
Citation: Tovar-Falón, R.;

Martínez-Flórez, G.; Ceña-Tapia, I.

Some Extensions of the Asymmetric

Exponentiated Bimodal Normal

Model for Modeling Data with

Positive Support. Mathematics 2023,

11, 1563. https://doi.org/10.3390/

math11071563

Academic Editor: Manuel Alberto M.

Ferreira

Received: 30 January 2023

Revised: 7 March 2023

Accepted: 9 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Some Extensions of the Asymmetric Exponentiated Bimodal
Normal Model for Modeling Data with Positive Support
Roger Tovar-Falón *,† , Guillermo Martínez-Flórez *,† and Isaías Ceña-Tapia

Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba,
Montería 230002, Colombia
* Correspondence: rjtovar@correo.unicordoba.edu.co (R.T.-F.);

guillermomartinez@correo.unicordoba.edu.co (G.M.-F.)
† These authors contributed equally to this work.

Abstract: It is common in many fields of knowledge to assume that the data under study have a
normal distribution, which often generates mistakes in the results, since this assumption does not
always coincide with the characteristics of the observations under analysis. In some cases, the data
may have degrees of skewness and/or kurtosis greater than what the normal model can capture,
and in others, they may present two or more modes. In this work, two new families of skewed
distributions are presented that fit bimodal data with positive support. The new families were
obtained from the extension of the bimodal normal distribution to the alpha-power family class.
The proposed distributions were studied for their main properties, such as their probability density
function, cumulative distribution function, survival function, and hazard function. The parameter
estimation process was performed from a classical perspective using the maximum likelihood method.
The non-singularity of Fisher’s information was demonstrated, which made it possible to find the
stochastic convergence of the vector of the maximum likelihood estimators and, based on the latter,
perform statistical inference via the likelihood ratio. The applicability of the proposed distributions
was exemplified using real data sets.

Keywords: bimodal log-power-normal distribution; elliptical bimodal log-power-normal distribution;
asymmetric data; positive data

MSC: 60E05

1. Introduction

The problem of considering alternative distributions to the normal one to fit asym-
metric data that present bimodal or multimodal behavior has been addressed by different
authors. Elal-Olivero et al. [1], for example, introduced a bimodal extension of the skew-
normal (SN) distribution of Azzalini [2] for modeling skewed bimodal data. In addition,
Elal-Olivero [3] studied the bimodal-normal (BN) model, which provides a methodology
for analyzing variables with two modes as an extension of the normal distribution. On
the other hand, Gómez et al. [4] proposed a class of flexible bimodal SN distributions.
Kim [5] considered a type of symmetric bimodal SN distribution, whereas Arnold et al. [6]
extended Kim’s distribution to the situation of the asymmetric bimodal SN. Other works
in this same direction were undertaken by Elal-Olivero et al. [7], who presented a class of
distributions for data with positive support; Bolfarine et al. [8] studied a bimodal extension
of the power-normal (PN) family of distribution, and Martínez-Flórez et al. [9] proposed a
distribution that can be useful for fitting data with up to three modes.

Chakraborty et al. [10] proposed a multimodal skewed extension of the normal distri-
bution based on the use of a trigonometric periodic skew function. The suitability of the pro-
posed distribution was investigated by fitting data from real situations. Venegas et al. [11]
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considered an extension of the normal new extension of the generalized skew-normal dis-
tribution by incorporating an additional parameter that gave the distribution the flexibility
to fit data with unimodal and bimodal behaviors. Statistical inference was carried out using
the maximum likelihood method and the EM algorithm. Gómez-Déniz et al. [12] proposed
a distribution suitable for modeling bimodality in discrete data, and that can fit biased data
both positively and negatively. A virtue of this model is that it is capable of representing
overdispersion phenomena present in count data obtained through a Poisson distribution.
Elal-Olivero et al. [13] developed an alternative to the bimodal skew-normal distribution
based on the mixture of skew-normal distributions. For a new proposal, which is called
the bimodal skew-normal distribution, the authors studied the stochastic representation
and verified the uniqueness of the Fisher data. This proposal presented satisfactory re-
sults for modeling bimodal data. Martínez-Flórez et al. [14] proposed two new families
of distributions that are capable of modeling unimodal, bimodal, and trimodal data. The
proposed distributions extended the normal model to symmetric and asymmetric trimodal
situations, and involved fewer parameters to estimate than the mixtures of normal distri-
butions. To fit positive unimodal data with high or low degrees of skewness, the gamma,
Weibull, exponential, Birnbaum [15], and Birnbaum and Saunders [16] distributions and
the log-normal (LN) distribution are commonly known, which involve transforming the
ordinary normal distribution and are commonly used to fit right-skewed data. When the
skewness and kurtosis of the distribution are above or below what is expected for the
log-normal distribution, it is necessary to have distributions that fit these deviations. On
the other hand, for positive data with more than one mode, Bolfarine et al. [17] presented
the log-skewed bimodal distribution as a logarithmic extension of the skewed bimodal
normal distribution introduced by Elal-Olivero [3]; the distribution can then be seen as an
alternative to the log-normal distribution that is typically used to fit positive data with only
one mode.

It is important to highlight that the bimodal distributions based on the skew-normal
distribution of Azzalini [2] present information matrix singularity problems for values
of the skewness parameter close to zero, which puts them at a disadvantage compared
to other existing models in the literature, such as those obtained from the power-normal
distribution of Durrans [18] that has a non-singular information matrix, which makes it
useful for studying the behavior of distributions derived from the generic structure of these
distributions and of distributions with a bimodal or multimodal basis.

In this work, bimodal distributions to model positive data are introduced. The pro-
posals, which are based on the normal-skewed bimodal distribution and the bimodal
power-normal distribution introduced by Martínez-Flórez et al. [19], are extensions of
alpha-power distributions. The main properties of the resulting distributions were studied,
including the probability density function, for which the shape of the cumulative distribu-
tion function, its survival function, and the Hazard function was studied. In addition, if the
moments existed, the moment-generating function, the expectation, the variance, and the
asymmetry and kurtosis coefficients were studied, among others.

