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1. Introduction

According to the well-known theorem of Kuratowski and Wagner, a graph is planar
if and only if it does not contain either of the two forbidden graphs K5 and K3,3. The Graph
Minor Theorem of Robertson and Seymour [1] can be considered a powerful generaliza-
tion of Kuratowski’s Theorem. In particular, their theorem, which is the “deepest” and
“most important” result in the arena of graph theory [2], implies that each graph property,
no matter what, is characterized by a corresponding finite list of graphs. Thus, for surfaces
(both orientable and non-orientable) in general, it is known that the set of forbidden mi-
nors is finite [3]. An analogous characterization for the embedding of graphs on surfaces is
known for the crosscap one surface (Möbius strip) where 103 forbidden subgraphs (equiv-
alently 35 forbidden minors) are characterized [4,5]. So, an open problem is to determine
the several forbidden subgraphs for crosscap two surfaces (the Klein bottle). In this se-
quel, finding a family of graphs that has a crosscap two is an interesting one. Note that
most of the 103 graphs contain a subgraph that is homeomorphic to K3,3, and multipartite
graphs play a vital role in finding these 103 forbidden subgraphs for the projective plane.
It is worth mentioning that the crosscap value of bipartite and tripartite graphs are well
known (refer to Proposition 1). The main goal of this paper is to identify a large class of
crosscap two r-partite graphs where r ≥ 4.

Let us introduce the concept of the annihilating-ideal graph of a lattice, a type of multi-
partite graph. Note that the annihilating-ideal graph is an extension of the concept of the
zero-divisor graph. The idea of the zero-divisor graph of a ring structure is due to Beck [6].
In 2009, Halaš et al. [7] introduced the zero-divisor graph for a partially ordered set, and,
in 2012, Estaji et al. [8] extended the concept of the zero-divisor graph to an arbitrary
finite bounded lattice. For a clear exposition of the work completed in the area of zero-
divisor graphs and their related areas, the reader is referred to the book by Anderson
et al. [9]. In 2011, Behboodi et al. [10] defined and investigated the ideal theoretic ver-
sion of the zero-divisor graph, called the annihilating-ideal graph of a ring, and, thereafter,
many facts about zero-divisors were expressed in the language of ideals. The concept of
an annihilating-ideal graph of a ring was extended to an arbitrary lattice by Afkhami et
al. [11] in 2015. The annihilating-ideal graph of a lattice L, denoted by AG(L), is defined to
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be a simple graph whose vertex set is the set of all non-trivial ideals of L, and whose two
distinct vertices I and J are adjacent if and only if I ∧ J = 0. The hope when studying the
annihilating-ideal graph of a lattice is that the graph theoretic properties of the graph from
the lattice will help us to better understand the lattice theoretic properties of the lattice.

One of the most important topological properties of a graph is its genus, which can
be orientable or non-orientable (crosscap). The genus of graphs associated with algebraic
structures has been studied by many authors (see [12–17]). The planar zero-divisor graph
was first explicitly characterized by Smith [18], and the characterization of commutative
rings with projective zero-divisor graphs was obtained by Chiang-Hsieh [15]. In 2019,
Asir et al. [12] enumerated all commutative rings whose zero-divisor graph has a crosscap
two. The planar and crosscap one annihilating-ideal graph of lattices were characterized
by Shahsavar [19] and Parsapour et al. [20], respectively. Additionally, whether the line
graph associated with the annihilating-ideal graph of a lattice is planar or projective was
characterized by Parsapour et al. [21]. Moreover, the authors of [22] characterized all lat-
tices L whose line graph of AG(L) is toroidal.

Now, this paper aims to classify lattices with a number of atoms less than or equal
to four whose annihilating-ideal graph can be embedded in the non-orientable surfaces
of crosscap two. The main results of this paper are Theorems 2, 3, and 5, in which we
have obtained our classifications. As a result, this classification provides a large class
of r-partite graphs that can be embedded in the Klein bottle. Further, in the proof of the
main theorems, we have shown several minimal r-partite graphs that cannot be embedded
in the Klein bottle. Possibly, these graphs may be realized as forbidden subgraphs for
crosscap two surfaces (refer to Example 1). Further, in order to cover the missing cases in
the proof of Theorem 2.6 [20], which affects the statement of the corresponding theorem,
the modified version is included as Theorem 4.

2. Preliminaries

In this section, we present the definitions and results needed to prove the main re-
sults in the subsequent sections. First, we recall some definitions and notations on lattices.
A lattice is an algebra L = (L,∧,∨), where ∧ and ∨ are the binary operations, satisfying
the following conditions: for all a, b, c ∈ L
1. a ∧ a = a, a ∨ a = a;
2. a ∧ b = b ∧ a, a ∨ b = b ∨ a;
3. (a ∧ b) ∧ c = a ∧ (b ∧ c); a ∨ (b ∨ c) = (a ∨ b) ∨ c;
4. a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

According to [23] (Theorem 2.1), we can define an order ≤ on L as follows: for any
a, b ∈ L, we set a ≤ b if and only if a ∧ b = a. Then (L,≤) is an ordered set in which
every pair of elements has the greatest lower bound (glb) and the least upper bound (lub).
Conversely, let P be an ordered set such that, for every pair a, b ∈ P, glb(a, b) and lub(a, b)
belong to P. For each a and b in P, we define a ∧ b = glb(a, b) and a ∨ b = lub(a, b). Then
(P,∧,∨) is a lattice. A lattice L is said to be bounded if there are the elements 0 and 1 in L
such that 0 ∧ a = 0 and a ∨ 1 = 1, for all a ∈ L. Clearly, every finite lattice is bounded. Let
(L,∧,∨) be a lattice with a least element 0 and I be a non-empty subset of L. Then I is
said to be the ideal of L, denoted by I ⊴L,

1. For all a, b ∈ I, a ∨ b ∈ I.
2. If 0 ≤ a ≤ b and b ∈ I, then a ∈ I.

In a lattice (L,∧,∨) with a least element 0, an element a is called an atom if a ̸= 0, and,
for an element x ∈ L, the relation 0 ≤ x ≤ a implies that either x = 0 or x = a. We denote
the set of all atoms of L by A(L). For basic facts about lattices, we refer the reader to [24].

Next, we recall the following terms regarding graph embedding. For the non-negative
integers ℓ and k, let Sℓ denote the sphere with ℓ handles, and Nk denote a sphere with k
crosscaps attached to it. Note that every connected compact surface is homeomorphic to
Sℓ or Nk for some non-negative integers ℓ and k. The genus γ(G) of a simple graph G is the
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minimum ℓ such that G can be embedded in Sℓ. Similarly, crosscap number (non-orientable
genus) γ̃(G) is the minimum k such that G can be embedded in Nk. Note that the projective
space is of crosscap one and the Klein bottle is of crosscap two. If e = xy ∈ E(G), then the
contraction of e in G, denoted as [x, y] is the graph obtained from G − xy by identifying ver-
tices x and y to create a new vertex z incident with all edges of G that were incident with
either x or y. We say H is a minor of G, if H can be obtained from G by deleting vertices,
edges, and/or contracting edges. For a graph G, we denote G̃ for the subgraph G − V′

where V′ = {v ∈ V|deg(v) = 1}, and we call this graph the reduction of G. For details on
the notion of the embedding of graphs in a surface, we recommend reading [25].

The following three results on the non-orientable embedding of graphs are used fre-
quently in this paper. In what follows, we denote the complete graph with p vertices by
Kp, the complete bipartite graph with parts of sizes p and q by Kp,q, the complete tripartite
graph with parts of sizes p, q, and r by Kp,q,r, and the complete four-partite graph with
parts of sizes p, q, r, and s by Kp,q,r,s.

Proposition 1 ([25,26]). Let p, q, r, and s be positive integers greater than or equal to two. Then

(a) γ̃(Kp) =

{ ⌈
(p−3)(p−4)

6

⌉
i f p ≥ 3

3 i f p = 7.

(b) γ̃(Kp,q) =
⌈
(p−2)(q−2)

2

⌉
.

(c) γ̃(Kp,q,r) =
⌈
(p−2)(q+r−2)

2

⌉
except for K3,3,3, K4,4,1 and K4,4,3. Further,

γ̃(K3,3,3) = 3, γ̃(K4,4,1) = 4 and γ̃(K4,4,3) = 6.

(d). If p ≥ q + r, then γ̃(Kp,q,r,s) ≥
⌈
(p−2)(q+r+s−2)

2

⌉
.

If p ≤ q + r, then γ̃(Kp,q,r,s) ≥
⌈
(p+s−2)(q+r−2)

2

⌉
.

Proposition 2 (([16] Theorem 1.3) (Euler formula)). Let ϕ : G → Nk be a two-cell embedding
of a connected graph G to the non-orientable surface Nk. Then |V| − |E| + |F| = 2 − k, where
|V|, |E|, and |F| are the number of vertices, edges, and faces that ϕ(G) has, respectively, and k is
the crosscap of Nk.

The following is an easy observation that will be used in the proof of the main theo-
rem.

Observation 1. Let G be a simple graph with |E| edges embedded with |F| faces. Then 2|E|
|F| ≥

gr(G) where gr(G) denotes the length of the shortest cycle in G.

3. Basic Results and Notations

Before going into the classifications, we need to be familiar with the following nota-
tions and observations given by Parsapour and Javaheri in [20].

Notation: ([20]) Let L be a lattice and A(L) = {a1, a2, . . . , an} be the set of all atoms. Let
i1, i2, . . . , ik be integers with 1 ≤ i1 < i2 < . . . < ik ≤ n. The notation Ui1i2 ...ik stands for the
following set:{

I ⊴L : {ai1 , ai2 , . . . , aik} ⊆ I and aij /∈ I for ij ∈ {1, 2, . . . , n} \ {i1, i2, . . . , ik}
}

.

The next result provides the structure of AG(L).

Proposition 3. Let L be a lattice with n atoms. Then AG(L) is a 2n − 2-partite graph.

Proof. Let |A(L)| = n. For 1 ≤ i1 < i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk′ ≤
n, if the index sets {i1, i2, . . . , ik} and {j1, j2, . . . , jk′} of Ui1i2 ...ik and Uj1 j2 ...jk′ respectively,
are distinct, then Ui1i2 ...ik ∩ Uj1 j2 ...jk′ = ∅. Clearly, V(AG(L)) =

∪
1≤i1<i2<...<ik≤n

Ui1i2 ...ik .
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Therefore, for 1 ≤ i1 < i2 < . . . < ik ≤ n, the set Ui1i2 ...ik forms a partition of V(AG(L)).
Since 0 ̸= ai1 belongs to every ideal in Ui1i2 ...ik , no pair of distinct vertices in Ui1i2 ...ik are
adjacent in AG(L). Note that the number of distinct Ui1i2 ...ik s is 2n − 1. This, together with
the fact that every vertex in U12...n is isolated in AG(L), implies that AG(L) is a 2n − 2-
partite graph.

According to the abovementioned result regarding the structure of AG(L), in order
to identify the crosscap two r-partite graph or to classify the forbidden r-partite graphs of
a non-orientable surface of order two for some 3 ≤ r ∈ N, one may be interested in finding
all crosscap two annihilating-ideal graphs. This is the main objective of this paper.

We shall also need the following notations:

Notations: Before proving our main results, the following points are assumed for conve-
nience in notations and clarity in proofs. Let us take |A(L)| = n.

• To avoid repetition, we assume |U1| ≥ |U2| ≥ . . . ≥ |Un|.
• We denote the vertices of the set Ui1i2 ...ik by {Ii1i2 ...ik , I′i1i2 ...ik

, I′′i1i2 ...ik
, . . .}.

• For an integer p, an integer different from p will be denoted by p′.
• For the sake of convenience, we shall denote U(i1i2 ...ik)c = Uj1 j2 ...jℓ where

j1, j2, . . . , jℓ = {1, 2, . . . , n} \ {i1, i2, . . . , ik} and the notation U(i1i2 ...ik)c exists only when
Ui1i2 ...ik ̸= ∅.

• The edge between the two vertices I and J is denoted by (I, J).
• The notations |F| and fi denote the number of faces and number of i-gons in an em-

bedding of G in Nk, respectively.
• There may be sets Ui1i2 ...ik such that each vertex of Ui1i2 ...ik is isolated, ends, or is

adjacent to exactly two ends of an edge in AG(L). In such places, the vertices of
Ui1i2 ...ik do not affect the crosscap number of AG(L), which leads to ignoring the set
Ui1i2 ...ik from the corresponding embedding. This fact is used throughout the article
and is sometimes not explicitly pointed out.

• For convenience in any drawing, we provide a particular type of N2-embedding of
AG(L). This means that instead of drawing graphs for the case Uij with 1 ≤ i ≤ j ≤ 3,
we assume i = 1 and j = 2 in figures. Additionally, the notation · · · is used to denote
the possibility of embedding any number of vertices.

We show a few simple, but useful, properties of a crosscap on AG(L). We now state
and prove the following lemma, which provides a subgraph and super-graph structure of
AG(L).

Lemma 1. Let L be a lattice, |A(L)| = n, and n ≥ k ∈ N. Let αi1i2 ...ik = |Ui1i2 ...ik |, λ =
max{αi1i2 ...ik} for all 1 ≤ i1 < i2 < . . . < ik ≤ n. Then

(a). Kα1,α2,...,αn is a subgraph of AG(L).
(b). K(2n−2)(λ) is a super-graph of AG(L).

Proof. Let H be the induced subgraph of AG(L), induced by the vertex subset
∪n

i=1 Ui. It
is clear that no two distinct vertices in Ui are adjacent, and every vertex in Ui is adjacent
to all of the vertices of Uj for i ̸= j in AG(L). Thus H = Kα1,α2,...,αn .

The second part follows from the facts that V(AG(L)) =
∪

Ui1i2 ...ik ; the number of
vertex subsets Ui1i2 ...ik , except U12...n, in V(AG(L)) is (n

1) + (n
2) + . . . + ( n

n−1) = 2n − 2; and
λ = max{αi1i2 ...ik}.

We are now in the position to provide a lower bound for the crosscap of AG(L).
Applying Proposition 1c,d in the first part of the above lemma, we obtain the following
result.

Theorem 1. Let L be a lattice, |A(L)| = n ≥ 3, and |U1| ≥ |U2| ≥ . . . ≥ |Un|.
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(a). If n = 3, then γ̃(AG(L)) ≥
⌈
(|U1|−2)(|U2|+|U3|−2)

2

⌉
. Moreover, the equality holds whenever

Uij = ∅ for all 1 ≤ i ≤ j ≤ 3.

(b). If n ≥ 4, then γ̃(AG(L)) ≥


⌈
(|U1|−2)(|U2|+|U3|+|U4|−2)

2

⌉
i f |U1| ≥ |U2|+ |U3|⌈

(|U1|+|U4|−2)(|U2|+|U3|−2)
2

⌉
i f |U1| < |U2|+ |U3|.

We now enter into the core part of the paper. We first observe that AG(L) is totally
disconnected when |A(L)| = 1, and AG(L) contains K7 as a subgraph when |A(L)| ≥
7. Further, according to Proposition 1a, the crosscap of K7 is three. Thus, one obtains
the following result, which provides a bound for the number of atoms in lattice L with
γ̃(AG(L)) = 2.

Proposition 4. Let L be a lattice. If the crosscap of the annihilating-ideal graph AG(L) is two,
then 2 ≤ |A(L)| ≤ 6.

We start the characterization by analyzing the simple case that |A(L)|
= 2. If |A(L)| = 2, then Theorem 2.6 [20] implies that AG(L) ∼= K|U1|,|U2|, and so

γ̃(AG(L)) =
⌈
(|U1| − 2)(|U2| − 2)

2

⌉
whenever |U1|, |U2| ≥ 2. Now, a simple calculation has yielded the following result, which
characterized lattice L with a crosscap two AG(L) in the case of |A(L)| = 2.

Theorem 2. Let L be a lattice and |A(L)| = 2. Then γ̃(AG(L)) = 2 if and only if |U1| =
|U2| = 4 or |Ui| = 3 and |Uj| ∈ {5, 6} where i, j ∈ {1, 2} with i ̸= j.

To finish this section we show two results that will be used to prove the main results.
The graphs given in Figures 1 and 2 play a vital role in characterizing a lattice with cross-
cap two annihilating-ideal graphs, and, therefore, we draw the graph with its embedding
in the first result.

Lemma 2. For the graphs H1 and H2, as shown in Figures 1 and 2, we have γ̃(H1) = γ̃(H2) = 2.
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Proof. (a). Consider the subgraph H′
3 = H3 − {u1}. Clearly H′

3
∼= K7 − e where e =

(u2, u3) and there are 13 faces in any N2-embedding of H′
3 in which 12 are triangular and

one is rectangular. Now we try to recover an N2-embedding of H3 by inserting u1 with its
edges. Since u1 is adjacent to four vertices of H′

3, u1 should be inserted into the rectangular
face of H′

3. But every vertex of H′
3 is adjacent to each other except u2 and u3 so that

the rectangular face of H′
3 must contain either u2 or u3, a contradiction to u2 and u3 not

belonging to the neighborhood set of u1. Therefore γ̃(H3) ≥ 3.
(b). Apply a similar argument as in (a) for the subgraph H′

4 = H4 − {u1} ∼= K7 − 2e.
Here notice that the largest face in any N2-embedding of H′

4 is a unique pentagon and u1
is adjacent to the five vertices v1, v2, v3, v4 and u4.

4. The Case When |A(L)| = 3

Let us start the classification result with lattice containing exactly 3 atoms. Note that
the following theorem provides a class of multipartite graphs, which are embedded in the
Klein bottle, refer Example 1 for illustration.

