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Abstract: The KPI equation is one of most well-known nonlinear evolution equations, which was first
used to described two-dimensional shallow water wavs. Recently, it has found important applications
in fluid mechanics, plasma ion acoustic waves, nonlinear optics, and other fields. In the process
of studying these topics, it is very important to obtain the exact solutions of the KPI equation. In
this paper, a general Riccati equation is treated as an auxiliary equation, which is solved to obtain
many new types of solutions through several different function transformations. We solve the KPI
equation using this general Riccati equation, and construct ten sets of the infinite series exact solitary
wave solution of the KPI equation. The results show that this method is simple and effective for the
construction of infinite series solutions of nonlinear evolution models.

Keywords: KPI equation; auxiliary equation; nonlinear evolution equation; hyperbolic function;
solitary wave solutions
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1. Introduction

In modern physics and engineering, many physics phenomena, including hydrody-
namics, optics, plasma, condensed matter physics, elementary particle physics, material
physics, ocean engineering, astrophysics, and biology [1–6], can be expressed as nonlin-
ear evolution equations (NLEEs) varying with time and space. A lot of methods have
been proposed to obtain the exact traveling wave solutions of NLEEs, such as the F-
expansion method [7–11], the tanh method and its extension [12–14], the Jacobi elliptic
function method [15–18], the auxiliary equation method [19–23], the homogenous bal-
ance method [24,25], the trial function method [26], the (G’/G)-expansion method and its
extension [27–30], and so on.

The Kadomtsev–Petviashvili (KP) equation [31], shown in Equation (1), was proposed
by Kadomtsev and Petviashvili in 1970 to study the physical model of a two-dimensional
shallow water wave, which describes how the water wave mainly propagates along the
X-direction while the movement is very small in the Y-direction.

(ut + 6·u·ux + uxxx)x + σ2·uyy = 0 (1)

This NLEE has important applications in fluid mechanics [32–34], plasma ion acoustic
wave [35], nonlinear optics [36,37], and other fields. The KP equation is renamed the KPI
equation when σ2 = −1, and the KPII equation when σ2 = 1. Compared with the KPII
equation, the KPI equation has many more types of solutions [38–44]. In this work, we only
discuss the solutions of KPI equation, shown as Equation (2):

(ut + 6·u·ux + uxxx)x − uyy = 0 (2)
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To study various complex and diverse evolutionary processes of the KPI equation, we
introduce a method to construct infinite series solutions of the KPI equation by using of
Riccati equation as an auxiliary equation. Firstly, the general Riccati equation is solved to
obtain many new types of solutions through several different function transformations.
Then, we use this general Riccati equation as an auxiliary equation to solve the KPI equation.
Finally, the infinite series exact solitary wave solutions are obtained. In this work, a simple
Riccati equation is used to construct the form of the KPI equation’s solution as f (ξ) in
Section 2. In Section 3, three different function transformations of f (ξ) are used to obtain
ten sets of infinite-series hyperbolic function solutions, which are used to construct the
infinite series exact solitary wave solution of the KPI equation. In Section 4, the infinite series
exact solitary wave solutions are discussed in detail. Finally, a conclusion is given in Section 5.

2. The Form of KPI Equation’s Solutions

We assume that Equation (2) has the following traveling wave transformation:{
u(x, y, t) = u(ξ)
ξ = kx·x + ky·y + c·t (3)

where kx, ky and c are the wave number in X and Y directions and wave speed, respectively.
Equation (2) can be converted to an ODE, shown as Equation (4):

k4
x·u′′ +

(
ckx − k2

y

)
·u + 3k2

x·u2 = 0 (4)

where u′ represents du/dξ. u(ξ) can be assumed as a finite series of defined f (ξ), shown
as Equation (5):

(ξ) = ∑n
j=0 aj· f n(ξ) (5)

where aj are constants, f (ξ) is the solution to be constructed later, and n can be obtained by
the homogeneous balance between u′′ and u2 in Equation (4).

The highest degree of dpu/dξ p is taken as:

O(dpu/dξ p) = n + p, p = 1, 2, 3 · · · (6)

We can obtain n = 2, and u(ξ) can be expressed as:

u(ξ) = a0 + a1· f (ξ) + a2· f 2(ξ) (7)

a0, a1 and a2 in Equation (7) are constants to be determined later, and f (ξ) is defined
by simple Riccati equation, shown as:

f ′(ξ) = f 2(ξ) + µ (8)

Substituting Equation (8) into Equation (4), and setting the coefficients of f n(ξ) to zero,
we get the following equation:

6k4
x·a2 + 3k2

x·a2
2 = 0

2k4
x·a1 + 6k2

x·a1a2 = 0
8k4

x·µa2 + ckx·a2 − k2
y·a2 + 3k2

x·a2
1 + 6k2

x·a0a2 = 0
2k4

x·µa1 + ckx·a1 − k2
y·a1 + 6k2

x·a0a1 = 0
2k4

x·µ2a2 + ckx·a0 − k2
y·a0 + 3k2

x·a2
0 = 0

(9)
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By solving these equations, we obtain the two solutions, shown as Equation (10):

a0 = −
(
2k2

x·µ
)
/3

a1 = 0
a2 = −2k2

x

c =
(

k2
y − 4k4

x·µ
)

/kx

kx 6= 0
ky 6= 0

or



a0 = −2k2
x·µ

a1 = 0
a2 = −2k2

x

c =
(

k2
y + 4k4

x·µ
)

/kx

kx 6= 0
ky 6= 0

(10)

u(ξ) could be expressed as v(ξ) in Equation (11) and w(ξ) in Equation (12):{
v(ξ) = −

(
2k2

x·µ
)
/3− 2k2

x· f 2(ξ)

ξ = kx·x + ky·y +
(

k2
y − 4k4

x·µ
)

/kx·t
(11)

{
w(ξ) = −2k2

x·µ− 2k2
x· f 2(ξ)

ξ = kx·x + ky·y +
(

k2
y + 4k4

x·µ
)

/kx·t
(12)

where kx 6= 0 and ky 6= 0. Obviously, in order to get the solution of u(ξ), we need to
supplement the definition of f (ξ) to obtain the form of f (ξ) and the value of µ.

3. The Definition of f (ξ)

According to Equations (11) and (12), different sets of solutions u(ξ) could be deter-
mined through different definitions of f (ξ). In the following, we adopt three definitions of
f (ξ) to obtain ten sets of infinite-series hyperbolic function solutions for the KPI equation.

3.1. The First Definition of f (ξ)
f (ξ) is defined as Equation (13):

f (ξ) = k0 + k1·g′n(ξ)/[gn(ξ) + r] (13)

where k0, k1, r are constants to be determined later.
While gn(ξ) is defined as Equation (14), and pn and qn are constants in these equations.[

g′n(ξ)
]2

= pn·gn
2(ξ) + qn (14)

When n = 0, [g′0(ξ)]
2 = p0·g0

2(ξ) + q0. Obviously, this equation has three solutions:
g01(ξ) = sinh(ξ) (p0 = 1, q0 = 1)
g02(ξ) = cosh(ξ) (p0 = 1, q0 = −1)
g03(ξ) = sinh(ξ) + ε·cosh(ξ)

(
p0 = 1, q0 = 0, ε2 = 1

) (15)

By substituting Equation (13) into Equation (8), using Equation (14), and then setting
each coefficient of gn

i(ξ) (i = 0, 1, 2, · · · ) to zero, the following equations can be obtained.
k0 = 0,
k1

2 pn + µ = 0,
k1 pnr = 2µr,
−k1qn = k1

2qn + µr2;

or


qn = 0,
k0

2 + k1
2 pn ± 2k0k1

√
pn + µ = 0,

k1 pnr = 2k0
2r± 2k0k1r

√
pn + 2µr,

k0
2r2 + µr2 = 0.

