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Abstract: In this article, using the scaled (weighted) residual life variable, some scaled measures, the
scaled mean residual life and the scaled hazard rate, are introduced. Several scales are considered
as examples of the derivation of the scaled measures. The measures are developed for the case of a
weighted residual life at a random time, and it is shown that the measures are scale-free in these cases.
This property proves useful in situations where a relative comparison of the lifetime distribution is
studied. Some characterization properties are derived in terms of scaled measures evaluated at some
sequences of random time points that follow a typical distribution. Examples are used to illustrate,
examine, and satisfy the obtained characterizations.
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1. Introduction and Preliminaries

A characterization is a particular distributional or statistical property of a statistic
or statistics that uniquely determines the associated stochastic model. The study of the
characterization properties of probability distributions plays an essential role in many areas
of statistics and applied probability. In the context of lifetime research, such properties have
proven useful in testing the fit of particular lifetime distributions. There are many aspects
in a lifetime distribution that may not be observable. However, a particular characterization
property of a particular distribution reveals a particular aspect or feature of that distribution.
This aspect may be useful in finding further applications of distributions as they are used
in modeling a natural phenomenon (cf. Nassar and Mahmoud [1], Navarro et al. [2],
Nagaraja [3], Sunoj et al. [4], and Iwińska and Szymkowiak [5]).

The concept of aging as a qualitative behavior that can be realized using lifetime
distributions is often used in reliability and survival analysis. There are many classes of
lifetime distributions that quantitatively account for various aspects of aging (see Lai and
Xie [6]). The residual lifetime random variable as a concept related to the aging process of a
lifespan plays a central role in reliability theory (see, e.g., Jeong [7]). The distribution of
the residual lifetime random variable can induce an aging property that sometimes results
from stochastic comparisons of the lifetimes of units with different ages. There are many
characterizations of distributions based on the residual lifetime random variable, and also
the corresponding quantities derived from the residual lifetime random variable, such as
the hazard rate function (HR) and the mean residual lifetime (MRL) function (Ruiz and
Navarro [8] and Gupta and Kirmani [9]). More recently, some authors have developed
some characterizations of the exponential distribution and other specific distributions using
the concept of residual lifetime at random time (RLRT) (see, e.g., Kayid and Izadkhah [10],
Shrahili and Kayid [11], Shrahili and Kayid [12], and Alomani and Kayid [13]).
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The aim of the present paper is, first, to propose, study, and argue two scaled relia-
bility measures based on the weighted residual lifetime variable and, second, to present
some characterizations that are developments to the characterization properties discussed
in Shrahili and Kayid [11] and Alomani and Kayid [13] and are more applicable in
many situations.

Let X be a non-negative random variable (RV) with probability density function (PDF)
fX, cumulative distribution function (CDF) FX, and survival function (SF) F̄X. The RV
Xt := [X− t | X > t], which is valid for all t after which survival is possible, i.e., for all t,
for which F̄(t) > 0, is called the residual lifetime of a device with original random lifetime
X after the age t. Note that [X | A], where A is an event, denotes a conditional RV whose
distribution is identical with the distribution of X conditional on A. The RV Xt has SF

F̄t(x) =
F̄X(t + x)

F̄X(t)
, (1)

and the corresponding PDF is given by

ft(x) =
fX(t + x)

F̄X(t)
. (2)

Based on the residual lifetime, the RV Xt, the MRL function of the RV X when it has a
finite mean, is defined as follows:

mX(t) = E(Xt) =

∫ +∞
t F̄X(x)dx

F̄X(t)
, F̄X(t) > 0. (3)

The MRL function is a useful characteristic of distribution, which summarizes the en-
tire residual lifetime in an average number. This characteristic has found many applications
in the context of reliability theory, system sciences, and survival analysis. Some authors
have discussed different models in the context of distribution theory in the context of MRL
function (see, e.g., Finkelstein [14], Nanda et al. [15], and Alshehri, Kayid [16]). The MRL
function determines the underlying distribution uniquely, as the following inversion for-
mula affirms it:

