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Abstract: In fuzzy artificial intelligent decision support systems, three-way intelligent-decision
making (TWIDM) has played a very important role in ranking objects under the double hierarchy
linguistic variable (DHLV). The 8 × 8 S-boxes are very important for image encryption in secure
communication. Therefore, the aim of the present study is to develop a new approach to artificial
intelligent three-way decision making via DHLV and apply it to S-box image encryption. Artificial
intelligent based three-way decision-making problems with double hierarchy hesitant linguistic terms
are developed. The first and second hierarchy hesitant linguistic term sets make up the double hierar-
chy hesitant linguistic term set, which allows for more flexible expressions of doubt and fuzziness.
First, we define the Einstein operational laws, score function, and Einstein aggregation operators; i.e.,
double hierarchy hesitant linguistic Einstein weighted averaging and weighted geometric operators.
First, the unknown weight vector for decision experts is determined by using aggregation operators
and entropy measures for DHLV. Then, we find the weight vector for our criteria by using the
distance measure. In TWIDM, conditional probability is determined by using the extended TOPSIS
method for evaluating the S-boxes for image encryption. The expected losses are then computed by
aggregating the loss functions with the help of Einstein-weighted averaging aggregation operators.
Finally, we apply the minimum-loss decision rules for the selection of S-box to image encryption. The
proposed decision technique has been compared with existing three-way decisions and the result of
proposed three-way decision making for analyzing and ranking the S-box is very good and reliable
for decision making.

Keywords: artificial intelligence; three-way decision; Intelligent-fuzzy decision; S-box; double
hierarchy linguistic variable

MSC: 94D05; 90C70

1. Introduction

Multi-attribute decision making (MADM) [1,2] is sub branch of The Artificial Intelli-
gent (AI) and is essential in current AI-decision making. Due to the ambiguity of the criteria,
the convolution of the actual environment, and the discrete subjectivity, the decision makers
(DMs) are frequently needed to offer estimation information with reference to a variety of
criteria values.

1.1. A Brief Review on the Development of Fuzzy Sets

The concept of fuzzy sets (FSs) was put out by L.A. Zadeh in 1965 [3]. It has been
studied thoroughly by many experts. Another mathematician, Atanassov [4,5], modified
FSs by adding the non-membership degree then introducing intuitionistic fuzzy sets (IFSs)
in 1983. While fuzzy sets and intuitionistic fuzzy sets have gained popularity, people
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are more used to communicating their estimation information using linguistic term sets
(LTSs) in reality. LTSs are capable of dealing with tough scenarios. Zadeh [6] presented
the framework for word-based computation (CW) and elaborated on several momentous
LTS extension forms [7–9] which have been developed and investigated. Regarding deep
modelling of expert expressions, Gou et al. [10,11] presented the double hierarchy linguistic
term sets (DHLTSs). The majority of DMs find it challenging to provide an accurate
estimate of the attributes of projects during the project investment phase. Furthermore,
for the majority of DMs, using qualitative estimates to project traits is more appropriate
and pleasant. DHLTSs communicate complex linguistic expressions and can better convey
qualitative information than the single linguistic term set does [12]. When DMs estimate
the project’s attribute information, they can provide the estimated value more quickly,
which cuts down on the amount of time it takes to gather estimates. First and second
hierarchy hesitant linguistic terms (DHHLTS), which may represent doubt and murkiness
more freely, make up the system. For the double hierarchy of hesitant linguistic term
(DHHLTE) components, we develop the score function and distance measure regarding
the development of DHHLEs’ core function. Narukawa [13] and Torra [14] introduce the
idea of hesitant fuzzy sets (HFSs) to manage these situations. With HFSs, a collection of
attainable values may be used to control the degree to which an element is a member of
a set. Researchers’ focus on hesitant fuzzy aggregations operators has recently increased.
Recently, Zhu et al. [15] maintains that dual hesitant fuzzy sets (DHFSs) are comprised of
two functions: the membership function and the non-membership function. They have
studied some of DHFSs’ essential features and functions.

1.2. A Brief Review on the Aggregation Operators

Wang et al. [16] advanced aggregation operators according to dual hesitant fuzzy
elements (DHFEs), including dual hesitant fuzzy weighted averaging (DHFWA), dual
hesitant fuzzy ordered weighted geometrics (DHFOWG), dual hesitant fuzzy weighted
geometrics (DHFWG), and then examined some pros and cons. Some aggregation opera-
tions using interval-valued dual hesitant fuzzy information were proposed by Ju et al. [17].
There is a possibility that the aforementioned aggregate operators, which are not the only
options for simulating the intersection and union of IVDHFEs, are all chosen according
to the fundamental algebraic sum and algebraic product. Both the algebraic sum and
algebraic product are suitable replacements for the Einstein operations, which include the
Einstein product and sum. Additionally, it suggests that there is research being done on
aggregation methods that combine a group of IFVs utilizing Einstein operations on HFSs or
IFSs. In order to solve MADM difficulties, Zhao and Wei [18] implemented the geometric
operator and intuitionistic fuzzy Einstein hybrid averaging (IFEHA) operator. Wang and
Liu [19,20] improved various geometric and arithmetic aggregation algorithms by combin-
ing intuitionistic fuzzy data with Einstein operations. Additionally, the Einstein operators
were examined by Wang and Liu [21,22] in interval-valued intuitionistic fuzzy settings. In
order to solve MADM difficulties, Zhang and Yu [23] advanced various geometric Choquet
aggregation operators. Einstein operations were used by Zhao et al. [24] to progress a
reluctant fuzzy correlated aggregation operator. Einstein operational laws have also been
introduced for fuzzy soft Pythagorean numbers [25] (PFSNs).