(16)

Solving them, we can obtain Equation (17).
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k0 = 0,
k1 = − 1

2 ,
µ = − pn

4 ,
r = ±

√
− qn

pn
;

or



qn = 0,
k0 = ± 1

2
√

pn

k1 = −1,
µ = − pn

4 ,
r 6= 0.

(17)

The constants pn and qn in Equation (14) are the key to obtain the values of constants
k0, k1 and r in Equation (13), so as to determine the f (ξ). Therefore, two recursive relations
of gn(ξ) are introduced below:

Case 1:
gn(ξ) = gn−1

2(ξ) + an−1 (18)

For n = 1: { [
g′1(ξ)

]2
= p1·g1

2(ξ) + q1
g1(ξ) = g0

2(ξ) + a0
(19)

We obtain the following numerical relationship:
4p0 = p1,
4q0 = 2p1a0,
p1a0

2 + q1 = 0
(20)

Solving these equations, we get:
p1 = 4p0
q1 = −q0

2/p0
a0 = q0/(2·p0)

(21)


g11(ξ) = sinh2(ξ) + 1

2 (p0 = 4, q0 = −1)
g12(ξ) = cosh2(ξ)− 1

2 (p0 = 4, q0 = −1)
g13(ξ) = [sinh(ξ) + ε·cosh(ξ)]2

(
p0 = 4, q0 = 0, ε2 = 1

) (22)

For n ≥ 2:
Due to sinh2(ξ) + 1

2 = cosh2(ξ)− 1
2 , the infinite series hyperbolic function solutions

for gn1(ξ) are the same as that for gn2(ξ). It is easy to obtain mathematical recurrence
formula satisfying Equation (14), shown in Equation (23):

gn(ξ) = gn−1
2(ξ) +

qn−1

2pn−1
, (pn = 4pn−1, qn = − qn−1

2

pn−1
). (23)

We obtain two sets of infinite-series hyperbolic function. The first set is shown as
Equation (24): f1n(ξ) = − gn−1

′(ξ)

2
[

gn−1(ξ)±
√
−qn−1/pn−1

] (µ = −pn−1/4, n = 1, 2, 3, · · ·)

gn(ξ) = gn−1
2(ξ) + qn−1/(2·pn−1)

(
pn = 4·pn−1, qn = −qn−1

2/pn−1
) (24)

The corresponding equations of n = 0 are g0(ξ) = sinh(ξ) when p0 = 1 and q0 = 1 and
g0(ξ) = cosh(ξ) when p0 = 1 and q0 = −1.

The second set is shown as Equation (25):

f2n(ξ) = ± 1
2 νn− ενn[sinh(ξ)+ε·cosh(ξ)]νn

[sinh(ξ)+ε·cosh(ξ)]νn+r (n = 1, 2, 3, · · ·) (25)

where µ = −
(
ν2·n2)/4, r 6= 0, ν 6= 0, ε2 = 1.

Case 2:
gn(ξ) =

√
gn−1(ξ) + an−1 (26)
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For n = 1: { [
g′1(ξ)

]2
= p1·g1

2(ξ) + q1
g1(ξ) =

√
g0(ξ) + a0

(27)

We obtain the following numerical relationship:
p0/4 = p1
2p1a0 + q1 = 0
q0/4 = p1a0

2 + q1a0

(28)

Solving these equations, we get:
p1 = p0/4
q1 = ±2

√−p0q0
a0 = ∓

√
−q0/p0

(29)


g14(ξ) =

√
sinh(ξ) + ε

(
p1 = 1/4, q1 = −ε/2, ε2 = −1

)
g15(ξ) =

√
cosh(ξ) + ε

(
p1 = 1/4, q1 = −ε/2, ε2 = 1

)
g16(ξ) =

√
sinh(ξ)± cosh(ξ)

(
p1 = 1

4 , q1 = 0
) (30)

For n ≥ 2:
It is easy to obtain mathematical recurrence formula satisfying Equation (14), shown

as Equation (31):

gn(ξ) =
√

gn−1(ξ)±
√
−qn−1/pn−1,

(
pn = pn−1/4, qn = ∓

√
−pn−1·qn−1/2

)
(31)

Besides one set of infinite series hyperbolic function solutions being the same to
Equation (25), a new set of infinite series hyperbolic function solutions is provided in
this case.

f3n(ξ) = − gn−1
′(ξ)

2
[

gn−1(ξ)±
√
−qn−1/pn−1

] (µ = −pn−1/4, n = 1, 2, 3, · · ·)

gn(ξ) =
√

gn−1(ξ)±
√
−qn−1/pn−1 (pn = pn−1/4, qn = ∓2

√−pn−1·qn−1)
(32)

The corresponding equations of n = 0 are g0(ξ) = sinh(ξ) when p0 = 1 and q0 = 1 and
g0(ξ) = cosh(ξ) when p0 = 1 and q0 = −1.

3.2. The Second Definition of f (ξ)
f (ξ) is defined as Equation (20):

f (ξ) = k0 + k1·gn(ξ)·g′n(ξ)/
[

gn
2(ξ) + r

]
(33)

where k0, k1, r are constants to be determined later. Similar to Section 3.1, substituting
Equation (33) into Equation (8) and use Equation (14), we get Equation (34), which provides
two sets solutions shown as Equation (35):

k0 = 0
k1

2 pn + µ = 0
−k1qn + 2k1 pnr = k1

2qn + 2µr
k1qnr = µr2

or


qn = 0
k0

2 + k1
2 pn ± 2k0k1

√
pn + µ = 0

2k1 pnr = 2k0
2r± 2k0k1r

√
pn + 2µr

k0
2r2 + µr2 = 0

(34)
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k0 = 0
k1 = −1
µ = −pn
r = qn/pn

or


qn = 0
k0 = ±√pn
k1 = −2
µ = −pn
r 6= 0

(35)

Corresponding to the first definition of gn(ξ) in Section 3.1, shown as Equation (18),
two new sets of infinite-series hyperbolic function solutions are obtained, shown as
Equations (36) and (37): f4n(ξ) = −

gn−1(ξ)gn−1
′(ξ)

gn−1
2(ξ)+qn−1/pn−1

(µ = −pn−1, n = 1, 2, 3, · · ·)
gn(ξ) = gn−1

2(ξ) + qn−1/(2·pn−1)
(

pn = 4·pn−1, qn = −qn−1
2/pn−1

) (36)

The corresponding equations of n = 0 are g0(ξ) = sinh(ξ) when p0 = 1 and q0 = 1 and
g0(ξ) = cosh(ξ) when p0 = 1 and q0 = −1.

f5n(ξ) = ±νn− 2ενn[sinh(ξ)+ε·cosh(ξ)]2νn

[sinh(ξ)+ε·cosh(ξ)]2νn+r
(n = 1, 2, 3, · · ·) (37)

where µ = −ν2n2, r 6= 0, ν 6= 0, ε2 = 1.
Corresponding to the second definition of gn(ξ) in Section 3.1, shown as Equation (26),

the infinite series hyperbolic function solutions are same to the f3n(ξ) and f5n(ξ), we do
not get new form of solution.