F̄X(t) =
µ

mX(t)
exp

(
−
∫ t

0

1
mX(x)

dx
)

, (4)

where µ = mX(0) is the distribution mean. In terms of (4), there is a one-to-one correspon-
dence between the SF and the MRL function of a distribution, so that if mX(t) = mY(t)
for all t ≥ 0, then F̄X(t) = F̄Y(t) for all t ≥ 0, i.e., X and Y are equal in distribution and
vice versa (cf. Nanda et al. [17]).

Another reliability measure which is closely related to residual lifetime is the HR
function. The HR function is an instantaneous risk measure defined as below:

hX(t) = lim
δ↓0

P(Xt ≤ δ)

δ
=

fX(t)
F̄X(t)

, F̄X(t) > 0. (5)

The HR function, in parallel with the MRL function, has had a central role in stud-
ies accomplished in survival analysis and reliability modelling. For some preliminary
discussion on the distribution theory using HR function, we refer the reader to Prentice
and Kalbfleisch [18] and Aarset [19]. The HR function also characterizes the underlying
distribution uniquely. The next inversion relation validates it:

F̄X(t) = exp
(
−
∫ t

0
hX(x)dx

)
, (6)

From (6), there is a direct correspondence between the SF and the HR function of a
distribution, so that if hX(t) = hY(t) for all t ≥ 0, then F̄X(t) = F̄Y(t) for all t ≥ 0, i.e., X
and Y are equal in distribution and vice versa.
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In the literature there are many results on characterization of lifetime distributions.
To justify the new proposal of characterization properties, our work contributes to charac-
terize lifetime distributions by mathematical expectations of some other reliability measures
instead of hazard rate function and mean residual lifetime function evaluated at some
random points as proposed by Alomani and Kayid [13], Shrahili and Kayid [11], and
Shrahili and Kayid [12]. To answer the question of why the results enable someone to do
what they cannot do by other means, it is worth mentioning here that our study leads in
particular to the characterization of lifetime distributions using mathematical expectations
of the relationship between the hazard rate and the mean remaining lifetime of a lifespan
and also mathematical expectations of the coefficient of variation of the remaining lifetime
when the expectations are evaluated at some random points according to a sequence of
probability distributions with a commonly used construction. To highlight the novelty
of our study, here we further develop the work of Alomani and Kayid [13], Shrahili and
Kayid [11], and Shrahili and Kayid [12] to characterize lifetime distributions with a number
of additional reliability measures.

The contents of the paper are organized as follows. In Section 2, based on a scaled
residual lifetime, two scaled reliability measures are presented. Some preliminary proper-
ties of these measures are given with some typical examples. The proposed measures are
developed for the case where the weighted residual lifetime is evaluated at random time
points. The property of being scale-free is established for the scaled measures at random
time points. In Section 3 using the concept of scaled measures evaluated at random time
points, some characterization properties are presented, with the property of completeness
playing an essential role in functional analysis. Examples of characterization of certain
parametric distributions are given. In Section 4, we conclude the paper with further remarks
and mention some possible future work.

2. Scaled Reliability Measures

In this section, we propose two scaled reliability measures using the residual lifetime
variable. The age of a fresh component with random lifetime X is scaled with respect to
a weight function, w. Then, using the weighted residual lifetime variable we define two
scaled reliability measures, namely the scaled hazard rate and the scaled mean residual
lifetime. Properties of these measures and the connection they have are investigated.