The rest of the article is organized as follows: Section 2 introduces the exponentiated
bimodal log-normal distribution and presents its main properties. The location–scale
extension is performed and the statistical inference process of the distribution is carried
out using the maximum likelihood method. The Fisher information matrix, which is non-
singular, is also presented. In Section 3, the exponentiated elliptical bimodal log-normal
distribution is presented. For this new distribution, the probability density function and
the cumulative distribution function are shown explicitly. Moments and their properties
in general are also presented. Parameter estimation is performed using the maximum
likelihood method. Finally, in Section 4, an illustration of the new distribution is presented
using a real data set, where it can be appreciated that this new distribution is a viable
alternative to other existing methodologies in the statistical literature.
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2. Exponentiated Bimodal Log-Normal Distribution

In this section, the exponentiated bimodal log-normal distribution is introduced, which
is an extension of the EBN model of Martínez-Flórez et al. [19] in the case of bimodal data
with positive support.

Definition 1. A random variable X is said to have an exponentiated bimodal log-normal distribu-
tion if its probability density function (pdf) is given by:

fEBLN(x; α) = α(log2 x)
φ(log x)

x
[Φ(log x)− (log x)φ(log x)]α−1; x ∈ R+, (1)

where α ∈ R+ and φ(·) and Φ(·) are the pdf and cumulative distribution function (cdf) of the
standard normal distribution, respectively. We used the notation X ∼ EBLN(α).

Figure 1 shows some forms of the EBLN density for some selected values of the
parameter α. Note that for values of α ≤ 1 or α > 10, the EBLN density is unimodal with a
high degree to the right asymmetry, while for values of 1 < α < 10, the shape of the EBLN
density is bimodal with positive skewness, so α is a parameter that controls the skewness
of the distribution and, therefore, the EBLN distribution can be useful for fitting unimodal
or bimodal positively skewed data.
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Figure 1. Probability density function of the EBLN distribution for some selected values of α.

Notice that, by letting:

u = Φ(log t)− (log t)φ(log t) =⇒ du = (log2 t)
φ(log t)

t
dt,

then:∫
α(log2 t)

φ(log t)
t

[Φ(log t)− (log t)φ(log t)]α−1dt =
∫

αuα−1du = uα

= [Φ(log t)− (log t)φ(log t)]α
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Therefore, it follows that the cdf of a continuous random variable EBLN is given by:

FEBLN(x; α) = [Φ(log x)− (log x)φ(log x)]α, x ∈ R+. (2)

Given the great flexibility of the EEBLN distribution for fitting data with positive
support, it can be used to find, with greater precision, the probability that a subject will
survive beyond a given period of time t. This function, which corresponds to the survival
function of the EEBLN model, is given by:

SEBLN(t) = 1− [Φ(log t)− (log t)φ(log t)]α, t > 0,

In the graphs of Figure 2, it can be seen that this is a decreasing monotonic function,
with SEBLN(0) = 1 and tending to 0 as t tends to infinity.

Similarly, and supported by the flexibility of the EEBLN distribution in fitting non-
negative data, this distribution can be used as a basis function to determine the failure rate
of a system for data sets with positive support of the unimodal and bimodal types, or the
probability of the survival of an object until the first failure occurs in the system, that is,
the conditional probability of survival until failure occurs. This function, in the case of
the EEBLN model, is represented by the hazard function of the distribution, which can be
expressed in the form:

hEBLN(t) =
α(log2 t)φ(log t)[Φ(log t)− (log t)φ(log t)]α−1

t
[
1− [Φ(log t)− (log t)φ(log t)]α

] ; t > 0,
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Figure 2. Survival function of the EBLN distribution for some selected values of α.

2.1. Properties

(i) The pdf (1) has, at most, two modes. Indeed:

Let f (z) = α(log2 z) φ(log z)
z [Ψ(log z)]α−1, where Ψ(log z) = [Φ(log z)− (log z)φ(log z)].

By letting y = log z, then z = ey, and therefore, f (z) can be written as:

g(y) = αy2φ(y)e−y[Ψ(y)]α−1 = αy2φ(y + 1)[Ψ(y)]α−1e1/2,
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then:

log g(y) = log(α)− 1
2

log(2π) +
1
2
+ 2 log(y)− 1

2
(y + 1)2 + (α− 1) log(Ψ(y))

then:

∂ log g(y)
∂y

=
1
y
− (y + 1) + (α− 1)

Ψ′(y)
Ψ(y)

, where Ψ′(y) = y2φ(y),

=
−y2 − y + 2

y
+ (α− 1)

y2φ(y)
Ψ(y)

=
(α− 1)a(y)y3 − y2 − y + 2

y
with a(y) =

φ(y)
Ψ(y)

In addition,

∂2 log g(y)
∂y2 = − 2

y2 − 1 + (α− 1)

[
Ψ′′(y)
Ψ(y)

−
(

Ψ′(y)
Ψ(y)

)2
]

, where Ψ′′(y) = −y(y2 − 1)φ(y),

If ∂ log g(y)
∂y = 0, then:

(α− 1)a(y)y3 − y2 − y + 2 = 0 (3)

Observe that, if α > 1 and a(y) > 0, the polynomial in (3) is of the degree 3; therefore,
it has at most three roots. In addition, it has two changes in sign; therefore, it has two
positive real roots.
For α = 1, it holds that y2 + y− 2 = 0, which implies that y = −2 or y = 1, that is,
z = e−2 or z = e. In addition,

∂2 log g(y)
∂y2 = − 2

y2 − 1 < 0

All the roots correspond to maximums, that is, the distribution is bimodal.
In general, notice that:

∂2 log g(y)
∂y2 = −y2 + 2

y2 − (α− 1)
[

y(y2 − 2)φ(y)
Ψ(y)

+
y2φ2(y)
Ψ2(y)

]
= −

[
y2 + 2

y2 + (α− 1)b(y)
]

,

where b(y) = y(y2−2)φ(y)
Ψ(y) + y2φ2(y)

Ψ2(y) . Then, for all roots of (3) such that b(y) > 0 and
α > 1, there will be two maxima. The same is true for b(y) < 0 and α < 1. Thus, it
was concluded that there are, at most, two modes.