3.3. The Third Definition of f (ξ)
Obviously, the function a1/ f (ξ) also satisfies Equation (8) when a1 = −µ. We can easily

obtain five new sets of infinite-series hyperbolic function solutions, which are shown below:{
f6n(ξ) = − pn−1[gn−1(ξ)+r]

2gn−1
′(ξ)

(
µ = −pn−1/4, r = ±

√
−qn−1/pn−1

)
gn(ξ) = gn−1

2(ξ) + qn−1/(2·pn−1)
(

pn = 4·pn−1, qn = −qn−1
2/pn−1

) (38)

where n = 1, 2, 3, · · · . The corresponding equations of n = 0 are g0(ξ) = sinh(ξ) when
p0 = 1 and q0 = 1 and g0(ξ) = cosh(ξ) when p0 = 1 and q0 = −1.

f7n(ξ) =
νn[sinh(ξ)+ε·cosh(ξ)]νn+νnr

(±2−4ε)[sinh(ξ)+ε·cosh(ξ)]νn±2r (n = 1, 2, 3, · · ·) (39)

where µ = −
(
ν2·n2)/4, r 6= 0, ν 6= 0, ε2 = 1. f8n(ξ) = − pn−1[gn−1(ξ)+r]

2gn−1
′(ξ)

(
µ = −pn−1/4, r = ±

√
−qn−1/pn−1

)
gn(ξ) =

√
gn−1(ξ)±

√
−qn−1/pn−1 (pn = pn−1/4, qn = ∓2

√−pn−1·qn−1)
(40)

where n = 1, 2, 3, · · · . The corresponding equations of n = 0 are g0(ξ) = sinh(ξ) when
p0 = 1 and q0 = 1 and g0(ξ) = cosh(ξ) when p0 = 1 and q0 = −1. f9n(ξ) = −

pn−1[g n−1
2(ξ)+r]

gn−1(ξ)gn−1
′(ξ)

(µ = −pn−1, r = qn−1/pn−1)

gn(ξ) = gn−1
2(ξ) + qn−1/(2·pn−1)

(
pn = 4·pn−1, qn = −qn−1

2/pn−1
) (41)

where n = 1, 2, 3, · · · . The corresponding equations of n = 0 are g0(ξ) = sinh(ξ) when
p0 = 1 and q0 = 1 and g0(ξ) = cosh(ξ) when p0 = 1 and q0 = −1.

fXn(ξ) =
νn[sinh(ξ)+ε·cosh(ξ)]2νn+νnr

(±1−2ε)[sinh(ξ)+ε·cosh(ξ)]2νn±r
(n = 1, 2, 3, · · ·) (42)

where µ = −ν2n2, r 6= 0, ν 6= 0, ε2 = 1.



Mathematics 2023, 11, 1560 7 of 25

Through the definition of three different functional forms of f (ξ), we obtain ten sets of
infinite-series hyperbolic function solutions satisfying the Riccati equation (Equation (8)),
which provide the base for the solution for the KPI equation shown as Equation (7).

4. The Discussion of u(ξ)

Due to the space limitation of the article, we only discuss n ≤ 4 of the ten sets of
infinite-series hyperbolic function solutions v(ξ) and w(ξ) shown as Equations (11) and (12).
Because the wave described by The KPI equation mainly propagates along the X-direction,
we only consider v(ξ) and w(ξ) vs. (x, t) by assuming y = 0.

4.1. The First Set of Solutions

According to the Equation (15), g01(ξ) = sinh(ξ) when p0 = 1 and q0 = 1 and
g02(ξ) = cosh(ξ) when p0 = 1 and q0 = −1. When n ≥ 1, gn1(ξ) are the same as gn2(ξ).
So, we only discuss the case of g02(ξ) = cosh(ξ) here, and discard the imaginary number
solutions. When n = 1, we get Equations (43) and (44).{

f11(ξ) = − sinh(ξ)
2[cosh(ξ)+r] (µ = −1/4, r = ±1)

g1(ξ) = cosh2(ξ)− 1/2 (p1 = 4, q1 = −1)
(43)

 v11(ξ) =
k2

x
6 −

k2
x ·sinh2(ξ)

2·[cosh(ξ)+r]2

ξ = kx·x + ky·y +
(

k2
y + k4

x

)
/kx·t

and

 w11(ξ) =
k2

x
2 −

k2
x ·sinh2(ξ)

2·[cosh(ξ)+r]2

ξ = kx·x + ky·y +
(

k2
y − k4

x

)
/kx·t

(44)

For the convivence of description, we assume kx = 1, ky = 1 and r = 1. Figure 1 shows
bright solitary wave evolution of v11(ξ) (left figure) and w11(ξ) (right figure) vs. (x, t).
The structure of these two solitary waves is roughly the same, except for the amplitude
and the position of the wave crest. The difference between v11(ξ) and w11(ξ) is caused by
the constant terms and the coefficient of t, which will not affect the general structure of
solitary waves.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 28 
 

 

Through the definition of three different functional forms of 𝑓(𝜉), we obtain ten sets 
of infinite-series hyperbolic function solutions satisfying the Riccati equation (Equation 
(8)), which provide the base for the solution for the KPI equation shown as Equation (7). 

4. The Discussion of 𝒖(𝝃)  
Due to the space limitation of the article, we only discuss 𝑛 ≤ 4 of the ten sets of 

infinite-series hyperbolic function solutions 𝑣(𝜉) and 𝑤(𝜉) shown as Equations (11) and 
(12). Because the wave described by The KPI equation mainly propagates along the X-
direction, we only consider 𝑣(𝜉) and 𝑤(𝜉) vs. (𝑥, 𝑡) by assuming 𝑦 = 0. 

4.1. The First Set of Solutions  
According to the equation (15), 𝑔 (𝜉) = 𝑠𝑖𝑛ℎ(𝜉)  when 𝑝 = 1  and 𝑞 = 1  and  𝑔 (𝜉) = 𝑐𝑜𝑠ℎ(𝜉)  when 𝑝 = 1  and 𝑞 = −1 . When 𝑛 ≥ 1 , 𝑔 (𝜉)  are the same as 𝑔 (𝜉). So, we only discuss the case of  𝑔 (𝜉) = 𝑐𝑜𝑠ℎ(𝜉) here, and discard the imaginary 

number solutions. When 𝑛 = 1, we get Equations (43) and (44). 𝑓 (𝜉) = − ( )[ ( ) ] (𝜇 = − 1 4⁄ , 𝑟 = ±1)𝑔 (𝜉) = 𝑐𝑜𝑠ℎ (𝜉) − 1 2⁄ (𝑝 = 4, 𝑞 = −1)       (43)

𝑣 (𝜉) = − ∙ ( )∙[ ( ) ]                      𝜉 = 𝑘 ∙ 𝑥 + 𝑘 ∙ 𝑦 + 𝑘 + 𝑘 𝑘⁄ ∙ 𝑡 and 
𝑤 (𝜉) = − ∙ ( )∙[ ( ) ]                    𝜉 = 𝑘 ∙ 𝑥 + 𝑘 ∙ 𝑦 + 𝑘 − 𝑘 𝑘⁄ ∙ 𝑡 (44)

For the convivence of description, we assume 𝑘 = 1, 𝑘 = 1 and 𝑟 = 1. Figure 1 
shows bright solitary wave evolution of 𝑣 (𝜉) (left figure) and 𝑤 (𝜉) (right figure) vs. (𝑥, 𝑡). The structure of these two solitary waves is roughly the same, except for the ampli-
tude and the position of the wave crest. The difference between 𝑣 (𝜉) and 𝑤 (𝜉) is 
caused by the constant terms and the coefficient of 𝑡, which will not affect the general 
structure of solitary waves. 

