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Abstract

:

The lifetime performance index is commonly utilized to assess the lifetime performance of products. Based on the testing procedure for the lifetime of products following Chen distribution, an experimental design for progressive type I interval censoring is determined to achieve the desired power level while minimizing total experimental cost. For fixed inspection interval lengths and an unfixed number of inspection intervals, the required number of inspection intervals and sample sizes to achieve the minimum experimental costs are computed and presented in a table format. For unfixed termination times, the required number of inspection intervals, minimum sample sizes, and equal interval lengths are obtained and presented in a table format, while the minimum experimental costs are achieved. Finally, a practical example is presented to demonstrate the utilization of this experimental design for collecting samples and conducting a testing procedure to evaluate the lifetime performance of products.
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1. Introduction


During the pandemic, there was an increase in demand for advanced technological devices, such as laptops, desktops, and mobile phones. The high lifespan of high-tech products can be a key factor in attracting more consumers and enhancing the brand’s market value. The process capability index    C L    was introduced by Montgomery [1] to assess the quality of larger-the-better characteristics, such as lifespan, the hardness of smart phone cases, battery capacity, and more. In many cases, the experimenters may not have access to complete data, resulting in the need to handle censored data. The two most common types of censoring are type I censoring and type II censoring. Type I censoring occurs when a life test is terminated at a fixed time point, and the number of failure units is random. Type II censoring occurs when a study is terminated when a predetermined fixed number of failure units is observed so that the termination time is random. Progressive censoring possesses the characteristic of permitting the removal of units at certain time points that may not necessarily be the ultimate termination point. More inferences about the progressive censored data can be seen in Balakrishnan and Aggarwala [2], Aggarwala [3], Balakrishnan [4], and Balakrishnan and Cramer [5]. For the progressive type II censored sample, Laumen and Cramer [6] studied the inferences for the lifetime performance index following the gamma distributions. Bdair et al. [7] studied the estimation and prediction for flexible Weibull distribution based on the progressive type II censored sample. Panahi [8] investigated the interval estimation of Kumaraswamy parameters based on progressively type II censored data and record values. EL-Sagheer [9] studied the estimation of parameters of Weibull–Gamma distribution for the progressively censored sample. Lee et al. [10] assessed the lifetime performance index for the exponential distribution model. Wu et al. [11] tested the lifetime performance index based on the Bayesian approach. The advantage of progressive type I interval censoring is that it is very convenient for quality personnel to conduct the life test and collect the censored data in practical situations. Under this type of censoring, Wu and Lin [12] used the maximum likelihood estimator for the lifetime performance index to develop a testing procedure for exponential lifetime distribution. Wu et al. [13] conducted an experimental analysis for the sampling design of Gompertz life time distribution based on progressive type I interval sampled data. For products following the Chen lifetime distribution, Wu [14] developed a testing procedure for the lifetime performance index under progressive type I interval censoring. The research goal of this study is to investigate the experimental plan for the progressive type I interval censoring design for products following the Chen distribution based on the testing procedure proposed in Wu [14]. In Section 2, we introduce and summarize a testing procedure along with the test power to assess whether the lifetime performance of a production process achieves the desired target index for the lifetime of products following the Chen distribution. Section 3 determines the minimum number of inspection intervals required to minimize the total cost under a pre-specified power level and level of significance for either a fixed or unfixed total experimental time, with the aim of achieving the lowest total cost. Additionally, one real-life example is presented to demonstrate the testing procedure. Finally, we conclude the study by summarizing all relevant findings in Section 4.




2. The Introduction of the Testing Procedure for the Lifetime Performance Index in Wu [14]


Chen [15] presented a new two-parameter lifetime distribution with a bathtub shape or increasing failure rate function called Chen distribution. Let U be the lifetime of products following a Chen distribution with the probability density function (pdf) and the failure rate function defined as:


   f U  ( u ) = k β  u  β − 1    e   u β    exp { k ( 1 −  e   u β    ) } , 0 ≤ u ≤ ∞ , k > 0 , β > 0  



(1)




and


   r U   ( u )  = k β  u  β − 1    e   u β    .  



(2)







Chen indicated that this distribution has an increasing failure rate function when   β ≥   1 and a bathtub shape failure rate function when  β  < 1. After the transformation from U to Y by   Y =  e   U β    − 1    ,   β > 0  , the pdf of the new variable Y is an exponential distribution with failure rate k. The mean and standard deviation of Y are   μ = 1 / k   and  σ  = 1/k. If LU is the specified lower specification limit for U, then L =    e   L U    β    − 1   is the specified lower specification limit for Y. The lifetime performance index proposed by Montgomery [11] is defined as:


   C L  =   μ − L  σ  ,  



(3)




where μ is denoted as the process mean,  σ  is regarded as the process standard deviation, and L is the specified lower specification limit. Substituting μ and  σ  with the mean and standard deviation of Y into Equation (3), we obtain the lifetime performance index CL = 1 − kL.



Subsequently, the calculation of the conforming rate is performed as    P r  = P  (  U ≥  L U   )  = P  (  Y ≥ L  )  = exp  (  − k L  )  = exp  (   C L  − 1  )          ,         − ∞ <  C L  < 1   and the value of Pr increases as CL increases. The relationship between Pr and CL is displayed in Figure 1.



To obtain the sample using the progressive type I interval censoring scheme, the following steps are followed:



Step 1: Put  n  products on a life test at the starting time 0. Set the termination time as T and the number of inspections as m. Then, we decide the observation time points t1, …, tm, where tm = T.