1.3. A Review on the New Version of Fuzzy Logic Systems

As fuzzy logic studies develop, we can anticipate more developments that will enhance
the functionality and usefulness of fuzzy logic systems. Another variation of fuzzy logic
systems called type-3 fuzzy logic systems [26] has been put forth to deal with even more
complicated ambiguity than type-2 fuzzy logic systems. The membership function, degree
of membership, and even the values of the membership function themselves are unclear in
type-3 fuzzy logic systems. Type-3 fuzzy logic systems can manage more complicated and
unclear data than type-2 fuzzy logic systems due to the additional degree of ambiguity.
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1.4. A Review on the Three-Way Decisions

To address MADM issues involving hesitant interval-valued fuzzy information, Wei
and Zhao [27] advanced several induced hesitant interval-valued fuzzy Einstein aggrega-
tion operations. According to the Einstein operations, Zhao et al. [24] identified numerous
hesitant triangular fuzzy aggregation operators. Conventional MADM decisions only
allow for scheme ranking; they do not enable decision makers to categorize schemes. The
three-way decision [28,29] (TWDs) technique overcomes this restriction since it is consistent
with how individuals normally organize their thoughts. Ever since Yao’s suggestion, TWDs
have only been used in decision theory study [30–32]. By applying the Bayesian procedure,
it is likely that the elements are split into three distinct areas [33,34]. It is intended for DMs
to accept, reject, or postpone making a judgement when an element is separated into a posi-
tive, negative, or boundary region, respectively. TWDs work in conjunction with human
decision-making processes; it has been used in many domains, such as medical care [35,36],
business decisions [37], and employment resumes [38]. There are many dispersed types
of fuzzy sets, such as [39] the triangular fuzzy number [40] and dual hesitant fuzzy set.
Liang et al. [41,42] have used the procedure of TWDs to more accurately deliberate loss
functions (LFs) in the model. DHLTSs provide a new technique for conveying estimate
information in TWDs. When DMs estimate the project’s criteria information, they can
commit the estimated value by DHLTSs, which saves time. DMs must make choices quickly.
DHLTSs allow DMs to make more efficient judgments, proving that they are acceptable
and efficient tools for DMs. Jia et al. [43] developed unique LF calculation techniques
based on a multi-criteria environment. Nonetheless, DMs often estimate loss functions in
practice depending on what they know and have done in the past, and this work uses this
strategy to conduct research. Many academics have examined the calculation of conditional
probability as another important aspect of TWDs. The entropy measure method was used
to compute the criterion weights, and then weighted aggregation was used to compute the
conditional probability. Liang et al. [44], using the maximizing deviation technique, first
computed the criterion weights [45]. Then, they used the grey relational analysis (GRA)
method to compute the conditional probability [46]. Using third-generation prospect theory
to calculate the conditional probability, Wang et al. [47] modified two MADM approaches.
We develop the double hierarchy linguistic decision-theoretic rough set (DHLDTRS) model
in response to Lin et al. [48], and we compute the conditional probability by using the
TOPSIS method. In turn, states A and Ac of the TWDs correlate to the relative positive
ideal solution (RPIS) and the relative negative ideal solution (RNIS), respectively.

1.5. A Review on the TOPSIS Method

The TOPSIS method [49,50] is a popular MCDM method that can handle both quanti-
tative and qualitative data and is reasonably easy to use. It is frequently applied to issues
where there are few options or requirements. Additionally, popular MCDM techniques
that can manage both numeric and qualitative data are the WSM [51] and WPM [52]
methods, respectively. These techniques are frequently employed for issues where the
parameters are distinct from one another. A comparatively novel MCDM technique called
PROMETHEE [53] uses all potential paired scores to create a comprehensive evaluation
of all options. This is helpful for issues where there are few options or requirements. A
decision could be made using both positive and negative criteria. The decision matrix
can have as many criteria as you desire, resulting in an easy and effective technique for
assessing many choices and factors. With easy translation from emotional to quantifiable
criteria, the result is quantifiable, and a number rating of the different options is given.
Distances can be used with this approach. The choice with the lowest distance from the
best option and the largest distance from the worst option is selected by TOPSIS.



Mathematics 2023, 11, 1559 4 of 19

1.6. Motivation of the Study

It can be concluded from the research analysis above that there has been no in-depth
use of the reluctant double hierarchy hesitant linguistic term set or the Einstein aggregation
operators for DHHLTSs.

a. Extending the Einstein operations to aggregate double hierarchy hesitation fuzzy
information.

b. Artificial intelligence based three-way decision-making problem with double hierar-
chy hesitant linguistic terms estimate information.

c. Develop artificial intelligence based three-way decision making for S-box analysis in
image encryption [54,55].

d. There are many methods in Artificial intelligence by which to find unknown experts
and criteria weights to obtain unknown expert weights. When criterion are found, we
must employ entropy methods.

e. Using the popular technique for multi-criteria decision making is the TOPSIS tech-
nique. Based on a collection of parameters, the TOPSIS technique is used to select the
best S-box for image encryption.

1.7. Contribution of the Study

In the above analysis, there are no details about the double hierarchy hesitant linguistic
term and the Einstein aggregation operations for the double hierarchy hesitant linguistic
term; the main objectives of this article are listed below:

a. Establish the basic concepts of DHHLTSs and introduce the Einstein operational rules
of DHHLEs.

b. Develop the score function, Einstein operational laws and Einstein aggregation opera-
tors for the double hierarchy hesitant linguistic term.

c. Discuss the TOPSIS method for calculating conditional probability and a novel
DHHLDTRS model using Einstein aggregation operations and their further expected
losses and score functions.

d. Develop the TWDs for the double hierarchy hesitant linguistic term.
e. Use the process of TWDs for the s-box analysis for image encryption.

2. Preliminaries

The preliminaries section provides basic terminology and concepts for the remaining
paper. This section will cover fundamental concepts of DHLTSs. First, we will define the
DHLTS and their properties.

Double Hierarchy Hesitant Linguistic Term Sets

In this subsection, first we define DHLTSs
Consider a DHHLTS P defined [13,14] by

P =
{

Sk
m〈Ok

n〉
|k = 1, 2, . . . #P

}
(1)

where the first hierarchy hesitant linguistic term (FHHLT) is
{

Sk
m|m = 0,±1,±2, . . . ,±η

}
with S−η and Sη as the lower bounds and the upper bounds of the term set, respectively,

the second hierarchy hesitant linguistic term (SHHLT) is
{

Ok
n|n = 0,±1±, . . . ,±ζ

}
with

S−ζ and Sζ as the lower and upper bound of the term set, respectively, and k = 1, 2, 3,
. . . ,#P is the number of elements in P.
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Consider P =
{

Sk
m〈Ok

n〉
|k = 1, 2, 3, . . . #P1

}
as a continuous DHHLTS. Between the

numerical value and the subscript, (η, ξ), there are two transformed functions. f and f− of
the DHHLT Sk

m〈Ok
n〉

are given as follows;

f : [−η, η,]× [−ζ, ζ]→ [0, 1], f (η, ζ) =
n + (η + m)ζ

2ηζ
= µ (2)

f : [0, 1]→ [−η, η,]× [−ζ, ζ], f−(µ) = S[2ηµ−η]〈Oζ(2ηµ−η−[2ηµ−η])〉 (3)

where [2ηµ− η] denote the integer component of the number 2ηµ− η. According to (2)
and (3) the transformed functions f and f− between the DHHLT Sk

m〈Ok
n〉

and the numerical
value µ can be created as follow;