 
Figure 1. Bright solitary wave evolution of 𝑣 (𝜉) (left figure) and 𝑤 (𝜉) (right figure) vs. (𝑥, t) 
when 𝑘 = 1, 𝑘 = 1, 𝑟 = 1 and 𝑦 = 0. 

When 𝑛 = 2, we get Equations (45) and (46). 𝑓 (𝜉) = − 𝑠𝑖𝑛ℎ(𝜉) ∙ 𝑐𝑜𝑠ℎ(𝜉)𝑐𝑜𝑠ℎ (𝜉) − 1 2⁄ + 𝑟                     (𝜇 = −1, 𝑟 = ± 1 2⁄ )   𝑔 (𝜉) = 𝑐𝑜𝑠ℎ (𝜉) − 𝑐𝑜𝑠ℎ (𝜉) + 1 8⁄    (𝑝 = 16, 𝑞 = − 1 4⁄ ) (45)

𝑣 (𝜉) = − ∙ ( )∙ ( )[ ( ) ⁄ ]           𝜉 = 𝑘 ∙ 𝑥 + 𝑘 ∙ 𝑦 + 𝑘 + 4𝑘 𝑘⁄ ∙ 𝑡 and 
𝑤 (𝜉) = 2𝑘 − ∙ ( )∙ ( )[ ( ) ⁄ ]      𝜉 = 𝑘 ∙ 𝑥 + 𝑘 ∙ 𝑦 + 𝑘 − 4𝑘 𝑘⁄ ∙ 𝑡  (46)

Figure 1. Bright solitary wave evolution of v11(ξ) (left figure) and w11(ξ) (right figure) vs. (x, t)
when kx = 1, ky = 1, r = 1 and y = 0.

When n = 2, we get Equations (45) and (46). f12(ξ) = − sinh(ξ)·cosh(ξ)
cosh2(ξ)−1/2+r

(µ = −1, r = ±1/2)

g2(ξ) = cosh4(ξ)− cosh2(ξ) + 1/8 (p2 = 16, q2 = −1/4)
(45)


v12(ξ) =

2k2
x

3 −
2k2

x ·sinh2(ξ)·cosh2(ξ)

[cosh2(ξ)−1/2+r]
2

ξ = kx·x + ky·y +
(

k2
y + 4k4

x

)
/kx·t

and


w12(ξ) = 2k2

x −
2k2

x ·sinh2(ξ)·cosh2(ξ)

[cosh2(ξ)−1/2+r]
2

ξ = kx·x + ky·y +
(

k2
y − 4k4

x

)
/kx·t

(46)

Bright solitary wave evolutions of v12(ξ) (left figure) and w12(ξ) (right figure) are
shown as Figure 2.
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Figure 2. Bright solitary wave evolution of v12(ξ) (left figure) and w12(ξ) (right figure) vs. (x, t)
when kx = 1, ky = 1, r = 1/2 and y = 0.

When n = 3, we get Equations (47)–(49). Bright solitary wave evolutions of v13(ξ) (left
figure) and w13(ξ) (right figure) are shown as Figure 3:

f13(ξ) =
2·sinh(ξ)·cosh3(ξ)−sinh(ξ)·cosh(ξ)

cosh4(ξ)−cosh2(ξ)+1/8+r
g3(ξ) = cosh8(ξ)− 2·cosh6(ξ) + 5

4 ·cosh4(ξ)− 1
4 ·cosh2(ξ) + 1

128(
µ = −4, r = ± 1

8 , p3 = 64, q2 = − 1
256

) (47)


v13(ξ) =

8k2
x

3 − 2k2
x·

4cosh8(ξ)−8cosh6(ξ)+5cosh4(ξ)−cosh2(ξ)

[cosh4(ξ)−cosh2(ξ)+ 1
8+r]

2

ξ = kx·x + ky·y +
(

k2
y + 16k4

x

)
/kx·t

(48)


w13(ξ) = 8k2

x − 2k2
x·

4cosh8(ξ)−8cosh6(ξ)+5cosh4(ξ)−cosh2(ξ)

[cosh4(ξ)−cosh2(ξ)+ 1
8+r]

2

ξ = kx·x + ky·y +
(

k2
y − 16k4

x

)
/kx·t

(49)

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 28 
 

 

Bright solitary wave evolutions of 𝑣 (𝜉) (left figure) and 𝑤 (𝜉) (right figure) are 
shown as Figure 2. 

 
Figure 2. Bright solitary wave evolution of 𝑣 (𝜉) (left figure) and 𝑤 (𝜉) (right figure) 
vs. (𝑥, t) when 𝑘 = 1, 𝑘 = 1, 𝑟 = 1 2⁄  and 𝑦 = 0. 

When 𝑛 = 3, we get Equations (47)–(49). Bright solitary wave evolutions of 𝑣 (𝜉) 
(left figure) and 𝑤 (𝜉) (right figure) are shown as Figure 3:  

⎩⎪⎪⎨
⎪⎪⎧𝑓 (𝜉) = 2 ∙ 𝑠𝑖𝑛ℎ(𝜉) ∙ 𝑐𝑜𝑠ℎ (𝜉) − 𝑠𝑖𝑛ℎ(𝜉) ∙ 𝑐𝑜𝑠ℎ(𝜉)𝑐𝑜𝑠ℎ (𝜉) − 𝑐𝑜𝑠ℎ (𝜉) + 1 8⁄ + 𝑟                                                        𝑔 (𝜉) = 𝑐𝑜𝑠ℎ (𝜉) − 2 ∙ 𝑐𝑜𝑠ℎ (𝜉) + 54 ∙ 𝑐𝑜𝑠ℎ (𝜉) − 14 ∙ 𝑐𝑜𝑠ℎ (𝜉) + 1128𝜇 = −4, 𝑟 = ± 18 , 𝑝 = 64, 𝑞 = − 1256  (47)

⎩⎪⎨
⎪⎧𝑣 (𝜉) = 8𝑘3 − 2𝑘 ∙ 4𝑐𝑜𝑠ℎ (𝜉) − 8𝑐𝑜𝑠ℎ (𝜉) + 5𝑐𝑜𝑠ℎ (𝜉) − 𝑐𝑜𝑠ℎ (𝜉)𝑐𝑜𝑠ℎ (𝜉) − 𝑐𝑜𝑠ℎ (𝜉) + 18 + 𝑟𝜉 = 𝑘 ∙ 𝑥 + 𝑘 ∙ 𝑦 + 𝑘 + 16𝑘 𝑘⁄ ∙ 𝑡                               (48)

⎩⎪⎨
⎪⎧𝑤 (𝜉) = 8𝑘 − 2𝑘 ∙ 4𝑐𝑜𝑠ℎ (𝜉) − 8𝑐𝑜𝑠ℎ (𝜉) + 5𝑐𝑜𝑠ℎ (𝜉) − 𝑐𝑜𝑠ℎ (𝜉)𝑐𝑜𝑠ℎ (𝜉) − 𝑐𝑜𝑠ℎ (𝜉) + 18 + 𝑟𝜉 = 𝑘 ∙ 𝑥 + 𝑘 ∙ 𝑦 + 𝑘 − 16𝑘 𝑘⁄ ∙ 𝑡                                 (49)

 

 
Figure 3. Bright solitary wave evolution of 𝑣 (𝜉) (left figure) and 𝑤 (𝜉) (right figure) 
vs. (𝑥, t) when 𝑘 = 1, 𝑘 = 1, 𝑟 = 1 8⁄  and 𝑦 = 0. 