Theorem 3. Let L be a lattice with |A(L)| = 3 and let 1 ≤ i ̸= j ̸= k ≤ 3. Then γ̃(AG(L)) = 2
if and only if one of the following conditions hold:

(i). |∪3
n=1 Un| = 9, there is Ui with |Ui| = 6 and Ujk = ∅.
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[a] There is Ui with |Ui| = 6 and |Ujk| = 1.

Figure 2. The graph H2 and its N2-embedding.

The graphs H3 and H4 given in Figure 3 play a vital role in our main theorems.

Lemma 3. For the graphs H3 and H4, as shown in Figure 3, we have γ̃(H3) ≥ 3 and γ̃(H4) ≥ 3.

Mathematics 2023, 1, 0 6 of 25

bb

b b

b b

b b

b

(b). An N2-embedding of H2

b

b

b v3

v1

v1

v2

v2

u5

u5

u1

u6

u6

u3

u2

b b

bb

b

b

b b

(a). The graph H2

b
b

b

b

b

u4 u4

u4u4

u1 u2 u3 u5u4

v1

u6

v3v2

Figure 2. The graph H2 and its N2-embedding.

The graphs H3 and H4 given in Figure 3 play a vital role in our main theorems.

Lemma 3. For the graphs H3 and H4 as shown in Figure 3, we have γ̃(H3) ≥ 3 and γ̃(H4) ≥ 3.

b b

bb

b

b

b

b

(a). Graph H3

u1

v1

u2 u4u3

v2 v3 v4

b b

bb

b

b

b

b

(b). Graph H4

u1

v1

u2 u4u3

v2 v3 v4

Figure 3. The graphs H3 and H4.

Proof. (a). Consider the subgraph H′
3 = H3 − {u1}. Clearly H′

3
∼= K7 − e where e =

(u2, u3) and there are 13 faces in any N2-embedding of H′
3 in which 12 are triangular and

one is rectangular. Now we try to recover an N2-embedding of H3 by inserting u1 with its
edges. Since u1 is adjacent to four vertices of H′

3, u1 should be inserted into the rectangular
face of H′

3. But every vertex of H′
3 is adjacent to each other except u2 and u3 so that

the rectangular face of H′
3 must contain either u2 or u3, a contradiction to u2 and u3 not

belonging to the neighborhood set of u1. Therefore γ̃(H3) ≥ 3.
(b). Apply a similar argument as in (a) for the subgraph H′

4 = H4 − {u1} ∼= K7 − 2e.
Here notice that the largest face in any N2-embedding of H′

4 is a unique pentagon and u1
is adjacent to the five vertices v1, v2, v3, v4 and u4.

4. The Case When |A(L)| = 3

Let us start the classification result with lattice containing exactly 3 atoms. Note that
the following theorem provides a class of multipartite graphs, which are embedded in the
Klein bottle, refer Example 1 for illustration.

Theorem 3. Let L be a lattice with |A(L)| = 3 and let 1 ≤ i ̸= j ̸= k ≤ 3. Then γ̃(AG(L)) = 2
if and only if one of the following conditions hold:

(i). |∪3
n=1 Un| = 9, there is Ui with |Ui| = 6 and Ujk = ∅.

(ii). |∪3
n=1 Un| = 8 and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 6 and |Ujk| = 1.

Figure 3. The graphs H3 and H4.

Proof. (a). Consider the subgraph H′
3 = H3 − {u1}. Clearly H′

3
∼= K7 − e where e =

(u2, u3), and there are 13 faces in any N2-embedding of H′
3 of which 12 are triangular, and

1 is rectangular. Now, we try to recover an N2-embedding of H3 by inserting u1 with its
edges. Since u1 is adjacent to four vertices of H′

3, u1 should be inserted into the rectangular
face of H′

3. However, all vertices of H′
3 are adjacent to each other, except for u2 and u3, so

the rectangular face of H′
3 must contain either u2 or u3, which is in contradiction to u2 and

u3 not belonging to the neighborhood set of u1. Therefore, γ̃(H3) ≥ 3.
(b). Apply a similar argument as in (a) for the subgraph H′

4 = H4 − {u1} ∼= K7 − 2e.
Here, notice that the largest face in any N2-embedding of H′

4 is a unique pentagon, and u1
is adjacent to the five vertices v1, v2, v3, v4, and u4.

4. The Case When |A(L)| = 3

Let us start the classification result with a lattice containing exactly three atoms. Note
that the following theorem provides a class of multipartite graphs, which are embedded
in the Klein bottle (refer to Example 1 for an illustration).

Theorem 3. Let L be a lattice with |A(L)| = 3, and let 1 ≤ i ̸= j ̸= k ≤ 3. Then γ̃(AG(L)) =
2 if and only if one of the following conditions hold:

(i). |∪3
n=1 Un| = 9; there is Ui with |Ui| = 6 and Ujk = ∅.

(ii). |∪3
n=1 Un| = 8, and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 6 and |Ujk| = 1.



Mathematics 2023, 11, 1553 7 of 26

[b] There exist Ui and Uj such that |Ui| ∈ {5, 4} and |Uj| = 2 with Ujk = ∅.
[c] There exist Ui and Uj such that |Ui| = 4 and |Uj| = 3 with Uik = Ujk = ∅.
[d] There exist Ui and Uj such that |Ui| = |Uj| = 3 with Uij = Uik = Ujk = ∅.

(iii). |∪3
n=1 Un| = 7, and one of the following cases is satisfied:

[a] There is Ui with |Ui| ∈ {5, 4} and |Ujk| = 1.
[b] There exist Ui and Uj such that |Ui| = |Uj| = 3 with either |Uik| ∈ {1, 2} and

Ujk = ∅ or Uik = ∅ and |Ujk| ∈ {1, 2}.
[c] There exist Ui and Uj such that |Ui| = 3, |Uj| = 2 with |Ujk| ∈ {1, 2}. Further, if

|Ujk| = 1, then either Uij = ∅ or Uik = ∅ and, if |Ujk| = 2, then Uij = Uik = ∅.

(iv). |∪3
n=1 Un| = 6, and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 4 and |Ujk| = 2.
[b] There is Ui with |Ui| = 3 and |Ujk| ∈ {2, 3}.

(v). |∪3
n=1 Un| = 5; there is Ui with |Ui| = 3 and |Ujk| ∈ {3, 4}.

Proof. Assume that γ̃(AG(L)) = 2. First of all, if |∪3
n=1 Un| ≤ 4, then AG(L) is planar

(see [19]). Suppose |∪3
n=1 Un| ≥ 10. If |U2| ≥ 2, then by Theorem 1 we have γ̃(AG(L)) ≥⌈

(|U1|−2)(|U2|+|U3|−2)
2

⌉
≥ 3, which is a contradiction. Suppose |U2| = 1. Then |U3| = 1.

Note that every vertex in U12, U13, and U23 is adjacent to all of the vertices of U3, U2, and
U1, respectively. So, if U23 = ∅, then clearly AG(L) is planar. If not, the vertices in U1 are
adjacent to all of the vertices of U2 ∪U3 ∪U23. Since |U1| ≥ 8, K8,3 is a subgraph of AG(L)
that has a crosscap of more than three, refer to Proposition 1a. Thus, 5 ≤ |∪3

n=1 Un| ≤ 9.
Case 1 Let |∪3

n=1 Un| = 9. Then, clearly, |U1| ≤ 7. If |U1| = 7, then a slight modifi-
cation to the discussion made in the above paragraph would show that AG(L) is planar
whenever U23 = ∅ and the graph AG(L) contains K7,3 as a subgraph when U23 ̸= ∅.
If |U1| = 6, then |U2| = 2 and |U3| = 1. Now, if U23 ̸= ∅, then AG(L) contains K6,4
as a subgraph, which is a contradiction. So, U23 = ∅. Here, all of the vertices in U12
are adjacent to a single vertex of U3, and, therefore, the vertices in U12 do not affect the
crosscap. In Figure 4a, we provide the canonical representation of the embedding of the
resulting graph in N2 so that, in this case, γ̃(AG(L)) = 2. Next, if |U1| = 5 or 4, then
|U2|+ |U3| ≥ 4, and so, by Theorem 1a, we obtain γ̃(AG(L)) ≥ 3. Thus, |U1| = 3, and,
therefore, |U2| = |U3| = 3. Here, K3,3,3 is a subgraph of AG(L), and, therefore, according
to Proposition 1c, we have γ̃(AG(L)) ≥ 3.

Case 2 Let |∪3
n=1 Un| = 8.

If |U1| = 6, then |U2| = |U3| = 1. Clearly, by [19], AG(L) is planar in the case that
U23 is empty. If |U23| ≥ 2, then the partite sets X = U1 and Y = U2 ∪ U3 ∪ U23 form
K6,4 as a subgraph in AG(L), which is a contradiction. Therefore, |U23| = 1. In this case,
the vertices in U13 ∪ U12 are all end vertices, and, therefore, it does not affect the crosscap.
Thus, the resulting graph is K6,3 ∪ {(I2, I3)}, which is a subgraph of a graph given in
Figure 2a, and, therefore, γ̃(AG(L)) = 2.

Suppose |U1| ∈ {5, 4}. Then, according to Theorem 1a, we have γ̃(AG(L)) ≥ 2.
If U23 ̸= ∅, then the sets X = U1 and Y = U2 ∪U3 ∪U23 form K5,4 as a subgraph of AG(L),
and so γ̃(AG(L)) ≥ 3. Therefore, U23 = ∅. Let |U2| = 2, |U12| ≥ 0, and |U13| ≥ 0. For
the embedding of AG(L) in N2, in the case of |U1| = 5, we can obtain help from Figure 4a
because the number of vertices and edges of AG(L) is less than that of in Figure 4a. Fur-
ther, Figure 4b provides an N2-embedding of AG(L) in the case of |U1| = 4. Here, notice
that the open neighborhood of each vertex in U13 is {I2, I′2}, and, in Figure 4a,b, there is a
face in an N2-embedding of AG(L) that contains both I2 and I′2 so that every vertex of U13
can be embedded in N2 no matter what its cardinality may be. Let |U2| = 3. This implies
that |U1| = 4. If U13 = ∅ (recall that U23 = ∅), then AG(L) is a subgraph of the graph
H1 in Figure 1, and, therefore, according to Lemma 2, γ̃(AG(L)) = 2. If not, consider
that the subgraph AG(L)− {(I3, I1), (I3, I′1), (I3, I′′1 ), (I3, I′′′1 )} contains K3,6. By Euler’s
formula, any embedding of K3,6 in N2 has nine faces. Further, by solving the equations
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2|E| = 4 f4 + 6 f6 and |F| = f4 + f6, we have all the faces as rectangular faces in any
N2-embedding of K3,6. Now we try to recover the embedding of AG(L) by inserting all
edges (I3, I1), (I3, I′1), (I3, I′′1 ), (I3, I′′′1 ) into the embedding of K3,6. Since degK3,6(I3) = 3,
the vertex I3 is in the boundary of three rectangular faces of any N2-embedding of K3,6.
In addition, note that, at the maximum, each rectangular face can adopt one edge incident
with I3. So, we cannot insert all four edges of I3 into N2 without crossing, which is a
contradiction. Thus, γ̃(AG(L)) ≥ 3.
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Suppose |U1| = 3. If Uij = ∅ for all 1 ≤ i < j ≤ 3, then by Proposition 1c, we have
γ̃(AG(L)) = 2. Next, our claim is Uij = ∅ for all 1 ≤ i < j ≤ 3.

Assume that U12 ̸= ∅. Then the minor subgraph

AG(L)− {(I1, I′3), (I′1, I′3), (I′′1 , I′3), (I2, [I3, I12]), (I′2, [I3, I12]), (I′′2 , [I3, I12])} ∼= K4,4

with partite sets X = U2 ∪ {[I3, I12]} and Y = U1 ∪ {I′3}. By Euler formula, any N2-
embedding of K4,4 has eight rectangular faces. Next, we attempt to get an N2-embedding
of AG(L) from any N2-embedding of K4,4. For that, we try to embed the six omitted
edges of AG(L) into an arbitrary N2-embedding of K4,4. First, to embed the three edges
(I1, I′3), (I′1, I′3) and (I′′1 , I′3), it requires three rectangular faces, name it as F1, F2 and F3,
all of which contains I′3 (refer Figure 5a). Since degK4,4(I′3) = 4, exactly one more face
should have I′3, denote it as F4. Intentionally, label the diagonals of F4 by the vertices I2
and [I3, I12] because F4 can adopt one diagonal edge that can be used to embed the fourth
edge (I2, [I3, I12]). Finally, to embed the rest of the two edges (I′2, [I3, I12]) and (I′′2 , [I3, I12]),
it requires two distinct faces, denote it by F5 and F6, which should have the vertex [I3, I12].
Note that, in any Nk-embedding, every edge of a graph is in exactly two faces. Since the
edge (I1, [I3, I12]) is in F2 and the edge (I′1, [I3, I12]) is in F4, the common edge between
F5 and F6 must be (I′′1 , [I3, I12]). Now the choice for the unlabelled vertex of F5 and F6 is
either I1 or I′1. Without loss of generality, we label I1 for F5 and I′1 for F6 (refer Figure 5b).
Since any N2-embedding of K4,4 has eight faces, there are two more faces, lets say F7 and
F8, have to be formed using all remaining vertices and edges of K4,4. Notice that, in any
N2-embedding of K4,4, each vertex is present in exactly four faces and each edge in exactly
two faces. Since the vertices I2 ∈ X and I′1 ∈ Y are used twice in the faces F1, . . . , F6, the
faces F7 and F8 must share the edge (I2, I′1) (refer Figure 5c). Now the choices for the third
and fourth vertices of F7 and F8 are I′2, I′′2 ∈ X and I1, I′′1 ∈ Y respectively. Clearly, we have
to select distinct vertices for F7 and F8, in which one is from {I′2, I′′2 } and another from
{I1, I′′1 }. A contradiction to the fact is that the edges (I′2, I1) and (I′′2 , I′′1 ) are used twice in
the faces F1, . . . , F6.

Figure 4. N2-embedding of AG(L).

Suppose |U1| = 3. If Uij = ∅ for all 1 ≤ i < j ≤ 3, then, by Proposition 1c, we have
γ̃(AG(L)) = 2. Next, our claim is that Uij = ∅ for all 1 ≤ i < j ≤ 3.

Assume that U12 ̸= ∅. Then the minor subgraph is

AG(L)− {(I1, I′3), (I′1, I′3), (I′′1 , I′3), (I2, [I3, I12]), (I′2, [I3, I12]), (I′′2 , [I3, I12])} ∼= K4,4

with the partite sets X = U2 ∪ {[I3, I12]} and Y = U1 ∪ {I′3}. By Euler’s formula, any
N2-embedding of K4,4 has eight rectangular faces. Next, we attempt to obtain an N2-
embedding of AG(L) from any N2-embedding of K4,4. For this, we try to embed the six
omitted edges of AG(L) into an arbitrary N2-embedding of K4,4. First, to embed the three
edges (I1, I′3), (I′1, I′3), and (I′′1 , I′3), three rectangular faces are required, denoted as F1, F2,
and F3, all of which contains I′3 (refer to Figure 5a). Since degK4,4(I′3) = 4, exactly one more
face should have I′3; it is denoted as F4. Intentionally, we label the diagonals of F4 as the
vertices I2 and [I3, I12] because F4 can adopt one diagonal edge that can be used to embed
the fourth edge (I2, [I3, I12]). Finally, to embed the rest of the two edges (I′2, [I3, I12]) and
(I′′2 , [I3, I12]), two distinct faces are required, denoted by F5 and F6, which should have the
vertex [I3, I12]. Note that, in any Nk-embedding, every edge of a graph is in exactly two
faces. Since the edge (I1, [I3, I12]) is in F2 and the edge (I′1, [I3, I12]) is in F4, the common
edge between F5 and F6 must be (I′′1 , [I3, I12]). Now, the choice for the unlabelled vertex of
F5 and F6 is either I1 or I′1. Without a loss of generality, we label I1 for F5 and I′1 for F6 (refer
to Figure 5b). Since any N2-embedding of K4,4 has eight faces, there are two more faces,
lets say F7 and F8, that have to be formed using all of the remaining vertices and edges of
K4,4. Notice that, in any N2-embedding of K4,4, each vertex is present in exactly four faces,
and each edge is present in exactly two faces. Since the vertices I2 ∈ X and I′1 ∈ Y are
used twice in the faces F1, . . . , F6, the faces F7 and F8 must share the edge (I2, I′1) (refer to
Figure 5c). Now, the choices for the third and fourth vertices of F7 and F8 are I′2, I′′2 ∈ X
and I1, I′′1 ∈ Y, respectively. Clearly, we have to select distinct vertices for F7 and F8, in
which one is from {I′2, I′′2 } and the other is from {I1, I′′1 }. A contradiction to this fact is that
the edges (I′2, I1) and (I′′2 , I′′1 ) are used twice in the faces F1, . . . , F6.
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Figure 5. Faces representation of N2-embedding of K4,4.

Assume that Ui3 ̸= ∅ for some i ∈ {1, 2}. Then the subgraph AG(L)− {Ii3, (Ii, I3),
(I′i , I3), (I′′i , I3)} contains K4,4 − e with partite sets X = Ui ∪ {I3} and Y = Ui′ ∪ {I′3} where
i′ ∈ {1, 2} \ {i} and e = (I3, I′3). By Proposition 2, any N2-embedding of K4,4 − e has one
hexagonal and six rectangular faces. Note that the hexagonal face should have either I3 or
I′3 and the vertex Ii3 is adjacent to {Ii′ , I′i′ , I′′i′ } ⊂ Y. So Ii3 with its edges must be inserted
into the hexagonal face which implies that I3 is in the hexagonal face. Since degK4,4−e(I3)
= 3, exactly two rectangular faces contain I3 in which it is not possible to embed all the
three edges (Ii, I3), (I′i , I3) and (I′′i , I3), a contradiction. Thus Uij = ∅ for all i, j ∈ {1, 2, 3}.