Step 2: Observe the number of failure units Xi and removed Ri units with the removing rate of pi, where Ri follows a binomial distribution denoted as bin(  n −   ∑  j = 1  i    X j    −   ∑  j = 1   i − 1     R j     , pi), I = 1, …, m. Wu [14] obtained the maximum likelihood of k as the numerical solution of the following log-likelihood equation


   d  d k   ln L ( k ) =   ∑  i = 1  m    X i     (   y i  −  y  i − 1    )     e  − k  (   y i  −  y  i − 1    )      1 −  e  − k  (   y i  −  y  i − 1    )        −   ∑  i = 1  m    (   R i     y i  +  X i     y  i − 1    )     










  =   ∑  i = 1  m    X i     (   e   t i    β    −  e   t  i − 1     β     )     e  − k  (   e   t i    β    −  e   t  i − 1     β     )      1 −  e  − k  (   e   t i    β    −  e   t  i − 1     β     )        −   ∑  i = 1  m    (   R i    (  e   t i    β    − 1 ) +  X i    (  e   t  i − 1     β    − 1 )  )    = 0  



(4)







Its asymptotic variance is the reciprocal of the Fisher’s information, given by


   I ( k ) = − E [    d 2  ln L ( k )   d  k 2    ]   =  n   k 2      ∑  i = 1  m       ln  2   (  1 −  q i   )     q i      ∏  j = 1   i − 1     (  1 −  p j   )    ∏  l = 1  i    (  1 − q  )          



(5)




where    q i  = 1 − exp ( −     k (  e   t i    β    −  e   t  i − 1     β    ) )  .



To facilitate data collection, we considered the case of equal interval lengths    t i  −  t  i − 1   = t   and p1 = … = pm−1 = p i = 1, …, m. That is, ti = it, i = 1, …, m, and    q i  = 1 − exp ( −     k (  e    ( i t )      β    −  e    ( ( i − 1 ) t )  β    ) )  . Then, Equation (4) is reduced to


   d  d k   ln L ( k ) =   ∑  i = 1  m    X i    ln  (  1 −  q i   )   (  1 −  q i   )       q i      −   ∑  i = 1  m    (   R i     (   e    ( i t )  β    − 1  )  +  X i     (   e    ( ( i − 1 ) t )  β    − 1  )   )    ≡ 0  



(6)







The information number in (5) is reduced to


  I  ( k )  =  n   k 2      ∑  i = 1  m       ln  2   (  1 −  q i   )     q i       (  1 − p  )    i − 1     ∏  l = 1  i    (  1 − q  )       



(7)







Furthermore, we have      k  ^       →   d     n → ∞    N  ( k , g ( k ) )   where g(k) =    I  − 1    ( k )    is the asymptotic variance of   k ^  .



Due to the property of the invariance of MLE, the MLE of    C L    can be acquired as


    C ^  L  = 1 −  k ^  L  



(8)







Let    c 0      be the desired level of the lifetime performance index to make the process capable. Then, we want to test    H 0  :  C L  ≤  c 0    (the process is not capable) vs.    H a  :  C L  >  c 0    (the process is capable). Under the level of significance  α , the MLE of    C L    found as     C ^  L  = 1 −  k ^  L   is utilized as the test statistic. The critical region for this right-sided test is    {    C ^  L   |    C ^  L  >  C L 0     }   , where the critical value    C L 0    is determined as    C L 0  = 1 − L  (   k 0  +  Z  1 − α     g  (   k 0   )     )    and    Z α    represents the 1 −  α  percentile of the standard normal distribution. Moreover, the power function denoted by   h  (   c 1   )    of this test at the point of    C L  =  c 1  >  c 0    is obtained as


   h  (   c 1   )    = Φ  (     k 0  −  k 1  +  Z  1 − α     g  (   k 0   )        g  (   k 1   )       )    



(9)




where   Φ  ( ⋅ )    is the cdf of the standard normal distribution,    k 0  =   1 −  c 0   L    and    k 1  =   1 −  c 1   L   .




3. Reliability Sampling Design


The objective of this section is to identify the optimal sampling design for progressive type I interval sampling for products’ lifetime following the Chen distribution, given that the parameters of the Chen distribution may have different structures. In Section 3.1, for the fixed experimental time T, we determine the required minimal number of inspection intervals based on the criterion of minimum total cost so that the required sample size can be calculated to reach the specified test power of the level  α  testing procedure. In Section 3.2, for the unfixed experimental time T, we determine the required minimal number of inspection intervals and the equal length of intervals to minimize the total experimental cost so that the required sample size can be calculated under the specified test power of the level  α  testing procedure.



Consider the following function   w ( k ) = I ( k ) / n   =    1   k 2      ∑  i = 1  m       ln  2   (  1 −  q i   )     q i       (  1 − p  )    i − 1     ∏  l = 1  i    (  1 − q  )       , which is not a function of sample size n. The power function can be rewritten as   h  (   c 1   )     = Φ  (     k 0  −  k 1  +  Z  1 − α     g  (   k 0   )        g  (   k 1   )       )     = Φ  (     k 0  −  k 1  +  Z  1 − α      w  − 1    (   k 0   )  / n        w  − 1    (   k 1   )  / n      )   .



In order to attain the pre-specified power 1- β  or the probability of type II error  β  at    c 1    under the level of significance  α , assign the above power function to 1- β  at    c 1   , and then the sample size is determined as


  n = c e i l i n g    (     Z β     w  − 1    (   k 1   )    +  Z α     w  − 1    (   k 0   )       k 1  −  k 0     )   2   



(10)




where ceiling(x) is a ceiling function mapping x to the smallest integer, which is greater than or equal to x.



3.1. The Minimal Required m for Fixed T


In numerous practical situations, the experimenters aim to minimize the number of inspection intervals m so that they do not need to frequently gather data for the progressive type I interval sampling. Suppose that the upper limit of m is m0 for experimenters, the value of m must satisfy   m ≤  m 0   . If the value for m0 is not predetermined, the default value of 30 is utilized for m. In this subsection, our aim is to find the optimal value of m, denoted as m*, that minimizes the total cost incurred during the progressive type I interval censoring procedure. Similar to Huang and Wu [16], we consider the following costs:



	
Inspection cost CI: the cost for operating a single inspection station;



	
Sample cost Cs: the cost for obtaining one unit of sample;



	
Operation cost Co: the cost incurred for conducting the experiment per unit of time, which encompasses expenses such as the personnel cost, the depreciation of test equipment, and other related costs.






Taking into account all of these expenses, the overall cost of conducting this experiment is





   TC ( m )   =   m  C I  + c e i l i n g    (     Z β     w  − 1    (   k 1   )    +  Z α     w  − 1    (   k 0   )       k 1  −  k 0     )   2   C s    +   T  C 0    



(11)







Here is the Algorithm 1 that utilizes the numeration method to search for the optimal (m, n):





	Algorithm 1: Utilize the numeration method to search for the optimal (m, n)



	Step 1: Specify the pre-assigned values of m = 1, c0, c1, α, β, p, T, L, and m0 (the default value is 30) and CI = aCo, Cs = bCo, Co.