When 𝑛 = 4, we get Equations (50)–(52). Solitary wave evolutions of 𝑣 (𝜉) (left fig-
ure) and 𝑤 (𝜉) (right figure) are shown in Figure 4. 
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When n = 4, we get Equations (50)–(52). Solitary wave evolutions of v14(ξ) (left figure)
and w14(ξ) (right figure) are shown in Figure 4.

f14(ξ) =
8·sinh(ξ)·cosh7(ξ)−12·sinh(ξ)·cosh5(ξ)+5·sinh(ξ)·cosh3(ξ)−sinh(ξ)·cosh(ξ)/2

2·[cosh8(ξ)−2·cosh6(ξ)+ 5
4 ·cosh4(ξ)− 1

4 ·cosh2(ξ)+ 1
128+r]

g4(ξ) =
[
cosh8(ξ)− 2·cosh6(ξ) + 5

4 ·cosh4(ξ)− 1
4 ·cosh2(ξ) + 1

128

]2
− 1

32768(
µ = −16, r = ± 1

128 , p4 = 256, q4 = − 1
4194304

) (50)
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v14(ξ) =

32·k2
x

3 − k2
x·

32
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2
− 1

512[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64+r
]2

ξ = kx·x + ky·y +
(

k2
y + 64k4

x

)
/kx·t

(51)


w14(ξ) = 32·k2

x − k2
x·

32
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2
− 1

512[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64+r
]2

ξ = kx·x + ky·y +
(

k2
y − 64k4

x

)
/kx·t

(52)

With the increase of n in v1n(ξ) and w1n(ξ), the amplitude of v1n(ξ) and w1n(ξ)
increases, and the bandwidth in space–time decreases.
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4.2. The Second Set of Solution

According to f2n(ξ) given by Equation (25), the second set of solution u2n(ξ) is given
by Equation (53). u2n(ξ) =
(
− 1

6 ±
1
6

)
ν2n2k2

x +
2λk2

xν2n2[sinh(ξ)+ε·cosh(ξ)]νn

[sinh(ξ)+ε·cosh(ξ)]νn+r − 2
{

kxνn[sinh(ξ)+ε·cosh(ξ)]νn

[sinh(ξ)+ε·cosh(ξ)]νn+r

}2(
ξ = kxx + kyy + ct, c =

(
k2

y ∓ ν2n2k4
x

)
/kx, µ = − ν2·n2

4 , λ2 = 1, ε2 = 1
) (53)

Here, we only consider the case of λ = 1, ν = 1, ε = 1 and r = 1. The expressions of
v(ξ) and w(ξ) are shown as Equations (54) and (55): ν2n(ξ) = − 1

3 n2k2
x +

2k2
xn2[sinh(ξ)+cosh(ξ)]n

[sinh(ξ)+cosh(ξ)]n+1 − 2
{

kxn[sinh(ξ)+cosh(ξ)]n

[sinh(ξ)+cosh(ξ)]n+1

}2

ξ = kx·x + ky·y +
(

k2
y + n2k4

x

)
/kx·t

(54)

 w2n(ξ) =
2k2

xn2[sinh(ξ)+cosh(ξ)]n

[sinh(ξ)+cosh(ξ)]n+1 − 2
{

kxn[sinh(ξ)+cosh(ξ)]n

[sinh(ξ)+cosh(ξ)]n+1

}2

ξ = kx·x + ky·y +
(

k2
y − n2k4

x

)
/kx·t

(55)

Figures 5–8 show the structure of bright solitary wave of Equations (54) and (55) when
n = 1 to 4. Under these conditions, with the increase of n, the amplitude of the bright
solitary wave increases and the bandwidth in space–time decreases. The solitary wave
structure is relatively stable under low-n conditions. Under high-n conditions, ν2n(ξ) and
w2n(ξ) increase sharply in a small space–time range and becomes unstable.

4.3. The Third Set of Solutions

Here, we only consider the examples corresponding to g0(ξ) = cosh(ξ). According
to the recurrence relation of Equation (32), we obtain the expressions of f3n(ξ) and gn(ξ)
corresponding to different n. These expressions are brought into Equations (11) and (12) to
find the two solutions v(ξ) and w(ξ). The cases of n ≤ 4 are shown below.
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When n = 1, Equation (56) is the same as Equation (44), in which r = ±1. The
solutions are shown as Figure 1, which will not be repeated here. v31(ξ) =

k2
x

6 −
k2

x ·sinh2(ξ)

2·[cosh(ξ)+r]2

ξ = kx·x + ky·y +
(

k2
y + k4

x

)
/kx·t

and

 w31(ξ) =
k2

x
2 −

k2
x ·sinh2(ξ)

2·[cosh(ξ)+r]2

ξ = kx·x + ky·y +
(

k2
y − k4

x

)
/kx·t

(56)

When n = 2, the solutions are shown as Equation (57), in which r = ±2
√

2. The
corresponding solitary wave evolution is shown as Figure 9 with kx = 1, ky = 1 and y = 0.

v32(ξ) =
k2

x
24 −

k2
x ·cosh(ξ)−7·k2

x

8
[√

cosh(ξ)+1+r
]2

ξ = kx·x + ky·y +
(

k2
y +

k4
x

4

)
/kx·t

and


w32(ξ) =

k2
x

8 −
k2

x ·cosh(ξ)−7·k2
x

8
[√

cosh(ξ)+1+r
]2

ξ = kx·x + ky·y +
(

k2
y −

k4
x

4

)
/kx·t

(57)

When n = 3, the solutions are shown as Equation (58), in which r = ±4 4
√

2. The
corresponding solitary wave evolution is shown as Figure 10 with kx = 1, ky = 1 and y = 0.

v33(ξ) =
k2

x
96 −

k2
x ·
√

cosh(ξ)+1−15
√

2·k2
x

32·
[√√

cosh(ξ)+1+2
√

2+r
]2

ξ = kx·x + ky·y +
(

k2
y +

k4
x

16

)
/kx·t

and


w33(ξ) =

k2
x

32 −
k2

x ·
√

cosh(ξ)+1−15
√

2·k2
x

32·
[√√

cosh(ξ)+1+2
√

2+r
]2

ξ = kx·x + ky·y +
(

k2
y −

k4
x

16

)
/kx·t

(58)

When n = 4, the solutions are shown as Equation (59), in which r = ±4
√

2 4
√

2. The
corresponding solitary wave evolution is shown as Figure 11 with kx = 1, ky = 1 and y = 0.

v34(ξ) =
k2

x
384 −

k2
x ·
√√

cosh(ξ)+1+2
√

2−7 4√2·k2
x

128·
[√√√

cosh(ξ)+1+2
√

2+4 4√2+r

]2

ξ = kx·x + ky·y +
(

k2
y +

k4
x

64

)
/kx·t

and


w34(ξ) =

k2
x

128 −
k2

x ·
√√

cosh(ξ)+1+2
√

2−7 4√2·k2
x

128·
[√√√

cosh(ξ)+1+2
√

2+4 4√2+r

]2

ξ = kx·x + ky·y +
(

k2
y −

k4
x

64

)
/kx·t

(59)
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√
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2 and y = 0.