Case 3 Let |∪3
n=1 Un| = 7.

Suppose |U1| ∈ {5, 4}. Clearly AG(L) is either planar or projective when U23 = ∅
(refer [19] and [20]) and K5,4 is a subgraph of the contraction of AG(L) when |U23| ≥ 2.
Therefore |U23| will be 1. Then AG(L) is a subgraph of the graph given in Figure 4a
whenever |U1| = 5 and AG(L) is a subgraph of the graph given in Figure 4b whenever
|U1| = 4 so that γ̃(AG(L)) = 2.

Assume |U1| = |U2| = 3. Then AG(L) is projective when Ui3
= ∅ for all i = 1, 2 and the graph AG(L) contains K3,7 as a subgraph when |Ui3| ≥ 3
for some i = 1, 2. Suppose U13 ̸= ∅ and U23 ̸= ∅. Now the graph AG(L)−{I3} is isomor-
phic to K4,4 − {e} with bipartite sets {I1, I′1, I′′1 , I13} and {I2, I′2, I′′2 , I23} where e = (I13, I23).
Note that γ̃(K4,4 − {e}) = 2 and there are 7 faces in any N2-embedding of K4,4 − {e} in
which 6 are rectangular and one is hexagonal. Since γ̃(K4,4) = 2 and every face in any N2-
embedding of K4,4 is rectangular, the hexagonal face of any N2-embedding of K4,4 − {e}
must have the vertices I13 and I23. Now we try to recover an N2-embedding of AG(L)
from an N2-embedding of K4,4 − {e} by inserting I3 with its edges. Here I3 is adjacent to
six vertices I1, I′1, I′′1 , I2, I′2 and I′′2 . But the hexagonal face of K4,4 − {e} does not contain
two of them so that γ̃(AG(L)) ≥ 3. Therefore either U13 = ∅ or U23 = ∅. Now by the
help of Figure 6, we have γ̃(AG(L)) = 2 whenever 1 ≤ |Ui3| ≤ 2 for unique i ∈ {1, 2}.
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Assume |U1| = 3 and |U2| = 2. If |U23| ≥ 3, then AG(L) contains K3,7 as a subgraph
and if U23 = ∅, then by Theorem 2.4iii [20], AG(L) is projective. Suppose |U23| = 2.
If U1j ̸= ∅ for j = 2 or 3, then consider a subgraph G1 = AG(L)− {I1j, I′23, e1, e2, e3, e4}

Figure 5. Representation of faces of N2-embedding of K4,4.

Assume that Ui3 ̸= ∅ for some i ∈ {1, 2}. Then, the subgraph AG(L)− {Ii3, (Ii, I3),
(I′i , I3), (I′′i , I3)} contains K4,4 − e with the partite sets X = Ui ∪ {I3} and Y = Ui′ ∪ {I′3}
where i′ ∈ {1, 2} \ {i} and e = (I3, I′3). By Proposition 2, any N2-embedding of K4,4 − e
has one hexagonal and six rectangular faces. Note that the hexagonal face should have
either I3 or I′3, and the vertex Ii3 is adjacent to {Ii′ , I′i′ , I′′i′ } ⊂ Y. So, Ii3 with its edges must
be inserted into the hexagonal face, which implies that I3 is in the hexagonal face. Since
degK4,4−e(I3)
= 3, exactly two rectangular faces contain I3 in which it is not possible to embed all of
the three edges (Ii, I3), (I′i , I3), and (I′′i , I3), which is a contradiction. Thus, Uij = ∅ for all
i, j ∈ {1, 2, 3}.

Case 3 Let |∪3
n=1 Un| = 7.

Suppose |U1| ∈ {5, 4}. Clearly, AG(L) is either planar or projective when U23 = ∅
(refer to [19,20]), and K5,4 is a subgraph of the contraction of AG(L) when |U23| ≥ 2.
Therefore, |U23| will be one. Then, AG(L) is a subgraph of the graph given in Figure 4a
when |U1| = 5, and AG(L) is a subgraph of the graph given in Figure 4b when |U1| = 4
so that γ̃(AG(L)) = 2.

Assume that |U1| = |U2| = 3. Then, AG(L) is projective when Ui3
= ∅ for all i = 1, 2, and the graph AG(L) contains K3,7 as a subgraph when |Ui3| ≥ 3
for some i = 1, 2. Suppose U13 ̸= ∅ and U23 ̸= ∅. Now, the graph AG(L) − {I3} is
isomorphic to K4,4 − {e} with the bipartite sets {I1, I′1, I′′1 , I13} and {I2, I′2, I′′2 , I23} where
e = (I13, I23). Note that γ̃(K4,4 − {e}) = 2, and there are seven faces in any N2-embedding
of K4,4 − {e}, of which six are rectangular, and one is hexagonal. Since γ̃(K4,4) = 2
and every face in any N2-embedding of K4,4 is rectangular, the hexagonal face of any
N2-embedding of K4,4 − {e} must have the vertices I13 and I23. Now, we try to recover
an N2-embedding of AG(L) from an N2-embedding of K4,4 − {e} by inserting I3 with its
edges. Here, I3 is adjacent to the six vertices I1, I′1, I′′1 , I2, I′2, and I′′2 . However, the hexag-
onal face of K4,4 − {e} does not contain two of them so that γ̃(AG(L)) ≥ 3. Therefore,
either U13 = ∅ or U23 = ∅. Now, with the help of Figure 6, we have γ̃(AG(L)) = 2 when
1 ≤ |Ui3| ≤ 2 for a unique i ∈ {1, 2}.
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Assume that Ui3 ̸= ∅ for some i ∈ {1, 2}. Then the subgraph AG(L)− {Ii3, (Ii, I3),
(I′i , I3), (I′′i , I3)} contains K4,4 − e with partite sets X = Ui ∪ {I3} and Y = Ui′ ∪ {I′3} where
i′ ∈ {1, 2} \ {i} and e = (I3, I′3). By Proposition 2, any N2-embedding of K4,4 − e has one
hexagonal and six rectangular faces. Note that the hexagonal face should have either I3 or
I′3 and the vertex Ii3 is adjacent to {Ii′ , I′i′ , I′′i′ } ⊂ Y. So Ii3 with its edges must be inserted
into the hexagonal face which implies that I3 is in the hexagonal face. Since degK4,4−e(I3)
= 3, exactly two rectangular faces contain I3 in which it is not possible to embed all the
three edges (Ii, I3), (I′i , I3) and (I′′i , I3), a contradiction. Thus Uij = ∅ for all i, j ∈ {1, 2, 3}.

Case 3 Let |∪3
n=1 Un| = 7.

Suppose |U1| ∈ {5, 4}. Clearly AG(L) is either planar or projective when U23 = ∅
(refer [19] and [20]) and K5,4 is a subgraph of the contraction of AG(L) when |U23| ≥ 2.
Therefore |U23| will be 1. Then AG(L) is a subgraph of the graph given in Figure 4a
whenever |U1| = 5 and AG(L) is a subgraph of the graph given in Figure 4b whenever
|U1| = 4 so that γ̃(AG(L)) = 2.

Assume |U1| = |U2| = 3. Then AG(L) is projective when Ui3
= ∅ for all i = 1, 2 and the graph AG(L) contains K3,7 as a subgraph when |Ui3| ≥ 3
for some i = 1, 2. Suppose U13 ̸= ∅ and U23 ̸= ∅. Now the graph AG(L)−{I3} is isomor-
phic to K4,4 − {e} with bipartite sets {I1, I′1, I′′1 , I13} and {I2, I′2, I′′2 , I23} where e = (I13, I23).
Note that γ̃(K4,4 − {e}) = 2 and there are 7 faces in any N2-embedding of K4,4 − {e} in
which 6 are rectangular and one is hexagonal. Since γ̃(K4,4) = 2 and every face in any N2-
embedding of K4,4 is rectangular, the hexagonal face of any N2-embedding of K4,4 − {e}
must have the vertices I13 and I23. Now we try to recover an N2-embedding of AG(L)
from an N2-embedding of K4,4 − {e} by inserting I3 with its edges. Here I3 is adjacent to
six vertices I1, I′1, I′′1 , I2, I′2 and I′′2 . But the hexagonal face of K4,4 − {e} does not contain
two of them so that γ̃(AG(L)) ≥ 3. Therefore either U13 = ∅ or U23 = ∅. Now by the
help of Figure 6, we have γ̃(AG(L)) = 2 whenever 1 ≤ |Ui3| ≤ 2 for unique i ∈ {1, 2}.
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Assume |U1| = 3 and |U2| = 2. If |U23| ≥ 3, then AG(L) contains K3,7 as a subgraph
and if U23 = ∅, then by Theorem 2.4iii [20], AG(L) is projective. Suppose |U23| = 2.
If U1j ̸= ∅ for j = 2 or 3, then consider a subgraph G1 = AG(L)− {I1j, I′23, e1, e2, e3, e4}

Figure 6. |∪3
n=1 Un| = 7 with |U1| = |U2| = 3, U13 = ∅ and |U23| = 2.
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Assume that |U1| = 3 and |U2| = 2. If |U23| ≥ 3, then AG(L) contains K3,7 as a sub-
graph, and, if U23 = ∅, then, by Theorem 2.4iii [20], AG(L) is projective. Suppose |U23| =
2. If U1j ̸= ∅ for j = 2 or 3, then consider a subgraph G1 = AG(L)− {I1j, I′23, e1, e2, e3, e4}
where e1 = (I2, I3), e2 = (I2, I′3), e3 = (I′2, I3), and e4 = (I′2, I′3). Clearly, G1 contains
K3,5 with the partite sets X = {I1, I′1, I′′1 } and Y = {I2, I′2, I3, I′3, I23}. Note that any N2-
embedding of K3,5 has one hexagonal and six rectangular faces. Now, we try to recover an
N2-embedding of AG(L) from any N2-embedding of K3,5. Since I′23 is adjacent to all three
vertices of X, the embedding of I′23 requires the hexagonal face of K3,5 to have I1, I′1, and I′′1 .
Notice that each rectangular face may adopt at most one edge into it. So, to insert e f s, for
1 ≤ f ≤ 4, into any N2-embedding of K3,5, four rectangular faces with diagonals as the end
vertices of each e f are required. At last, to insert I1j, a rectangular face with the diagonals
Ij′ and I′j′ for j′ ∈ {2, 3} \ {j} is required. Therefore, it requires one hexagonal face with
five rectangular faces containing the vertices I2, I′2, I3, and I′3 in at least three different faces.
Since the degree of I2, I′2, I3, and I′3 in K3,5 is three, all four vertices are placed in exactly
three faces of any N2-embedding of K3,5. So, the sixth rectangular face of K3,5 could not
be formed using the only left-out vertex in X (namely I23), which is a contradiction. Thus,
U12 = U13 = ∅, and an N2-embedding of AG(L) for this case is provided in Figure 7a.

Suppose |U23| = 1. If U1j ̸= ∅ for j = 2 and 3, then the minor subgraph is

G2 = AG(L)− {I13, e1, e2, e3, e4, e5} ∼= K4,4 − {e}, (1)

with the bipartite sets {I1, I′1, I′′1 , I3} and {I2, I′2, [I′3, I12], I23} where e1 = (I1, I3), e2 = (I′1, I3),
e3 = (I′′1 , I3), e4 = (I2, [I′3, I12]), e5 = (I′2, [I′3, I12]), and e = (I3, I23). Note that any N2-
embedding of K4,4 −{e} has six rectangular faces and a hexagonal face, and the hexagonal
face must have the vertices I3 and I23. Let us denote the six rectangular faces by F1, . . . , F6
and the hexagonal face by F7. Now, let us try to recover an N2-embedding of AG(L) by in-
serting the vertex I13 and the edges ei for all i = 1, . . . , 5. If we embed the edge e4, the edge
e5, or the vertex I13 together with its edges into F7, then we cannot insert the edges e1, e2, or
e3 into F7. Since degG2(I3) = 3, the vertex I3 is in exactly three faces of an N2-embedding
of G2. So, in such cases, the edges e1, e2 and e3 cannot be embedded in two rectangular
faces which contains I3. Therefore we have to add at least one of the edges e1, e2 or e3 into
F7. For the best possibility, say e1 and e2 are embedded in F7. Then, e3 has to be embedded
into one of the two rectangular faces that contains I3, for example, F1. Notice that there are
two rectangular faces, say F2 and F3, that contain I23, in which one should not embed any
of e4, e5, or I13 with its edges. So, the edges e4 and e5 have to be embedded into different
rectangular faces, say F4 and F5, respectively. Therefore, after embedding the edges from
e1 to e5 nicely, we are left with the single rectangular face F6 that could not be formed using
the diagonal vertices I2 and I′2. Thus, γ̃(AG(L)) ≥ 3. Hence, either U12 = ∅ or U13 = ∅.
In this case, with the help of Figure 7b, we obtain γ̃(AG(L)) = 2.
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where e1 = (I2, I3), e2 = (I2, I′3), e3 = (I′2, I3) and e4 = (I′2, I′3). Clearly G1 contains K3,5 with
partite sets X = {I1, I′1, I′′1 } and Y = {I2, I′2, I3, I′3, I23}. Note that any N2-embedding of K3,5
has one hexagonal and six rectangular faces. Now we try to recover an N2-embedding of
AG(L) from any N2-embedding of K3,5. Since I′23 is adjacent to all the three vertices of
X, to embed I′23 it requires the hexagonal face of K3,5 to have I1, I′1 and I′′1 . Notice that
each rectangular face may adopt at most one edge into it. So to insert e f ’s, for 1 ≤ f ≤ 4,
in any N2-embedding of K3,5, it requires four rectangular faces with diagonals as the end
vertices of each e f . At last to insert I1j, it requires a rectangular face with diagonals Ij′ and
I′j′ for j′ ∈ {2, 3} \ {j}. Therefore it requires one hexagonal face with five rectangular faces
that contains the vertices I2, I′2, I3 and I′3 in at least three different faces. Since the degree
of I2, I′2, I3 and I′3 in K3,5 is 3, all the four vertices are placed in exactly three faces of any
N2-embedding of K3,5. So the sixth rectangular face of K3,5 could not be formed using the
only one left out vertex in X(namely I23), a contradiction. Thus U12 = U13 = ∅ and an
N2-embedding of AG(L) for this case is provided in Figure 7a.

Suppose |U23| = 1. If U1j ̸= ∅ for j = 2 and 3, then the minor subgraph

G2 = AG(L)− {I13, e1, e2, e3, e4, e5} ∼= K4,4 − {e}, (1)

with bipartite sets {I1, I′1, I′′1 , I3} and {I2, I′2, [I′3, I12], I23} where e1 = (I1, I3), e2 = (I′1, I3), e3 =
(I′′1 , I3), e4 = (I2, [I′3, I12]), e5 = (I′2, [I′3, I12]) and e = (I3, I23). Note that any N2-embedding
of K4,4 − {e} has 6 rectangular faces and a hexagonal face, and the hexagonal face must
have the vertices I3 and I23. Let us denote the 6 rectangular faces by F1, . . . , F6 and the
hexagonal face by F7. Now let us try to recover an N2-embedding of AG(L) by inserting
the vertex I13 and the edges ei for all i = 1, . . . , 5. If we embed the edge e4 or the edge e5 or
the vertex I13 together with its edges into F7, then we cannot insert the edge e1 or e2 or e3
into F7. Since degG2(I3) = 3, the vertex I3 is in exactly three faces of an N2-embedding of
G2. So, in such cases, the edges e1, e2 and e3 cannot be embedded in two rectangular faces
which contains I3. Therefore we have to add at least one of the edges e1, e2 or e3 into F7. For
the best possibility, say e1 and e2 are embedded in F7. Then e3 has to be embedded into one
of the two rectangular faces that contains I3, say F1. Notice that there are two rectangular
faces, say F2 and F3, that contains I23 in which one should not embed any of e4 or e5 or I13
with its edges. So the edges e4 and e5 has to be embedded into different rectangular faces,
say F4 and F5 respectively. Therefore, after embedding the edges from e1 to e5 nicely, we
are left-out with the single rectangular face F6 that could not be formed using the diagonal
vertices I2 and I′2. Thus γ̃(AG(L)) ≥ 3. Hence either U12 = ∅ or U13 = ∅. For this case,
with the help of Figure 7b, we get γ̃(AG(L)) = 2.
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in AG(L) and if |U23| = 1, then AG(L) is projective. Therefore |U23| = 2. Clearly
AG(L)(except end vertices) is a subgraph of the graph H1 given in Figure 1a and so
Lemma 2 implies γ̃(AG(L)) = 2.
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Case 4 Let |∪3
n=1 Un| = 6. Suppose |U1| = 4. If |U23| ≥ 3, then K4,5 is contained

in AG(L), and if |U23| = 1, then AG(L) is projective. Therefore |U23| = 2. Clearly,
AG(L)(except for the end vertices) is a subgraph of the graph H1 given in Figure 1a, and
so Lemma 2 implies γ̃(AG(L)) = 2.