Let us suppose that w is a non-negative function such that w(t) > 0 for all t ≥ 0.
Then, the RV Xw,t := w(t)Xt is called the weighted residual lifetime, which contributes to a
change in time scale of the item under consideration at the age t. The RV Xw,t has CDF

Fw,t(x) = 1−
F̄X(t + x

w(t) )

F̄X(t)
, x ≥ 0, (7)

and, consequently, it has PDF

fw,t(x) =
fX(t + x

w(t) )

w(t)F̄X(t)
, x ≥ 0. (8)

The SF of Xw,t is also given by

F̄w,t(x) =
F̄X(t + x

w(t) )

F̄X(t)
, x ≥ 0. (9)

The residual lifetime of a lifetime unit can be scaled with respect to the current age
of the unit. In this case, w(t) = 1

t is an appropriate choice. In this context, consider a
situation where the residual lifetime of a human is considered according to his current age
after a medical operation. The performance of the person’s remaining life after surgery
depends not only on the benefit of the surgery itself, but also on his current age. Therefore,
the RV Xw,t =

Xt
t , which measures the residual life by separating the age effect, is a useful
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tool to evaluate the residual life process. The RV Xw,t = Xt
t has an essential role in the

study conducted by Righter et al. [20] where several ageing notions based on the scaled
conditional lifetime XSC = 1 + Xt

t have been introduced.
If the residual life is scaled with respect to the mean residual life at the age t, then

w(t) = 1
mX(t)

. In parallel, if the residual life is scaled with respect to the standard deviation

of residual life after the age t, then w(t) = 1√
V(Xt)

, where V(Xt) represents variance

residual lifetime function defined by V(Xt) = E(Xt)2 − E2(Xt). For all x ≥ 0 and for all
t ≥ 0, from (9) one can get

F̄w,t(w(t)x) =
F̄X(t + x)

F̄X(t)
= F̄t(x),

therefore, it becomes apparent that the weighted residual lifetime at age t, i.e., the RV Xw,t,
follows an accelerated life model in terms of the residual lifetime distribution at age t.
The accelerated life distributions have had an important role in reliability theory and life
testing strategies (see, e.g., Oakes and Dasu [21], Bagdonavicius and Nikulin [22], Zhao
and Elsayed [23], Gebraeel et al. [24], and Ling and Hu [25]).

We apply the weighted residual life distribution to obtain two reliability measures.
Let us fix t ≥ 0. The first quantity is the scaled hazard rate at time t given by

ShX(t) := lim
δ↓0

Fw,t(δ)

δ

= lim
δ↓0

P(t < X ≤ t + δ
w(t) )

δP(X > t)

= lim
δt↓0

FX(t + δt)− FX(t)
δtw(t)F̄X(t)

=
hX(t)
w(t)

, t ≥ 0, (10)

where δt := δ
w(t) . If w(t) = 1

t , then ShX(t) = thX(t), which is known as proportional hazard
rate function. The monotonicity of ShX(t) based on t in this case induces some aging
properties for a lifetime distribution (see, e.g., Oliveira and Torrado [26]). If w(t) = 1

mX(t)
,

then ShX(t) = hX(t)mX(t) = 1 + m′X(t). In this case, the monotonicity of ShX(t) in terms
of t indicates convexity (concavity) of the MRL function. These properties for MRL function
have found some potential interest in the literature (see, e.g., Belzunce and Shaked [27]
and the references therein). If w(t) = mX(t), then the interest centers on the risk of
instantaneous death in terms of the mean residual life, the measure ShX(t) =

hX(t)
mX(t)

is of
relevance (see, Gupta and Kirmani [9]).

The second quantity on the basis of weighted residual lifetime distribution is the
scaled mean residual lifetime, defined by

SmX(t) = E(Xw,t) = w(t)mX(t). (11)

If w(t) = 1
t , then SmX(t) = tmX(t) is known as the proportional mean residual lifetime

function. In this case, the monotonicity of SmX(t) proposes some new aging perspectives
(see, e.g., Kayid et al. [28]). In this case, a new stochastic order has also been proposed
based on SmX(t) (see, Kayid et al. [29]). If w(t) = 1

mX(t)
, then SmX(t) = 1 and thus it

does not provide any information on the distribution of X. Let us choose w(t) = 1√
V(Xt)

.