In this set of solutions, with the increase in n, the amplitude of the bright solitary wave
decreases and the bandwidth in space–time increases. It would be easy to conclude that
the solitary waves have relatively stable structures for different n.

4.4. The Fourth Set of Solutions

When n = 1, the solutions are shown as Equation (60). The corresponding solitary
wave evolution is shown as Figure 12 with kx = 1, ky = 1 and y = 0. v41(ξ) =

2·k2
x

3 −
2·k2

x ·cosh2(ξ)

sinh2(ξ)

ξ = kx·x + ky·y +
(

k2
y + 4k4

x

)
/kx·t

and

 w41(ξ) = 2·k2
x −

2·k2
x ·cosh2(ξ)

sinh2(ξ)

ξ = kx·x + ky·y +
(

k2
y − 4k4

x

)
/kx·t

(60)
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When n = 2, the solutions are shown as Equation (61). The corresponding solitary
wave evolution is shown as Figure 13 with kx = 1, ky = 1 and y = 0. v42(ξ) =
8·k2

x
3 −

32·k2
x ·[cosh2(ξ)− 1

2 ]
2

4[cosh2(ξ)− 1
2 ]

2−1

ξ = kx·x + ky·y +
(

k2
y + 16k4

x

)
/kx·t

and

 w42(ξ) = 8·k2
x −

32·k2
x ·[cosh2(ξ)− 1

2 ]
2

4[cosh2(ξ)− 1
2 ]

2−1

ξ = kx·x + ky·y +
(

k2
y − 16k4

x

)
/kx·t

(61)

When n = 3, the solutions are shown as Equation (62). The corresponding solitary
wave evolution is shown as Figure 14 with kx = 1, ky = 1 and y = 0. v43(ξ) =

32k2
x

3 −
512k2

x ·[cosh4(ξ)−cosh2(ξ)+ 1
8 ]

2

16[cosh4(ξ)−cosh2(ξ)+ 1
8 ]

2− 1
4

ξ = kx·x + ky·y +
(

k2
y + 64k4

x

)
/kx·t

and

 w43(ξ) = 32k2
x −

512k2
x ·[cosh4(ξ)−cosh2(ξ)+ 1

8 ]
2

16[cosh4(ξ)−cosh2(ξ)+ 1
8 ]

2− 1
4

ξ = kx·x + ky·y +
(

k2
y − 64k4

x

)
/kx·t

(62)
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When n = 4, the solutions are shown as Equation (63). The corresponding solitary
wave evolution is shown as Figure 15 with kx = 1, ky = 1 and y = 0.

v44(ξ) =
128·k2

x
3 −

8192·k2
x ·
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2

64
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2
− 1

256

ξ = kx·x + ky·y +
(

k2
y + 256k4

x

)
/kx·t

and


w44(ξ) = 128·k2

x −
8192·k2

x ·
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2

64
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2
− 1

256

ξ = kx·x + ky·y +
(

k2
y − 256k4

x

)
/kx·t

(63)
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Figure 15. Solitary wave evolution of v44(ξ) (left figure) and w44(ξ) (right figure) vs. (x, t) when
kx = 1, ky = 1 and y = 0.

Figures 12–15 show the dark solitary wave evolution for n = 1 to 4, respectively. The
space–time width of the solitary wave decreases with the increase in n. However, under
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certain conditions, this set of infinite solutions has singularities in some specific space–time
positions, which makes the solitary wave structure unstable.

4.5. The Fifth Set of Solutions

According to f5n(ξ) given by Equation (37), the second set of solution u5n(ξ) is given
by Equation (64): u5n(ξ) =
(−2±2)

3 ν2n2k2
x + 8λk2

x
ν2n2[sinh(ξ)+ε·cosh(ξ)]2νn

[sinh(ξ)+ε·cosh(ξ)]2νn+r
− 8k2

x

{
νn[sinh(ξ)+ε·cosh(ξ)]2νn

[sinh(ξ)+ε·cosh(ξ)]2νn+r

}2

(
ξ = kxx + kyy + ct, c =

(
k2

y ∓ 4ν2n2k4
x

)
/kx, λ2 = 1, ε2 = 1

) (64)

Here, we only consider the case of λ = 1, ν = 1, ε = 1 and r = 1. The expressions of
v(ξ) and w(ξ) are shown as Equation (65): ν5n(ξ) = − 4

3 n2k2
x + 8k2

x
n2[sinh(ξ)+cosh(ξ)]2n

[sinh(ξ)+cosh(ξ)]2n+1
− 8k2

x

{
n[sinh(ξ)+cosh(ξ)]2n

[sinh(ξ)+cosh(ξ)]2n+1

}2

ξ = kx·x + ky·y +
(

k2
y + 4n2k4

x

)
/kx·t

and

 w5n(ξ) = 8k2
x

n2[sinh(ξ)+cosh(ξ)]2n

[sinh(ξ)+cosh(ξ)]2n+1
− 8k2

x

{
n[sinh(ξ)+cosh(ξ)]2n

[sinh(ξ)+cosh(ξ)]2n+1

}2

ξ = kx·x + ky·y +
(

k2
y − 4n2k4

x

)
/kx·t

(65)

Respectively, Figures 16–19 show the dark solitary wave evolution for n = 1 to 4, when
kx = 1, ky = 1 and y = 0. While n increases, the amplitude of the solitary wave increases,
and the bandwidth decreases.
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Figure 16. Wave evolution of v51(ξ) (left figure) and w51(ξ) (right figure) vs. (x, t) when kx = 1,
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4.6. The Sixth Set of Solutions

Here, we only give the cases of n ≤ 4 for u6n(ξ) for Equation (3). When n = 1, the
solutions are shown as Equation (66), in which r = ±1. The corresponding solitary wave
evolution is shown as Figure 20 with kx = 1, ky = 1 and y = 0. v61(ξ) =

k2
x

6 −
k2

x ·[cosh(ξ)+r]2

2·sinh2(ξ)

ξ = kx·x + ky·y +
(

k2
y + k4

x

)
/kx·t

and

 w61(ξ) =
k2

x
2 −

k2
x ·[cosh(ξ)+r]2

2·sinh2(ξ)

ξ = kx·x + ky·y +
(

k2
y − k4

x

)
/kx·t

(66)