Step 2: Compute the sample size n in Equation (11) first and then compute the related total cost TC(m) in Equation (12).

Step 3: If m < m0, then m = m + 1 and go to Step 2; otherwise go to Step 4.

Step 4: For a array of total costs TC(1),…, TC(m0), The optimal solution of m* is the minimum m value, such that TC(m*) = TC* =    min  m ≤   m 0       TC(m), and then the related sample size n* in Equation (11) is computed.

Step 5: Calculate the value of    k 0  =   1 −  c 0   L    followed by determining the critical value     C  L 0  = 1 − L    k 0  +  Z  1 ? α    g    k 0        .






Consider Co = 1, a = 2, and b = 1. For testing    H 0  :  C L  ≤ 0.8   with  β  = 0.15,  α  = 0.05, p = 0.01, c1 = 0.95, L = 0.1, and T = 0.8, the curve of total cost with m = 1:m0 is displayed in Figure 2a. It can be seen that the minimum total cost occurred at m = 2, with a total cost of 13.8. For a different set up of parameters  β  = 0.25,  α  = 0.05, p = 0.05, c1 = 0.90, another curve of total cost with m = 1:m0 is displayed in Figure 2b. You can see that the minimum total cost occurred at m = 2, with a total cost of 25.8.



For testing    H 0  :  C L  ≤ 0.80  , the required minimal inspection intervals m* and the related sample size n* to yield the minimum total cost TC(m*) with m < 50 are tabulated in Table A1 and Table A2 at the conditions of  α  = 0.01, 0.05, 0.1,  β  = 0.25, 0.20, 0.15, p = 0.01, 0.025, 0.05, 0.15, 0.25 for c1 = 0.825, 0.85 and c1 = 0.875, 0.90 respectively. Table A1 and Table A2 also contain the relevant critical values.



Looking at Table A2, suppose that the experimenter wants to conduct the level 0.01 hypothesis test with c0 = 0.80 and 1 −  β  = 0.85 at    c 1    = 0.90, p = 0.05. We find that the required minimal number of inspection intervals is 2 and the sample size is determined as 14 with the minimum total cost TC* = 18.8 and the critical value of 0.877235.



From Table A1 and Table A2, the optimal number of inspection intervals m is nonincreasing when    c 1    is increasing and the range of m is 2~6. In Figure 3, the plot of the minimum total cost TC* vs.    c 1    for  α  = 0.01, 0.05, 0.1 at  β  = 0.25 and p = 0.05 is displayed. In Figure 4, the plot of the minimum total cost TC* vs. 1 −  β  = 0.75, 0.80, 0.85 at  α  = 0.1 and p = 0.05 is displayed. In Figure 5, the plot of the minimum total cost TC* vs. p = 0.05, 0.075, 0.1 is displayed at  α  = 0.1 and  β  = 0.25. From Figure 3, it can be observed that, as the level of significance increases, there is a decrease in the minimum total cost TC*. From Figure 4, it can be observed that, as the test power increases, there is an increase in the minimum total cost TC*. From Figure 5, it can be observed that, as the removal rate p increases, there is an increase in the minimum total cost TC*. Furthermore, these three figures show that the minimum total cost TC* is a deceasing function of    c 1   . According to Table A1 and Table A2, the required minimal number of inspection intervals is inversely proportional to    c 1   .




3.2. The minimal Required m, t, and n When the Interval Time of the Experiment Is Unfixed


When the equal interval time t is not fixed, we would like to determine the optimal (m,t) to yield the minimum total cost incurred for the progressive type I interval censored sampling. The total cost becomes





   TC ( m , t ) =   m  C I  + c e i l i n g    (     Z β     w  − 1    (   k 1   )    +  Z α     w  − 1    (   k 0   )       k 1  −  k 0     )   2   C s    +   mt  C o  .   



(12)







We use the numeration method to search for the optimal (m,t), and the steps of the algorithm are as follows:



Step 1: Specify the pre-assigned values of m = 1, c0, c1,  α ,  β  and p, L and m0 (the default value is 30), and the costs CI = aCo, Cs = bCo, Co.



Step 2: Determine the optimal solution, denoted as t*, to minimize the total cost TC(m,t), as described in Equation (12). Put m = m and t = t* in Equation (11) so that the sample size n can be computed. Subsequently, the corresponding total cost TC(m,t*) in Equation (12) is computed.



Step 3: If m < m0, then let m = m + 1 and go to Step 2; otherwise go to Step 4.



Step 4: For an array of total costs TC(1,t*), …, TC(m0,t*), the optimal solution of m* is the minimum value of m such that TC(m*,t*) = TC** =     min   m ≤  m 0     TC(m,t*) is achieved. Put m = m* and t = t* in Equation (11), and then the related sample size n* in Equation (11) can be computed.



Step 5: Calculate the value of    k 0  =   1 −  c 0   L    followed by determining the critical value of    C L 0  = 1 − L  (   k 0  +  Z  1 − α     g  (   k 0   )     )   .



Consider Co = 1, a = 2, and b = 1. For testing    H 0  :  C L  ≤ 0.8   when  β  = 0.25,  α  = 0.05, p = 0.025, c1 = 0.9, m0 = 50, L = 0.05, T = 0.8, we plot m = 1:m0 against its corresponding total cost in Figure 6a. We find that the curve is a concave upward curve and the minimum total cost occurred at m = 2 with a total cost of 25.563. For another set up of parameters β = 0.15, α = 0.01, p = 0.05, c1 = 0.875, another curve of total cost with m = 1:m0 is given in Figure 6b. It can be seen that it is a concave upward curve and the minimum total cost occurred at m = 4 with a total cost of 81.962. For other combinations of setups, we can also find similar patterns.