(ii) If α = 1, it follows that there is a bimodal log-normal (BLN) distribution, with the pdf
given by:

fBLN(x) = (log2 x)
φ(log x)

x
, x ∈ R+, (4)

and the cdf given by:

FBLN(x; α) = Φ(log x)− (log x)φ(log x), x ∈ R+. (5)

2.2. Moments

The moments of the EBLN distribution do not have a closed analytic form and cannot
be calculated explicitly; however, they can be calculated numerically. In general, the kth
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moment of a random variable X with an EBLN distribution can be obtained using the
expression given by:

µk = E
[
Xk] = α

∫ ∞

0
xk(log2 x

)φ(log x)
x

[Φ(log x)− (log x)φ(log x)]α−1dx (6)

The expected value E(X), the variance V(X), and the skewness
√

β1 and kurtosis β2
coefficients of the EBLN distribution can be calculated by using (6) and (7):

E[X] = µ1, V[X] = µ′2,
√

β1 =
µ′3

(µ′2)
3/2 and β2 =

µ′4
(µ′2)

2 , (7)

where:

µ′2 = µ2 − µ2
1, µ′3 = µ3 − 3µ2µ1 + 2µ3

1, µ′4 = µ4 − 4µ3µ1 + 6µ2µ2
1 − 3µ4

1.

The ranges of values for the coefficients
√

β1 and β2 were calculated numerically for
values of 0.01 < α < 1000, and we obtained:

2.855 <
√

β1 < 12.053 and β2 > 22.540,

which shows that the EBLN distribution is capable of fitting data with a high degree of
skewness and kurtosis.

2.3. Location–Scale Extension of the EBLN Distribution

The location–scale extension of the EBLN distribution follows from the transformation
log Z = ξ + ηX, where X has an exponentiated bimodal normal distribution (EBN, see [19]),
with ξ ∈ R and η ∈ R+. Its pdf is given by:

fEBLN(z; ξ, η, α) =
α

η
x2 φ(x)

z
[Φ(x)− xφ(x)]α−1, z > 0, (8)

where x =
log z−ξ

η . The respective cdf is:

FEBLN(z; ξ, η, α) =

[
Φ
(

log z− ξ

η

)
−
(

log z− ξ

η

)
φ

(
log z− ξ

η

)]α

, z > 0.

Note that, for α = 1, the location–scale version of the BLN distribution was obtained,
with the pdf and cdf given by:

fBLN(z; ξ, η) =
1

ηz

(
log z− ξ

η

)2
φ

(
log z− ξ

η

)
, z > 0, (9)

and

FBLN(z; ξ, η) = Φ
(

log z− ξ

η

)
−
(

log z− ξ

η

)
φ

(
log z− ξ

η

)
, z > 0. (10)

2.4. Moments and Moment-Generating Function for Location–Scale Case

The kth moment of a random variable Z with a distribution EBLN(ξ, η, α) is obtained
from the following expression:

E
(
Zk) = k

∑
j=0

(
k
j

)
µjσk−jE

(
Zk−j), where Z ∼ EBLN(α).
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Proposition 1. If X ∼ EBLN(ξ, η, α), then the moment-generating function (MGF) of X does
not exist.

Proof. Let us take α = α0 as fixed, ξ = 0, and η = 1; then:

MX(t) =
∫ ∞

0

α0

x
etx
(

log2 x
)

φ(log x)[Φ(log x)− (log x)φ(log x)]α0−1dx, α0, x ∈ R+

=
∫ ∞

0
h(x, t; α0)g(x; α0)dx x ∈ R+,

where h(x, t; α0) =
α0
x etx(log2 x

)
φ(log x) and g(x; α0) = [Φ(log x)− log xφ(log x)]α0−1 for

all x > 0.
If t > 0 is fixed, then:

J(α0) =
∫ ∞

0
h(x, t; α0)g(x; α0)dx = ∞, for all α0 ∈ R+,

since h(x, t; α0) −→ ∞ when x −→ ∞. Thus, g(x; α0) −→ 1 when x −→ ∞ for all α0 ∈ R+.
Consequently, J(α0) −→ ∞ when x −→ ∞.

2.5. Parameter Estimation

Consider a random sample Z = (Z1, Z2, . . . , Zn)
> of size n, such that Zi ∼ EBLN(ξ, η, α),

for i = 1, 2, . . . , n. The log-likelihood function for θ = (ξ, η, α)> is given by:

`(θ; Z) = n log α− n log η + 2
n

∑
i=1

log xi −
1
2

n

∑
i=1

x2
i −

n

∑
i=1

log zi

+ (α− 1)
n

∑
i=1

log[Φ(xi)− xiφ(xi)]−
n
2

log 2π

where xi =
log zi−ξ

η for i = 1, 2, . . . , n. After some calculations, the following elements of
the score function are obtained:

∂`

∂ξ
= − 1

η

[
n

∑
i=1

2
xi
−

n

∑
i=1

xi + (α− 1)
n

∑
i=1

x2
i φ(xi)

FBLN(zi)

]
∂`

∂η
= − 1

η

[
3n−

n

∑
i=1

x2
i + (α− 1)

n

∑
i=1

x3
i φ(xi)

FBLN(zi)