Suppose |U1| = 3. Then AG(L) contains K3,7 when |U23| ≥ 4, and AG(L) is projec-
tive when |U23| ≤ 1. Thus, 2 ≤ |U23| ≤ 3. Then, AG(L) − {U13} is a subgraph of the
graph H2 (see Figure 2a), so that γ̃(AG(L)− {U13}) = 2. Note that every vertex in U13
is adjacent to exactly two vertices of U2 in AG(L). Therefore, replace the labels u4 and u5
with I2 and I′2, respectively, in the N2-embedding of H2 provided in Figure 2b, and then
label all of the other vertices accordingly. Now, we can insert any number of vertices of
U13 into a face that contains both I2 and I′2 so that γ̃(AG(L)) = 2.

Moreover, if |U1| = 2, then AG(L) is either planar or projective (refer to [19,20]).
Case 5 Let |∪3

n=1 Un| = 5. Then AG(L) is planar or projective when |U1| = 2. This
implies that |U1| = 3. If |U23| ≥ 5, then AG(L) contains K3,7, and, if |U23| ≤ 2, then
AG(L) is projective. Thus, |U23| = 3 or 4. Then, clearly, AG(L) is a subgraph of the graph
H1, as in Figure 2a, so that γ̃(AG(L)) = 2.

All of the results proved in this paper have a similar structure to that of those given
in the statement of Theorem 3. To familiarize readers with the connection between the
multipartite graph and the statement of Theorem 3, we illustrate two four-partite graphs,
G and H, with γ̃(G) = 2 and γ̃(H) ̸= 2, respectively, in the following example.

Example 1. Consider Case (iii)[c] in Theorem 3. Let |U1| = 3, |U2| = 2, |U3| = 2, and
|U23| = 1. If |U12| = k ∈ Z+ and U13 = ∅, then the corresponding four-partite graph G is
a crosscap two, which is given in Figure 8a. Additionally, if |U12| = 1 and |U13| = 1, then
the crosscap of the corresponding four-partite graph H, given in Figure 8b, is not equal
to two. It is worth mentioning that the four-partite graph H in Figure 8b is minimal with
respect to γ̃(H) ̸= 2; that is, there exists an edge e in H such that γ̃(H − e) = 2. Further,
the graph H may be realized as one of the forbidden subgraphs for a crosscap two surface.
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Suppose |U1| = 3. Then AG(L) contains K3,7 when |U23| ≥ 4 and AG(L) is projec-
tive when |U23| ≤ 1. Thus 2 ≤ |U23| ≤ 3. Then AG(L) − {U13} is a subgraph of the
graph H2, see Figure 2a so that γ̃(AG(L)− {U13}) = 2. Note that every vertex in U13 is
adjacent to exactly two vertices of U2 in AG(L). So replace the labelling u4 and u5 as I2
and I′2 respectively in the N2-embedding of H2 provided in Figure 2b, and then label all
the other vertices accordingly. Now we can insert any number of vertices of U13 in a face
that contains both I2 and I′2 so that γ̃(AG(L)) = 2.

Moreover if |U1| = 2, then AG(L) is either planar or projective (refer [19] and [20]).
Case 5 Let |∪3

n=1 Un| = 5. Then AG(L) is planar or projective when |U1| = 2. This
implies |U1| = 3. If |U23| ≥ 5, then AG(L) contains K3,7 and if |U23| ≤ 2, then AG(L) is
projective. Thus |U23| = 3 or 4. Then clearly AG(L) is a subgraph of the graph H1 as in
Figure 2a so that γ̃(AG(L)) = 2.

All the results proved in this paper have a similar structure to that of those given in
the statement of Theorem 3. In order to make the readers more familiar with the connec-
tion between the multipartite graph and the statement of Theorem 3, we illustrate two
4-partite graphs G and H with γ̃(G) = 2 and γ̃(H) ̸= 2 respectively, in the following
example.

Example 1. Consider the case (iii)[c] in Theorem 3. Let |U1| = 3, |U2| = 2, |U3| = 2 and
|U23| = 1. If |U12| = k ∈ Z+ and U13 = ∅, then the corresponding 4-partite graph G
is crosscap two which is given in Figure 8a. Also, if |U12| = 1 and |U13| = 1, then the
crosscap of corresponding 4-partite graph H, given in Figure 8b, is not equal to two. It
is worth to mention that the 4-partite graph H in Figure 8b is minimal with respect to
γ̃(H) ̸= 2; that is there exists an edge e in H such that γ̃(H − e) = 2. Further, the graph H
may be realized as one of the forbidden subgraphs for crosscap two surface.
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By using the proof of Theorem 3, we establish the following points which will be used
in the subsequent results.

Remark 1. If a graph G is isomorphic to K6,3 ∪ (K4 − e) or K4,5 − e where e is an edge, then
γ̃(G) ≥ 3.

5. The Case when |A(L)| = 4

Next we fix the number of atoms as 4. As mentioned in the introduction, for 1 ≤ i ̸=
j ≤ 4, we denote U(ij)c = Ukℓ where k, ℓ ∈ {1, 2, 3, 4} \ {i, j} and the notation U(ij)c exists
only when Uij ̸= ∅. Before going into the characterization of crosscap two AG(L) with
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By using the proof of Theorem 3, we establish the following points, which will be
used in the subsequent results.

Remark 1. If a graph G is isomorphic to K6,3 ∪ (K4 − e) or K4,5 − e where e is an edge, then
γ̃(G) ≥ 3.

5. The Case When |A(L)| = 4

Next, we fix the number of atoms as four. As mentioned in the introduction, for
1 ≤ i ̸= j ≤ 4, we denote U(ij)c = Ukℓ where k, ℓ ∈ {1, 2, 3, 4} \ {i, j}, and the notation
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U(ij)c exists only when Uij ̸= ∅. Before going into the characterization of the crosscap two
AG(L) with |A(L)| = 4, we provide modifications for Theorem 2.6 [20]. To be precise,
the missing cases and the corresponding conditions for the projectiveness of AG(L) are
given below.

(i) First of all, consider the missing case |∪4
n=1 Un| = 4. Then, |Ui| = 1 for all 1 ≤

i ≤ 4. Clearly, AG(L) is planar whenever
∪

Uij ̸=∅
U(ij)c = ∅. Therefore,

∪
Uij ̸=∅

U(ij)c ̸= ∅.

If |Uij ∪ U(ij)c | ≥ 4 with Uij, U(ij)c ̸= ∅, then the subgraph induced by the sets X =
Ui ∪ Uj ∪ Uij and Y =

∪
k ̸=i,j

Uk ∪ U(ij)c contains K4,4 or K3,5 as a subgraph. This implies

γ̃(AG(L)) ≥ 2. Therefore, 2 ≤ |Uij ∪ U(ij)c | ≤ 3 if Uij, U(ij)c ̸= ∅ for 1 ≤ i ̸= j ≤ 4.
Suppose |Uij ∪ U(ij)c | = 3 for some Uij, U(ij)c ̸= ∅ with 1 ≤ i ̸= j ≤ 4. If Ukℓ, U(kℓ)c ̸=

∅ for kℓ ̸= ij, then the subgraph AG(L) − {Uij ∪ U(ij)c} contains K3,3 with the partite
sets X = Uk ∪ Uℓ ∪ Ukℓ and Y =

∪
m ̸=k,ℓ

Um ∪ U(kℓ)c . Note that γ̃(K3,3) = 1. Now, we try to

embed all of the vertices of Uij ∪U(ij)c with their edges in any N1-embedding of K3,3. Since
|Uij ∪ U(ij)c | = 3, either |Uij| = 2 or |U(ij)c | = 2. Without a loss of generality, let |Uij| = 2.
Since the vertex I(ij)c ∈ U(ij)c is adjacent to Iij, I′ij ∈ Uij, all of the three vertices Iij, I′ij, and
I(ij)c must be embedded into a single face of the N1-embedding of K3,3, denoted as F1. Now,
draw the path Iij − I(ij)c − I′ij into F1 and then draw the edges (Iij, Im), (Iij, In), (I′ij, Im), and
(I′ij, In) where m, n /∈ {i, j}. Now, the edges (I(ij)c , Ii) and (I(ij)c , Ij) cannot be embedded
into F1. Therefore, γ̃(AG(L)) ≥ 2. Thus,

∪
kℓ ̸=ij,(ij)c ;Ukℓ ̸=∅

U(kℓ)c = ∅.

Suppose |Uij ∪ U(ij)c | = 2 for all Uij, U(ij)c ̸= ∅ with 1 ≤ i ̸= j ≤ 4. Then, Figure 9
guarantees that γ̃(AG(L)) = 1.
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|A(L)| = 4, we provide modifications for Theorem 2.6 [20]. To be precise, the missing
cases and the corresponding conditions for the projectiveness of AG(L) are given below.

(i) First of all, consider the missing case |∪4
n=1 Un| = 4. Then |Ui| = 1 for all 1 ≤ i ≤ 4.

Clearly AG(L) is planar whenever
∪

Uij ̸=∅
U(ij)c = ∅. Therefore

∪
Uij ̸=∅

U(ij)c ̸= ∅. If |Uij ∪

U(ij)c | ≥ 4 with Uij, U(ij)c ̸= ∅, then the subgraph induced by the sets X = Ui ∪ Uj ∪ Uij
and Y =

∪
k ̸=i,j

Uk ∪ U(ij)c contains K4,4 or K3,5 as a subgraph. This implies γ̃(AG(L)) ≥ 2.
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∅ for kℓ ̸= ij, then the subgraph AG(L) − {Uij ∪ U(ij)c} contains K3,3 with partite sets
X = Uk ∪ Uℓ ∪ Ukℓ and Y =

∪
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Um ∪ U(kℓ)c . Note that γ̃(K3,3) = 1. Now we try to

embed all the vertices of Uij ∪ U(ij)c with its edges in any N1-embedding of K3,3. Since
|Uij ∪ U(ij)c | = 3, either |Uij| = 2 or |U(ij)c | = 2. Without loss of generality, let |Uij| = 2.
Since the vertex I(ij)c ∈ U(ij)c is adjacent to Iij, I′ij ∈ Uij, all the three vertices Iij, I′ij and
I(ij)c must be embedded into a single face of N1-embedding of K3,3, name it as F1. Now
draw the path Iij − I(ij)c − I′ij into F1 and then draw the edges (Iij, Im), (Iij, In), (I′ij, Im) and
(I′ij, In) where m, n /∈ {i, j}. Now the edges (I(ij)c , Ii) and (I(ij)c , Ij) cannot be embedded
into F1. Therefore γ̃(AG(L)) ≥ 2. Thus

∪
kℓ ̸=ij,(ij)c ;Ukℓ ̸=∅

U(kℓ)c = ∅.

Suppose |Uij ∪ U(ij)c | = 2 for all Uij, U(ij)c ̸= ∅ with 1 ≤ i ̸= j ≤ 4. Then Figure 9
guarantees that γ̃(AG(L)) = 1.
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Figure 9. |∪4
n=1 Un| = 4 with |Uij ∪ U(ij)c | ≤ 2 for all Uij, U(ij)c ̸= ∅.

(ii) Let |∪4
n=1 Un| = 5. Then |Ui| = 2 for some 1 ≤ i ≤ 4 and the condition for

the projectiveness of AG(L) given in Theorem 2.6i [20] is that |Ujk| = 1 or 2 in which at
most one of the Ujk’s has exactly two elements for 1 ≤ i ̸= j ̸= k ≤ 4. But, if |Ujk| = 2
with U(jk)c ̸= ∅, then the sets X = Ui ∪ Uℓ ∪ U(jk)c and Y = Uj ∪ Uk ∪ Ujk, where ℓ /∈
{i, j, k}, contains K4,4 in AG(L) so that we get γ̃(AG(L)) ≥ 2. In fact, if |Ujk| = 2 for some
j, k ̸= i, then

∪
p,q ̸=i;Upq ̸=∅

U(pq)c = ∅. Otherwise, the sets X = Uj ∪ Uk ∪ Ujk ∪ [Ipq, I(pq)c ]

and Y = U1 ∪ Uℓ, where ℓ /∈ {i, j, k}, form K5,3 so we can conclude that γ̃(AG(L)) ≥ 2.
Further, if |Ujk| ≤ 1 for all j, k ̸= i, then | ∪

p,q ̸=i;Upq ̸=∅
U(pq)c | ≤ 1. For if |U(pq)c | ≥ 2, then

the sets X = Up ∪ Uq ∪ Upq and Y = Ui ∪ Ur ∪ U(pq)c , where r /∈ {i, p, q}, form K3,5
and if |U(pq)c |, |U(p1q1)c | = 1 for some 1 ≤ p1 ̸= q1 ≤ 4 with p1q1 ̸= pq, then the sets
X = Up ∪ Uq ∪ Upq ∪ {[Ip1q1 , I(p1q1)c ]} and Y = Ui ∪ Ur ∪ U(pq)c form K4,4 − {e} in AG(L)
where r /∈ {i, p, q}.

(iii) Let |∪4
n=1 Un| = 6. If there exists |Ui| = 3 for some 1 ≤ i ≤ 4, then the statement

of ([20] Theorem 2.6(ii)(a)) says that if Ujkℓ = ∅ for 1 ≤ i ̸= j ̸= k ̸= ℓ ≤ 4, |Ujk| ≤ 1
and at most one of the Ujk’s has exactly one element, then AG(L) is projective. But, for
instants, if |Ujk| = 1 with U(jk)c = Uiℓ ̸= ∅, then the partite sets X = Ui ∪ Uℓ ∪ Uiℓ and
Y = Uj ∪Uk ∪Ujk, contains K5,3 as a subgraph of AG(L) so that γ̃(AG(L)) ≥ 2. Therefore
the condition U(jk)c = ∅ has to be added in the statement of ([20] Theorem 2.6iia).

Figure 9. |∪4
n=1 Un| = 4 with |Uij ∪ U(ij)c | ≤ 2 for all Uij, U(ij)c ̸= ∅.

(ii) Let |∪4
n=1 Un| = 5. Then, |Ui| = 2 for some 1 ≤ i ≤ 4, and the condition for the

projectiveness of AG(L) given in Theorem 2.6i [20] is that |Ujk| = 1 or 2, in which at most
one of the Ujks has exactly two elements for 1 ≤ i ̸= j ̸= k ≤ 4. However, if |Ujk| = 2 with
U(jk)c ̸= ∅, then the sets X = Ui ∪ Uℓ ∪ U(jk)c and Y = Uj ∪ Uk ∪ Ujk, where ℓ /∈ {i, j, k},
contain K4,4 in AG(L) so that we obtain γ̃(AG(L)) ≥ 2. In fact, if |Ujk| = 2 for some
j, k ̸= i, then

∪
p,q ̸=i;Upq ̸=∅

U(pq)c = ∅. Otherwise, the sets X = Uj ∪ Uk ∪ Ujk ∪ [Ipq, I(pq)c ]

and Y = U1 ∪ Uℓ, where ℓ /∈ {i, j, k}, form K5,3, so we can conclude that γ̃(AG(L)) ≥ 2.
Further, if |Ujk| ≤ 1 for all j, k ̸= i, then | ∪

p,q ̸=i;Upq ̸=∅
U(pq)c | ≤ 1. For if |U(pq)c | ≥ 2, then

the sets X = Up ∪ Uq ∪ Upq and Y = Ui ∪ Ur ∪ U(pq)c , where r /∈ {i, p, q}, form K3,5,
and, if |U(pq)c |, |U(p1q1)c | = 1 for some 1 ≤ p1 ̸= q1 ≤ 4 with p1q1 ̸= pq, then the sets
X = Up ∪ Uq ∪ Upq ∪ {[Ip1q1 , I(p1q1)c ]} and Y = Ui ∪ Ur ∪ U(pq)c form K4,4 − {e} in AG(L)
where r /∈ {i, p, q}.

(iii) Let |∪4
n=1 Un| = 6. If there exists |Ui| = 3 for some 1 ≤ i ≤ 4, then the statement

of ([20] Theorem 2.6(ii)(a)) says that if Ujkℓ = ∅ for 1 ≤ i ̸= j ̸= k ̸= ℓ ≤ 4, |Ujk| ≤ 1, and
at most one of the Ujks has exactly one element, then AG(L) is projective. However, for
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instance, if |Ujk| = 1 with U(jk)c = Uiℓ ̸= ∅, then the partite sets X = Ui ∪ Uℓ ∪ Uiℓ and
Y = Uj ∪ Uk ∪ Ujk contain K5,3 as a subgraph of AG(L) so that γ̃(AG(L)) ≥ 2. Therefore,
the condition U(jk)c = ∅ has to be added to the statement of ([20] Theorem 2.6iia).

As a result of the above remarks (i), (ii), and (iii), we modify the statement of ([20]
Theorem 2.6) as follows.

Theorem 4. Let L be a lattice with |A(L)| = 4. Let 1 ≤ i ̸= j ̸= k ̸= ℓ ≤ 4 and 1 ≤ p ̸= q ≤ 4.
Then γ̃(AG(L)) = 1 if and only if one of the following conditions hold:

(i). |∪4
n=1 Un| = 4; there exist two non-empty sets Uij and U(ij)c such that 2 ≤ |Uij ∪U(ij)c | ≤

3. Moreover, if |Uij ∪ U(ij)c | = 3, then
∪

pq ̸=ij,(ij)c ;Upq ̸=∅
U(pq)c = ∅.

(ii). |∪4
n=1 Un| = 5; there is Ui with |Ui| = 2, | ∪

p,q ̸=i
Upq| ≤ 4 in which at most one of the

Upqs has a maximum of two elements, and | ∪
Upq ̸=∅

U(pq)c | ≤ 1. Moreover, if |Upq| = 2, then∪
Upq ̸=∅

U(pq)c = ∅, and, if
∪

p,q ̸=i
Upq = ∅, then Ujkℓ ̸= ∅.