For testing    H 0  :  C L  ≤ 0.8  , the required minimum inspection intervals m*, the inspection interval time length t*, and sample size n* to yield the minimum total cost TC(m*,t*) are tabulated in Table A3 and Table A4 at  α  = 0.01, 0.05, 0.1,  β  = 0.25, 0.20, 0.15, p = 0.01, 0.025, 0.05, 0.15, 0.25 for c1 = 0.825, 0.85, and c1 = 0.875, 0.90, respectively, under the constraint of m < m0, with m0 = 50. Table A3 and Table A4 also contain the relevant critical values.



Looking at Table A4, if the experimenter wants to conduct a level 0.05 hypothesis test under a power of 0.75 at    c 1    = 0.90 and p = 0.05, the minimum required sample size is obtained as 21, the minimum number of inspection intervals is obtained as 2, and the optimal inspection interval time length is 0.28. For this case, the minimum total cost is TC** = 25.55 and the relevant critical value is 0.881071.



From Table A3 and Table A4, the optimal required minimal number of inspection intervals is inversely proportional to    c 1    and the range of m is 2~10. The optimal length of inspection interval t* is within 0.15 and 0.22 unit of times for    c 1    = 0.825. The values of t* are within 0.18 and 0.28 units of time for    c 1    = 0.875. The values of t* are within 0.21 and 0.37 units of time for    c 1    = 0.875. The values of t* are within 0.23 and 0.37 units of time for    c 1    = 0.90. Figure 7 displays a graph showing the relationship between the minimum total cost TC** and    c 1    for  α  = 0.01, 0.05, 0.1 at  β  = 0.25, and p = 0.05. Figure 8 displays a graph showing the relationship between the minimum total cost TC** and    c 1    for 1 −  β  = 0.75, 0.80, 0.85 at  α  = 0.1, and p = 0.05. Figure 9 displays a graph showing the relationship between the minimum total cost TC** and    c 1    for p = 0.01, 0.025, 0.05, 0.15, 0.25 at  α  = 0.1 and  β  = 0.25. From Figure 7 and Figure 8, it can be seen that the minimum total cost TC** is a decreasing function of  α  or an increasing function of 1 −  β . From Figure 9, it can be seen that, as the removal rate p increases, there is an increase in the minimum total cost TC**. Furthermore, the minimum total cost TC** deceases as    c 1    increases.




3.3. Example


The dataset utilized in this study, obtained from Xie and Lai [17], comprises the failure times (measured in number of cycles in 100,000 times) of n = 18 electronic devices, which are provided as 0.05, 0.11, 0.21, 0.31, 0.46, 0.75, 0.98, 1.22, 1.45, 1.65, 1.95, 2.24, 2.45, 2.93, 3.21, 3.30, 3.50, and 4.20.



To test the goodness of fit of the Chen distribution, we employ the Gini statistic suggested by Gill and Gastwirth [18]. The p-value of this test is a function of β and the p-value versus the β value from 0 to 1.0 is given in Figure 10. From Figure 10, the value of β = 0.64 is determined with the largest p-value of 0.9788521. The large p-value indicated that the data fitted the Chen distribution very well. We also conducted the Kolmogorov-Smirnov test (ks. test in R) with a p-value of 0.781, which fitted the Chen distribution as well.



Using this example, the implementation of Section 3.1 and Section 3.2 is given as follows: Suppose we want to test    H 0  :  C L  ≤ 0.8  . Refer to Section 3.1, the case of  α  = 0.1, the power 1 −  β  = 0.75 at    c 1    = 0.90, p = 0.05 and T = 0.8 is considered, where the termination time of experiment T is fixed. From Table A2, we can find that the optimal sampling design is m* = 2, n* = 17 with critical value    C L 0    = 0.870090 and a minimum total cost of 21.8 units under the cost setup of Co = 1, a = 2, and b = 1.



The procedure for testing is executed in the following manner:



	Step 1

	
Take a random sample of size n = 17 from the data set. Observe the progressive type I interval censored sample (X1,X2) = (4,1) at the pre-set observation time points (t1,t2) = (0.4,0.8) with censoring schemes of (R1,R2) = (1,11).




	Step 2

	
Obtain the MLE of k as    k ^    =   0.3155534  , and then we can obtain the test statistic     C ^  L  = 1 −  k ^  L   = 0.9684447.




	Step 3

	
Compare the test statistic with the critical value. We have     C ^  L    = 0.9684447 >    C L 0  =   0.870090. It can be inferred that the lifetime performance index of product surpasses the required level of 0.80.







Refer to Section 3.2, the case of  α  = 0.10, the power 1 −  β  = 0.85 at    c 1    = 0.95 is considered. We can find that the optimal sampling design is m* = 2, n* = 16, and t* = 0.34 with critical value    C L 0  =  0.9266319 and a minimum total cost of 20.682 units under the cost setup of Co = 1, a = 2, and b = 1 from our software.



The procedure for testing is executed in the following manner:



	Step 1

	
Take a random sample of size n = 17 from the data set. Observe the progressive type I interval censored sample (X1,X2) = (4,1) at the pre-set observation time points (t1,t2) = (0.34,0.68) with censoring schemes of (R1,R2) = (0,12).




	Step 2

	
Obtain the MLE of k as    k ^    =   0.3052468  , and then we can obtain the test statistic     C ^  L  = 1 −  k ^  L   = 0.9694753.




	Step 3

	
Comparing the test statistic with the critical value, we have     C ^  L    = 0.9694753 >    C L 0  =   0.9266319. As a result, we arrived at the same conclusion of rejecting the null hypothesis.









4. Conclusions


The evaluation of the lifetime performance index for products is a crucial subject in various manufacturing industries, particularly when the product’s lifetime follows a Chen distribution. To facilitate the collection of data, a sample was collected using the progressive type I interval censoring scheme. Our investigation aimed to determine the minimum number of inspection intervals required to achieve the given test power with a minimum total cost for a level  α  test when the total experimental time was fixed. When the total experimental time was not fixed, the required minimum sample size, number of inspection intervals, and the equal inspection interval time length were determined to achieve the given test power with a minimum total cost for a level  α  test under progressive type I interval censoring. The influences of various structures of level  α , the power, and p on the minimum total cost were analyzed for the given c1 value. Nine figures for the total cost vs. c1 value in the alternative hypothesis were displayed and analyzed. We also observed that, in all cases, the minimum total cost decreased as c1 increased.
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Table A1. The optimal m*, n*, related total cost TC* and the critical value for c1 = 0.825, 0.85 and p = 0.01, 0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.80.