Then, SmX(t) = 1
CVX(t)

, where CVX(t) is the coefficient of variation of residual lifetime
Xt. The monotonicity of SmX(t) may be of interest in reliability and life testing (see,
for instance, Gupta and Kirmani [30]). The scaled mean residual life can also be useful
in insurance and risk analysis. In this context, let us choose w(t) = F̄X(t), and observe
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that SmX(t) = E(X − t)+, where a+ := max{a, 0}. Note that for any non-negative RV Z
with finite mean, E(Z − t)+ =

∫ +∞
t F̄Z(z)dz where F̄Z is the SF of Z. The scaled mean

residual life could be a relative measure. For example, for two non-negative RVs X and Y if
w(t) = F̄X(t)

E(Y−t)+
, then

SmX(t) =
E(X− t)+
E(Y− t)+

=

∫ +∞
t F̄X(x)dx∫ +∞
t F̄Y(y)dy

. (12)

Note that the scaled MRL function given in (12) is decreasing in t ≥ 0 if and only if X
is less that Y in the MRL order, denoted by X ≤MRL Y. For the definition of MRL order we
refer the reader to Shaked and Shanthikumar [31].

It is known in the literature that hX(t) =
1+m′X(t)

mX(t)
, where m′X(t) = d

dt mX(t). To see
how the scaled HR in (10) is connected to the scaled MRL in (11), when w(·) is a positive
differentiable function, one has

ShX(t) =
w(t) + Sm′X(t)

SmX(t)
− d

dt
ln{w(t)}, (13)

where Sm′X(t) =
d
dt SmX(t). Various properties of scaled HR measures following the scaled

MRL measure can be revealed via (13). However, that whether the scaled HR or the
scaled MRL characterizes the underlying distribution uniquely depends on the weight
w(t). For instance, if w(t) does not depend on FX (the underlying distribution) then ShX(t)
and SmX(t) each characterizes FX uniquely. That is, if SmX(t) = SmY(t), for all t ≥ 0,
then X and Y have identical distributions, i.e., for all t ≥ 0, FX(t) = FY(t). Further,
if ShX(t) = ShY(t), for all t ≥ 0, then X and Y are identical in distribution. This is because
in this case using the inversion formulas, we have

F̄X(t) = exp
(
−
∫ t

0
w(x)ShX(x) dx

)
and,

F̄X(t) =
w(t)SmX(0)
w(0)SmX(t)

exp
(
−
∫ t

0

w(x)
SmX(x)

dx
)

.

However, there may be cases where w(·) depends on FX and ShX(t) or SmX(t)
characterizes the distribution in a unique way. For example, if w(t) = 1

F̄X(t)
then

ShX(t) = fX(t), which is obviously a unique characteristic of FX . In parallel, if w(t) = F̄X(t)
then SmX(t) = E(X− t)+, which uniquely determines FX . Gupta and Kirmani [9] showed
that ShX(t) =

hX(t)
mX(t)

, which is the scaled HR when w(t) = mX(t), determines the distribu-
tion uniquely. It has also been proved by Gupta and Kirmani [30] that the coefficient of
variation of residual lifetime and hence SmX(t) =

mX(t)√
V(Xt)

= 1
CVX(t)

, which is the scaled

MRL function when w(t) = 1√
V(Xt)

, characterizes the distribution uniquely.

To develop the weighted residual lifetime to the case where the ages are random we
consider the residual lifetime at random time. Let X and T be two non-negative RVs with
CDFs FX and FT , respectively. The conditional random variable XT := [X − T|X > T]
when P(X > T) > 0 is called residual lifetime at random time (RLRT). For example, if T is
interpreted as a moment of a stroke or a traumatic accident the law of the residual lifetime
after T is an important measure. The RV XT is also useful to represent the additional
lifetime of a device with lifetime X compared to the lifetime of another device with lifetime
T, assuming the first device survives when the second device fails. The concept of RLRT has
found many applications in reliability and systems science (see, e.g., Patra and Kundu [32],
Amini-Seresht et al. [33], and Patra and Kundu [34]). The idle time in a classical GI /G/1
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queuing system can be interpreted as RLRT. The results obtained involving this variable
find application in the study of this type of queuing system (see, Dequan and Jinhua [35]).

