as highlighted in Silva et al. [13], the lack of benchmark instances for
comparing different methods could be addressed by further developing the idea hinted
at in this study of generating a reproducible set of orders. These sets of orders, which
are generated based on certain inputs (simple ones, such as the calendar day and the
dimensions of the warehouse), could allow different researchers to share the same problem
definition and be able to compare solutions.

Author Contributions: Conceptualization, J.F.L. and A.A.J.; methodology, J.F.L. and L.C.; software,
J.F.L., Y.L. and M.P.; validation, J.F.L., Y.L. and M.P.; formal analysis, J.F.L., Y.L. and M.P.; writing—
original draft preparation, J.F.L.; writing—review and editing, L.C. and M.P.; supervision, A.A.J.;
project administration, J.F.L. and L.C.; funding acquisition, A.A.J. All authors have read and agreed
to the published version of the manuscript.

Funding: This work has been partially funded by Spindox and the Industrial Doctorate Program
of the Catalan Government (2020 DI 116), the Spanish Ministry of Science (PID2019-111100RB-
C21/AEI/ 10.13039/501100011033), the Regional Department of Innovation, Universities, Science and
Digital Society of the Generalitat Valenciana “Programa Investigo” (INVEST/2022/342), within the
framework of the Plan de Recuperación, Transformación y Resiliencia funded by the European
Union—NextGenerationEU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, R.Q.; Wang, M.; Pan, X. New model of the storage location assignment problem considering demand correlation pattern.

Comput. Ind. Eng. 2019, 129, 210–219. [CrossRef]
2. Reyes, J.; Solano-Charris, E.; Montoya-Torres, J. The storage location assignment problem: A literature review. Int. J. Ind. Eng.

Comput. 2019, 10, 199–224. [CrossRef]
3. Chica, M.; Juan, A.A.; Bayliss, C.; Cordón, O.; Kelton, W.D. Why simheuristics? Benefits, limitations, and best practices when

combining metaheuristics with simulation. SORT Stat. Oper. Res. Trans. 2020, 44, 311–334. [CrossRef]
4. van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.

http://doi.org/10.1016/j.cie.2019.01.027
http://dx.doi.org/10.5267/j.ijiec.2018.8.001
http://dx.doi.org/10.2139/ssrn.2919208


Mathematics 2023, 11, 1577 23 of 24

5. Nordgren, W.B. FlexSim Simulation Environment. In Proceedings of the 2002 Winter Simulation Conference, San Diego, CA,
USA, 8–11 December 2002; pp. 250–252. [CrossRef]

6. Tendeloo, Y.V.; Vangheluwe, H. Discrete event system specification modeling and simulation. In Proceedings of the 2018 Winter
Simulation Conference, Gothenburg, Sweden, 9–12 December 2018; pp. 162–176. [CrossRef]

7. Amorim-Lopes, M.; Guimarães, L.; Alves, J.; Almada-Lobo, B. Improving picking performance at a large retailer warehouse
by combining probabilistic simulation, optimization, and discrete-event simulation. Int. Trans. Oper. Res. 2021, 28, 687–715.
[CrossRef]

8. Kofler, M. Optimising the Storage Location Assignment Problem under Dynamic Conditions. Ph.D. Thesis, JKU—Johannes
Kepler Universität Linz, Linz, Austria, 2015.

9. Fumi, A.; Scarabotti, L.; Schiraldi, M.M. Minimizing Warehouse Space with a Dedicated Storage Policy. Int. J. Eng. Bus. Manag.
2013, 5, 21. [CrossRef]

10. Xie, J.; Mei, Y.; Ernst, A.T.; Li, X.; Song, A. A genetic programming-based hyper-heuristic approach for storage location assignment
problem. In Proceedings of the 2014 Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 3000–3007.
[CrossRef]

11. Chen, L.; Langevin, A.; Riopel, D. A Tabu search algorithm for the relocation problem in a warehousing system. Int. J. Prod. Econ.
2011, 129, 147–156. [CrossRef]

12. Boysen, N.; de Koster, R.; Weidinger, F. Warehousing in the e-commerce era: A survey. Eur. J. Oper. Res. 2019, 277, 396–411.
[CrossRef]

13. Silva, A.; Coelho, L.C.; Darvish, M.; Renaud, J. Integrating storage location and order picking problems in warehouse planning.
Transp. Res. Part E Logist. Transp. Rev. 2020, 140, 102003. [CrossRef]

14. Mantel, R.J.; Schuur, P.C.; Heragu, S.S. Order oriented slotting: A new assignment strategy for warehouses. Eur. J. Ind. Eng. 2007,
1, 301–316. [CrossRef]