(iii). |∪4
n=1 Un| = 6, and one of the following is satisfied:

[a] There is Ui with |Ui| = 3. If |Ujkℓ| = 1, then Ujk = Ujℓ = Ukℓ = ∅ and if
Ujkℓ = ∅, then |Ujk ∪ Ujℓ ∪ Ukℓ| ≤ 1. Moreover, U(pq)c = ∅ whenever Upq ̸= ∅.

[b] There exist Ui and Uj such that |Ui| = |Uj| = 2 with |Ukℓ| ≤ 1. Additionally,
U(pq)c = ∅ whenever Upq ̸= ∅. Moreover, if |Uik|, |Uiℓ| ≤ 1 or |Ujk|, |Ujℓ| ≤ 1, then
|Ukℓ| ≤ 1. Furthermore, if |Uik| = |Ujk| = 1 or |Uiℓ| = |Ujℓ| = 1, then Ukℓ = ∅.

(iv). |∪4
n=1 Un| = 7 and one of the following is satisfied:

[a] There is Ui with |Ui| = 4 and Ujkℓ = Ujk = ∅.

[b] There exist Ui and Uj such that |Ui| = 3 and |Uj| = 2. Additionally, Ukℓ = ∅, and
Ujkℓ = ∅ whenever Uik = Uiℓ = Ujk = Ujℓ = ∅.

We are now in the position to state and prove the second result which classifies all
lattices L with four atoms whose AG(L) has a crosscap two.

Theorem 5. Let L be a lattice with |A(L)| = 4. Let 1 ≤ i ̸= j ̸= k ̸= ℓ ≤ 4 and 1 ≤
p, q, r, s, t ≤ 4. Then γ̃(AG(L)) = 2 if and only if one of the following conditions hold:

(i). |∪4
n=1 Un| = 9; there is Ui with |Ui| = 6 and Ujk = Ujℓ = Ukℓ = Ujkℓ = ∅.

(ii). |∪4
n=1 Un| = 8, and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 5 and Ujk = Ujℓ = Ukℓ = Ujkℓ = ∅.
[b] There exist Ui and Uj such that |Ui| = 4, |Uj| = 2 and

∪
pq ̸=ij

Upq = Ujkl = ∅.
[c] There exist Ui and Uj such that |Ui| = |Uj| = 3 and

∪
pq ̸=ij

Upq = Uikℓ = Ujkℓ = ∅.

[d] There exist Ui, Uj, and Uk such that |Ui| = 3, |Uj| = |Uk| = 2, and
∪

Upq =∪
pqr ̸=ijk

Upqr = ∅ for 1 ≤ p ̸= q ̸= r ≤ 4.

(iii). |∪4
n=1 Un| = 7, and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 4 and | ∪
p,q ̸=i

Upq ∪ Ujkℓ| = 1. Moreover, U(pq)c = ∅ when-

ever |Upq| = 1 for p, q ̸= i.

[b] There exist Ui and Uj such that |Ui| = 3, |Uj| = 2 and | ∪
p,q ̸=i

Upq ∪ Ujkℓ| ≤ 1.

Moreover, if | ∪
p,q ̸=i

Upq ∪ Ujkℓ| = 1, then U(pq)c = ∅ and Uik = Uiℓ = Uikℓ = ∅, and if∪
p,q ̸=i

Upq ∪ Ujkℓ = ∅, then |Uik ∪ Uiℓ| ∈ {1, 2}.

[c] There exist Ui, Uj, and Uk such that |Ui| = |Uj| = |Uk| = 2 with |∪ Upq| ≤ 2, in
which at most one of the Upℓs has exactly one element, and, also, at most two distinct sets’
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Ursts are non-empty for all rst ̸= ijk. Moreover, if |Upq| = 2 or |Upℓ| = 1 for p, q ̸= ℓ, then
at most one of the Ursts is non-empty.

(iv). |∪4
n=1 Un| = 6, and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 3, | ∪
p,q ̸=i

Upq ∪ Ujkℓ| ∈ {2, 3} in which |Upq| ≤ 2, and

| ∪
Upq ̸=∅

U(pq)c | ≤ 1. Moreover, if |Upq| ∈ {1, 2} with |Ujkℓ| = 2, then
∪

Upq ̸=∅
U(pq)c = ∅.

[b] There exist Ui and Uj such that |Ui| = |Uj| = 2 and |Uij ∪ Ukℓ| ≤ 3 with
|Uij|, |Ukℓ| ≤ 2. Additionally, if |Uij| = 2, then |Ukℓ| ≤ 1 and

∪
pq ̸=ij,kℓ

Upq = Uikℓ =

Ujkℓ = ∅, and, if |Uij| = 1, then |Ukℓ| ≤ 1 and | ∪
pq ̸=ij,kℓ

Upq| ≤ 1. Moreover, in the case of

Uij = ∅, one of the following hold:

[b1] If |Ukℓ| = 2, then | ∪
pq ̸=ij,kℓ

Upq| ≤ 2 in which |Upq| ≤ 1 and∪
Upq ̸=∅

U(pq)c = ∅.

[b2] If |Ukℓ| = 1, then |Urs| ≤ 3 with U(rs)c = ∅ where |Urs| = max
pq ̸=ij,kℓ

|Upq| and

| ∪
mn ̸=ij,kℓ,rs,(rs)c

Umn| ≤ 1.

[b3] If Ukℓ = ∅, then | ∪
pq ̸=ij,kℓ

Upq| ≤ 4 in which at most three Upqs are non-empty.

Furthermore, if |Upq| ∈ {2, 3}, then U(pq)c = ∅.

(v). |∪4
n=1 Un| = 5; there exists Ui such that |Ui| = 2 and 1 ≤ | ∪

p,q ̸=i
Upq| ≤ 6 in which

|Upq| ≤ 4. Moreover,

[a] If |Upq| = 4, then U(pq)c = ∅, | ∪
r,s ̸=i;rs ̸=pq

Urs| ≤ 1, and
∪

Urs ̸=∅
U(rs)c = ∅.

[b] If |Upq| = 3, then U(pq)c = ∅, | ∪
r,s ̸=i;rs ̸=pq

Urs| ≤ 2 and U(rs)c = ∅ whenever

|Urs| = 2.

[c] In the case of |Upq| = 2, one of the following holds

[c1] If | ∪
r,s ̸=i;rs ̸=pq

Urs| = 4, then
∪

Urs ̸=∅
U(rs)c = ∅.

[c2] If | ∪
r,s ̸=i;rs ̸=pq

Urs| ∈ {2, 3}, then | ∪
Urs ̸=∅

U(rs)c | ≤ 1. In addition, | ∪
Urs ̸=∅

U(rs)c | =

1 whenever | ∪
r,s ̸=i;rs ̸=pq

Urs| = 2 in which exactly two Urss are non-empty.

[c3] If | ∪
r,s ̸=i;rs ̸=pq

Urs| ≤ 1, then either U(pq)c = ∅ with 1 ≤ | ∪
Urs ̸=∅

U(rs)c | ≤ 2 or

U(rs)c = ∅ with |U(pq)c | ≤ 1.
[d] If |Upq| ≤ 1 for all 1 ≤ p ̸= q ̸= i ≤ 4, then 2 ≤ | ∪

Upq ̸=∅
U(pq)c | ≤ 3 in which at

most two distinct U(pq)c s are non-empty.

(vi). |∪4
n=1 Un| = 4; there exist two non-empty sets Uij and U(ij)c such that 2 ≤ |Uij ∪U(ij)c | ≤

5, and one of the following cases is satisfied:

[a] If |Uij ∪ U(ij)c | = 5, then either |Uij| = 4 or |U(ij)c | = 4. Further,∪
pq ̸=ij,(ij)c ;Upq ̸=∅

U(pq)c = ∅.

[b] If |Uij ∪ U(ij)c | = 4, then |Upq ∪ U(pq)c | = 2 whenever Upq, U(pq)c ̸= ∅ for
pq ̸= ij. Further, if |Uij| = |U(ij)c | = 2, then at most one pair of Upq, U(pq)c is nonempty
for all pq ̸= ij.

[c] If |Uij ∪ U(ij)c | = 3, then |Upq ∪ U(pq)c | ∈ {2, 3} whenever Upq, U(pq)c ̸= ∅ for
pq ̸= ij. Further, if U(rs)c ̸= ∅ for 1 ≤ r ̸= s ≤ 4 and rs ̸= pq, ij, then |Urs ∪ U(rs)c | ∈
{2, 3} with |(Upq ∪ U(pq)c) ∪ (Urs ∪ U(rs)c)| ∈ {4, 5}.
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Proof. Assume that γ̃(AG(L)) = 2. Then, by Theorem 1b, we have |∪4
n=1 Un| ≤ 9. So,

4 ≤ |∪4
n=1 Un| ≤ 9.

Case 1 Let |∪4
n=1 Un| = 9. Then, by Theorem 1b, γ̃(AG(L)) = 2 implies |U1| = 6.

If Uij ̸= ∅ or Uijk ̸= ∅ for some i ̸= 1, then the sets X = U1 and Y = V(AG(L)) \ U1
contain K6,4, which has a crosscap four. So, Uij, Uijk = ∅ for all i ̸= 1. Here, remember
that every vertex in U1jk is an end vertex, and every vertex in U1j is of degree two. Let G12

be the induced subgraph of AG(L) induced by the vertex subset
∪4

n=1 Un. It is clear that
G12

∼= K6,1,1,1, and G12 is a subgraph of the graph H2 given in Figure 2a with the labels
uℓ ∈ U1 (for ℓ = 1, . . . , 6), I2 = v1, I3 = v2, and I4 = v3. By Figure 2b, the N2-embedding
of G12 contains three different faces with vertices I2, I3; I3, I4;, and I2, I4, respectively. So,
any number of vertices in U1j can be embedded into the N2-embedding of G12 without
edge-crossing. Thus, γ̃(AG(L)) = 2.

Case 2 Let |∪4
n=1 Un| = 8.

Case 2.1 Suppose |U1| ∈ {5, 4}. If Uij ̸= ∅ or Uijk ̸= ∅ for some i ̸= 1, then AG(L)
contains K5,4 as a subgraph, which is a contradiction. Therefore, Uij = ∅ and Uijk = ∅
for all i ̸= 1. Now, if |U1| = 5, then AG(L) is a subgraph of the annihilating-ideal graph
in Case 1 with |U1| = 6 so that γ̃(AG(L)) = 2. Suppose |U1| = 4. Here, |U2| = 2. If
I ∈ ∪

i ̸=1
Uij ∪ U234, then AG(L) contains a copy of K4,5 where the partite sets are U1 and

U2 ∪ U3 ∪ U4 ∪ {I} so that γ̃(AG(L)) ≥ 3. If U1j ̸= ∅ for some j ∈ {3, 4}, then AG(L)
contains K5,4 − e as a subgraph with the partition sets U1 ∪ U1j and U2 ∪ U3 ∪ U4 so that,
by Remark 1, we have γ̃(AG(L)) ≥ 3. Therefore,

∪
ij ̸=12

Uij = ∅ and U234 = ∅. In this case,

one can retrieve an N2-embedding of AG(L) from Figure 4b by changing the label I′3 to I4
and its related edges such that γ̃(AG(L)) = 2.

Case 2.2 Suppose |U1| = 3. Let |U2| = 3. If Uij ̸= ∅ or Uijk ̸= ∅ for ij ̸= 12, then
AG(L) contains K4,5 − e, which is a contradiction. Therefore, Uij = ∅ and Uijk = ∅ for
all ij ̸= 12. In this case, the crosscap of AG(L) is same as the crosscap of K3,3,1,1 so that
γ̃(AG(L)) = 2. Let |U2| = 2 and I ∈ ∪

ijk ̸=123
Uij ∪ Uijk.

• In the case that I ∈ Uij for ij ∈ {12, 13}, the contraction of AG(L) induced by the
partite sets X = Ui ∪ U4 and Y = Uj ∪ {Ik, [I′k, Iij]}, where k /∈ {i, j, 4}, forms a copy
of H4.

• In the case that I ∈ Uij for ij ∈ {14, 23, 24, 34}, the graph AG(L) contains K5,4 with
the partite sets Ui ∪ Uj ∪ Uij and Uk ∪ Uℓ where k, ℓ /∈ {i, j}.

• In the case that I ∈ ∪
ijk ̸=123

Uijk, the contraction of AG(L) induced by (
∪4

n=1 Un \

{Iℓ}) ∪ {[Iℓ, I]} forms H4 where ℓ is the least integer in {1, 2, 3, 4} \ {i, j, k}.

Thus,
∪

ijk ̸=123
Uij ∪Uijk = ∅, and, so, the crosscap of AG(L) is the crosscap of K3,2,2,1, which

is two.
Case 2.3 Suppose |U1| = 2. Then, K2,2,2,2 is a subgraph of AG(L). Suppose

γ̃(K2,2,2,2) = 2. Then, by Euler’s formula, the number of faces in an N2 embedding of
K2,2,2,2 is 16 so that all the faces are triangular, which contradicts the fact that K2,2,2,2 has
no triangular embedding (see [27]). Thus, γ̃(AG(L)) ≥ 3.

Case 3 Let |∪4
n=1 Un| = 7.

Case 3.1 Suppose |U1| = 4. If | ∪
i ̸=1

Uij ∪ Uijk| ≥ 2, then AG(L) contains K4,5 with

one partite set X = U1, and, so, γ̃(AG(L)) ≥ 3. Further, by Theorem 4iv, AG(L) is
projective whenever Uij = Uijk = ∅ for all i ̸= 1. Therefore, | ∪

i ̸=1
Uij ∪ Uijk| = 1, and let

I ∈ ∪
i ̸=1

Uij ∪ Uijk. Now, if U1j = ∅ for all 2 ≤ j ≤ 4, then it is easy to verify that AG(L)

is isomorphic to a subgraph of the graph H1 (see Figure 1a). Therefore, by Lemma 2, we
have γ̃(AG(L)) = 2. So, let U1j ̸= ∅ for some 2 ≤ j ≤ 4. Suppose Ukℓ = ∅ for 2 ≤ j ̸=
k ̸= ℓ ≤ 4. Here, the open neighbor of each vertex in U1j is Ik and Iℓ in AG(L). Let G13 be
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the induced subgraph of AG(L) induced by the vertex subset
∪4

n=1 Un ∪ {I}. Clearly, G13
is a subgraph of the graph H1 given in Figure 1a with the labels uℓ ∈ U1 (for ℓ = 1, . . . , 4),
v1 = I2, v2 = I3, v3 = I4, and v4 = I. Since (I3, I4), (I2, I4), (I2, I3) ∈ E(AG(L)), any
number of vertices in U1j (for 2 ≤ j ≤ 4) can be embedded in the N2-embedding of G13
without edge-crossing, and, therefore, γ̃(AG(L)) = 2. Now, take Ukℓ ̸= ∅ for 2 ≤ j ̸=
k ̸= ℓ ≤ 4. Note that the set Ukℓ is nothing but the singleton set {I}. Now, consider the
subgraph G14 = AG(L)− {I1j, (Ij, Ik), (Ik, Iℓ), (Ij, Iℓ), (I, Ij)}, which is isomorphic to K4,4
with the partition sets X = U1 and Y = {Ij, Ik, Iℓ, I}. Note that any N2-embedding of
G14 has eight rectangular faces so that each face shares exactly two vertices from X and Y.
In AG(L), the vertex I1j is adjacent to three vertices of Y, namely Ik, Iℓ, and I. Therefore,
one cannot insert I1j with its edges into N2 without crossing, which is a contradiction.

Case 3.2 Suppose |U1| = 3. Then, |U2| = 2. If | ∪
i ̸=1

Uij ∪ Uijk| ≥ 2, then it is easy to

check that the contraction of AG(L) contains either K4,5 − e or K3,6 ∪ (K4 − e) as a sub-
graph, and, so, by Remark 1, we have γ̃(AG(L)) ≥ 3. Therefore, | ∪

i ̸=1
Uij ∪ Uijk| ≤ 1.