Suppose that X and T are two independent RVs such that P(X > T) > 0, then the RV
Xw,T := w(T)XT , which we call weighted inactivity time at random time has SF

F̄w,T(x) = P(w(T)(X− T) > x | X > T)

=
P(X > T + x

w(T) )

P(X > T)

=

∫ +∞
0 F̄X(t + x

w(t) ) fT(t)dt∫ +∞
0 F̄X(t) fT(t)dt

, (14)

where fT denotes the PDF of T. It is clear from (14) that F̄w,T(x) =
E[F̄X(T+ x

w(T) )]

E[F̄X(T)]
. If

w(t) = 1 then Xw,t is equal in distribution with Xt, and also in this case Xw,T is identical in
distribution with XT . The PDF of Xw,T is derived as

fw,T(x) =

∫ +∞
0 ( fX(t + x

w(t) )/w(t)) fT(t)dt∫ +∞
0 F̄X(t) fT(t)dt

, (15)

in which fX represents the PDF of X, i.e., fw,T(x) =
E[( fX(T+ x

w(T) )/w(T))]

E[F̄X(T)]
and a/b = a

b . Let
us now derive the scaled HR and the scaled MRL in the context of RLRT. Let Fw,T is the
CDF of Xw,T . From (15), we define and obtain random scaled HR measure as follows:

RShX(T) := lim
δ↓0

Fw,T(δ)

δ

= fw,T(0)

=

∫ +∞
0 ( fX(t)/w(t)) fT(t)dt∫ +∞

0 F̄X(t) fT(t)dt

=
∫ +∞

0

fX(t)
w(t)F̄X(t)

F̄X(t) fT(t)∫ +∞
0 F̄X(t) fT(t)dt

=
∫ +∞

0

hX(t)
w(t)

fv(t)dt

= E[ShX(Tv)], (16)

where Tv is an RV with pdf fv(t) =
v(t) fT(t)∫ +∞

0 F̄X(t) fT(t)dt
which is the PDF of a weighted distribu-

tion of T (cf. Nanda and Jain [36]) in which v(t) = F̄X(t) is the underlying weight function.
In the same line, from (14), random scaled MRL measure is defined as follows:
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RSmX(T) := E[Xw,T ]

=
∫ +∞

0
F̄w,T(x)dx

=

∫ +∞
0

∫ +∞
0 F̄X(t + x

w(t) ) fT(t)dtdx∫ +∞
0 F̄X(t) fT(t)dt

=
∫ +∞

0

(∫ +∞

0
F̄X(t +

x
w(t)

)dx
)

fT(t)∫ +∞
0 F̄X(t) fT(t)dt

dt

=
∫ +∞

0
w(t)

(∫ +∞

t
F̄X(x′)dx′

)
fT(t)∫ +∞

0 F̄X(t) fT(t)dt
dt

=
∫ +∞

0
w(t)

∫ +∞
t F̄X(x′)dx′

F̄X(t)
F̄X(t) fT(t)∫ +∞

0 F̄X(t) fT(t)dt
dt

=
∫ +∞

0
SmX(t) fv(t) dt

= E[SmX(Tv)]. (17)