15. Keung, K.L.; Lee, C.K.M.; Ji, P. Data-driven order correlation pattern and storage location assignment in robotic mobile fulfillment
and process automation system. Adv. Eng. Inform. 2021, 50, 101369. [CrossRef]

16. Keung, K.L.; Lee, C.K.M.; Ji, P. Industrial internet of things-driven storage location assignment and order picking in a resource
synchronization and sharing-based robotic mobile fulfillment system. Adv. Eng. Inform. 2022, 52, 101540. [CrossRef]

17. Zhang, G.; Shang, X.; Alawneh, F.; Yang, Y.; Nishi, T. Integrated production planning and warehouse storage assignment problem:
An IoT assisted case. Int. J. Prod. Econ. 2021, 234, 108058. [CrossRef]

18. Lanza, G.; Passacantando, M.; Scutellà, M.G. Assigning and sequencing storage locations under a two level storage policy:
Optimization model and matheuristic approaches. Omega 2022, 108, 102565. [CrossRef]

19. Xu, X.; Ren, C. A novel storage location assignment in multi-pickers picker-to-parts systems integrating scattered storage,
demand correlation, and routing adjustment. Comput. Ind. Eng. 2022, 172, 108618. [CrossRef]

20. Guo, X.; Chen, R.; Du, S.; Yu, Y. Storage assignment for newly arrived items in forward picking areas with limited open locations.
Transp. Res. Part E Logist. Transp. Rev. 2021, 151, 102359. [CrossRef]

21. Montanari, R.; Micale, R.; Bottani, E.; Volpi, A.; La Scalia, G. Evaluation of routing policies using an interval-valued TOPSIS
approach for the allocation rules. Comput. Ind. Eng. 2021, 156, 107256. [CrossRef]

22. Juan, A.A.; Keenan, P.; Martí, R.; McGarraghy, S.; Panadero, J.; Carroll, P.; Oliva, D. A review of the role of heuristics in stochastic
optimisation: From metaheuristics to learnheuristics. Ann. Oper. Res. 2021, 320, 831–861. [CrossRef]

23. Bianchi, L.; Dorigo, M.; Gambardella, L.M.; Gutjahr, W.J. A survey on metaheuristics for stochastic combinatorial optimization.
Nat. Comput. 2009, 8, 239–287. [CrossRef]

24. Rabe, M.; Deininger, M.; Juan, A.A. Speeding up computational times in simheuristics combining genetic algorithms with
discrete-event simulation. Simul. Model. Pract. Theory 2020, 103, 102089. [CrossRef]

25. Figueira, G.; Almada-Lobo, B. Hybrid simulation–optimization methods: A taxonomy and discussion. Simul. Model. Pract.
Theory 2014, 46, 118–134. [CrossRef]

26. Castaneda, J.; Martin, X.A.; Ammouriova, M.; Panadero, J.; Juan, A.A. A Fuzzy Simheuristic for the Permutation Flow Shop
Problem under Stochastic and Fuzzy Uncertainty. Mathematics 2022, 10, 1760. [CrossRef]

27. Antoniadis, N.; Cordy, M.; Sifaleras, A.; Le Traon, Y. A variable neighborhood search simheuristic algorithm for reliability
optimization of smart grids under uncertainty. Int. Trans. Oper. Res. 2022, 29, 2172–2200. [CrossRef]

28. Hatami, S.; Calvet, L.; Fernandez-Viagas, V.; Framinan, J.M.; Juan, A.A. A simheuristic algorithm to set up starting times in the
stochastic parallel flowshop problem. Simul. Model. Pract. Theory 2018, 86, 55–71. [CrossRef]

29. Ferone, D.; Hatami, S.; González-Neira, E.M.; Juan, A.A.; Festa, P. A biased-randomized iterated local search for the distributed
assembly permutation flow-shop problem. Int. Trans. Oper. Res. 2020, 27, 1368–1391. [CrossRef]

30. Bayliss, C.; Guidotti, R.; Estrada-Moreno, A.; Franco, G.; Juan, A.A. A biased-randomized algorithm for optimizing efficiency in
parametric earthquake (re) insurance solutions. Comput. Oper. Res. 2020, 123, 105033. [CrossRef]

31. Nordgren, W.B. FlexSim simulation environment. In Proceedings of the 2003 Winter Simulation Conference, New Orleans, LA,
USA, 7–10 December 2003; Volume 1, pp. 197–200. [CrossRef]