Assume | ∪
i ̸=1

Uij ∪ Uijk| = 1. If Uij ̸= ∅, then U(ij)c = ∅; otherwise, the graph induced

by the partition sets X = U1 ∪ U3 and Y = U2 ∪ U4 ∪ [Iij, I(ij)c ] form H4 in AG(L) so
that γ̃(AG(L)) ≥ 3. Further, if I ∈ U13 ∪ U14 ∪ U134, then consider the graph AG(L) −
{I, e1, e2, e3, e4, e5} ∼= K4,4 − e with the bipartite sets {I1, I′1, I′′1 , Ij} and {Ii, I′i , Ik, Iijk} where
e1 = (I1, Ij), e2 = (I′1, Ij), e3 = (I′′1 , Ij), e4 = (Ii, Ik), e5 = (I′i , Ik)}, and e = (Ij, Iijk). Now,
a similar argument given for G2 (refer to Equation 1) leads to γ̃(AG(L)) ≥ 3. Therefore,
| ∪
i ̸=1

Uij ∪ Uijk| = 1 with U13 = U14 = U134 = ∅. In this case, with the help of Figure 10a,

we obtain γ̃(AG(L)) = 2. Notice that in Figure 10a, we take |U34| = 1.
Assume

∪
i ̸=1

Uij ∪ Uijk = ∅. If |U1j| ≥ 3 for some j ∈ {3, 4}, then the sets X = U2 ∪ Uj′

and Y = U1 ∪ Uj ∪ U1j, where j′ ∈ {3, 4} \ {j}, form K3,7. So, |U1j| ≤ 2 for j = 3, 4.
Suppose |U13 ∪ U14| ≥ 3. Let |U1j| ≥ 2 and |U1k| ≥ 1 for j, k ∈ {3, 4}. Then, the subgraph
AG(L)− {I1k, (I1, Ij), (I′1, Ij), (I′′1 , Ij)} contains K3,6 with the partite sets X = U2 ∪ Uk and
Y = U1 ∪ Uj ∪ U1j. Since degK3,6(Ij) = 3, Ij is contained in exactly three rectangular faces
in any N2-embedding of K3,6. Since {I1, I′1, I′′1 , Ij} ⊂ Y, to embed the edges (I1, Ij), (I′1, Ij),
and (I′′1 , Ij), the vertices I1, I′1, and I′′1 on the diagonals of the three rectangular faces that
contain Ij, respectively, are required. Now, after embedding the three edges, Ij is in exactly
six triangular faces, all of which were formed by using two vertices from Y and one vertex
from X. Therefore, the vertex I1k cannot be embedded because it is adjacent to Ij as well
as two vertices from X. So, |U13 ∪ U14| ≤ 2. However, AG(L) is projective if U13 ∪ U14 =
∅. Thus, 1 ≤ |U13 ∪ U14| ≤ 2. Now, one can obtain help from Figure 10b to say that
γ̃(AG(L)) = 2.
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(for 2 ≤ j ≤ 4) can be embedded in N2-embedding of G13 without edge crossing and
therefore γ̃(AG(L)) = 2. Now take Ukℓ ̸= ∅ for 2 ≤ j ̸= k ̸= ℓ ≤ 4. Note that the
set Ukℓ is nothing but the singleton set {I}. Now consider the subgraph G14 = AG(L)−
{I1j, (Ij, Ik), (Ik, Iℓ), (Ij, Iℓ), (I, Ij)} which is isomorphic to K4,4 with partition sets X = U1
and Y = {Ij, Ik, Iℓ, I}. Note that any N2-embedding of G14 has 8 rectangular faces so that
each face share exactly two vertices from X and Y. In AG(L), the vertex I1j is adjacent to
three vertices of Y namely Ik, Iℓ and I. So one cannot insert I1j with its edges in N2 without
crossing, a contradiction.

Case 3.2 Suppose |U1| = 3. Then |U2| = 2. If | ∪
i ̸=1

Uij ∪Uijk| ≥ 2, then it is easy to check

that the contraction of AG(L) contains either K4,5 − e or K3,6 ∪ (K4 − e) as a subgraph and
so by Remark 1, we have γ̃(AG(L)) ≥ 3. Therefore | ∪

i ̸=1
Uij ∪ Uijk| ≤ 1.

Assume | ∪
i ̸=1

Uij ∪ Uijk| = 1. If Uij ̸= ∅, then U(ij)c = ∅ otherwise the graph induced

by the partition sets X = U1 ∪ U3 and Y = U2 ∪ U4 ∪ [Iij, I(ij)c ] form H4 in AG(L) so
that γ̃(AG(L)) ≥ 3. Further, if I ∈ U13 ∪ U14 ∪ U134, then consider the graph AG(L) −
{I, e1, e2, e3, e4, e5} ∼= K4,4 − e with bipartite sets {I1, I′1, I′′1 , Ij} and {Ii, I′i , Ik, Iijk} where e1 =
(I1, Ij), e2 = (I′1, Ij), e3 = (I′′1 , Ij), e4 = (Ii, Ik), e5 = (I′i , Ik)} and e = (Ij, Iijk). Now a similar
argument given for G2 (refer equation 1) leads to γ̃(AG(L)) ≥ 3. Therefore | ∪

i ̸=1
Uij ∪

Uijk| = 1 with U13 = U14 = U134 = ∅. In this case, with the help of Figure 10a, we get
γ̃(AG(L)) = 2. Notice that in Figure 10a, we take |U34| = 1.

Assume
∪

i ̸=1
Uij ∪ Uijk = ∅. If |U1j| ≥ 3 for some j ∈ {3, 4}, then the sets X = U2 ∪ Uj′

and Y = U1 ∪ Uj ∪ U1j, where j′ ∈ {3, 4} \ {j}, form K3,7. So |U1j| ≤ 2 for j = 3, 4.
Suppose |U13 ∪ U14| ≥ 3. Let |U1j| ≥ 2 and |U1k| ≥ 1 for j, k ∈ {3, 4}. Then the subgraph
AG(L)− {I1k, (I1, Ij), (I′1, Ij), (I′′1 , Ij)} contains K3,6 with partite sets X = U2 ∪ Uk and Y =
U1 ∪ Uj ∪ U1j. Since degK3,6(Ij) = 3, Ij is contained in exactly three rectangular faces in
any N2-embedding of K3,6. Since {I1, I′1, I′′1 , Ij} ⊂ Y, to embed the edges (I1, Ij), (I′1, Ij)
and (I′′1 , Ij) it requires the vertices I1, I′1 and I′′1 on the diagonals of the three rectangular
faces that contains Ij respectively. Now after embedding the three edges, Ij is in exactly
six triangular faces all of which were formed by using two vertices from Y and one vertex
from X. Therefore the vertex I1k cannot be embedded because it is adjacent to Ij along with
two vertices from X. So |U13 ∪ U14| ≤ 2. But AG(L) is projective if U13 ∪ U14 = ∅. Thus
1 ≤ |U13 ∪ U14| ≤ 2. Now one can get help from Figure 10b, to say that γ̃(AG(L)) = 2.
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Figure 10. |∪4
n=1 Un| = 7 with |U1| = 3

Case 3.3 Suppose |U1| = 2.
Claim A: At most two distinct Uij’s are non-empty in which at most one Ui4 is non-

empty for 1 ≤ i ̸= j ≤ 4. Also at most two distinct Uℓmn’s are non-empty for ℓmn ̸= 123.
Assume on the contrary that at least three Uij’s are non-empty for 1 ≤ i, j ≤ 4, say

Ui1i2 , Ui3i4 and Ui5i6 are non-empty. Let p ∈ {1, 2, 3} \ {i1, i2}, q ∈ {1, 2, 3} \ {p, i3, i4} and

i ̸=1

Figure 10. |∪4
n=1 Un| = 7 with |U1| = 3.
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Case 3.3 Suppose |U1| = 2.
Claim A: At most two distinct Uijs are non-empty in which at most one Ui4 is non-

empty for 1 ≤ i ̸= j ≤ 4. Additionally, at most two distinct Uℓmns are non-empty for
ℓmn ̸= 123.

Assume on the contrary that at least three Uijs are non-empty for 1 ≤ i, j ≤ 4; say,
Ui1i2 , Ui3i4 and Ui5i6 are non-empty. Let p ∈ {1, 2, 3} \ {i1, i2}, q ∈ {1, 2, 3} \ {p, i3, i4}
and r ∈ {1, 2, 3} \ {p, q, i5, i6}. If r exists, then the minor subgraph induced by the vertices
[Ip, Ii1i2 ], I′p, [Iq, Ii3i4 ], I′q, [Ir, Ii5i6 ], I′r, and I4 forms K7 in AG(L), which is a contradiction. If r
does not exist, then take r as {1, 2, 3} \ {p, q} and form a minor of AG(L) with the partite
sets X = {Ir, I′r, I4, Ir4} and Y = {[Ip, Ii1i2 ], I′p, [Iq, Ii3i4 ], I′q}, which is isomorphic to either
H3 or H4, as in Figure 3. So, by Lemma 3, we have γ̃(AG(L)) ≥ 3. Therefore, only at
most two distinct Uijs can be non-empty for 1 ≤ i ̸= j ≤ 4. Further, if Um4, Un4 ̸= ∅ for
some 1 ≤ m ̸= n ≤ 4, then the subgraph induced by the sets X = Um ∪ Um4 ∪ {Ik} and
Y = Un ∪U4 ∪ {[I′k, In4]}, where k ̸= m or n, form H4 which has a crosscap of at least three.

Note that all the vertices in U123 are end vertices in AG(L). If Uijk, Uℓmn, and Upqr are
non-empty for ijk, ℓmn, pqr ̸= 123, then the minor subgraph induced by
{[I(ijk)c , Iijk], I′(ijk)c , [I(ℓmn)c , Iℓmn], I′(ℓmn)c , [I(prq)c , Ipqr], I′(pqr)c , I4} is K7, which is a contradic-
tion. Therefore, at most two distinct Uℓmns are non-empty for ℓmn ̸= 123.

Claim B: |Uij| ≤ 2 and |Ui4| ≤ 1 for all 1 ≤ i < j ≤ 3.
If |Uij| ≥ 3 for some 1 ≤ i, j ≤ 3, then AG(L) contains K7,3 as a subgraph with the

partite sets X = Ui ∪ Uj ∪ Uij and Y = Uk ∪ U4 where k ∈ {1, 2, 3} \ {i, j}. Additionally,
if |Ui4| ≥ 2 for some 1 ≤ i ≤ 3, then AG(L) contains K5,4 as a subgraph with the partite
sets X = Ui ∪ U4 ∪ Ui4 and Y = Uj ∪ Uk where j, k ∈ {1, 2, 3} \ {i}. Thus, |Uij| ≤ 2 and
|Ui4| ≤ 1 for all 1 ≤ i < j ≤ 3.

Assume |Uij| = 2 for some 1 ≤ i, j ≤ 3. Suppose Ukℓ ̸= ∅ for some 1 ≤ k < ℓ ≤ 4
and kℓ ̸= ij. Let us take j /∈ {k, ℓ} ∩ {i, j}. Then, AG(L) contains K6,3 ∪ (K4 − e) with the
partite sets X = {Ii, I′i , Ij, [I′j , Ikℓ], Iij, I′ij} and Y = Um ∪ U4 where m ∈ {1, 2, 3} \ {i, j}. So,
by Remark 1, γ̃(AG(L)) ≥ 3. Therefore, Ukℓ = ∅. In this case, the number of Uijk cannot
be more than one because here AG(L) contains K6,3 ∪ (K4 − e). For the remaining cases,
by Figure 11a, we obtain γ̃(AG(L)) = 2.

Assume |Uij| ≤ 1 for all 1 ≤ i, j ≤ 3. Suppose |Uk4| = 1 for some 1 ≤ k ≤ 3. If there
are two Uℓmns that are non-empty for ℓmn ̸= 123, then it is not hard to verify that AG(L)
contains a subgraph similar to the structure of H3, which has a crosscap of at least three.
For all the remaining cases, that is |Uij| = |Uk4| = 1 with unique Uℓmn ̸= ∅ or |Uij| ≤ 1
and |Upq| ≤ 1 with at most two Uℓmns that are non-empty for 1 ≤ i, j, k, p, q ≤ 3 and
ℓmn ̸= 123, one can use Figure 11b to obtain γ̃(AG(L)) = 2.

Figure 11. |∪4
n=1 Un| = 7 with |U1| = 2.

Case 4 Let |∪4
n=1 Un| = 6.
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Case 4.1 Suppose |U1| = 3. Note that each vertex of Uij for i = 1 is adjacent to exactly
two vertices Ii′ and Ij′ for i′, j′ /∈ {i, j} and (Ii′ , Ij′) ∈ E(AG(L)), so we do not want to
bother about U1j and U1jk for all 2 ≤ j < k ≤ 4. If |Uij| ≥ 3 for some i ̸= 1, then AG(L)
contains K4,5 as a subgraph with the partite sets X = U1 ∪Uk and Y = Ui ∪Uj ∪Uij where
k ∈ {2, 3, 4} \ {i, j}, which is a contradiction. So, |Uij| ≤ 2 for all i ̸= 1.

((i).Assume |Uij| = 2 for some i ̸= 1. If U(ij)c ̸= ∅, then the sets X = Ui ∪ Uj ∪ Uij
and Y = U1 ∪ Uk ∪ U(ij)c form K4,5 in AG(L), and, if Ukℓ ̸= ∅ for some k ̸= 1 with
kℓ ̸= ij or U234 ̸= ∅, then AG(L) contains K4,5 − e so that γ̃(AG(L)) ≥ 3. If not, that is
U(ij)c , Ukℓ, U234 = ∅ for all k ̸= 1 with kℓ ̸= ij, then by Figure 12a, we have γ̃(AG(L)) = 2.

(ii). Assume |Uij| ≤ 1 for all i ̸= 1. If U(i1 j1)c ̸= ∅ and U(i2 j2)c ̸= ∅ for some
Ui1 j1 ̸= ∅ and Ui2 j2 ̸= ∅, then the sets X = Ui1 ∪ Uj1 ∪ Ui1 j1 ∪ {[Ii2 j2 , I(i2 j2)c ]} and Y =
U1 ∪Um ∪U(i1 j1)c , where m ̸= i1, j1, contains K4,5 − e in AG(L). Additionally, if |U(ij)c | ≥ 3,
then the sets X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Um ∪ U(ij)c , where m ̸= i, j, form K3,7
in AG(L), which is a contradiction. So, at most one of the sets U(ij)c is non-empty with
|U(ij)c | ≤ 2.

Let |U(ij)c | = 2. If I ∈ ∪
kℓ ̸=ij

Ukℓ ∪ U234, then the sets X = {Ii, Ij, Iij} and Y =

{I1, I′1, [I′′1 , I], Im, I(ij)c , I′(ij)c}, where m ̸= i, j, form K3,6 ∪ (K4 − e) so that, by Remark 1,
γ̃(AG(L)) ≥ 3. Therefore,

∪
k ̸=1;kℓ ̸=ij

Ukℓ ∪ U234 = ∅. For this case, readers can verify the

N2-embedding of AG(L).
Let |U(ij)c | = 1. If I, J ∈ ∪

k ̸=1;kℓ ̸=ij
Ukℓ ∪ U234 with |Ukℓ| ≤ 1, then the sets {Ii, Ij, Im, I1,

[I′1, I], [I′′1 , J], [Iij, I(ij)c ]} form K7. Therefore, | ∪
k ̸=1;kℓ ̸=ij

Ukℓ ∪ U234| = 1.

Let
∪

i ̸=1
U(ij)c = ∅. Then, by Theorem 4iii[a], AG(L) is projective if | ∪

i ̸=1
Uij ∪ Uijk| ≤ 1.

If | ∪
i ̸=1

Uij ∪ Uijk| ≥ 4, then K3,7 is a subgraph of AG(L) with the partite sets X = U1

and Y = V(AG(L)) \ U1. So, in the case of
∪

i ̸=1
U(ij)c = ∅, γ̃(AG(L)) = 2 whenever

2 ≤ | ∪
i ̸=1

Uij ∪ Uijk| ≤ 3 with |Uij| ≤ 1 (refer to Figure 12b).

Figure 12. |∪4
n=1 Un| = 6 with |U1| = 3.

Case 4.2 Suppose |U1| = 2. Then, |U2| = 2 and |U3| = |U4| = 1. If |U34| ≥ 3, then the
partite sets X = U1 ∪U2 and Y = U3 ∪U4 ∪U34 form K4,5 as a subgraph in AG(L), which
is a contradiction.

Case 4.2.1 Assume |U34| = 2. Then, U(pq)c = ∅ for all Upq ̸= ∅; otherwise, the sets
X = U1 ∪ U2 and Y = U3 ∪ U4 ∪ U34 ∪ {[Ipq, I(pq)c ]} form K4,5 in AG(L). In particular,
U12 = ∅.

If |Uij| ≥ 2 for some ij ̸= 12, 34 and i < j, then the subgraph AG(L)− {I34, I′34, (Ii, Ij),
(I′i , Ij)} contains K3,5 with the partite sets X = Ui ∪ Uj ∪ Uij and Y = Ui′ ∪ Uj′ where i′ ∈
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{1, 2} \ {i} and j′ ∈ {3, 4} \ {j}. Note that any N2-embedding of K3,5 has one hexagonal
and six rectangular faces, and the vertices I34 and I′34 are adjacent to Ii, I′i , Ii′ and I′i′ . So, to
insert I34 and I′34 into an N2-embedding of K3,5, we require two faces, say F1 and F2, which
contains Ii, I′i , Ii′ , and I′i′ . If either F1 or F2 is hexagonal, then the corresponding face may
adopt one of the edges (Ii, Ij) or (I′i , Ij). Let us take that the edge (Ii, Ij) is embedded. Now,
to insert an edge (I′i , Ij), a rectangular face containing I′i and Ij as diagonals is required.
However, no such rectangular face exists because the edges (I′i , Ii′) and (I′i , I′i′) have been
used twice in F1 and F2, which is a contradiction.

For all of the remaining cases, that is | ∪
ij ̸=12,34

Uij| ≤ 2 with |Uij| ≤ 1 and U(pq)c = ∅

when Upq ̸= ∅ for 1 ≤ p ̸= q ≤ 4, we have γ̃(AG(L)) = 2 (refer to Figure 13a).

Figure 13. |∪4
n=1 Un| = 6 with |U1| = 2.