Table A1. The optimal m*, n*, related total cost TC* and the critical value for c1 = 0.825, 0.85 and p = 0.01, 0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.80.
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TC*

	
     C L 0     

	
     m *     

	
     n *     

	
TC*

	
     C L 0     






	
0.01

	
0.25

	
0.010

	
6

	
745

	
757.8

	
0.817927

	
4

	
177

	
185.8

	
0.837169




	

	

	
0.025

	
5

	
760

	
770.8

	
0.817926

	
4

	
179

	
187.8

	
0.837135




	

	

	
0.050

	
5

	
777

	
787.8

	
0.817918

	
4

	
181

	
189.8

	
0.837218




	

	

	
0.150

	
3

	
828

	
834.8

	
0.817948

	
3

	
193

	
199.8

	
0.837176




	

	

	
0.250

	
3

	
863

	
869.8

	
0.817928

	
3

	
201

	
207.8

	
0.837149




	

	
0.20

	
0.010

	
6

	
668

	
680.8

	
0.818932

	
4

	
160

	
168.8

	
0.839094




	

	

	
0.025

	
5

	
681

	
691.8

	
0.818937

	
4

	
162

	
170.8

	
0.839035




	

	

	
0.050

	
5

	
696

	
706.8

	
0.818932

	
4

	
165

	
173.8

	
0.838981




	

	

	
0.150

	
3

	
743

	
749.8

	
0.818947

	
3

	
175

	
181.8

	
0.839041




	

	

	
0.250

	
3

	
774

	
780.8

	
0.818931

	
3

	
182

	
188.8

	
0.839040




	

	
0.15

	
0.010

	
6

	
605

	
617.8

	
0.819893

	
4

	
147

	
155.8

	
0.840786




	

	

	
0.025

	
5

	
617

	
627.8

	
0.819895

	
4

	
148

	
156.8

	
0.840840




	

	

	
0.050

	
5

	
631

	
641.8

	
0.819883

	
4

	
151

	
159.8

	
0.840748




	

	

	
0.150

	
3

	
673

	
679.8

	
0.819908

	
3

	
160

	
166.8

	
0.840830




	

	

	
0.250

	
3

	
701

	
707.8

	
0.819892

	
3

	
167

	
173.8

	
0.840755




	
0.05

	
0.25

	
0.010

	
6

	
465

	
477.8

	
0.816044

	
4

	
108

	
116.8

	
0.833644




	

	

	
0.025

	
5

	
474

	
484.8

	
0.816049

	
4

	
109

	
117.8

	
0.833648




	

	

	
0.050

	
4

	
487

	
495.8

	
0.816043

	
3

	
113

	
119.8

	
0.833679




	

	

	
0.150

	
3

	
517

	
523.8

	
0.816060

	
3

	
118

	
124.8

	
0.833617




	

	

	
0.250

	
3

	
538

	
544.8

	
0.816055

	
3

	
123

	
129.8

	
0.833577




	

	
0.20

	
0.010

	
5

	
407

	
417.8

	
0.817209

	
4

	
95

	
103.8

	
0.835873




	

	

	
0.025

	
5

	
413

	
423.8

	
0.817194

	
4

	
96

	
104.8

	
0.835853




	

	

	
0.050

	
4

	
423

	
431.8

	
0.817214

	
3

	
100

	
106.8

	
0.835801




	

	

	
0.150

	
3

	
450

	
456.8

	
0.817214

	
3

	
104

	
110.8

	
0.835808




	

	

	
0.250

	
3

	
468

	
474.8

	
0.817214

	
3

	
108

	
114.8

	
0.835833




	

	
0.15

	
0.010

	
6

	
356

	
368.8

	
0.818336

	
3

	
87

	
93.8

	
0.838078




	

	

	
0.025

	
5

	
363

	
373.8

	
0.818340

	
3

	
88

	
94.8

	
0.837975




	

	

	
0.050

	
4

	
373

	
381.8

	
0.818331

	
3

	
89

	
95.8

	
0.837949




	

	

	
0.150

	
3

	
396

	
402.8

	
0.818350

	
3

	
93

	
99.8

	
0.837866




	

	

	
0.250

	
3

	
412

	
418.8

	
0.818346

	
2

	
99

	
103.8

	
0.838114




	
0.10

	
0.25

	
0.010

	
5

	
345

	
355.8

	
0.814563

	
3

	
81

	
87.8

	
0.830747




	

	

	
0.025

	
5

	
350

	
360.8

	
0.814552

	
3

	
81

	
87.8

	
0.830839




	

	

	
0.050

	
4

	
358

	
366.8

	
0.814578

	
3

	
82

	
88.8

	
0.830804




	

	

	
0.150

	
3

	
381

	
387.8

	
0.814576

	
3

	
86

	
92.8

	
0.830680




	

	

	
0.250

	
3

	
397

	
403.8

	
0.814562

	
2

	
91

	
95.8

	
0.830973




	

	
0.20

	
0.010

	
5

	
293

	
303.8

	
0.815803

	
3

	
69

	
75.8

	
0.833314




	

	

	
0.025

	
5

	
297

	
307.8

	
0.815797

	
3

	
70

	
76.8

	
0.833174




	

	

	
0.050

	
4

	
305

	
313.8

	
0.815794

	
3

	
71

	
77.8

	
0.833104




	

	

	
0.150

	
3

	
323

	
329.8

	
0.815831

	
3

	
74

	
80.8

	
0.833074




	

	

	
0.250

	
3

	
337

	
343.8

	
0.815805

	
2

	
78

	
82.8

	
0.833455




	

	
0.15

	
0.010

	
5

	
252

	
262.8

	
0.817040

	
3

	
61

	
67.8

	
0.835431




	

	

	
0.025

	
5

	
255

	
265.8

	
0.817049

	
3

	
61

	
67.8

	
0.835537




	

	

	
0.050

	
4

	
262

	
270.8

	
0.817041

	
3

	
62

	
68.8

	
0.835425




	

	

	
0.150

	
3

	
278

	
284.8

	
0.817064

	
3

	
64

	
70.8

	
0.835564




	

	

	
0.250

	
3

	
290

	
296.8

	
0.817037

	
2

	
69

	
73.8

	
0.835570
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Table A2. The optimal m*, n*, related total cost TC* and the critical value for c1 = 0.875, 0.90 and p = 0.01, 0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.85.