Remark 1. In the case when w(t) = 1, the scaled HR given in (10) corresponds to the ordinary
HR function of X. In this case the random scaled HR in (16) reduces to the random hazard measure
defined in Shrahili and Kayid ([12]). In this case where w(t) = 1, the scaled MRL given in (11)
becomes the MRL function X has. In the random case, we can see that random scaled MRL in (17)
corresponds to E[XT ] = E[mX(Tv)] (cf. Kayid and Izadkhah [10]). Let us denote by hY the HR of a
lifetime variable Y and take w(t) = hY(t). Then, (10) becomes the ratio of the HR function of X
divided by the HR function of Y, and also (16) corresponds to the random relative HR proposed by
Alomani and Kayid [13]. If w(t) = 1

mY(t)
where mY is the MRL of the RV Y, then (11) becomes the

ratio of MRL of X and the MRL of Y and, further, (17) corresponds to the random relative MRL
introduced by Shrahili and Kayid [11].

One of the advantages of using (16) and (17) is that both of these measures are scale free.
Suppose X and T are random lifetimes of two devices and assume that w(·) does not depend
on FX . Then, for any k > 0, if w(kt) = w(t)

k then RShkX(kT) = RShX(T) and also for every
k > 0, RSmkX(kT) = RSmX(t) as will be proved in the sequel. Therefore, the introduced
random scaled measures could be a scale-free relative measure for comparison of two
devices and their performance. Let us observe from (16) that, for any k > 0 whenever w(·)
is such that w(kt) = w(t)

k for all t ≥ 0,

RShkX(kT) =
∫ +∞

0

fkX(t) fkT(t)
w(t)P(kX > kT)

dt

=
∫ +∞

0

fX(
t
k ) fT(

t
k )

k2w(t)P(X > T)
dt

=
∫ +∞

0

fX(t′) fT(t′)
kw(kt′)P(X > T)

dt′

=
∫ +∞

0

fX(t′) fT(t′)
w(t′)P(X > T)

dt′ = RShX(T).
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In parallel from (17), for any k > 0 if w(kt) = w(t)
k for all t ≥ 0, then

RSmkX(kT) =
∫ +∞

0
w(t)

(∫ +∞

t
F̄kX(x′)dx′

)
fkT(t)

P(kX > kT)
dt

=
∫ +∞

0
w(t)

∫ +∞

t
k

F̄X(x′′)dx′′
fT(

t
k )

P(X > T)
dt

=
∫ +∞

0
kw(kt′)

∫ +∞

t′
F̄X(x′′)dx′′

fT(t′)
P(X > T)

dt′

=
∫ +∞

0
w(t′)

∫ +∞

t′
F̄X(x′′)dx′′

fT(t′)
P(X > T)

dt′ = RSmX(T).

For example, if w(t) = 1
t then for every k > 0, the property w(kt) = w(t)

k holds true
for all t > 0. This concludes that the random scaled HR RShX(T) = E(TvhX(Tv)) and the
random scaled MRL RSmX(T) = E

[
mX(Tv)

Tv

]
are both scale-free measures to evaluate the

performance of a system or lifespan with lifetime X relative to another system or lifespan
having lifetime T. Eryilmaz and Tutuncu [37] used the measure E[TS1 − TS2 | TS1 > TS2 ]
as a quantity for measuring relative behaviour of a coherent system with lifetime TS1
with respect to another coherent system with lifetime TS2 . This measure is not scale-free
under the transformation (TS1 , TS2) 7→ (kTS1 , kTS2) when k is an arbitrary positive value.

However, the measure RSmTS1
(TS2) = E

[ TS1
TS2
− 1 | TS1 > TS2

]
is a scale-free measure under

the foregoing transformation and, therefore, it is a more appropriate relative measure.

Remark 2. In the definition of Xw,t the weighted residual life, if w(t) depends on FX, is written
as wX(t). It can be proved quite similarly as above that if kwkX(kt) = wX(t) for all t ≥ 0, then
for any k > 0, RShkX(kT) = RShX(T) for all t ≥ 0 and also RSmkX(kT) = RSmX(t) for all
t ≥ 0. For example, if wX is either the HR hX(t) =

fX(t)
F̄X(r)

or the reversed hazard rate (RHR) of X

h̃X(t) =
fX(t)
FX(t)

, then the required condition on wX is fulfilled. Thus, the random scaled HR and the
random scaled MRL are both scale-free quantities.