]
∂`

∂α
=

n
α
+

n

∑
i=1

log[Φ(xi)− xiφ(xi)]

where FBLN(·) = FBLN(·; ξ, η) is the cdf of the BLN distribution given in (10), and
xi =

log zi−ξ
η for i = 1, 2, . . . , n. Taking the second partial derivative to the log-likelihood

function, the following elements of the observed information matrix are obtained:

jξξ =
1
η2

[
n

∑
i=1

2
x2

i
+ n + (α− 1)

n

∑
i=1

xiφ(xi)

F 2
BLN(zi)

[(
x2

i − 2
)
FBLN(zi) + x3

i φ(xi)
]]

jξη =
1
η2

[
2

n

∑
i=1

xi + (α− 1)
n

∑
i=1

x2
i φ(xi)

F 2
BLN(zi)

[(
x2

i − 3
)
FBLN(zi) + x3

i φ(xi)
]]

jξα =
1
η

n

∑
i=1

x2
i φ(xi)

FBLN(zi)
, jηα =

1
η

n

∑
i=1

x3
i φ(xi)

FBLN(zi)
, jαα =

n
α2

jηη =
1
η2

[
−3n + 3

n

∑
i=1

x2
i + (α− 1)

n

∑
i=1

x3
i φ(xi)

F 2
BLN(zi)

[(
x2

i − 4
)
FBLN(zi) + x3

i φ(xi)
]]
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The elements of the Fisher information matrix I(θ) are obtained by taking the expected
value of the previous expressions, becoming:

iξξ =
1
η2

[
E(X−2) + 1 + (α− 1)E[a1((X2 − 2) + a3)]

]
iξη =

1
η2

[
2E(X) + (α− 1)E[a2((X2 − 3) + a3)]

]
iηη =

1
η2

[
3E(X2)− 3 + (α− 1)E[a3((X2 − 4) + a3)]

]
iξα =

a2

η
jηα =

a3

η
iαα =

1
α2

where aj = E
[

X jφ(X)
FBLN(Z)

]
and X = (log Z − ξ)/η. Taking α = 1 and using numerical

methods, the following information matrix is obtained:

I(θ) =



3
η2 0 0.76

η

0 6
η2 − 1.01

η

0.76
η − 1.01

η 1

 =
1
η2


3 0 0.76η

0 6 −1.01η

0.76η −1.01η η2

 (11)

whose determinant is equal to:

| I(θ) |= 11.4741
η4 6= 0

Note that:

| 3/η2 |= 3/η2 > 0,
∣∣∣∣( 3/η2 0

0 6/η2

)∣∣∣∣ = 18/η2 > 0, and | I(θ) |> 0

Then, I(θ) is a positive definite matrix; hence, I(θ) is non-singular, and therefore,
the regularity conditions are satisfied (see Appendix A for more details). t follows that
the variance–covariance matrix of the vector θ̂ is given by V(θ̂) = I−1(θ), and for a large
sample size, it follows that:

θ̂ = (ξ̂, η̂, α̂)>
D−→ N3

(
(ξ, η, α)>, I−1(θ)

)
.

3. Exponentiated Elliptical Bimodal Log-Normal Distribution

In this section, a new bimodal distribution, called the exponentiated elliptical bi-
modal log-normal (EEBLN) distribution for positive data, is presented. This distribution
is obtained from the exponentiated elliptical bimodal normal distribution that was also
proposed by Martínez-Flórez et al. [19].

Definition 2. A random variable X is said to have an exponentiated elliptical bimodal log-normal
distribution if its pdf is given by:

fEEBLN(x; λ, α) = α

(
1 + λ log2 x

1 + λ

)
φ(log x)

x

[
Φ(log x)− λ

1 + λ
(log x)φ(log x)

]α−1
, (12)

for x ∈ R+, where α ∈ R+, λ > 0, and φ(·) and Φ(·) are the pdf and cumulative distribution func-
tion (cdf) of the standard normal distribution, respectively. We used the notation X ∼ EEBLN(α).
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Figure 3 presents some forms of the EEBLN distribution for selected values of the
parameters α and γ. It can be seen from the figure that the EEBLN density can be useful for
fitting unimodal or bimodal data.
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Figure 3. Probability density function of the EEBLN distribution for some selected values of α.

The cdf of a random variable with an EEBLN distribution is given by the expression:

FEEBLN(x; λ, α) =

[
Φ(log x)− λ

1 + λ
(log x)φ(log x)

]α

, x ∈ R+. (13)

From (13), the survival and hazard functions of the EBLN distribution can be calculated as:

SEEBLN(t) = 1−
[

Φ(log t)− λ

1 + λ
(log t)φ(log t)

]α

, t > 0,

and

hEEBLN(t) =
α(1 + λ log2 t)φ(log t)

[
Φ(log t)− λ

1+λ (log t)φ(log t)
]α−1

t(1 + λ)
[
1−

[
Φ(log t)− λ

1+λ (log t)φ(log t)
]α] ; t > 0,

respectively. The behavior of the survival function for t > 0 values is presented in Figure 4,
which is strictly non-decreasing and convergent.
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Figure 4. Survival function of the EEBLN distribution for some selected values of α.

3.1. Properties

(i) The pdf (12) has, at most, two modes. To demonstrate this, we took α = 1 in (12)
again, and derived it to obtain:

f ′EEBLN(x; λ, 1) =
d

dx

[
1 + λ log2 x

1 + λ

φ(log x)
x

]

=
φ(log x)
(1 + λ)x2

[
(2λ− 1) log x− λ log2 x− λ log3 x− 1

]
.

By reasoning as in Elal-Olivero [3], it follows that f ′EEBLN(x; λ, 1) has a maximum of
three zeros, so fEEBLN(x; λ, 1) has a maximum of two modes.