F(Sm〈On〉) = f (η, ζ) = µ (4)

F−(µ) = f−(µ) = F(Sm〈On〉) (5)

3. The Einstein Operation Law of DHHLTs

Let us consider two DHHLTSs: P1 =
{

Sk
m1〈On1 〉

|k = 1, 2, 3, . . . #P1

}
and

P2 =
{

Sk
m2〈On1 〉

|k = 1, 2, 3, . . . #P2

}
. The Einstein operation for these two DHHLTS can

be defined as follows:

(i) P1 ⊕E P2 = ∪
( a1, a2) ∈ m
( b1, b2) ∈ n

[
F(S a1 〈O b1

〉)+F(S a2 〈O b2
〉)

1+F(S a1 〈O b1
〉)F(S a2 〈O b2

〉)

]

(ii) P1 ⊗E P2 = ∪
( a1, a2) ∈ m
( b1, b2) ∈ n

[
F(S a1 〈O b1

〉)F(S a2 〈O b2
〉)

1+
(

1−F(S a1 〈O b1
〉)
)
(1−F(S a2 〈O b2

〉))

]

(iii) E�ג P1 = ∪
a1 ∈ m,
b1 ∈ n

[ (
1+F(S a1 〈O b1

〉)
ג(
−
(

1−F(S a1 〈O b1
〉)
ג(

(
1+F

(
S a1

〈
O b1

ג((〈
+
(

1−F
(

S a1

〈
O b1

ג((〈
]

(iv) P1
ג = ∪

a1 ∈ m,
b1 ∈ n

[
2
(

F(S a1 〈O b1
〉)
ג(

(
2−F

(
S a1

〈
O b1

ג((〈
+
(

F
(

S a1

〈
O b1

ג((〈
]

The score function for DHHLE can be defined as DHHLE
P =

{
Sk

m〈Ok
n〉
|k = 1, 2, 3, . . . #P

}
. Then, the score function is denoted by

S(P) =
1
2

(
1

#Pη

#p

∑
r=1

(mr) +
1

#Pζ

#p

∑
r=1

(nr)

)
(6)

where the score function of S(p) ε [−1, 1].
If the score function values are same for two DHHLE, then the defined accuracy

function can be defined as P1 =
{

Sk
m1〈On1 〉

|k = 1, 2, . . . #P1

}
and

P2 =
{

Sk
n1〈On2 〉

|k = 1, 2, 3, . . . #P2

}
for the two DHHLTSs. Then,

(1) If S(P1) < S(P2), then P1 < P2
(2) If S(P1) > S(P2), then P1 > P2
(3) If S(P1) = S(P2), then P1 ∼ P2
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Consider that Pr|r = 1, 2, 3, . . . , t is a collection of DHHLEs and
W = (w1, w2, w3, . . . , wt) is the associated weight vector. Then, the DHHLEWA can be
defines as follows:

DHHLEWA(P1, P2, . . . , Pt) = ⊕t
r=1wrPr = ∪

ar ∈ m
br ∈ n

[
1−∏t

r=1

(
1− F

(
Sar

〈
Obr

〉))wr
]

(7)

Consider that Pr|r = 1, 2, 3, . . . , t is a collection of DHHLEs and
W = (w1, w2, w3, . . . , wt) is an aggregation associated weight vector. The DHHLEWG
can be defined as follows:

DHHLEWG(P1, P2, P3, . . . , Pt) = ⊗t
r=1Pwr

r = ∪
ar ∈ m

, br ∈ n

[
∏t

r=1

(
F
(
Sar

〈
Obr

〉))wr
]

(8)

Let us consider Pr|r = 1, 2, 3, . . . , t as a collection of DHHLEs, Pr(L) as the largest
of them, and W = (w1, w2, w3, . . . , wt) as the aggregation associated weight vector with
wj ∈ [0, 1] and ∑t

j=1 wj = 1. Then, the DHHLEOWA can be defined as follows:

DHHLEOWA(P1, P2, P3, . . . , Pt)= ⊕t
r=1wrPr(L) = ∪

ar(L) ∈ m
, br(L) ∈ n

[
1−∏t

r=1

(
1− F

(
Sar(L)〈Obr(L)

〉
))wr]

(9)

Consider that Pr|r = 1, 2, 3, . . . , t is a collection of DHHLEs, Pr(L) is the largest of them,
W = (w1, w2, w3, . . . , wt) is the weight vector for the aggregate associated with wj ∈ [0, 1]
and ∑n

j=1 wj = 1. Then, the DHHLEOWG can be defined as follows:

DHHLEWOG(P1, P2, P3, . . . , Pt) = ⊗t
r=1Pwr

r(L) = ∪
ar(L) ∈ m

, br(L) ∈ n

[
∏t

r=1

(
F
(

Sar(L)〈Obr(L)
〉
))wr]

(10)

Consider that Pr|r = 1, 2, 3, . . . , t is a collection of DHHLEs, Pr(L) is the largest of
them, W = (w1, w2, w3, . . . , wt) is the weight vector for the aggregate associated with wj ∈
[0, 1], and t is the balancing coefficient. The double hierarchy hesitant hybrid aggregation
operators can be defined as follows:

The DHHLHA operator can be defined as follows:

DHHLHA(P1, P2, P3, . . . , Pt) = ⊕t
r=1wrPr(L) = ∪

ar(L) ∈ m
, br(L) ∈ n

[
1−∏t

r=1

(
1− F∗

(
Sar(L)〈Obr(L)

〉
))wr]

(11)

The DHHLHG can be defined as follows:

DHHLHG(P1, P2, P3, . . . , Pt) = ⊗t
r=1Pwr

r(L) = ∪
ar(L) ∈ m

, br(L) ∈ n

[
∏t

r=1

(
F∗
(

Sar(L)〈Obr(L)
〉
))wr]

(12)

Theorem 1. The DHHLEWA operations according to the above operational laws;
then the DHHLEWA can be defined as follows:

DHHLEWA(P1, P2, P3, . . . , Pt) = ⊕t
r=1 wrPr = ∪

ar ∈ m
br ∈ n

[
∏t

r=1
(
1 + F

(
Sar

〈
Obr

〉))wr −∏t
r=1
(
1− F

(
Sar

〈
Obr

〉))wr

∏t
r=1
(
1 + F

(
Sar

〈
Obr

〉))wr + ∏t
r=1
(
1− F

(
Sar

〈
Obr

〉))wr

]
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Proof. Using mathematical induction.
Consider t = 1