When n = 2, the solutions are shown as Equation (67), in which r = ± 1
2 . The

corresponding solitary wave evolution is shown as Figure 21 with kx = 1, ky = 1 and y = 0. v62(ξ) =
2k2

x
3 −

8k2
x ·[cosh2(ξ)− 1

2+r]
2

4[cosh2(ξ)− 1
2 ]

2−1

ξ = kx·x + ky·y +
(

k2
y + 4k4

x

)
/kx·t

and

 w62(ξ) = 2k2
x −

8k2
x ·[cosh2(ξ)− 1

2+r]
2

4[cosh2(ξ)− 1
2 ]

2−1

ξ = kx·x + ky·y +
(

k2
y − 4k4

x

)
/kx·t

(67)
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When n = 3, the solutions are shown as Equation (68), in which r = ± 1
8 . The

corresponding solitary wave evolution is shown as Figure 22 with kx = 1, ky = 1 and y = 0. v63(ξ) =
8k2

x
3 −

128·k2
x ·[cosh4(ξ)−cosh2(ξ)+ 1

8+r]
2

4cosh8(ξ)−8cosh6(ξ)+5cosh4(ξ)−cosh2(ξ)

ξ = kx·x + ky·y +
(

k2
y + 16k4

x

)
/kx·t

and

 w63(ξ) = 8k2
x −

128·k2
x ·[cosh4(ξ)−cosh2(ξ)+ 1

8+r]
2

4cosh8(ξ)−8cosh6(ξ)+5cosh4(ξ)−cosh2(ξ)

ξ = kx·x + ky·y +
(

k2
y − 16k4

x

)
/kx·t

(68)
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When n = 4, the solutions are shown as Equation (69), in which r = ± 1
128 . The

corresponding solitary wave evolution is shown as Figure 23 with kx = 1, ky = 1 and y = 0.
v64(ξ) =

32·k2
x

3 −
2048·k2

x ·
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64+r
]2

64·
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2
− 1

256

ξ = kx·x + ky·y +
(

k2
y + 64k4

x

)
/kx·t

and


w64(ξ) = 32·k2

x −
2048·k2

x ·
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64+r
]2

64·
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2
− 1

256

ξ = kx·x + ky·y +
(

k2
y − 64k4

x

)
/kx·t

(69)

Figures 20–22 represent the dark solitary wave solutions of the KPI equation. Due to the
existence of singularities, the solitary wave structure of each solution is completely unstable.

4.7. The Seventh Set of Solutions

According to f7n(ξ) given by Equation (39), the seventh set of solution u7n(ξ) is given
by Equation (70). u7n(ξ) =

(
1
3 ±

1
6

)
ν2n2k2 − 2k2

{
νn[sinh(ξ)+ε·cosh(ξ)]νn+νnr

(2λ+4ε)[sinh(ξ)+ε·cosh(ξ)]νn+2λr

}2(
ξ = kxx + kyy + ct, c =

(
k2

y ∓ ν2n2k4
x

)
/kx, λ2 = 1, ε2 = 1.

) (70)
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Figure 23. Solitary wave evolution of v64(ξ) (left figure) and w64(ξ) (right figure) vs. (x, t) when
kx = 1, ky = 1, r = 1/128 and y = 0.

Here, we only consider the case of λ = 1, ν = 1, ε = 1 and r = 1. The expressions of
v(ξ) and w(ξ) are shown as Equation (71). ν7n(ξ) =

n2k2
x

6 − 2k2
x

{
n[sinh(ξ)+cosh(ξ)]n+n
6·[sinh(ξ)+cosh(ξ)]n+2

}2

ξ = kx·x + ky·y +
(

k2
y + n2k4

x

)
/kx·t

and

 w7n(ξ) =
n2k2

x
2 − 2k2

x

{
n[sinh(ξ)+cosh(ξ)]n+n
6·[sinh(ξ)+cosh(ξ)]n+2

}2

ξ = kx·x + ky·y +
(

k2
y − n2k4

x

)
/kx·t

(71)

The solutions of n = 1 to 4 are shown as Figures 24–27, respectively. We find that the
structures of these solutions have an abrupt change in their amplitude, which maybe implies
a bistable mode, including those with fractional derivatives [45], which is of particular
interest in optical technology, power networks, and so on [46,47]. Different values of n
can make the amplitude, space–time width, kink direction, and singularity position of the
solitary wave different. In this case, all the solitary waves have relatively stable structures.
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Figure 27. Wave evolution of v74(ξ) (left figure) and w74(ξ) (right figure) vs. (x, t) when kx = 1,
ky = 1 and y = 0.

4.8. The Eighth Set of Solutions

The cases of n ≤ 4 for u8n(ξ) for Equation (3) is given below. When n = 1, the
solutions are shown as Equation (72), in which r = ±1. These solutions are to the same as
v61 and w61 given in Section 4.6, which will not be repeated here. v81(ξ) =

k2
x

6 −
k2

x ·[cosh(ξ)+r]2

2·sinh2(ξ)

ξ = kx·x + ky·y +
(

k2
y + k4

x

)
/kx·t

and

 w81(ξ) =
k2

x
2 −

k2
x ·[cosh(ξ)+r]2

2·sinh2(ξ)

ξ = kx·x + ky·y +
(

k2
y − k4

x

)
/kx·t

(72)

When n = 2, the solutions are shown as Equation (73), in which r = ±2
√

2. The
corresponding solitary wave evolution is shown as Figure 28 with kx = 1, ky = 1 and y = 0. v82(ξ) =

k2
x

24 −
k2

x ·
[√

cosh(ξ)+1+r
]2

8·cosh(ξ)−56

ξ = kx·x + ky·y +
(

k2
y +

k4
x

4

)
/kx·t

and

 w82(ξ) =
k2

x
8 −

k2
x ·
[√

cosh(ξ)+1+r
]2

8·cosh(ξ)−56

ξ = kx·x + ky·y +
(

k2
y −

k4
x

4

)
/kx·t

(73)
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When n = 3, the solutions are shown as Equation (74), in which r = ±4 4
√

2. The
corresponding solitary wave evolution is shown as Figure 29 with kx = 1, ky = 1 and y = 0. v83(ξ) =

k2
x

96 −
k2

x ·
[√√

cosh(ξ)+1+2
√

2+r
]2

32·
√

cosh(ξ)+1−480
√

2

ξ = kx·x + ky·y +
(

k2
y +

k4
x

16

)
/kx·t

and

 w83(ξ) =
k2

x
32 −

k2
x ·
[√√

cosh(ξ)+1+2
√

2+r
]2

32·
√

cosh(ξ)+1−480
√

2

ξ = kx·x + ky·y +
(

k2
y −

k4
x

16

)
/kx·t

(74)
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√
2 and y = 0.

When n = 4, the solutions are shown as Equation (75), in which r = ±4
√

2 4
√

2. The
corresponding solitary wave evolution is shown as Figure 30 with kx = 1, ky = 1 and y = 0.

v84(ξ) =
k2

x
384 −

k2
x ·
[√√√

cosh(ξ)+1+2
√

2+4 4√2+r

]2

128·
√√

cosh(ξ)+1+2
√

2−3584 4√2

ξ = kx·x + ky·y +
(

k2
y +

k4
x

64

)
/kx·t

and


w84(ξ) =

k2
x

128 −
k2

x ·
[√√√

cosh(ξ)+1+2
√

2+4 4√2+r

]2

128·
√√

cosh(ξ)+1+2
√

2−3584 4√2

ξ = kx·x + ky·y +
(

k2
y −

k4
x

64

)
/kx·t

(75)
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2 and y = 0.