(ii) If α = 1, the elliptical bimodal log-normal (ELBLN) distribution is obtained with the
pdf given by:

fELBLN(x; λ) =

(
1 + λ log2 x

1 + λ

)
φ(log x)

x
, x > 0. (14)

1. If λ = 0, the pdf of the exponentiated log-normal or log-power-normal (LPN) distri-
bution studied by Martínez-Flórez et al. [20] is:

fLPN(x; α) =
α

x
φ(log x)[Φ(log x)]α−1, x > 0. (15)

2. If α = 1 and λ = 0, the log-normal (LN) distribution is obtained.

3.2. Moments

Let X be a random variable with an EEBLN distribution. The expected value E(X),
the variance V(X), and the skewness

√
β1 and kurtosis β2 coefficients of a random variable

with an EEBLN distribution can be calculated by using (7) with:

µk = E
[
Xk] = α

∫ ∞

0
xn

(
1 + λ log2 x

1 + λ

)
φ(log x)

x

[
Φ(log x)− λ

1 + λ
(log x)φ(log x)

]α−1
dx,
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The ranges of values for the coefficients
√

β1 and β2 were calculated numerically for
values of 0.01 < α < 1000, and we obtained:

1.823 <
√

β1 < 46.034 and β2 > 22.645.

3.3. Location–Scale Extension of the EEBLN Distribution

The location–scale extension of the EEBLN distribution follows from the transforma-
tion log Z = ξ + ηX, where X has an exponentiated elliptical bimodal normal distribution
(EEBN, see [19]) with ξ ∈ R and η ∈ R+. Its pdf is given by:

fEEBLN(z; ξ, η, λ, α) =
α

η

(
1 + λx2

1 + λ

)
φ(x)

z

[
Φ(x)− λ

1 + λ
xφ(x)

]α−1
, z > 0, (16)

where x =
log z−ξ

η . The respective cdf is:

FEEBLN(z; ξ, η, λ, α) =

[
Φ
(

log z− ξ

η

)
− λ

1 + λ

(
log z− ξ

η

)
φ

(
log z− ξ

η

)]α

, z > 0.

Note that for α = 1, the location–scale version of the ELBLN distribution is obtained,
with the cdf given by:

FELBLN(z; ξ, η, λ) = Φ
(

log z− ξ

η

)
− λ

1 + λ

(
log z− ξ

η

)
φ

(
log z− ξ

η

)
, z > 0. (17)

3.4. Moments and Moment-Generating Function for Location–Scale Case

The kth moment of a random variable Z with a distribution of EEBLN(ξ, η, α) is
obtained from the following expression:

E
(
Zk) = k

∑
j=0

(
k
j

)
µjσk−jE

(
Xk−j), where X ∼ EEBLN(α).

Proposition 2. If X ∼ EEBLN(α, ξ, η), then the moment-generating function (MGF) of X does
not exist.

Proof. This result is obtained by following a reasoning similar to that of the EBLN
distribution.

3.5. Parameter Estimation

We considered a random sample Z = (Z1, Z2, . . . , Zn)
> of size n, such that Zi ∼

EEBLN(ξ, η, λ, α), for i = 1, 2, . . . , n. The log-likelihood function for θ = (ξ, η, λ, α)> is
given by:

`(θ; Z) = n log α− n log η − n log(1 + λ) +
n

∑
i=1

log(1 + λx2
i )−

1
2

n

∑
i=1

x2
i −

n

∑
i=1

log zi

+ (α− 1)
n

∑
i=1

log
[

Φ(xi)−
λ

1 + λ
xiφ(xi)

]
− n

2
log(2π)

where xi =
log zi−ξ

η for i = 1, 2, . . . , n. After some calculations, the following elements of
the score function are obtained:
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∂`

∂ξ
= − 1

η

[
n

∑
i=1

2λxi

1 + λx2
i
−

n

∑
i=1

xi +
α− 1
1 + λ

n

∑
i=1

(1 + λx2
i )φ(xi)

FELBLN(zi)

]
∂`

∂η
= − 1

η

[
n +

n

∑
i=1

2λx2
i

1 + λx2
i
−

n

∑
i=1

x2
i +

α− 1
1 + λ

n

∑
i=1

xi(1 + λx2
i )φ(xi)

FELBLN(zi)

]
∂`

∂λ
=

n

∑
i=1

x2
i

1 + λx2
i
− n

1 + λ
− α− 1

(1 + λ)2

n

∑
i=1

xiφ(xi)

FELBLN(zi)

∂`

∂α
=

n
α
+

n

∑
i=1

log
[

Φ(xi)−
λ

1 + λ
xiφ(xi)

]
where FELBLN(·) = FELBLN(·; ξ, η, λ) is the cdf of the ELBLN distribution given in (17),
and xi =

log zi−ξ
η for i = 1, 2, . . . , n.

The maximum likelihood estimates are obtained as the solution of this system of
equations that results from setting the score functions equal to zero, ∂`

∂ξ = 0, ∂`
∂η = 0, ∂`

∂λ = 0,

and ∂`
∂α = 0, which do not have a closed expression and must be solved via numerical

methods such as the Newton–Raphson or quasi-Newton methods.
Taking the second partial derivative to the log-likelihood function, the following

elements of the observed information matrix are obtained:

jξξ =
1
η2

[
n− 2λ

n

∑
i=1

1(
1 + λx2

i
)2 + 2λ2

n

∑
i=1

x2
i(

1 + λx2
i
)2

]

+
α− 1

η2(1 + λ)2

n

∑
i=1

(1 + λ)xiφ(xi)
[
(1− 2λ) + λx2

i
]
FELBLN(zi) + (1 + λx2

i )
2φ2(xi)

F 2
ELBLN(zi)

,

jξη =
1
η2

[
−2λ

n

∑
i=1

xi(
1 + λx2

i
)2 + 2λ2

n

∑
i=1

x3
i(

1 + λx2
i
)2 +

n

∑
i=1

xi

]

+
α− 1

η2(1 + λ)2

n

∑
i=1

(1 + λ)x2
i φ(xi)

[
(1− 2λ) + λx2

i
]
FELBLN(zi) + xi(1 + λx2

i )φ
2(xi)