DHHLEWA(P1) = wrPr = ∪
ar ∈ m
br ∈ n

[(
1 + F

(
Sar

〈
Obr

〉))wr −
(
1− F

(
Sar

〈
Obr

〉))wr(
1 + F

(
Sar

〈
Obr

〉))wr +
(
1− F

(
Sar

〈
Obr

〉))wr

]

For t = k ; k ≥ 1

DHHLEWA(P1, P2, P3, . . . , Pk) = ⊕k
r=1 wrPr = ∪

ar ∈ m
br ∈ n

[
∏k

r=1
(
1 + F

(
Sar

〈
Obr

〉))wr −∏k
r=1
(
1− F

(
Sar

〈
Obr

〉))wr

∏k
r=1
(
1 + F

(
Sar

〈
Obr

〉))wr + ∏k
r=1
(
1− F

(
Sar

〈
Obr

〉))wr

]

For t = k + 1

DHHLEWA(P1, P2, P3, . . . , Pk+1) = ⊕k+1
r=1 wrPr

= ∪
ar ∈ m
br ∈ n

[
∏k

r=1(1+F(Sar 〈Obr 〉))
wr−∏k

r=1(1−F(Sar 〈Obr 〉))
wr

∏k
r=1(1+F(Sar 〈Obr 〉))

wr+∏k
r=1(1−F(Sar 〈Obr 〉))

wr

]

⊕ ∪
ar ∈ m
br ∈ n

[
(1+F(Sar 〈Obr 〉))

wr−(1−F(Sar 〈Obr 〉))
wr

(1+F(Sar 〈Obr 〉))
wr+(1−F(Sar 〈Obr 〉))

wr

]

Consider

x1 = ∏k
r=1

(
1 + F

(
Sar

〈
Obr

〉))wr ,y1= ∏k
r=1

(
1− F

(
Sar

〈
Obr

〉))wr

x2 =
(
1 + F

(
Sar

〈
Obr

〉))wr ,y2 =
(
1− F

(
Sar

〈
Obr

〉))wr

= ⊕k+1
r=1 wrPr = ∪

ar ∈ m
br ∈ n

[
x1 − y1

x1 + y1

]
⊕ ∪

ar ∈ m
br ∈ n

[
x2 − y2

x2 + y2

]

=
⋃

ar∈m
br∈n

[
x1x2−y1y2
x1x2+y1y2

]
=

⋃
ar∈m
br∈n

[ (
∏k

r=1(1+F(Sar 〈Obr 〉))
wr
)(
(1+F(Sar 〈Obr 〉))

wr
)
−
(

∏k
r=1(1−F(Sar 〈Obr 〉))

wr
)(
(1−F(Sar 〈Obr 〉))

wr
)

((
∏k

r=1(1+F(Sar 〈Obr 〉))
wr
)(
(1+F(Sar 〈Obr 〉))

wr
))

+
((

∏k
r=1(1−F(Sar 〈Obr 〉))

wr
)(
(1−F(Sar 〈Obr 〉))

wr
))
]

= ∪
ar ∈ m
br ∈ n

[
∏k+1

r=1
(
1 + F

(
Sar

〈
Obr

〉))wr −∏k+1
r=1
(
1− F

(
Sar

〈
O br

〉))wr

∏k+1
r=1
(
1 + F

(
Sar

〈
O br

〉))wr + ∏k+1
r=1
(
1− F

(
Sar

〈
O br

〉))wr

]

This is the complete proof. �

Specifically, if w =
(

1
t , 1

t , 1
t , . . . , 1

t

)
then the DHHEWA becomes

DHHEWA(P1, P2, P3, . . . , Pt) =
1
t
⊕t

r=1 Pr = ∪
ar ∈ m
br ∈ n

 ∏t
r=1
(
1 + F

(
Sar

〈
Obr

〉)) 1
t −∏t

r=1
(
1− F

(
Sar

〈
O br

〉)) 1
t

∏t
r=1
(
1 + F

(
Sar

〈
O br

〉)) 1
t + ∏t

r=1
(
1− F

(
Sar

〈
O br

〉)) 1
t



Theorem 2 . Consider Pr|r = 1, 2, 3, . . . , t is a set of DHHLEs with the following properties:
Idempotency: if Pr = P, Then DHHEWA (P1, P2, P3, . . . , Pt) = P.

Proof. We are to prove that Pr = P, so let P =
{

Sk
m〈Ok

n〉
|k = 1, 2, 3, . . . , #P

}
, if k = 1
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Then DHHLEWA(P1, P2, P3, . . . , Pt)

= ∪
ar ∈ m
br ∈ n

[
∏t

r=1
(
1 + F

(
Sar

〈
Obr

〉))wr −∏t
r=1
(
1− F

(
Sar

〈
O br

〉))wr

∏t
r=1
(
1 + F

(
Sar

〈
O br

〉))wr + ∏t
r=1
(
1− F

(
Sar

〈
O br

〉))wr

]

= ∪
a ∈ m
a ∈ n

[
∏t

r=1(1 + F(Sa〈Ob〉))wr −∏t
r=1(1− F(Sa〈Ob〉))wr

∏t
r=1(1 + F(Sa〈Ob〉))wr + ∏t

r=1(1− F(Sa〈Ob〉))wr

]

= ∪
a ∈ m
a ∈ n

[
(1 + F(Sa〈Ob〉))− (1− F(Sa〈Ob〉))
(1 + F(Sa〈Ob〉)) + (1− F(Sa〈Ob〉))

]

= F(Sm〈On〉)

Boundedness: Consider if P =
{

Sk
m〈Ok

n〉
|k = 1, 2, 3, . . . , #P

}
is DHHLE, then

F(Sm〈On〉)min ≤ DHHEWA (P1, P2, P3, . . . , Pt) ≤ F(Sm〈On〉)max. �

Proof. Consider f(x) = 1−x
1+x , x ∈ (0, 1 ]; if f′(x) = −2

(1+x)2 < 0, then f(x) is a decreasing

function. Since F(Sm〈On〉)min ≤ F(Sm〈On〉)j ≤ F(Sm〈On〉)max, then f (x)max ≤ f (x)j ≤
f (x)min, then

1− F(Sm〈On〉)max
1 + F(Sm〈On〉)max

≤
1− F(Sm〈On〉)j

1 + F(Sm〈On〉)j
≤ 1− F(Sm〈On〉)min

1 + F(Sm〈On〉)min

Consider that W = (w1, w2, w3, . . . , wt) is the weight vector of P1, P2, P3, . . . , Pt, so
we have