Case 4.2.2 Assume that |U34| = 1. Let us take ij ̸= 12, 34.
Let |U12| ≥ 3, then the subgraph of AG(L) induced by the sets X = U3 ∪ U4 ∪ U34

and Y = U1 ∪ U2 ∪ U12 contains K3,7 so that γ̃(AG(L)) ≥ 3. Thus, |U12| ≤ 2.
Let |U12| = 2. If I ∈ ∪

ij ̸=12,34
Uij ∪ U134 ∪ U234, then AG(L) contains K3,6 ∪ (K4 − e),

so that, by Remark 1, γ̃(AG(L)) ≥ 3. Therefore,
∪

ij ̸=34,12
Uij ∪ U134 ∪ U234 = ∅, and in this

case, by Figure 13b, we obtain γ̃(AG(L)) = 2.
Let |U12| = 1. If |Uij| ≥ 2, then the partite sets X = Ui′ ∪ Uj′ and Y = {Ii, I′i , Ij, Iij, I′ij,

[I34, I12]} where i′ ∈ {1, 2} \ {i} and j′ ∈ {3, 4} \ {j} form a minor subgraph K3,6 ∪ (K4 − e)
in AG(L) so that, by Remark 1, γ̃(AG(L)) ≥ 3. If Uij, Ukℓ ̸= ∅ for ij, kℓ ̸= 12, 34
where {i, j} ∩ {k, ℓ} = j = ℓ, then the partite sets X = {Ii, [I′i , Ikℓ], Iℓ, Iij} and Y =
{Ik, I′k, Im, [I34, I12]} where m /∈ {i, j, k} form (H4 ∪ (u2, u3)) − (u1, u4). A slight modifi-
cation of the proof for H4 in Lemma 3 yields γ̃(AG(L)) ≥ 3. Further, minor changes to
the labels in Figure 13a give γ̃(AG(L)) = 2 whenever | ∪

ij ̸=12,34
Uij| ≤ 1.

Let U12 = ∅. Then U(pq)c = ∅ for all Upq ̸= ∅; otherwise, AG(L) contains K8 − 4e,
which is isomorphic to (H4 ∪ (u1, u3))− (v1, v2), so Lemma 3 gives us γ̃(AG(L)) ≥ 3. If
|Uij| ≥ 4, then the partite sets X = Ui ∪ Uj ∪ Uij and Y = Ui′ ∪ Uj′ where i′ ∈ {1, 2} \ {i}
and j′ ∈ {3, 4} \ {j} contain K7,3 in AG(L), which is a contradiction. Suppose |Uij| ∈
{2, 3}. If |Ukℓ| ≥ 2 for some kℓ ̸= ij where {k, ℓ} ∩ {i, j} = k = i, then the subgraph
G15 = AG(L) − {I34, Ikℓ, I′kℓ, (Ii, Ij), (I′i , Ij)} contains K5,3 with the partite sets X = Ui ∪
Uj ∪ Uij and Y = Ui′ ∪ Uj′ where i′, j′ /∈ {i, j}. Note that any N2-embedding of K5,3 has
one hexagonal and six rectangular faces. Further, in AG(L), I34 is adjacent to Ii, I′i , Ii′ , I′i′ ,
and, also, Ikℓ, I′kℓ are adjacent to Ii′ , I′i′ , Ij. So, to embed the vertices I34, Ikℓ, and I′kℓ, one
hexagonal and two rectangular faces containing both Ii′ and I′i′ are required. In such a
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case, one cannot find two rectangular faces with the diagonal vertices Ii, Ij and I′i , Ij. So,
either the edge (Ii, Ij) or (I′i , Ij) cannot be drawn without crossing, which is a contradiction.
Thus, we obtain the result as in the statement-(iv)[b2].

Case 4.2.3 Suppose U34 = ∅.
If |Uij ∪ U(ij)c | ≥ 4 for some ij /∈ {12, 34}, then the sets X = Ui ∪ Uj ∪ Uij and Y =

Ui′ ∪ Uj′ ∪ U(ij)c where i′, j′ /∈ {i, j} form a complete bipartite graph whose crosscap is
more than two.

Let |Uij| ∈ {2, 3} for some ij /∈ {12, 34}. Then, clearly, U(ij)c must be empty. Let kℓ /∈
{12, 34, ij, (ij)c}. If |Uij ∪ Ukℓ ∪ U(kℓ)c | ≥ 5, then the sets X = Ui ∪ Uj ∪ Uij ∪ {[Ikℓ, Ikℓc ]}
and Y = Ui′ ∪ Uj′ where i′ ∈ {1, 2} \ {i} and j′ ∈ {3, 4} \ {j} form K6,3 ∪ (K4 − e) and, by
Remark 1, γ̃(AG(L)) ≥ 3. Therefore, 2 ≤ |Uij ∪ Ukℓ ∪ U(kℓ)c | ≤ 4. Now, there are at most
three possibilities:

(i). |Uij| = 3 and |Ukℓ| = 1; this case is pictured in Figure 14.
(ii). |Uij| = 2 and |Ukℓ| = |U(kℓ)c | = 1; this case is pictured in Figure 15a.
(iii). |Uij| = |Ukℓ| = 2; this case is pictured in Figure 15b.

Thus, in all these cases, we have γ̃(AG(L)) = 2.
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n=1 Un| = 6 with |U1| = |U2| = 2.

Let |Uij| ≤ 1 for all ij /∈ {12, 34}. Then at least one Uij = ∅ for ij /∈ {12, 34}. Oth-
erwise the graph induced by {I1, I′1, I2, I′2, I3, I4, [I13, I24], [I14, I23]} form K8 − 3e in AG(L).
Clearly γ̃(K8 − 3e) ≥ 3 because the number of faces in N2-embedding of K8 − 3e is 17
which contradicts the well-known fact that 2|E|

|F| must be greater than the girth value (re-
fer Observation 1). Therefore | ∪

ij ̸=12,34
Uij| ≤ 3. Thus by [20, Theorem 2.6iib)], we have

γ̃(AG(L)) = 2 whenever | ∪
ij ̸=12,34

Uij| = 3.

Case 5 Let |∪4
n=1 Un| = 5. Then |U1| = 2. If Uij = ∅ for all 1 ≤ i < j ≤ 4, then

γ̃(AG(L)) ≤ 1. Observe that we do not want to consider the sets Uij for i ̸= 1 whenever
U(ij)c = ∅ because every vertex in Uij is adjacent to Ii, Ij and (Ii, Ij) ∈ E(AG(L)). If
|Uij| ≥ 5 for some i ̸= 1, then the sets X = Ui ∪ Uj ∪ Uij and Y = Ui′ ∪ Uj′ where
i′, j′ /∈ {i, j} form K3,7 in AG(L), a contradiction.

Case 5.1 Assume |Uij| = 4 for some i ̸= 1. Then U(mn)c = ∅ whenever Umn ̸= ∅
otherwise the sets X = Ui ∪ Uj ∪ Uij ∪ {[Imn, I(mn)c ]} and Y = Ui′ ∪ Uj′ where i′, j′ /∈ {i, j}
form K7,3 as a minor of AG(L). Similarly U(ij)c = ∅; otherwise K6,4 is a minor of AG(L).
If |Ukℓ| ≥ 2 for some k ̸= 1 and kℓ ̸= ij, then the subgraph G16 = AG(L)−{Ikℓ, I′kℓ, (Ii, Ij)}
contains K6,3 with partition X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Ui′ where i′ /∈ {1, i, j}. Since
{i, j} ∩ {k, ℓ} ̸= ∅, let {i, j} ∩ {k, ℓ} = i = k. Clearly j ∈ {2, 3, 4} \ {k, ℓ}. Note that each
face in any N2-embedding of K6,3 is rectangular and the vertices Ikℓ, I′kℓ are adjacent to I1, I′1
and Ij. Therefore to insert Ikℓ and I′kℓ, it requires two rectangular faces that contains I1, I′1
and Ij. Next, to insert the edge (Ii, Ij), it requires a rectangular face with diagonals Ii and
Ij. But the edges (I1, Ij) and (I′1, Ij) have been used twice to form the first two rectangular
faces. So one cannot construct another rectangular face that contains Ii and Ij with a single
left out vertex of Y, a contradiction.

Figure 14. |∪4
n=1 Un| = 6 with |U1| = |U2| = 2.

Figure 15. |∪4
n=1 Un| = 6 with |U1| = |U2| = 2.

Let |Uij| ≤ 1 for all ij /∈ {12, 34}. Then, at least one Uij = ∅ for ij /∈ {12, 34}. Other-
wise, the graph induced by {I1, I′1, I2, I′2, I3, I4, [I13, I24], [I14, I23]} forms K8 − 3e in AG(L).
Clearly, γ̃(K8 − 3e) ≥ 3 because the number of faces in the N2-embedding of K8 − 3e is 17,
which contradicts the well-known fact that 2|E|

|F| must be greater than the girth value (refer
to Observation 1). Therefore, | ∪

ij ̸=12,34
Uij| ≤ 3. Thus, by [20, Theorem 2.6iib)], we have

γ̃(AG(L)) = 2 whenever | ∪
ij ̸=12,34

Uij| = 3.
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Case 5 Let |∪4
n=1 Un| = 5. Then, |U1| = 2. If Uij = ∅ for all 1 ≤ i < j ≤ 4,

then γ̃(AG(L)) ≤ 1. Observe that we do not want to consider the sets Uij for i ̸= 1
whenever U(ij)c = ∅ because every vertex in Uij is adjacent to Ii, Ij and (Ii, Ij) ∈ E(AG(L)).
If |Uij| ≥ 5 for some i ̸= 1, then the sets X = Ui ∪ Uj ∪ Uij and Y = Ui′ ∪ Uj′ where
i′, j′ /∈ {i, j} form K3,7 in AG(L), which is a contradiction.

Case 5.1 Assume |Uij| = 4 for some i ̸= 1. Then, U(mn)c = ∅ whenever Umn ̸= ∅;
otherwise, the sets X = Ui ∪Uj ∪Uij ∪ {[Imn, I(mn)c ]} and Y = Ui′ ∪Uj′ where i′, j′ /∈ {i, j}
form K7,3 as a minor of AG(L). Similarly, U(ij)c = ∅; otherwise K6,4 is a minor of AG(L).
If |Ukℓ| ≥ 2 for some k ̸= 1 and kℓ ̸= ij, then the subgraph G16 = AG(L)−{Ikℓ, I′kℓ, (Ii, Ij)}
contains K6,3 with the partition sets X = Ui ∪Uj ∪Uij and Y = U1 ∪Ui′ where i′ /∈ {1, i, j}.
Since {i, j} ∩ {k, ℓ} ̸= ∅, let {i, j} ∩ {k, ℓ} = i = k. Clearly, j ∈ {2, 3, 4} \ {k, ℓ}. Note that
each face in any N2-embedding of K6,3 is rectangular, and the vertices Ikℓ, I′kℓ are adjacent
to I1, I′1 and Ij. Therefore, to insert Ikℓ and I′kℓ, two rectangular faces that contain I1, I′1 and
Ij are required. Next, to insert the edge (Ii, Ij), a rectangular face with the diagonals Ii and
Ij is required. However, the edges (I1, Ij) and (I′1, Ij) have been used twice to form the first
two rectangular faces. So, one cannot construct another rectangular face that contains Ii
and Ij with a single left-out vertex of Y, which is a contradiction.

Therefore, for the remaining case, that is, |Ukℓ| ≤ 1 for all k ̸= 1 and kℓ ̸= ij with
U(mn)c = ∅ whenever Umn ̸= ∅, by using Figure 16a, one can have γ̃(AG(L)) = 2.

Figure 16. |∪4
n=1 Un| = 5 with |U1| = 2.

Case 5.2 Assume |Uij| = 3 for some i ̸= 1. Let p /∈ {1, i, j}. Clearly, U(ij)c = ∅;
otherwise, the sets X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Up ∪ U(ij)c form K5,4.

If |Ukℓ| = 3 for some k ̸= 1 and kℓ ̸= ij, then the subgraph G′
15 = AG(L) −

{Ikℓ, I′kℓ, I′′kℓ, (Ii, Ij), (I1, Ip), (I′1, Ip)} has a similar structure of G15 with the partite sets X =
Ui ∪ Uj ∪ Uij and Y = U1 ∪ Up, and so γ̃(AG(L)) ≥ 3. Suppose |Ukℓ|, |Umn| = 2
for k, m ̸= 1 and kℓ, mn ̸= ij. Let {i, j} ∩ {k, ℓ} = i = k. Then, G17 = AG(L) −
{Ikℓ, I′kℓ, Imn, I′mn, (Ii, Ij)} has K5,3 with the partite sets X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Uℓ.
Any N2-embedding of K5,3 has one hexagonal and six rectangular faces. Notice that Ikℓ, I′kℓ
are adjacent to I1, I′1, Ij, and Imn, I′mn are adjacent to I1, I′1, Ii. So, to embed Ikℓ, I′kℓ, Imn, and
I′mn, one hexagonal and two rectangular faces containing both I1 and I′1 are required. How-
ever, the edge (Ii, Ij) cannot be drawn without crossing, which is a contradiction. There-
fore, | ∪

k ̸=1;kℓ ̸=ij
Ukℓ| ≤ 3 and |Ukℓ| ̸= 3.

Suppose | ∪
k ̸=1;kℓ ̸=ij

Ukℓ| = 3. Since |Ukℓ| ̸= 3 for all k ̸= 1 and kℓ ̸= ij, we have |Ukℓ| = 2

and |Umn| = 1 for some m ̸= 1 and mn ̸= ij, kℓ. Next, we claim that U(kℓ)c = U(mn)c = ∅.
If U(kℓ)c ̸= ∅, then by letting {i, j} ∩ {k, ℓ} = i = k, K7,3 can be formed by the sets X =
Ui ∪ Uj ∪ Uij ∪ Ukℓ and Y = U1 ∪ {[Iℓ, I(kℓ)c ]}. If U(mn)c ̸= ∅, then AG(L) has a similar
structure to G15, so that γ̃(AG(L)) ≥ 3.
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Suppose | ∪
k ̸=1;kℓ ̸=ij

Ukℓ| ≤ 2. As mentioned, U(kℓ)c = ∅ when |Ukℓ| = 2 for k ̸= 1 and

kℓ ̸= ij. Suppose |Ukℓ| = 1 and |U(kℓ)c | ≥ 2. Then, AG(L)−{Ikℓ, I(kℓ)c , I′(kℓ)c , (Ii, Ij), (I1, Iℓ),
and
(I′1, Iℓ)} has K5,3 with the partite sets X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Uℓ. Note that
any N2-embedding of K5,3 has one hexagonal and six rectangular faces, Ikℓ is adjacent to
I1, I′1, Ij, I(kℓ)c , I′(kℓ)c , and I(kℓ)c , I′(kℓ)c are adjacent to Ik, Iℓ, Ikℓ. So, the three vertices
Ikℓ, I(kℓ)c , I′(kℓ)c together with the edges (Ii, Ij), (I1, Iℓ), (I′1, Iℓ) cannot be embedded, and,
also
, γ̃(AG(L)) ≥ 3. Therefore, |Ukℓ ∪U(kℓ)c | ≤ 2. Further, if |Ukℓ ∪U(kℓ)c | = |Uℓm ∪U(ℓm)c | =
2 for kℓ ̸= ij and ℓm ̸= ij, kℓ, then AG(L) contains K3,7, which is a contradiction.

Thus, an N2-embedding of AG(L) can be retrieved from Figure 16a for | ∪
pq ̸=ij

Upq| ≤ 3

with U(pq)c = ∅ if |Upq| = 2.
Case 5.3 Assume |Uij| = 2 for some i ̸= 1. Clearly, |U(ij)c | ≤ 1; otherwise, the sets

X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Up ∪ U(ij)c where p /∈ {1, i, j} form K5,4.
If |Ukℓ|, |Umn| = 2 for k, m ̸= 1 and kℓ, mn ̸= ij, then U(ij)c , U(kℓ)c , U(mn)c = ∅. Further,

an N2-embedding of AG(L) in the case of |Uij| = |Ukℓ| = |Umn| = 2 is given in Figure 16b
so that γ̃(AG(L)) = 2.

Suppose |Ukℓ| = 2, |Umn| ≤ 1 for k, m ̸= 1 and kℓ, mn ̸= ij. If U(ij)c , U(kℓ)c ̸= ∅,
then the sets X = U1 ∪ Up ∪ U(ij)c and Y = Ui ∪ Uj ∪ Uij ∪ {[I(kℓ), I(kℓ)c ]} where p /∈
{1, i, j} form K5,4 − e in AG(L) so that, by Remark 1, we have γ̃(AG(L)) ≥ 3. Fur-
ther, since |Ukℓ| = 2, we have |U(kℓ)c | ≤ 1. Therefore, |U(ij)c ∪ U(kℓ)c | ≤ 1. Suppose
|U(ij)c ∪ U(kℓ)c | = 1, say U(ij)c ̸= ∅. Then, U(mn)c = ∅; otherwise, X = U1 ∪ Up ∪ U(ij)c

and Y = Ui ∪ Uj ∪ Uij ∪ {[I(mn), I(mn)c ]} where p /∈ {1, i, j} form K4,5 − e in AG(L). So,
|Umn ∪ U(mn)c | ≤ 1. Suppose not, that is, U(ij)c , U(kℓ)c = ∅, then |U(mn)c | ≤ 1; other-
wise, AG(L)− {Iij, I′ij, Ikℓ, I′kℓ, (Im, In), (I1, Im′), (I′1, Im′)} ∼= K5,3 with the partite sets X =

U1 ∪ Um′ ∪ U(mn)c and Y = Um ∪ Un ∪ Umn where m′ /∈ {1, m, n} is a similar structure to
G17 which has a crosscap of at least three. So, |Umn ∪ U(mn)c | ≤ 2.

Suppose |Ukℓ|, |Umn| ≤ 1 for k, m ̸= 1 and kℓ, mn ̸= ij. Then, by Theorem 4(ii),
γ̃(AG(L)) = 2 provided | ∪

k ̸=1;kℓ ̸=ij
Ukℓ| = 2 with | ∪

p ̸=1
U(pq)c | = 1 or | ∪

k ̸=1;kℓ ̸=ij
Ukℓ| = 1 with

|U(ij)c | = 1, U(kℓ)c = ∅ or U(ij)c = ∅, |U(kℓ)c | ≤ 2 or
∪

k ̸=1;kℓ ̸=ij
Ukℓ = ∅ with |U(ij)c | = 1.