Table A2. The optimal m*, n*, related total cost TC* and the critical value for c1 = 0.875, 0.90 and p = 0.01, 0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.85.





	

	

	
c1

	

	

	
0.875

	

	

	

	
0.90

	




	
α

	
β

	
p

	
     m *     

	
     n *     

	
TC*

	
     C L 0     

	
     m *     

	
     n *     

	
TC*

	
     C L 0     






	
0.01

	
0.25

	
0.010

	
3

	
75

	
81.8

	
0.858004

	
3

	
39

	
45.8

	
0.880437




	

	

	
0.025

	
3

	
76

	
82.8

	
0.857793

	
3

	
40

	
46.8

	
0.879663




	

	

	
0.050

	
3

	
76

	
82.8

	
0.858082

	
3

	
40

	
46.8

	
0.880060




	

	

	
0.150

	
3

	
80

	
86.8

	
0.857743

	
2

	
44

	
48.8

	
0.880105




	

	

	
0.250

	
2

	
85

	
89.8

	
0.858175

	
2

	
45

	
49.8

	
0.879954




	

	
0.20

	
0.010

	
3

	
69

	
75.8

	
0.860473

	
2

	
39

	
43.8

	
0.884001




	

	

	
0.025

	
3

	
69

	
75.8

	
0.860654

	
3

	
37

	
43.8

	
0.882829




	

	

	
0.050

	
3

	
70

	
76.8

	
0.860520

	
3

	
37

	
43.8

	
0.883242




	

	

	
0.150

	
3

	
73

	
79.8

	
0.860448

	
2

	
41

	
45.8

	
0.882984




	

	

	
0.250

	
2

	
78

	
82.8

	
0.860730

	
2

	
41

	
45.8

	
0.883764




	

	
0.15

	
0.010

	
3

	
64

	
70.8

	
0.862791

	
3

	
34

	
40.8

	
0.886148




	

	

	
0.025

	
3

	
64

	
70.8

	
0.862979

	
2

	
37

	
41.8

	
0.886359




	

	

	
0.050

	
3

	
65

	
71.8

	
0.862804

	
2

	
37

	
41.8

	
0.886555




	

	

	
0.150

	
3

	
68

	
74.8

	
0.862631

	
2

	
38

	
42.8

	
0.886197




	

	

	
0.250

	
2

	
72

	
76.8

	
0.863210

	
2

	
39

	
43.8

	
0.885885




	
0.05

	
0.25

	
0.010

	
3

	
45

	
51.8

	
0.852946

	
2

	
25

	
29.8

	
0.874182




	

	

	
0.025

	
3

	
45

	
51.8

	
0.853104

	
2

	
25

	
29.8

	
0.874283




	

	

	
0.050

	
3

	
46

	
52.8

	
0.852786

	
2

	
25

	
29.8

	
0.874452




	

	

	
0.150

	
2

	
50

	
54.8

	
0.853131

	
2

	
26

	
30.8

	
0.873680




	

	

	
0.250

	
2

	
51

	
55.8

	
0.853103

	
2

	
26

	
30.8

	
0.874373




	

	
0.20

	
0.010

	
3

	
40

	
46.8

	
0.856158

	
2

	
23

	
27.8

	
0.877341




	

	

	
0.025

	
2

	
43

	
47.8

	
0.856640

	
2

	
23

	
27.8

	
0.877446




	

	

	
0.050

	
3

	
41

	
47.8

	
0.855912

	
2

	
23

	
27.8

	
0.877622




	

	

	
0.150

	
2

	
45

	
49.8

	
0.856005

	
2

	
23

	
27.8

	
0.878338




	

	

	
0.250

	
2

	
46

	
50.8

	
0.855914

	
2

	
24

	
28.8

	
0.877410




	

	
0.15

	
0.010

	
3

	
36

	
42.8

	
0.859195

	
2

	
21

	
25.8

	
0.880940




	

	

	
0.025

	
2

	
39

	
43.8

	
0.859474

	
2

	
21

	
25.8

	
0.881050




	

	

	
0.050

	
3

	
37

	
43.8

	
0.858857

	
2

	
21

	
25.8

	
0.881234




	

	

	
0.150

	
2

	
40

	
44.8

	
0.859403

	
2

	
21

	
25.8

	
0.881984




	

	

	
0.250

	
2

	
41

	
45.8

	
0.859226

	
2

	
22

	
26.8

	
0.880852




	
0.10

	
0.25

	
0.010

	
2

	
34

	
38.8

	
0.849561

	
2

	
17

	
21.8

	
0.870090




	

	

	
0.025

	
3

	
32

	
38.8

	
0.849065

	
2

	
17

	
21.8

	
0.870185




	

	

	
0.050

	
2

	
35

	
39.8

	
0.849025

	
2

	
18

	
22.8

	
0.868363




	

	

	
0.150

	
2

	
35

	
39.8

	
0.849478

	
2

	
18

	
22.8

	
0.868994




	

	

	
0.250

	
2

	
36

	
40.8

	
0.849245

	
2

	
18

	
22.8

	
0.869642




	

	
0.20

	
0.010

	
2

	
30

	
34.8

	
0.852762

	
2

	
16

	
20.8

	
0.872247




	

	

	
0.025

	
2

	
30

	
34.8

	
0.852833

	
2

	
16

	
20.8

	
0.872345




	

	

	
0.050

	
2

	
31

	
35.8

	
0.852092

	
2

	
16

	
20.8

	
0.872510




	

	

	
0.150

	
2

	
31

	
35.8

	
0.852573

	
2

	
16

	
20.8

	
0.873179




	

	

	
0.250

	
2

	
32

	
36.8

	
0.852232

	
2

	
16

	
20.8

	
0.873867




	

	
0.15

	
0.010

	
2

	
27

	
31.8

	
0.855616

	
2

	
14

	
18.8

	
0.877235




	

	

	
0.025

	
2

	
27

	
31.8

	
0.855691

	
2

	
14

	
18.8

	
0.877340




	

	

	
0.050

	
2

	
27

	
31.8

	
0.855818

	
2

	
14

	
18.8

	
0.877516




	

	

	
0.150

	
2

	
28

	
32.8

	
0.855318

	
2

	
15

	
19.8

	
0.875579




	

	

	
0.250

	
2

	
28

	
32.8

	
0.855838

	
2

	
15

	
19.8

	
0.876289
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Table A3. The optimal (m*,t*), n*, total cost TC** and the critical value for c1 = 0.825,0.85 and p = 0.01, 0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.80.