(
1− F(Sm〈On〉)max
1 + F(Sm〈On〉)max

)wj

≤
(

1− F(Sm〈On〉)j

1 + F(Sm〈On〉)j

)wj

≤
(

1− F(Sm〈On〉)min
1 + F(Sm〈On〉)min

)wj

Thus

t

∏
j=1

(
1− F(Sm〈On〉)max
1 + F(Sm〈On〉)max

)wj

≤
t

∏
j=1

(
1− F(Sm〈On〉)j

1 + F(Sm〈On〉)j

)wj

≤
t

∏
j=1

(
1− F(Sm〈On〉)min
1 + F(Sm〈On〉)min

)wj

↔ 1− F(Sm〈On〉)max
1 + F(Sm〈On〉)max

≤
t

∏
j=1

(
1− F(Sm〈On〉)j

1 + F(Sm〈On〉)j

)wj

≤ 1− F(Sm〈On〉)min
1 + F(Sm〈On〉)min

↔ 2
1 + F(Sm〈On〉)max

≤ 1 +
t

∏
j=1

(
1− F(Sm〈On〉)j

1 + F(Sm〈On〉)j

)wj

≤ 2
1 + F(Sm〈On〉)min

↔ 1 + F(Sm〈On〉)min
2

≤ 1

1 + ∏t
j=1

(
1−F(Sm〈On〉)j
1+F(Sm〈On〉)j

)wj
≤ 1 + F(Sm〈On〉)max

2

↔ 1 + F(Sm〈On〉)min ≤
2

1 + ∏t
j=1

(
1−F(Sm〈On〉)j
1+F(Sm〈On〉)j

)wj
≤ 1 + F(Sm〈On〉)max

↔ F(Sm〈On〉)min ≤
2

1 + ∏t
j=1

(
1−F(Sm〈On〉)j
1+F(Sm〈On〉)j

)wj
− 1 ≤ F(Sm〈On〉)max
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= F(Sm〈On〉)min ≤
∏t

j=1

(
1 + F(Sm〈On〉)j

)wj −∏t
j=1

(
1− F(Sm〈On〉)j

)wj

∏t
j=1

(
1 + F(Sm〈On〉)j

)wj
+ ∏t

j=1

(
1− F(Sm〈On〉)j

)wj
≤ F(Sm〈On〉)max

= F(Sm〈On〉)min ≤
1

#P

#p

∑
j=1

∏t
j=1

(
1 + F(Sm〈On〉)j

)wj −∏t
j=1

(
1− F(Sm〈On〉)j

)wj

∏t
j=1

(
1 + F(Sm〈On〉)j

)wj
+ ∏t

j=1

(
1− F(Sm〈On〉)j

)wj
≤ F(Sm〈On〉)max

This is the complete proof. �

Let us consider that P1 , P2 and P3 are three DHHLTSs. Then:

(i) P1 ⊕E P2 = P2 ⊕E P1 ;
(ii) P1 ⊗E P2 = P2 ⊗E P1 ;
(iii) ג ( P1 ⊕E P2) = P1ג ⊕E P2ג ; ג > 0
(iv) ( P1 ⊗E P2)

ג = P1
ג ⊗E P2

ג ; ג > 0

4. TOPSIS Method for Calculating Conditional Probability

The TWDs consist of two components: LFs and conditional probability. First, we
defined the DHHLT information system for conditional probability computation. Consider
that C = {c1, c2, . . . , ct} is a conditional criteria set of the DHHLT information system.
Q = ∪c∈CQc, where Qc denotes a domain of criteria, and V = A1, A2, . . . , Ae is a set of fea-
sible elements. Then, ψ : V×C→ Q represents a function in such a way that ψ(vr, c) ∈ Qc
is with each, c ∈ C, Ar ∈ V. The estimation of the elements vr with cj is expressed by

ψ
(

Ar, cj
)
= Prj = P =

{
Sk

m〈Ok
n〉
|k = 1, 2, . . . #P

}
(r = 1, 2, 3, . . . , t; j = 1, 2, 3, . . . , e). Assum-

ing that the DM provided a complimentary decision matrix for each criteria, G = (g)t×t

G =


g11 g12 · · · g1t
g21 g22 · · · g2t
g31 g32 · · · g3t

...
...

...
...

gt1 gt2 · · · gtt

 (13)

where grj is the degree to which the criteria Cr is preferred over the criteria Cj, represented
as a DHHLT and gc

rj =
(
1− grj

)
. The weight vector wj can be computed by using the

following formula:

E
(
qj
)
=

1
#p

#p

∑
j=1

[{
√

2 cos π

(
grj − gc

rj

4

)
− 1

}
× 1√

2 –1

]
(14)

Now we use Equation (14) to calculate the entropy of decision matrices:

E
(
hy
)
=

1
l

l

∑
j=1

E
(
qj
)

, y = 1, 2, 3 . . . , t

Now we use this equation to calculate the weight of each decision maker:

Wj =
E
(
hy
)

∑k
y=1 E

(
hy
)
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Then, the weight vector:

Wj = (w1, w2, . . . , wt) with Wj ≥ 0 ,
t

∑
j=1

Wj = 1

Next, we find the DHHLT information system’s RPIS (X+) and RNIS (X−),

X+ =
(

x+1, x
+
2 , x+3 , . . . , x+n,

)
, and X− =

(
x−1, x

−
2 , x−3 , . . . , x−n,

)
(15)

The RPIS
(

X+ =
(

F
(
S ar

〈
O br

〉))+) and the grey relational coefficient (GRC)
between Ar,

d+r =
n

∑
j=1

wj

 1
#p

#p

∑
r=1

∣∣∣F(S ar

〈
O br

〉)
−
(

F
(
S ar

〈
O br

〉))+∣∣∣
 (16)

The RNIS
(

X− =
(

F
(
S ar

〈
O br

〉))−) and the grey relational coefficient (GRC)
between Ar,

d−r =
n

∑
j=1

wj

 1
#p

#p

∑
r=1

∣∣∣F(Sar

〈
Obr

〉)
−
(

F
(
Sar

〈
Obr

〉))−∣∣∣
 (17)

The relative relational degree (RRG) Dr can be calculated as:

Dr =
d−r

d+r + d−r
(18)

Here, we considered RRD as equal to the conditional probability.

Pr(A|Ar) = Dr (19)

where, 0 ≤ Pr(A|Ar) ≤ 1,Dr represents the RRD of project Ar.