32. Leon, J.F.; Peyman, M.; Li, Y.; Dehghanimohammadabadi, M.; Calvet, L.; Marone, P.; Juan, A.A. A Tutorial On Combining FlexSim
With Python For Developing Discrete-Event Simheuristics. In Proceedings of the 2022 Winter Simulation Conference, Singapore,
11–14 December 2022.

http://dx.doi.org/10.1109/WSC.2002.1172892
http://dx.doi.org/10.1109/WSC.2018.8632372
http://dx.doi.org/10.1111/itor.12852
http://dx.doi.org/10.5772/56756
http://dx.doi.org/10.1109/CEC.2014.6900604
http://dx.doi.org/10.1016/j.ijpe.2010.09.012
http://dx.doi.org/10.1016/j.ejor.2018.08.023
http://dx.doi.org/10.1016/j.tre.2020.102003
http://dx.doi.org/10.1504/EJIE.2007.014689
http://dx.doi.org/10.1016/j.aei.2021.101369
http://dx.doi.org/10.1016/j.aei.2022.101540
http://dx.doi.org/10.1016/j.ijpe.2021.108058
http://dx.doi.org/10.1016/j.omega.2021.102565
http://dx.doi.org/10.1016/j.cie.2022.108618
http://dx.doi.org/10.1016/j.tre.2021.102359
http://dx.doi.org/10.1016/j.cie.2021.107256
http://dx.doi.org/10.1007/s10479-021-04142-9
http://dx.doi.org/10.1007/s11047-008-9098-4
http://dx.doi.org/10.1016/j.simpat.2020.102089
http://dx.doi.org/10.1016/j.simpat.2014.03.007
http://dx.doi.org/10.3390/math10101760
http://dx.doi.org/10.1111/itor.13070
http://dx.doi.org/10.1016/j.simpat.2018.04.005
http://dx.doi.org/10.1111/itor.12719
http://dx.doi.org/10.1016/j.cor.2020.105033
http://dx.doi.org/10.1109/WSC.2003.1261424


Mathematics 2023, 11, 1577 24 of 24

33. Zhu, X.; Zhang, R.; Chu, F.; He, Z.; Li, J. A Flexsim-based Optimization for the Operation Process of Cold-Chain Logistics
Distribution Centre. J. Appl. Res. Technol. 2014, 12, 270–278. [CrossRef]

34. Wu, G.; Yao, L.; Yu, S. Simulation and optimization of production line based on FlexSim. In Proceedings of the 2018 Chinese Control
and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 3358–3363. [CrossRef]

35. Pan, J.C.H.; Shih, P.H.; Wu, M.H.; Lin, J.H. A storage assignment heuristic method based on genetic algorithm for a pick-and-pass
warehousing system. Comput. Ind. Eng. 2015, 81, 1–13. [CrossRef]

36. Jiao, Y.L.; Xing, X.C.; Zhang, P.; Xu, L.C.; Liu, X.R. Multi-objective storage location allocation optimization and simulation analysis
of automated warehouse based on multi-population genetic algorithm. Concurr. Eng. 2018, 26, 367–377. [CrossRef]

37. Koster, R.D.; Poort, E.V.D. Routing orderpickers in a warehouse: A comparison between optimal and heuristic solutions. IIE
Trans. 1998, 30, 469–480. [CrossRef]

38. Lee, I.G.; Chung, S.H.; Yoon, S.W. Two-stage storage assignment to minimize travel time and congestion for warehouse order
picking operations. Comput. Ind. Eng. 2020, 139, 106129. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S1665-6423(14)72343-0
http://dx.doi.org/10.1109/CCDC.2018.8407704
http://dx.doi.org/10.1016/j.cie.2014.12.010
http://dx.doi.org/10.1177/1063293X18796365
http://dx.doi.org/10.1080/07408179808966487
http://dx.doi.org/10.1016/j.cie.2019.106129

	Introduction
	Literature Review
	The Storage Location Assignment Problem
	Solving Complex Optimization Problems: Simheuristics and Biased Randomization
	FlexSim as Discrete-Event Simulation Research Tool

	Problem Definition
	A Generic Formulation for the Static SLAP with Orders
	Additional Assumptions for the Considered SLAP Study
	Warehouse
	Products
	Orders
	Solution


	Modeling Approach
	Simheuristic Framework
	Order Generation
	Warehouse Navigation
	Picking Operation and Solution Evaluation
	A Simheuristic for Solving the Storage Location Assignment Problem

	Computational Experiments
	Experiment Setting
	FlexSim Modeling
	Results and Discussion

	Conclusions and Future Work
	References