Table A3. The optimal (m*,t*), n*, total cost TC** and the critical value for c1 = 0.825,0.85 and p = 0.01, 0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.80.





	

	

	
c1

	

	

	

	
0.825

	

	
0.85




	
α

	
β

	
p

	
     m *     

	
     t *     

	
     n *     

	
    T  C  * *      

	
     C L 0     

	
     m *     

	
     t *     

	
     n *     

	
    T  C  * *      

	
     C L 0     






	
0.01

	
0.15

	
0.010

	
10

	
0.14

	
702

	
723.36

	
0.817978

	
6

	
0.18

	
167

	
180.08

	
0.837372




	

	

	
0.025

	
8

	
0.17

	
719

	
736.38

	
0.817985

	
5

	
0.21

	
171

	
182.07

	
0.837391




	

	

	
0.050

	
7

	
0.20

	
739

	
754.37

	
0.817982

	
5

	
0.22

	
174

	
185.09

	
0.837367




	

	

	
0.150

	
5

	
0.27

	
796

	
807.34

	
0.817984

	
4

	
0.27

	
186

	
195.09

	
0.837368




	

	

	
0.250

	
5

	
0.29

	
836

	
847.44

	
0.817973

	
4

	
0.31

	
194

	
203.24

	
0.837387




	

	
0.20

	
0.010

	
9

	
0.15

	
632

	
651.34

	
0.818984

	
6

	
0.20

	
151

	
164.18

	
0.839282




	

	

	
0.025

	
9

	
0.16

	
643

	
662.43

	
0.818983

	
5

	
0.22

	
155

	
166.10

	
0.839262




	

	

	
0.050

	
7

	
0.20

	
663

	
678.38

	
0.818985

	
5

	
0.21

	
158

	
169.07

	
0.839238




	

	

	
0.150

	
6

	
0.25

	
712

	
725.50

	
0.818980

	
4

	
0.27

	
169

	
178.06

	
0.839203




	

	

	
0.250

	
5

	
0.29

	
750

	
761.44

	
0.818975

	
4

	
0.31

	
176

	
185.26

	
0.839252




	

	
0.25

	
0.010

	
9

	
0.15

	
573

	
592.35

	
0.819937

	
5

	
0.20

	
141

	
152.01

	
0.840983




	

	

	
0.025

	
8

	
0.17

	
585

	
602.38

	
0.819938

	
5

	
0.22

	
142

	
153.12

	
0.841020




	

	

	
0.050

	
7

	
0.18

	
602

	
617.30

	
0.819938

	
5

	
0.21

	
145

	
156.04

	
0.840959




	

	

	
0.150

	
5

	
0.26

	
648

	
659.28

	
0.819930

	
4

	
0.26

	
155

	
164.04

	
0.840953




	

	

	
0.250

	
5

	
0.29

	
680

	
691.43

	
0.819928

	
3

	
0.31

	
164

	
170.92

	
0.840931




	
0.05

	
0.15

	
0.010

	
8

	
0.16

	
441

	
458.30

	
0.816111

	
5

	
0.22

	
103

	
114.09

	
0.833883




	

	

	
0.025

	
8

	
0.17

	
448

	
465.36

	
0.816109

	
5

	
0.23

	
104

	
115.14

	
0.833897




	

	

	
0.050

	
6

	
0.21

	
463

	
476.28

	
0.816111

	
4

	
0.25

	
108

	
117.00

	
0.833837




	

	

	
0.150

	
5

	
0.26

	
496

	
507.32

	
0.816107

	
3

	
0.30

	
116

	
122.91

	
0.833820




	

	

	
0.250

	
4

	
0.30

	
523

	
532.19

	
0.816098

	
3

	
0.33

	
120

	
126.98

	
0.833832




	

	
0.20

	
0.010

	
8

	
0.16

	
384

	
401.30

	
0.817265

	
5

	
0.21

	
91

	
102.06

	
0.836050




	

	

	
0.025

	
8

	
0.17

	
390

	
407.39

	
0.817266

	
4

	
0.24

	
94

	
102.98

	
0.836036




	

	

	
0.050

	
7

	
0.19

	
401

	
416.35

	
0.817262

	
4

	
0.23

	
96

	
104.90

	
0.835931




	

	

	
0.150

	
5

	
0.26

	
432

	
443.30

	
0.817259

	
4

	
0.28

	
100

	
109.12

	
0.836031




	

	

	
0.250

	
4

	
0.31

	
455

	
464.23

	
0.817261

	
3

	
0.32

	
106

	
112.95

	
0.835992




	

	
0.25

	
0.010

	
7

	
0.17

	
341

	
356.19

	
0.818390

	
4

	
0.21

	
84

	
92.85

	
0.838071




	

	

	
0.025

	
7

	
0.17

	
346

	
361.22

	
0.818393

	
4

	
0.24

	
84

	
92.95

	
0.838121




	

	

	
0.050

	
7

	
0.20

	
353

	
368.41

	
0.818396

	
4

	
0.25

	
85

	
94.00

	
0.838141




	

	

	
0.150

	
5

	
0.25

	
381

	
392.24

	
0.818381

	
3

	
0.27

	
92

	
98.82

	
0.838054




	

	

	
0.250

	
4

	
0.30

	
401

	
410.19

	
0.818384

	
3

	
0.30

	
95

	
101.89

	
0.838044




	
0.10

	
0.15

	
0.010

	
7

	
0.17

	
327

	
342.20

	
0.814632

	
4

	
0.22

	
77

	
85.89

	
0.830936




	