5. A Novel DHHLDTRS Model Base on Einstein Aggregation Operators

The first hierarchy hesitant linguistic term set and the second hierarchy hesitant
linguistic term set, which may communicate doubt and fuzziness more flexibly, are the
foundation of DHHLSs. DHHLEs are a more acceptable form of expression than singular
actual or singular linguistic terms. We define the loss function in TWDs with DHHLEs
in this section. A new DTRS model is then suggested using DHHLT information. There
are three actions and two states that make up the innovative DTRS model. ϕ = {Z, Zc},
ϕ is the collection of states that represent an element in Z, not in Z with three actions.
β = {zP.zB, zN} are employed to classify element Ar. zP denotes Ar ∈ POS(A), zB denotes
Ar ∈ BND(A), and zN denotes Ar ∈ NEG(A), where POS(A), BND(A), and NEG(A)
represents the positive, the boundary, and the negative, region of Z, respectively. The
states explain an element’s entire position, while the actions convey our opinions. The loss
function matrix is then built in the DHHLT environment. Table 1 shows the outcome.

Table 1. The DHHLT loss functions of the actions in different states.

Z(P) Zc(N)

zP pλPP = F(Sk
mPP〈Ok

nPP〉) pλPN = F(Sk
mPN〈Ok

nPN〉)

zB pλBP = F(Sk
mBP〈Ok

nBP〉) pλBN = F(Sk
mBN〈Ok

nBN〉)

zN pλNP = F(Sk
mNP〈Ok

nNP〉) pλNN = F(Sk
mNN〈Ok

nNN〉)
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Where k = 1, 2, 3, . . . , #P denotes the number of elements in P; pλPP, pλBP, and pλNP
denotes loss degrees with DHHLEs created by performing identical actions as zP, zB and
zN to x given state Z, respectively, and pλPN , pλBN and pλNN loss degrees with DHHLEs
are created by doing the identical actions as x given state Zc. As in case pλ = φ, a suitable
connection may be defined as follows based on the semantics of DTRS and the properties
of DHHLEs:

pλPP ≤ pλBP < pλNP, (20)

pλNN ≤ pλBN < pλPN, (21)

While these two loss degrees are bigger than the loss degrees of correct judgement,
the loss degrees of false judgement are more than the loss degrees of postponing choice.
The conditional probability is a key component of the references’ [33,34] Bayesian decision
technique. Pr(Z|Ar), represents the conditional probability of element Ar belonging to
Z, and Pr(Zc|Ar) represents the conditional probability of element Ar, belonging to Zc.
They are all real numbers that satisfy Pr(Z|Ar) + Pr(Zc|Ar) = 1. Then, given element Ar,
the corresponding actions of expected losses R(zH|Ar)(H = P, B, N) can be calculated as
follows:

R(zP|Ar) = Pr(Z|Ar)�E pλPP ⊕E Pr(Zc|Ar)�E pλPN (22)

(zB|Ar) = Pr(Z|Ar)�E pλBP ⊕E Pr(Zc|Ar)�E pλBN (23)

R(zN |Ar) = Pr(Z|Ar)�E pλNP ⊕E Pr(Zc|Ar)�E pλNN (24)

The DHHLEWA operator may compute the expected losses.
The minimum loss decision rules can be inferred from the results in references [30–32]

as follows.

(P) If S(R(zP|Ar)) ≤ S((zB|Ar)), and S(R(zP|Ar)) ≤ S(R(zN |Ar)), decide Ar ∈ POS(A);
(B) If S((zB|Ar)) ≤ S(R(zP|Ar)), and S((zB|Ar)) ≤ S(R(zN |Ar)), decide Ar ∈ NEG(A);
and
(N) If S((zN |Ar)) ≤ S(R(zP|Ar)), and S((zN |Ar)) ≤ S(R(zB|Ar)), decide Ar ∈ BND(A).

According to the positive rule (P), we should accept, that is, Ar ∈ POS(A). According
to the boundary rule (B), we should postpone the choice, that is, Ar ∈ BND(A). According
to the negative rule (N), we should reject, that is, Ar ∈ NEG(A).

The TWDs Procedure

We suggest a unique approach of TWDs in the context of DHHLT in light of the
aforementioned findings. According to Figure 1, the three-way decision method consists of
six phases.

Phase 1: We define the components of hierarchy hesitant linguistic term information
systems, based on the practical situation. DHHLTIS = (V, C, Q, ψ), element and criteria
included. Then, we obtained the DHHLTIS outcomes and the DM’s loss function.

Phase 2: By using the entropy measure method, we determine the criterion weights.
As determined by using Formula (14), the weight of criteria represents the significance of
these criteria in the estimate system.

Phase 3: Determine the RPIS X+ and the RNIS X+ by using the score function as
determined by using Formula (6).

Phase 4: Determine the conditional probability by using the TOPSIS method, indicated
by Dr and as determined by using Formulas (16)–(19).

Phase 5: Each action’s expected loss can be aggregated using Formulas (22)–(24) in
accordance with Einstein’s aggregation operators. It is therefore possible to determine the
score function of expected losses.

Phase 6: Finally, according to the decision rules, deduce the decision outcomes.
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Figure 1. The suggested procedure. The double hierarchy hesitant linguistic term information system
(DHHLTIS); the double hierarchy hesitant Einstein weights averaging (DHHLEWA); the technique
for order of preference by similarity to ideal solution (TOPSIS) method.

6. Problem Statement

The block ciphers are an essential role in the field of cryptography. The action of
a cipher calculates the toughness of the algorithm, which is answerable for executing
agitation in the encryption process. An S-box, the only nonlinear element made up of
several block ciphers, is used to achieve this performance. In the field of encryption, the
improvement of S-boxes’ algebraic and statistical properties has attracted a lot of attention.
Let us consider S-boxes for security purposes, and to select the best S-box among RP, AES,
APA, G, LJ, and S8 as displayed in Table 2. We consider some of their characteristics
as criteria: C1 = Correlation analysis is a popular method for assessing the statistical
characteristics of an S-box. The correlation analysis determines the relationship between
the input and output. To verify that the S-box has excellent statistical properties, we aim to
reduce the correlation between the input and output. C2 = Entropy analysis is an essential
method in encryption for determining the strength of an S-box. Entropy is a measure
of the variability or volatility of an S-output box’s values given its input values. The
greater the entropy, the more difficult it is for an attacker to anticipate the S-box output
values. C3 = Contrast analysis is a technique for assessing the integrity of an S-box in
terms of resilience to differential cryptanalysis. Differential cryptanalysis is a frequent
form of assault on cryptography systems, and a powerful S-box is one that is immune
to such attacks. C4 = Homogeneity analysis is a technique for assessing the probabilistic
characteristics of S-boxes in encryption methods. It quantifies how well the S-box transfers
input values to output values. A decent S-box should be homogeneous, which means
that its output numbers should be equally dispersed across its input range. C5 = Energy
analysis: A side-channel technique called energy analysis can be used to crack encryption
protocols. This kind of assault includes monitoring a device’s radio emissions or battery
usage as it performs cryptography processes. An intruder could learn the encryption secret
or other confidential data by examining these readings. The formulas for calculating the
criteria of S-boxes are displayed in Table 3.
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Table 2. The popular S-boxes.