F 2
ELBLN(zi)

,

jηη =
1
η2

[
−n− 2λ

n

∑
i=1

x2
i (3 + λx2

i )(
1 + λx2

i
)2 + 3

n

∑
i=1

x2
i

]

+
α− 1

η2(1 + λ)2

n

∑
i=1

(1 + λ)xiφ(xi)
[
−2 + (1− 4λ)x2

i + λx4
i
]
FELBLN(zi) + x2

i (1 + λx2
i )

2φ2(xi)

F 2
ELBLN(zi)

,

jξλ =
2
η

n

∑
i=1

xi(
1 + λx2

i
)2

+
α− 1

η(1 + λ)3

n

∑
i=1

xi
(1 + λ)(x2

i − 1)φ(xi)FELBLN(zi) + xi(1 + λx2
i )φ

2(xi)

F 2
ELBLN(zi)

,
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jηλ =
2
η

n

∑
i=1

x2
i
(
1− λxi + λx2

i
)(

1 + λx2
i
)2

+
α− 1

η(1 + λ)3

n

∑
i=1

(1 + λ)(x2
i − 1)φ(xi)FELBLN(zi) + xi(1 + λx2

i )φ
2(xi)

F 2
ELBLN(zi)

,

jξα =
1

η(1 + λ)

n

∑
i=1

(1 + λx2
i )φ(xi)

FELBLN(zi)
, jηα =

1
η(1 + λ)

n

∑
i=1

xi(1 + λx2
i )φ(xi)

FELBLN(zi)
,

jλα =
1

(1 + λ)2

n

∑
i=1

xiφ(xi)

FELBLN(zi)
, jαα =

n
α2 .

The elements of the expected information matrix iθkθk′
are obtained by calculating the

expected value of the elements of the observed information matrix. Due to the shape of
these elements, they cannot be found explicitly, so numerical methods must be used to find
the respective expected values. By setting iθkθk′

= E(jθkθk′
), the expected information matrix

is I(θ) = (iθkθk′
), where θk, θk′ ∈ θ = (ξ, η, λ, α)>. Since the observed information matrix

converges asymptotically to the expected information matrix, for λ 6= 0 and large sample
sizes, we have:

(ξ̂, η̂, λ̂, α̂)>
D−→ N4

(
(ξ, η, λ, α)>, I−1(θ)

)
.

4. Application of the EEBLN Distribution

This section contains an illustration with real data from the studied bimodal distribu-
tions, which are compared with other existing methodologies.

The data set used in this illustration contains 85 observations regarding the nickel
content in soil samples that were analyzed by the Mining Department of the Universidad
de Atacama in Chile. The aim is to show the EEBLN distribution as an alternative to
modeling unimodal and/or bimodal data. Table 1 contains the main descriptive statistics
of the application data. Note that the data have a high degree of kurtosis and a high degree
of positive asymmetry; therefore, the EBLN and EEBLN models can be considered viable
to fit this data set.

Table 1. Main descriptive statistics for nickel concentration data.

n x x̃ S2 S
√

b1 b2

85 21.59 17 274.673 16.573 2.392 8.325

To compare the proposed distributions (EBLN and EEBLN), the flexible Birnbaum–
Saunders (FBS), skewed Birnbaum–Saunders (SBS), log-normal (LN), and log-power-
normal (LPN) distributions were also fitted. The fits were made using the maxLik function
of the R Development Core Team [21], obtaining the maximum likelihood estimates (MLE)
with their respective standard errors in parentheses, which are obtained numerically as the
square root of the diagonal elements of the matrix Ĵ−1

(θ), where:

Ĵ−1
(θ) =

(
jθkθl

)
with jθkθl = −

∂2`(θ)
∂θk∂θl

and θk, θl ∈ θ = (ξ, η, λ, α). The results are presented in Table 2 for
each of the six distributions considered. To compare the distributions in question, the AIC
criteria in [22], the corrected AIC (AICC) in [23], and the Bayesian information criterion
(BIC) in [24] were used. The criteria were defined by:
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AIC = −2`(θ̂) + 2p, AICC = −2`(θ̂) +
2n(p + 1)
n− p− 2

and BIC = −2`(θ̂) + n log(n),

where p is the number of parameters and `(·) is the log-likelihood function evaluated at the
MLEs of the parameters. The best model is the one with the smallest AIC, AICC, or BIC.

Table 2. Maximum likelihood estimates (standard errors) of the fitted distributions.

Parameter EBLN EEBLN FBS SBS LN LPN

ξ 1.846 (0.021) 1.634 (0.170) – – 2.828 (0.078) 3.460 (0.454)
η 0.645 (0.027) 0.759 (0.064) – – 0.726 (0.055) 0.490 (0.180)
α 2.973 (0.345) 3.795 (0.709) 0.870 (0.104) 1.073 (0.201) – 0.311(0.314)
λ – 2.585 (1.630) 1.405 (0.341) 1.252 (0.590) – –
β – – 5.072 (0.763) 8.841 (1.998) – –
δ – – −1.520 (0.282) – – –

AIC 691.417 666.401 671.859 675.280 671.610 672.284
AICC 691.713 666.901 672.359 675.576 671.756 672.580
BIC 698.745 676.172 681.630 678.165 676.495 679.611

To test the significance of the bimodality parameter λ in the data set, we considered
the hypothesis system as follows:

H0 : λ = 0 versus H1 : λ 6= 0,

which compares the fit of the LPN and EEBLN distributions to the set of data. We used the
likelihood ratio (LR) statistic (see Lehmann and Romano [25]), which is given by:

Λ =
LLPN

(
ξ̂, η̂, α̂

)
LEEBLN

(
ξ̂, η̂, λ̂, α̂

)
where LLPN

(
ξ̂, η̂, α̂

)
and LEEBLN

(
ξ̂, η̂, λ̂, α̂

)
are the likelihood functions associated with

the log-power-normal and exponentiated elliptical bimodal log-normal distributions,
respectively, evaluated in the maximum likelihood estimators. After evaluating, we
found that−2 log Λ = −2(log(LLPN

(
ξ̂, η̂, α̂

)
)− log(LEEBLN

(
ξ̂, η̂, λ̂, α̂

)
)) = −2(−333.142+

329.2007) = 7.8826, with a p − value = 0.00499 < 0.05; therefore, the null hypothe-
sis H0 : λ = 0 was rejected, and the parameter λ was statistically significant to fit the
nickel concentration data. Based on this hypothesis test, and the goodness-of-fit criteria
AIC, AICC, and BIC (the smallest values among the considered models), it can be con-
cluded that the EEBLN distribution has a better fit than the LPN distribution to the nickel
concentration data.