It can be seen that the shape of the solitary wave and the space–time position of
singular points will change with the value of n. v81(ξ) and w81(ξ) represent dark solitary
waves. With the increase in n, it gradually evolves into a traveling wave with two rows of
singular points. The solitary wave structure becomes unstable under high-n conditions.

4.9. The Ninth Set of Solutions

When n = 1, the solutions are shown as Equation (76). The corresponding solitary
wave evolution is shown as Figure 31 with kx = 1, ky = 1 and y = 0. v91(ξ) =

2k2
x

3 −
2k2

x ·sinh2(ξ)

cosh2(ξ)

ξ = kx·x + ky·y +
(

k2
y + 4k4

x

)
/kx·t

and

 w91(ξ) = 2k2
x −

2k2
x ·sinh2(ξ)

cosh2(ξ)

ξ = kx·x + ky·y +
(

k2
y − 4k4

x

)
/kx·t

(76)
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When n = 2, the solutions are shown as Equation (77). The corresponding solitary
wave evolution is shown as Figure 32 with kx = 1, ky = 1 and y = 0. v92(ξ) =
8k2

x
3 − 2k2

x·
4·[cosh2(ξ)− 1

2 ]
2−1

[cosh2(ξ)− 1
2 ]

2

ξ = kx·x + ky·y +
(

k2
y + 16k4

x

)
/kx·t

and

 w92(ξ) = 8k2
x − 2k2

x·
4·[cosh2(ξ)− 1

2 ]
2−1

[cosh2(ξ)− 1
2 ]

2

ξ = kx·x + ky·y +
(

k2
y − 16k4

x

)
/kx·t

(77)
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When n = 3, the solutions are shown as Equation (78). The corresponding solitary
wave evolution is shown as Figure 33 with kx = 1, ky = 1 and y = 0.

v93(ξ) =
32k2

x
3 − 2k2

x
16
{
[cosh2(ξ)− 1

2 ]
2− 1

8

}2
− 1

4{
[cosh2(ξ)− 1

2 ]
2− 1

8

}2

ξ = kx·x + ky·y +
(

k2
y + 64k4

x

)
/kx·t

and


w93(ξ) = 32k2

x − 2k2
x

16
{
[cosh2(ξ)− 1

2 ]
2− 1

8

}2
− 1

4{
[cosh2(ξ)− 1

2 ]
2− 1

8

}2

ξ = kx·x + ky·y +
(

k2
y − 64k4

x

)
/kx·t

(78)

When n = 4, the solutions are shown as Equation (79). The corresponding solitary
wave evolution is shown as Figure 34 with kx = 1, ky = 1 and y = 0.

v94(ξ) =
128k2

x
3 − 2k2

x·
64
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2
− 1

256[
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4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2

ξ = kx·x + ky·y +
(
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y + 256k4

x

)
/kx·t

and


w94(ξ) = 128k2

x − 2k2
x·

64
[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2
− 1

256[
cosh8(ξ)−2cosh6(ξ)+ 5

4 cosh4(ξ)− 1
4 cosh

2
(ξ)− 7

64

]2

ξ = kx·x + ky·y +
(

k2
y − 256k4

x

)
/kx·t

(79)
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ky = 1 and y = 0.

In this case, the increase in n reduces the space–time width of the solitary wave and
changes the space–time position of the singularity. v91(ξ) and w91(ξ) represent bright
solitary waves. With the increase in n, it gradually evolves into a traveling wave with
many singular points. In this case, stable solitary wave structures only exist under low-n
conditions, while they become unstable under high-n conditions.

4.10. The Tenth Set of Solutions

According to fXn(ξ) given by Equation (42), the second set of solution uXn(ξ) is given
by Equation (80). uXn(ξ) =

(
4
3 ±

2
3

)
ν2n2k2 − 2k2

{
νn[sinh(ξ)+ε·cosh(ξ)]2νn+νnr
(λ−2ε)[sinh(ξ)+ε·cosh(ξ)]2νn±r

}2

(
ξ = kxx + kyy + ct, c =

(
k2

y ∓ 4ν2n2k4
x

)
/kx, µ = − ν2·n2

4 , λ2 = 1, ε2 = 1.
) (80)

Here, we only consider the cases of λ = 1, ν = 1, ε = 1 and r = 1. The expressions of
v(ξ) and w(ξ) are shown as Equation (81). νXn(ξ) =

2
3 n2k2

x − 2k2
{

n[sinh(ξ)+cosh(ξ)]2n+n
−[sinh(ξ)+cosh(ξ)]2n+1

}2

ξ = kx·x + ky·y +
(

k2
y + 4n2k4

x

)
/kx·t

and

 wXn(ξ) = 2n2k2
x − 2k2

{
n[sinh(ξ)+cosh(ξ)]2n+n
−[sinh(ξ)+cosh(ξ)]2n+1

}2

ξ = kx·x + ky·y +
(

k2
y − 4n2k4

x

)
/kx·t

(81)

Figures 35–38 represent the 10th set of solitary wave solutions of the KPI equation.
The increase in n can change the amplitude, space–time width, singularity position, and
propagation direction of the solitary wave. In this case, under low-n conditions, there are
very stable solitary wave structures, while under high-n conditions, the wave structures
become unstable.
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Figure 36. Wave evolution of vX2(ξ) (left figure) and wX2(ξ) (right figure) vs. (x, t) when kx = 1,
ky = 1 and y = 0.
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5. Summary

In nature, most nonlinear phenomena can be expressed as corresponding mathemat-
ical models under specific approximate conditions, and be simplified as NLEEs varying
with time and space. In the study of such processes, the accuracy and stability of the
solution is important. Many researchers have developed various methods to obtain the
analytical solutions of NLEEs. The KPI equation is a well-known NLEE. In recent years, its
applications in nonlinear optics, plasma ion acoustic mechanics, and other fields have made
significant progress. Acquiring precise answers to the KPI equation is a crucial research
tool in these fields.

In this paper, a general Riccati equation is treated as an auxiliary equation. Through
different function transformations of f (ξ) shown as Equation (13), (33) and a1/ f (ξ), ten
sets of infinite-series solitary wave solutions of the KPI equation have been constructed via
the auxiliary equation method, which would be helpful to study the nonlinear problems
described by the KPI equation. Unlike some other methods which can only provide a
limited number of solutions, we can construct infinite-series exact solitary wave solutions
with a relatively simple method.

The images of the first four solutions of each set have been plotted to provide intuitive
structure of waves. Among these infinite-series exact wave solutions of the KPI equation,
we find different structures of waves, including bright solitary waves, dark solitary waves,
kink solitary waves and, traveling waves with singular points. Some of these solutions are
stable, and the others are relatively unstable. A simple and intuitive introduction is given
in Section 4. These results not only include known solutions, but also put forward some
new forms of solutions, such as kink mode and traveling wave with many singular points,
which may imply a new evolution mode. The detailed analysis should be combined with
specific research objects, which will be discussed in future research papers. The results
show that this method is simple and effective for the construction of infinite series solutions
of nonlinear evolution models.
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