The Popular S-The Popular S-Boxes

A1 Advanced encryption standard AES

A2 Affine-power-affine APA

A3 Gray G

A4 Lui J LJ

A5 Residue Prime RP

A6 S8 S8

Table 3. The characteristics of the popular S-boxes.

Criteria The Characteristics of the Popular S-Boxes Calculated by

C1 Correlation analysis Z =
∑α ∑β(Bαβ−B)(Aαβ−A)√

∑α ∑β(Bαβ−B)
2

∑α ∑β(Aαβ−A)
2

C2 Entropy analysis E = −
k
∑

r=1
g(xr) logb g(xr)

C3 Contrast analysis C = ∑
r,j
|r− j|2g(r, j)

C4 Homogeneity analysis H = ∑
r,j

g(r,j)
1+|i−j|

C5 Energy analysis En = ∑
r,j

g(i, j)2

Phase 1: We define the essential components of a linguistic term hierarchy information
system, DHHLTIS = (V, C, Q, ψ), and after that, we may get , V = {A1, A2, A3, A4, A5, A6}
and C = {c1, c2, c3, c4, c5}.

Phase 2: We determine the weight of criteria by entropy measure method. W =
(0.203, 0.190, 0.223, 0.174, 0.210). They are displayed in Table 4.

Table 4. The DHHLT information system that corresponds to the S-boxes in image encryption.

C1 C2 C3 C4 C5

A1

{
F(S3〈O1〉),
F(S2〈O0〉)

}
{F(S1〈O0〉)}

{
F(S2〈O−1〉),
F(S1〈O−2〉)

}
{F(S2〈O3〉)}

{
F(S1〈O1〉),
F(S2〈O−2〉)

}
A2 {F(S1〈O3〉)}

{
F(S2〈O0〉),
F(S1〈O3〉)

}
{F(S3〈O−2〉)}

{
F(S2〈O−1〉),
F(S1〈O2〉)

}
{F(S0〈O1〉)}

A3

{
F(S1〈O−2〉),
F(S2〈O−1〉)

}
{F(S3〈O0〉)}

{
F(S3〈O−1〉),
F(S1〈O−2〉)

}
{F(S3〈O2〉)}

{
F(S3〈O0〉),
F(S1〈O−3〉)

}
A4 {F(S0〈O−2〉)}

{
F(S2〈O−2〉),
F(S3〈O0〉)

}
{F(S−1〈O0〉)}

{
F(S3〈O−2〉),
F(S2〈O−1〉)

}
{F(S2〈O−3〉)}

A5

{
F(S3〈O0〉),
F(S2〈O−1〉)

}
{F(S3〈O1〉)}

{
F(S3〈O0〉),
F(S2〈O−3〉)

}
{F(S2〈O−1〉)}

{
F(S3〈O2〉),
F(S2〈O0〉)

}
A6 {F(S3〈O2〉)}

{
F(S1〈O0〉),
F(S2〈O−1〉)

}
{F(S1〈O2〉)}

{
F(S2〈O−3〉),
F(S3〈O2〉)

}
{F(S3〈O0〉)}

Phase 3: The criteria C1–C5 are benefit criteria. Through the score function we can
find the RPIS (X+) and RNIS (X−) as follows:

X+ =

({
F(S3〈O1〉),
F(S2〈O0〉)

}
,
{

F(S2〈O0〉),
F(S1〈O3〉)

}
, {F(S1〈O2〉)}, {F(S3〈O2〉)},

{
F(〈S3O2〉),
F(S2〈O0〉)

})
,

and
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X− = ({F(S0〈O−2〉)}, {F(S1〈O0〉)}, {F(S−1〈O0〉)}, {F(S2〈O−1〉)}, {F(S2〈O−3〉)}).
They are displayed in Table 5.

Table 5. Information on the loss function with DHHLT.

Z(P) Zc(N)

zP

{
F(S−3〈O−2〉),
F(S−1〈O3〉)

} {
F(S3〈O2〉),
F(S1〈O−3〉)

}
zB

{
F(S2〈O0〉),
F(S1〈O2〉)

} {
F(S−2〈O0〉),
F(S−1〈O−2〉)

}
zN

{
F(S3〈O1〉),
F(S2〈O−1〉)

} {
F(S−3〈O−1〉),
F(S−2〈O1〉)

}

Phase 4: Using the TOPSIS method, we calculate the conditional probability. The
outcomes are displayed in Table 6.

Table 6. The GRC, RRD, and conditional probability.

A1 A2 A3 A4 A5 A6

d+
r 0.0955 0.1765 0.1247 0.2492 0.1184 0.1357

d−r 0.1488 0.2299 0.2060 0.0687 0.2491 0.2814

Dr 0.6090 0.5657 0.6229 0.2162 0.6582 0.6747

Pr(Z|Ar) 0.6090 0.5657 0.6229 0.2162 0.6582 0.6747

Phase 5: Each action’s expected loss can be aggregated using Formulas (22)–(24) in
accordance with Einstein’s aggregation operators. It is therefore possible to determine the
score function of expected losses. They are displayed in Table 7.

Table 7. The score function of expected losses by TOPSIS Method.

A1 A2 A3 A4 A5 A6

S(R(zP|Ar)) 0.0271 0.0220 0.0911 0.1729 0.1066 0.0686

S(R(zB|Ar)) 0.3271 0.2555 0.3496 −0.3092 0.3121 0.2441

S(R(zN|Ar)) 0.3439 0.2494 0.2793 −0.3629 0.3506 0.3827

Phase 6: According to decision rules P1–N1, it is possible to determine the outcomes
of each element’s decision. As seen in Figure 2, POS(A) = {A1, A2, A3, A5, A6}, and
NEG(A) = {A4}. Thus the A1, A2, A3, A5, A6 can be selected and A4 should be rejected.

Figure 2. The expected loss score function.
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7. Discussion and Comparison

We now contrast our suggested method with the GRA method and talk about its
limitations and advantages.

7.1. Using the GRA Method for TWDs

By using the GRA method to calculate the conditional probability and weight of
criteria, RPIS and RNIS are the same using the TOPSIS method and the GRA method.
Table 8 displays the conditional probability.

Table 8. The GRC, RRD and conditional probability.