	

	
0.025

	
7

	
0.17

	
332

	
347.21

	
0.814629

	
4

	
0.25

	
77

	
85.99

	
0.831018




	

	

	
0.050

	
6

	
0.20

	
341

	
354.22

	
0.814630

	
4

	
0.26

	
78

	
87.02

	
0.831024




	

	

	
0.150

	
5

	
0.26

	
365

	
376.30

	
0.814629

	
3

	
0.30

	
84

	
90.90

	
0.830965




	

	

	
0.250

	
4

	
0.29

	
385

	
394.18

	
0.814621

	
3

	
0.32

	
87

	
93.95

	
0.830953




	

	
0.20

	
0.010

	
7

	
0.17

	
278

	
293.20

	
0.815869

	
4

	
0.24

	
66

	
74.95

	
0.833370




	

	

	
0.025

	
6

	
0.20

	
284

	
297.22

	
0.815874

	
3

	
0.29

	
69

	
75.87

	
0.833391




	

	

	
0.050

	
6

	
0.20

	
290

	
303.21

	
0.815865

	
3

	
0.27

	
70

	
76.82

	
0.833330




	

	

	
0.150

	
4

	
0.28

	
313

	
322.12

	
0.815868

	
3

	
0.28

	
73

	
79.83

	
0.833249




	

	

	
0.250

	
4

	
0.30

	
327

	
336.20

	
0.815862

	
3

	
0.32

	
75

	
81.95

	
0.833338




	

	
0.25

	
0.010

	
7

	
0.18

	
239

	
254.23

	
0.817112

	
3

	
0.28

	
60

	
66.83

	
0.835706




	

	

	
0.025

	
6

	
0.19

	
245

	
258.11

	
0.817096

	
4

	
0.24

	
58

	
66.97

	
0.835744




	

	

	
0.050

	
5

	
0.22

	
252

	
263.10

	
0.817105

	
3

	
0.28

	
61

	
67.83

	
0.835685




	

	

	
0.150

	
5

	
0.26

	
267

	
278.28

	
0.817104

	
3

	
0.32

	
63

	
69.95

	
0.835767




	

	

	
0.250

	
4

	
0.28

	
282

	
291.13

	
0.817093

	
3

	
0.29

	
66

	
72.86

	
0.835591
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Table A4. The optimal (m*,t*), n*, total cost TC** and the critical value for c1 = 0.875, 0.90 and p = 0.01, 0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.80.






Table A4. The optimal (m*,t*), n*, total cost TC** and the critical value for c1 = 0.875, 0.90 and p = 0.01, 0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.80.





	

	

	
c1

	

	

	

	
0.875

	

	
0.90




	
α

	
β

	
p

	
     m *     

	
     t *     

	
     n *     

	
    T  C  * *      

	
     C L 0     

	
     m *     

	
     t *     

	
     n *     

	
    T  C  * *      

	
     C L 0     






	
0.01

	
0.15

	
0.010

	
4

	
0.21

	
72

	
80.86

	
0.858158

	
3

	
0.26

	
39

	
45.78

	
0.880480




	

	

	
0.025

	
4

	
0.24

	
72

	
80.95

	
0.858235

	
3

	
0.28

	
39

	
45.83

	
0.880627




	

	

	
0.050

	
4

	
0.24

	
73

	
81.96

	
0.858230

	
3

	
0.25

	
40

	
46.74

	
0.880226




	

	

	
0.150

	
3

	
0.28

	
79

	
85.83

	
0.858019

	
3

	
0.29

	
41

	
47.86

	
0.880481




	

	

	
0.250

	
3

	
0.33

	
81

	
87.98

	
0.858239

	
2

	
0.31

	
45

	
49.63

	
0.880063




	

	
0.20

	
0.010

	
4

	
0.22

	
66

	
74.86

	
0.860656

	
3

	
0.28

	
36

	
42.83

	
0.883677




	

	

	
0.025

	
4

	
0.24

	
66

	
74.96

	
0.860825

	
3

	
0.23

	
37

	
43.70

	
0.883314




	

	

	
0.050

	
4

	
0.24

	
67

	
75.96

	
0.860781

	
3

	
0.25

	
37

	
43.76

	
0.883415




	

	

	
0.150

	
3

	
0.29

	
72

	
78.88

	
0.860732

	
3

	
0.29

	
38

	
44.87

	
0.883598




	

	

	
0.250

	
3

	
0.29

	
75

	
81.87

	
0.860607

	
2

	
0.37

	
41

	
45.74

	
0.883592




	

	
0.25

	
0.010

	
4

	
0.22

	
61

	
69.88

	
0.863093

	
3

	
0.25

	
34

	
40.75

	
0.886296




	

	

	
0.025

	
3

	
0.26

	
64

	
70.77

	
0.863016

	
3

	
0.27

	
34

	
40.80

	
0.886387




	

	

	
0.050

	
4

	
0.24

	
62

	
70.97

	
0.863185

	
2

	
0.32

	
37

	
41.65
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Figure 1. The relationship between Pr and CL. 
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Figure 2. (a): Total cost curve at m = 1:m0. (b) Total cost curve at m = 1:m0. 






Figure 2. (a): Total cost curve at m = 1:m0. (b) Total cost curve at m = 1:m0.



[image: Mathematics 11 01554 g002]







[image: Mathematics 11 01554 g003 550] 





Figure 3. The minimum total cost curve for  α  = 0.01, 0.05, 0.1. 
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Figure 4. The minimum total cost for 1 −  β  = 0.75, 0.80, 0.85. 
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Figure 5. The minimum total cost for p = 0.01, 0.025, 0.05. 
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Figure 6. (a) The minimum total cost at m = 1:m0. (b) The minimum total cost at m = 1:m0. 
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Figure 7. The minimum total cost curve or  α  = 0.01, 0.05, 0.1. 
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Figure 8. The minimum total cost curve or 1 −  β  = 0.75, 0.80, 0.85. 
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Figure 9. The minimum total cost curve for p = 0.01, 0.025, 0.05. 
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Figure 10. The p-value vs. the β values. 
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