Similarly, the hypothesis of EEBLN versus LN was tested through the hypothesis
system:

H0 : (λ, α) = (0, 1) versus H1 : (λ, α) 6= (0, 1),

with the likelihood ratio statistic:

Λ =
LLN

(
ξ̂, η̂
)

LEEBLN
(
ξ̂, η̂, λ̂, α̂

) .

where LLN
(
ξ̂, η̂
)

is the likelihood function associated with the log-normal distribution. The
sample data led to −2 log Λ = −2(−333.8053 + 329.2007) = 9.2092 with a p-value = 0.000
< 0.05. Then, the null hypothesis was rejected. A similar reasoning based on the results of
the hypothesis test and the AIC, AICC, and BIC comparison criteria allows us to conclude
that both the parameters λ and α are statistically significant to fit the nickel concentration
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data, that is, the EEBLN distribution also has a better fit than the LN distribution to the
nickel concentration data. Due to all of the above, the EEBLN distribution captures the high
degree of asymmetry and kurtosis, in addition to the bimodality present in the data set.

Figure 5 shows the fitted density functions and the empirical distribution function for the
variable concentration of nickel, which reveals that the fit of the EEBLN model is quite good.
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Figure 5. (Left) Fits of the EEBLN, EBLN, SBS, and FBS distributions for the nickel data.
(Right) Empirical and estimated cdf of the EEBLN distribution.

In addition, we performed the Anderson–Darling (AD) goodness-of-fit test for the
nickel concentration data. This test measures how well data follow a particular distribution
(Anderson and Darling [26], Anderson and Darling [27]); the better the fit, the lower the
AD statistic, and analogously if the p-value of the test is lower. At the specified level of
significance (usually 0.05 or 0.10), it is concluded that the data do not follow the specified
distribution. Therefore, the larger the p-value, the better the fit of the distribution to
the data.

The hypotheses to be tested are:

Hypothesis 1 (H1). The data follows distribution F .

versus

Hypothesis 2 (H2). The data does not follow F distribution.

with the test statistic:

AD = n
∫ ∞

−∞
[Fn(·)−F (·)]2ψ(F (·))dF (·),

where ψ(F (·)) is a distribution function chosen for testing.
Using the ad.test function from the goftest library of the R Development Core Team [21],

we obtained the value of the AD statistic, as well as its corresponding p-value, from the
nickel concentration data, yielding the results in Table 3.

Table 3. Anderson–Darling (AD) statistics for the EEBLN, EBLN, LPN, LN, FBS, and SBS distributions.

Distribution AD p-Value

EBLPN 0.694 0.563
BLPN 1.409 0.199
LPN 1.150 0.287
LN 1.284 0.237
FBS 2.060 0.085
SBS 22.317 0.000

It is clear that the EEBLN distribution presented a lower AD statistic as well as a
higher p-value; therefore, it fit the nickel concentration data better compared to the other
distributions considered.
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5. Concluding Remarks

In this work, two new, absolutely continuous probability distributions were presented
to model positive bimodal data with high or low degrees of skewness and kurtosis. The new
proposals, which are called the exponentiated bimodal log-normal (EBLN) and the expo-
nentiated elliptical bimodal log-normal (EEBLN), were obtained from the extension of the
bimodal-normal distribution and the alpha-power family. For the introduced distributions,
their main properties were studied as a function of probability density, cumulative distribu-
tion, survival, and hazard. Parameter estimates were made using the maximum likelihood
method. It is highlighted that the expected information matrices for both distributions
were non-singular.

In addition, an application was made with nickel concentration data in soil samples
and the results were compared with different existing models in the literature. The results
indicate that the EBLN and EEBLN distributions showed a good fit to the aforementioned
data, being the best fit for the EBLPN distribution, which demonstrates the great applicabil-
ity of the proposals in the analysis of real data from different areas of knowledge.

Future work contemplates extending the proposed distributions to situations where
the data under analysis present censorship and regression models. Another field of interest
is to carry out the inference of these types of distributions from a Bayesian perspective.
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Appendix A. Regularity Conditions

Appendix A.1. Regularity Conditions for EBLN Distribution

Consider the density function (8), which is given by:

f (z; ξ, η, α) =
α

ηz

(
log z− ξ

η

)2
φ

(
log z− ξ

η

)[
Φ
(

log z− ξ

η

)
−
(

log z− ξ

η

)
φ

(
log z− ξ

η

)]α−1
, z > 0, (A1)

For simplicity, we used the notation f (z; ξ, η, α) = f (z). Note that f (z) can be written as:

g(x) =
α

η
x2φ(x + η)[Ψ(x)]α−1e−ξ+ 1

2 η2
(A2)

where Ψ(x) = Φ(x)− xφ(x) and x =
log z−ξ

η .
By applying l’Hôpital, we have that:

lim
x→∞

x2φ(x + η) = lim
x→−∞

x2φ(x + η) = 0,

We also know that 0 ≤ Ψ(x) ≤ 1. Then, g(x) is bounded. In addition, x2φ(x) is continuous
just like Ψ(x) = Φ(x)− xφ(x). Then, g(x) is continuous and bounded and exists for all
x ∈ R, that is, ∀x > 0.
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Note that, for h(x) = x2φ(x + η), h′(x), h′′(x), and h′′′(x) exist and are continuous
just like Ψ′(x), Ψ′′(x), and Ψ′′′(x), as shown by:

∂g
∂θj

=
∂g
∂y

∂y
∂θj

Then, it also holds that:

∂2h
∂θjθj′

,
∂3h

∂θjθj′θk
,

∂3Ψ
∂θjθj′θk

and
∂3Ψ

∂θjθj′θk

exist and are continuous.
Following the same reasoning of Martínez-Flórez et al. [14], it can be shown that for

0 ≤ Φ(x) ≤ 1, we have that:

| log Ψ(x)| ≤ max{| log Ψ(z0)|, | log Ψ(z1)|}

with z0 and z1 such as:
log Ψ(z0) < log Ψ(z) < log Ψ(z1).

In the same way, it follows that |φ(x)| ≤ 1√
2π

, |φ′(x)| ≤ e−1/2

η
√

2π
, − 1√

2π
< φ′′(x) < 0,

and |φ′′′(x)| ≤ 1
η2
√

2π
(
√

3 + 1)
√

2 +
√

3e−1/(2+
√

3).

Based on this result and on the first four moments of the random variable X, it is also
possible to demonstrate, by applying l’Hôpital, that:

log Ψ(x)[Ψ(x)]α−1 =
α− 1

α
Ψ(x)g(x) < +∞

Using all the previous results, it can be shown that:

∂g
∂θj

and
∂2g

∂θjθk

are bounded. In the same way, we can prove that:

∂ log g
∂θj

,
∂2 log g

∂θjθk
and

∂3 log g
∂θiθjθk

are bounded. Since the information matrix is non-singular, its rows or columns are linearly
independent, which guarantees that |I(θ)| < +∞. According to Lehmann and Casella [28],
it was concluded that the regularity conditions were satisfied. Therefore, the maximum
likelihood estimator θ̂ is consistent, and asymptotically, we have that:

θ̂ −→ N3(θ, I−1(θ))

Appendix A.2. Regularity Conditions for EEBLN Distribution

We considered the pdf (16), given by:

fEEBLN(z; ξ, η, λ, α) =
α

η

(
1 + λx2

1 + λ

)
φ(x)

z

[
Φ(x)− λ

1 + λ
xφ(x)

]α−1
, z > 0, (A3)

where x =
log z−ξ

η . Note that:

fEEBLN(z; ξ, η, λ, α) = g(x) = k(ξ, η, α)M(x)φ(x + η)[Ψ(x)]α−1, (A4)
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with = k(ξ, η, α) = (αe−ξ+ 1
2 η2

)/η, M(x) = 1+λx2

1+λ , and Ψ(x) =
[
Φ(x)− λ

1+λ xφ(x)
]α

.
It can be seen that M(x) ≥ 0 is continuous and differentiable. Then, by l’Hôpital, we

have that:
lim

x→∞
M(x)φ(x + η) = lim

x→∞
M(x)φ(x + η) = 0,

and, since 0 ≤ Φ(x)− λ
1+λ xφ(x) ≤ 1 is continuous and exists everywhere R, it follows that:

f (x) =
α

η

1 + λx2

1 + λ

φ(x)
z

[
Φ(x)− λ

1 + λ
xφ(x)

]α−1

is continuous and exists everywhere R. Inasmuch as Ψ(x) = Φ(x)− λ
1+λ xφ(x) is such

that 0 ≤ Φ(x) ≤ 1, then log(Φ(x)) ≤ 0 almost always exists. Likewise, it is easy to show
that the first three derivatives of M(x), φ(x), and Φ(x) with regards to z, ξ, η, λ, and α are
continuous and exist almost always. The same happens for the second and third mixed
derivatives of M(x), φ(x), and Φ(x) with regards to θj, θj′ , θj, θj′′ , and θj′′ , where j, j′, and
j′′ are in the range of ξ, η, λ, and α.

Again, following Martínez-Flórez et al. [14], we have that, for each x, it is always
possible to find x0 and x1 such that:

| log(Ψ(x))| ≤ max{| log(Ψ(x0))|, | log(Ψ(x1))|}

Note that 0 ≤ Ψ(x) ≤ 1; then, it follows that Eθ [M(x)φ(x + η)(Ψ(x))α−1] < ∞,
Eθ [M′(x)φ(x + η)(Ψ(x))α−1] ≤ Eθ [M′(x)φ(x + η)] < ∞, Eθ [M′′(x)φ(x + η)(Ψ(x))α−1]
< ∞, and 2α

1+α Eθ [φ(x + η)] < ∞, given that |φ(x + η)| < 1√
2π

, |φ′(x + η)| < 1
η
√

2π
e−1/2,

− 1√
2π
≤ φ′′(x + η) ≤ 0, and |φ′′′(x + η)| ≤ 1

η2
√

2π
(
√

3 + 1)
√

2 +
√

3e−1/2(2+
√

3). In addi-

tion, notice that M′′′(x) = 0. Likewise, by l’Hôpital:

lim
x→−∞

log(Ψ(x))[Ψ(x)]α−1 < ∞

With these results, it can be shown that ∂ f
∂θj

, ∂2 f
∂θj∂θj′

are bounded; these same results

follow for ∂ log f
∂θj

, ∂2 log f
∂θj∂θj′

, and ∂3 log f
∂θj∂θj′ ∂θj′′′

. For α = 1 and λ > 0, it can be shown that the rows

or columns of the information matrix are linearly independent, from which it follows that
the information matrix is non-singular, that is, |I(θ)| < ∞ and V(θ̂) = I−1(θ). Under these
regularity conditions, the MLE are consistent and such that:

√
n(θ̂− θ) ∼ N4(θ, I−1(θ)).
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