V A1 A2 A3 A4 A5 A6

G+
r 0.3116 0.3176 0.3236 0.1841 0.3192 0.3752

G−r 0.2899 0.1571 0.1132 0.6683 0.246 0.1126

Hr 0.5180 0.6690 0.7408 0.2160 0.5648 0.7692

Pr(Z|Ar) 0.5180 0.6690 0.7408 0.2160 0.5648 0.7692

The weight, the PIS and the NIS are the same using both methods (GRA and TOPSIS).
The conditional probability in the results change when we put different values of ξ in
interval [0, 1]. When we put the values of ξ i.e., {0.9, 0.5, 0.1, 0.05}, then we get the
results as BND(A) = {A4} and POS(A) = {A1, A2, A3, A5, A6}, BND(A) = {A4} and
POS(A) = {A1, A2, A3, A5, A6}, BND(A) = {A4} and POS(A) = {A1, A2, A3, A5, A6},
and NEG(A) = {A4} and POS(A) = {A1, A2, A3, A5, A6}, respectively. We conclude
that decreasing the values of ξ produce decisions with almost the same outcomes as our
suggested method. If ξ = 0.07, results are shown in Table 8. The following choice is made as
an outcome of using the minimum-cost decision rules: POS(A) = {A1, A2, A3, A5, A6} and
NEG(A) = {A4}. Table 9 shows that the GRA method gives the same decision outcomes
as our suggested method (TOPSIS).

Table 9. The score function of expected losses of GRA Method.

V A1 A2 A3 A4 A5 A6

S(R(zP|Ar)) 0.1152 0.0818 −0.0923 0.1732 0.0238 −0.16571

S(R(zB|Ar)) 0.1719 0.2352 0.3440 −0.3096 0.2540 0.3854

S(R(zN|Ar)) 0.2293 0.3717 0.4099 −0.3636 0.2474 0.4583

7.2. MADM Methods Are Used to Computed the Conditional Probability

One of the essential components of TWDs is conditional probability, which may also
serve as the foundation for scheme ordering. We calculate the conditional probability by
the GRA method, the BP method, the weighted aggregation method, and the ideal solutions
(see Figure 3). The same weights for all above methods in Table 10 displays the results
of the conditional probability. From Table 11, we learn that our suggested method and
the other MADM method’s ranking of conditional probability elements are mostly the
same. The S-box A6 is selected as the best S-box in image encryption according to the above
ranking outcomes of all methods.
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Figure 3. The comparison between our proposed technique and GRA, BP, and weighted aggregation
methods.

Table 10. The outcomes of conditional probability by using MADM methods.

V Pr(Z|A1) Pr(Z|A2) Pr(Z|A3) Pr(Z|A4) Pr(Z|A5) Pr(Z|A6)

GRA 0.5180 0.6690 0.7408 0.2160 0.5648 0.7692

BP method 0.2349 0.2704 0.2071 0.0448 0.2872 0.3565

Weighted aggregation method 0.3718 0.3905 0.4084 0.3091 0.4179 0.4199

Our suggested method 0.6090 0.5657 0.6229 0.2162 0.6582 0.6747

Table 11. The ranking of the elements according to conditional probability.

V Ranking

GRA A6>A3>A2>A5>A1>A4

BP method A6>A5>A2>A1>A3>A4

Weighted aggregation method A6>A5>A3>A1>A2>A4

Our proposed method A6>A5>A3>A2>A1>A4

7.3. Discussion on the Advantages and Limitations

One of the essential elements of the TWDs is the DTRS model, because the DTRS
model can show the loss caused by various actions and select the appropriate action using
minimum-loss decision rules. Conditional probability is an essential component of TWDs
method. Using the entropy measure method, we estimate the weight of each criterion,
take the RRD of the element, and—using the TOPSIS method—compute the conditional
probability. To summarize the fundamental issue, linguistic terms match human expression
habits more. DHHLTSs, as they differ from a single linguistic set, allow for a more versatile
approach to representing qualitative information. The introduction of DHHLTSs provides a
new method for communicating estimated data in TWDs. When DMs estimate the project’s
criteria information, they can provide the estimate value using DHHLTSs more intuitively,
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which cuts down on decision-making time. The DHHLT environment is used to build the
proposed model. The new research content consists of TWD models built upon the DHHLT
information system. As a result, it has a high research value. The following list of our
suggested method’s primary benefits is provided.

(I) The FHHLT and SHHLT that make up the DHHLE provide for more flexible expres-
sions of the estimation of DMs throughout the TWD procedure.

(II) It is helpful to apply the TWD approach based on the DHHLEs when dealing with
decision-making issues.

(III) The conditional probability was calculated by using the TOPSIS method.

However, the suggested method has certain limitations as well.

(I) This work does not examine the scenario of group decisions or take into account
varied expert weights in order to simplify the computation.

(II) In the future, we will expand this concept to group choices and make it much
more functional.

8. Conclusions

The artificial intelligence decision making is very important role in the Three Way
artificial intelligence decision making double hierarchy hesitant linguistic term set. The
weight of decision expert and criteria are calculated by using entropy methods with help
of aggregation operators. The conditionally probability is central part of artificial intel-
ligence based three way decision making. The conditional probability is measured by
the extended TOPSIS method in the artificial intelligence-based three-way decision, and
ranking is determined using the expected loose function. In this paper, we studied develop
a new an Artificial Intelligence based three way decision model using double hierarchy
hesitant linguistic term information. First, we defined some basic operational laws for
DHHLEs according to Einstein operations and their properties. Then, we established
some double hierarchy hesitant Einstein aggregation operators: the DHHLEWA operator,
DHHLEWG operator, DHHLEOWA operator, DHHLEOWG operator, DHHLHA operator,
DHHLHG operator, and some properties of double hierarchy hesitant Einstein aggregation
operators. The weight of criteria was then calculated using the entropy measure method
using double hierarchy hesitant linguistic term information. Then, using the score function,
we determined the positive and negative ideals solutions. Then, we determined the GRC,
the RRD by TOPSIS method, and RRD appraisement to conditional probability. According
to the Einstein operational laws, we then determined the score function of expected losses.
Finally, the TWD method is used to determine the selection of S-box in image encryption.

In future work, the proposed work can be extended to two-way decision-making
problems, and the fractional fuzzy three-way decision can be developed for emergency
decision problems. Furthermore, the linguistic three-way decision with fractional fuzzy
sets can be defined for logistic provider selection. Additionally, the proposed models of
three-way decision making under the double hierarchy linguistic variable can be applied
to analyze the different types of S-boxes.
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