Hence, γ̃(AG(L)) = 2 whenever 4 ≤ | ∪
i ̸=1

Uij ∪ U(ij)c | ≤ 6 with | ∪
i ̸=1

U(ij)c | ≤ 1 or

| ∪
i ̸=1

Uij| = 3 with |Uij ∪ U(ij)c | ≤ 3 and a unique U(ij)c ̸= ∅ or
∪

i ̸=1
Uij = 2 with |U(ij)c | = 1.

Case 5.4 Assume |Uij| = 1 for all i ̸= 1. Then, |U(ij)c | ≤ 3; otherwise, the sets
X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Ui′ ∪ U(ij)c where i′ /∈ {1, i, j} form K3,7.

Suppose |Ukℓ| = |Umn| = 1 for k, m ̸= 1 and kℓ, mn ̸= ij. If U(ij)c , U(kℓ)c , U(mn)c ̸= ∅,
then the sets X = U1 ∪ U2 ∪ U3 and Y = {I4, [Iij, I(ij)c ], [Ikℓ, I(kℓ)c ], [Imn, I(mn)c ]} form
H4 as a minor of AG(L), which is a contradiction. Assume that |U(ij)c | = 3. If I ∈
U(kℓ)c ∪ U(mn)c , then G18 = AG(L)− {I, Ikℓ, Imn, (Ii, Ij), (I1, Ii′), (I′1, Ii′)} contains K6,3 with
the partite sets X = U1 ∪ Ui′ ∪ U(ij)c and Y = Ui ∪ Uj ∪ Uij and any N2-embedding of
K3,6 has nine rectangular faces. Here, it is not hard to verify that all the left-out vertices
and edges cannot be embedded into the nine rectangular faces so that γ̃(AG(L)) ≥ 3.
Therefore, U(kℓ)c ∪ U(mn)c = ∅. Here, the graph AG(L) − {Ikℓ, Imn} is a subgraph of
the graph in Figure 2a, and the suitable labels in Figure 2b give two different faces in
the N2-embedding of AG(L)− {Ikℓ, Imn} that contains the vertices N(Ikℓ) and N(Imn) so
that γ̃(AG(L)) = 2. Assume |U(ij)c | ≤ 2. If |U(ij)c ∪ U(kℓ)c | ≥ 4, then the subgraph
AG(L)− {I(kℓ)c , I′(kℓ)c , Imn, (Ii, Ij), (I1, Ii′), (I′1, Ii′)} has a similar structure to G15 so that we
have γ̃(AG(L)) ≥ 3. Additionally, by Theorem 4ii, AG(L) is projective when | ∪

i ̸=1
U(ij)c | ≤

1. For all of the remaining cases, γ̃(AG(L)) = 2 can be verified by drawing the N2-
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embedding.
Thus, γ̃(AG(L)) = 2 when 2 ≤ | ∪

i ̸=1
U(ij)c | ≤ 3 with at least one of the sets’ U(ij)c = ∅.

Suppose |Ukℓ| = 1 and Umn = ∅ for k, m ̸= 1 and kℓ, mn ̸= ij. If |U(ij)c | = 3 and
U(kℓ)c ̸= ∅, then the subgraph AG(L) − {I(kℓ)c , Ikℓ, (Ii, Ij), (I1, Ii′), (I′1, Ii′)} has a similar
structure to G18, and, if |U(ij)c | = |U(kℓ)c | = 2, then the subgraph
AG(L) − {I(kℓ)c , I′(kℓ)c , Ikℓ, (Ii, Ij), (I1, Ii′), (I′1, Ii′)} has a similar structure to G15

so that γ̃(AG(L)) ≥ 3. Further, AG(L) is projective if |U(ij)c ∪ U(kℓ)c | ≤ 1. Thus,
γ̃(AG(L)) = 2 whenever |U(ij)c ∪ U(kℓ)c | ∈ {2, 3}.

Suppose Ukℓ, Umn = ∅ for k, m ̸= 1 and kℓ, mn ̸= ij. Then, γ̃(AG(L)) = 2 whenever
2 ≤ |U(ij)c | ≤ 3.

Case 6 Let |∪4
n=1 Un| = 4. Then, by Theorem 4(i), |Uij ∪ U(ij)c | ≥ 3 for

some Uij, U(ij)c ̸= ∅. Further, if |Uij ∪ U(ij)c | ≥ 6 with Uij, U(ij)c ̸= ∅, then the subgraph
induced by the sets X = Ui ∪ Uj ∪ Uij and Y =

∪
k ̸=i,j

Uk ∪ U(ij)c contains one of the graph’s

K3,7, K4,6, or K5,5 as a subgraph so that γ̃(AG(L)) ≥ 3. Therefore, 3 ≤ |Uij ∪ U(ij)c | ≤ 5 for
some Uij, U(ij)c ̸= ∅.

(i) Suppose |Uij ∪ U(ij)c | = 5 for Uij, U(ij)c ̸= ∅. If either |Uij| = 3 or |U(ij)c | = 3,
then the sets X = Ui ∪ Uj ∪ Uij and Y =

∪
k ̸=i,j

Uk ∪ U(ij)c form K4,5, which is a contradiction.

So, either |Uij| = 4 or |U(ij)c | = 4. With no loss of generality, assume that |Uij| = 4. If
Ukℓ, U(kℓ)c ̸= ∅ for kℓ ̸= ij, (ij)c, then clearly |{i, j} ∩ {k, ℓ}| = 1 and |{m, n} ∩ {k, ℓ}| = 1
where m, n ∈ {1, 2, 3, 4} \ {i, j}. So, let us take {i, j} ∩ {k, ℓ} = {j} and {m, n} ∩ {k, ℓ} =
{m}. This implies that (Ikℓ, Ii), (I(kℓ)c , Im) ∈ E(AG(L)). Then, the subgraph AG(L) −
{Ii, Ikℓ, I(kℓ)c} contains K5,3 with the partite sets X = Uj ∪ Uij and Y = Um ∪ Un ∪ U(ij)c .
Now, the path Ii − Ikℓ − I(kℓ)c has to be embedded into a single face of any N2-embedding
of K5,3. Further, the vertices Ii and I(kℓ)c are adjacent to Ij and Im. So, after embedding these
four edges, the edge (Ikℓ, In) cannot be embeded, which means γ̃(AG(L)) ≥ 3. Therefore,
U(kℓ)c = ∅ when Ukℓ ̸= ∅ for all kℓ ̸= ij, (ij)c, and, in such cases, γ̃(AG(L)) = 2.

(ii) Suppose |Uij ∪ U(ij)c | = 4 for Uij, U(ij)c ̸= ∅. If |Ukℓ ∪ U(kℓ)c | ≥ 3 for kℓ ̸= ij,
then the subgraph AG(L)−{Ukℓ ∪U(kℓ)c} contains a crosscap two graph K5,3 or K4,4 with
the partite sets X = Ui ∪ Uj ∪ Uij and Y =

∪
m ̸=i,j

Um ∪ U(ij)c . Since |Ukℓ ∪ U(kℓ)c | ≥ 3,

we can take |Ukℓ| ≥ 2. Notice that the path Ikℓ − I(kℓ)c − I′kℓ together with the edges
(Ikℓ, Im), (Ikℓ, Ii), (I′kℓ, Im), and (I′kℓ, Ii) should be embedded into a single face of an N2-
embedding of K5,3. Thereafter, the face cannot adopt the edges (I(kℓ)c , Ij) and (I(kℓ)c , In)
where n /∈ {i, j, m}, which implies that γ̃(AG(L)) ≥ 3. Therefore, |Ukℓ ∪ U(kℓ)c | = 2 for all
Ukℓ, U(kℓ)c ̸= ∅ with kℓ ̸= ij and 1 ≤ i, j ≤ 4.

If |Uij| = 3, then, by Figure 17a, we obtain γ̃(AG(L)) = 2. If not, then |Uij| =
2. Suppose |Ukℓ ∪ U(kℓ)c | = |Umn ∪ U(mn)c | = 2 for Ukℓ, U(kℓ)c , Umn, U(mn)c ̸= ∅ with
kℓ, mn ̸= ij. Then, the subgraph AG(L)− {[Ikℓ, I(kℓ)c ], [Imn, I(mn)c ]} contains K4,4 with the
partite sets X = Ui ∪Uj ∪Uij and Y = Ui′ ∪Uj′ ∪U(ij)c , where i′, j′ /∈ {i, j}. Note that every
face of any N2-embedding of K4,4 is rectangular, and the vertices [Ikℓ, I(kℓ)c ] and [Imn, I(mn)c ]
are adjacent to the four vertices Ii, Ij, Ii′ , and Ij′ . So, to embed the vertices [Ikℓ, I(kℓ)c ] and
[Imn, I(mn)c ], two distinct rectangular faces with boundaries Ii, Ij, Ii′ , and Ij′ are required,
which is a contradiction. Therefore, at least one U(kℓ)c = ∅ when Ukℓ ̸= ∅ for kℓ ̸= ij and
1 ≤ i ̸= j ≤ 4. In this case, an N2-embedding of AG(L) is given in Figure 17b.

(iii) Suppose 2 ≤ |Uij ∪ U(ij)c | ≤ 3 for all Uij, U(ij)c ̸= ∅ with 1 ≤ i ̸= j ≤ 4. Then,
by Theorem 4i, there exists Ukℓ such that Ukℓ, U(kℓ)c ̸= ∅ with |Ukℓ ∪ U(kℓ)c | = 3 and∪
mn ̸=kℓ,(kℓ)c ;Umn ̸=∅

U(mn)c ̸= ∅.
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implies that (Ikℓ, Ii), (I(kℓ)c , Im) ∈ E(AG(L)). Then the subgraph AG(L)− {Ii, Ikℓ, I(kℓ)c}
contains K5,3 with partite sets X = Uj ∪ Uij and Y = Um ∪ Un ∪ U(ij)c . Now the path
Ii − Ikℓ − I(kℓ)c has to be embedded into a single face of any N2-embedding of K5,3. Further,
the vertices Ii and I(kℓ)c are adjacent to Ij and Im. So after embedding these four edges, the
edge (Ikℓ, In) cannot be embeded which means γ̃(AG(L)) ≥ 3. Therefore U(kℓ)c = ∅ when
Ukℓ ̸= ∅ for all kℓ ̸= ij, (ij)c and in such cases γ̃(AG(L)) = 2.

(ii) Suppose |Uij ∪ U(ij)c | = 4 for Uij, U(ij)c ̸= ∅. If |Ukℓ ∪ U(kℓ)c | ≥ 3 for kℓ ̸= ij,
then the subgraph AG(L) − {Ukℓ ∪ U(kℓ)c} contains a crosscap two graph K5,3 or K4,4
with partite sets X = Ui ∪ Uj ∪ Uij and Y =

∪
m ̸=i,j

Um ∪ U(ij)c . Since |Ukℓ ∪ U(kℓ)c | ≥ 3,

we can take |Ukℓ| ≥ 2. Notice that the path Ikℓ − I(kℓ)c − I′kℓ together with the edges
(Ikℓ, Im), (Ikℓ, Ii), (I′kℓ, Im) and (I′kℓ, Ii) should be embedded into a single face of an N2-
embedding of K5,3. There after, the face could not adopt the edges (I(kℓ)c , Ij) and (I(kℓ)c , In)
where n /∈ {i, j, m} which implies that γ̃(AG(L)) ≥ 3. Therefore |Ukℓ ∪ U(kℓ)c | = 2 for all
Ukℓ, U(kℓ)c ̸= ∅ with kℓ ̸= ij and 1 ≤ i, j ≤ 4.

If |Uij| = 3, then by Figure 16a, we get γ̃(AG(L)) = 2. If not, then |Uij| = 2. Suppose
|Ukℓ ∪ U(kℓ)c | = |Umn ∪ U(mn)c | = 2 for Ukℓ, U(kℓ)c , Umn, U(mn)c ̸= ∅ with kℓ, mn ̸= ij.
Then the subgraph AG(L)− {[Ikℓ, I(kℓ)c ], [Imn, I(mn)c ]} contains K4,4 with partite sets X =
Ui ∪Uj ∪Uij and Y = Ui′ ∪Uj′ ∪U(ij)c , where i′, j′ /∈ {i, j}. Note that every face of any N2-
embedding of K4,4 is rectangular, and the vertices [Ikℓ, I(kℓ)c ] and [Imn, I(mn)c ] are adjacent
to the four vertices Ii, Ij, Ii′ and Ij′ . So to embed the vertices [Ikℓ, I(kℓ)c ] and [Imn, I(mn)c ],
it requires two distinct rectangular faces with boundaries Ii, Ij, Ii′ and Ij′ , a contradiction.
Therefore at least one U(kℓ)c = ∅ when Ukℓ ̸= ∅ for kℓ ̸= ij and 1 ≤ i ̸= j ≤ 4. In this case,
an N2-embedding of AG(L) is given in Figure 16b.
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(b). |U12| = |U34| = 2 and |U14 ∪ U23| = 2

(iii) Suppose 2 ≤ |Uij ∪ U(ij)c | ≤ 3 for all Uij, U(ij)c ̸= ∅ with 1 ≤ i ̸= j ≤ 4. Then
by Theorem 4i, there exists Ukℓ such that Ukℓ, U(kℓ)c ̸= ∅ with |Ukℓ ∪ U(kℓ)c | = 3 and∪
mn ̸=kℓ,(kℓ)c ;Umn ̸=∅

U(mn)c ̸= ∅.

Suppose |Uij ∪ U(ij)c | = 3 for all 1 ≤ i ̸= j ≤ 4. That is |U12 ∪ U34| = |U13 ∪ U24| =
|U14 ∪ U23| = 3. Without loss of generality, we let |U12| = |U13| = |U14| = 2. Now con-
sider the bipartite graph G19 = AG(L)−{(I2, I3), (I2, I4), (I3, I4), (I2, I34), (I3, I24), (I4, I23)}
with partite sets X = U1 ∪ U12 ∪ U13 ∪ U14 and Y = U2 ∪ U3 ∪ U4 ∪ U34 ∪ U24 ∪ U23. Note
that γ̃(G19) = 2 and the faces of any N2-embedding of G19 have one of the following
possibilities:

• 9 rectangular and two hexagonal faces
• 10 rectangular and one octagonal faces.

Since, in G19, the only common neighbor for I2 and I34 in X is I1, no rectangular
face has both I2 and I34. Therefore the edge (I2, I34) should be embedded in a face of
length more than 4; so are the edges (I3, I24) and (I4, I23). Thus we have to embed the

Figure 17. |∪4
n=1 Un| = 4 with |U12 ∪ U34| = 4.

Suppose |Uij ∪ U(ij)c | = 3 for all 1 ≤ i ̸= j ≤ 4. That is, |U12 ∪ U34| = |U13 ∪ U24| =
|U14 ∪ U23| = 3. Without a loss of generality, we let |U12| = |U13| = |U14| = 2. Now, con-
sider the bipartite graph G19 = AG(L)−{(I2, I3), (I2, I4), (I3, I4), (I2, I34), (I3, I24), (I4, I23)}
with the partite sets X = U1 ∪ U12 ∪ U13 ∪ U14 and Y = U2 ∪ U3 ∪ U4 ∪ U34 ∪ U24 ∪ U23.
Note that γ̃(G19) = 2 and the faces of any N2-embedding of G19 have one of the following
possibilities:

• Nine rectangular and two hexagonal faces;
• Ten rectangular faces and one octagonal face.

Since, in G19, the only common neighbor for I2 and I34 in X is I1, no rectangular face
has both I2 and I34. Therefore, the edge (I2, I34) should be embedded in a face of a length
of more than four; so the edges are (I3, I24) and (I4, I23). Thus, we have to embed the
three mutually disjoint edges of ⟨Y⟩ in either two hexagonal faces or one octagonal face.
However, in any case, the faces may adopt at most two mutually disjoint edges of ⟨Y⟩,
and, so, γ̃(AG(L)) ≥ 3. For the remaining cases, we have γ̃(AG(L)) = 2.

Remark 2. As an illustration, we consider the case (v)[a] in Theorem 5. Let |U1| = |U2| =
|U3| = |U4| = 1 and |U23| = 4. If |U24| = |U34| = 1, then the corresponding five-partite
graph, as in Figure 18a, has a crosscap two. Additionally, if |U24| = 2, then the crosscap of
the corresponding five-partite graph, given in Figure 18b, is not equal to two. Moreover,
the five-partite graph G in Figure 18b is minimal with respect to γ̃(G) ̸= 2.
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Figure 17. 5-partite graphs.

6. Conclusions

The forbidden subgraphs for crosscap two surface (Klein bottle) are not known yet.
In this regard, an open problem will be to determine a family of graphs that has crosscap
number two. This paper provides a class of r-partite graphs, where 2 ≤ r ≤ 5, that can
be both embedded and not embedded in crosscap two surface. This was done by using
the classification of all lattices with at most 4 atoms whose annihilating-ideal graph has
crosscap two.
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6. Conclusions

The forbidden subgraphs for a crosscap two surface (a Klein bottle) are not known yet.
In this regard, an open problem will be to determine a family of graphs that has a crosscap
number two. This paper provides a class of r-partite graphs, where 2 ≤ r ≤ 5, that can
be both embedded and not embedded in a crosscap two surface. This was completed
by using the classification of all lattices with at most four atoms whose annihilating-ideal
graph has a crosscap two.
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