3. Characterization Results

In this section, the scaled random quantities proposed in Section 2 are developed
to a random sequence on T. It is proved that if such sequence follows a typical fam-
ily of distribution then some characterization properties are produced. We utilize the
concept of completeness in a particular Hilbert space as a well-known methodology in
functional analysis.

Definition 1. The sequence ψ1, ψ2, · · · in a Hilbert space H is complete if the only member in H
which is orthogonal to each and every ψn is the null member, so that

≺ φ, ψn �= 0, ∀ n ∈ N⇒ φ = 0,

in which 0 stands for the zero element of H.

The symbol ≺ ·, · � indicates an inner product of H. The Hilbert space L2[a, b], along
this paper, is supposed to be accompanied with the following inner product

≺ φ1, φ2 �=
∫ b

a
φ1(x)φ2(x)dx,

in which φi, i = 1, 2 is a real-valued function which is square integrable in [a, b]. Note
that if ψ1, ψ2, · · · is a complete sequence in the Hilbert space H, then ∑+∞

n=1 bnψn in which
bn =≺ f , ψn � converges in H provided that ∑+∞

n=1 |bn|2 < +∞, and the limit corresponds
to f .
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Let us set a sequential family of probability distributions to play the role of the law of
T in the weighted residual life at random time. Based on the random scaled HR and the
random scaled MRL, a couple of characterization properties is presented.

Assume that the random time Tn for n ∈ N, follows the PDF

fTn(t) =
r(t)sνn(t)∫ +∞

0 r(t)sνn(t)dt
, (18)

in which r(·) and s(·) are two non-negative functions for which 0 <
∫ +∞

0 r(t)sνn(t)dt < +∞.
We will assume that in the family (18), we have 1 ≤ ν1 < ν2 < . . . such that ∑+∞

n=1
1
νn

= +∞
and also will assume that s(t) is a monotone function throughout. The family of distribu-
tions recognized by the PDF (18) is fulfilled in many situations in statistics and reliability
modelling. To see some typical families of distributions we refer the reader to Shrahili and
Kayid [11], Shrahili and Kayid [12] and also Alomani and Kayid [13].

We will denote the CDF of Tn by FTn . Let us consider wi(·), i = 1, 2 for which the
corresponding weighted residual life at random time, i.e.,

Xwi ,Tn = [wi(Tn)(X− Tn) | X > Tn]

is taken to consideration. As given in (10) and also in (11), we consider

Sh[i]X (t) =
hX(t)
wi(t)

and Sm[i]
X (t) = wi(t)mX(t).

Let us set, accordingly, RSh[i]X (Tn) = E[Sh[i]X (Tn,v)] and RSm[i]
X (Tn) = E[Sm[i]

X (Tn,v)]
where Tn,v follows a weighted distribution with baseline (18) which has pdf

fTn,v(t) =
v(t)r(t)sνn(t)∫ +∞

0 v(t)r(t)sνn(t)dt
, (19)

where v(t) = F̄X(t). We will show below that if the random scaled HR (or the random
scaled MRL) at the random time Tn with PDF (18) does not vary with n = l, l + 1, . . . (for
some l ∈ N) then the function wi(·) also does not vary with i = 1, 2 and vice versa.

Theorem 1. Let Tn, n = 1, 2, . . . denote a sequence of RVs which is independent of X. Then,

(i) If there exists an l ∈ N such that RSh[1]X (Tn) = RSh[2]X (Tn), for all n = l, l + 1, . . . , then
w1(t) = w2(t) for all t ≥ 0 and vice versa.

(ii) If there exists an l ∈ N such that RSm[1]
X (Tn) = RSm[2]

X (Tn), for all n = l, l + 1, . . . , then
w1(t) = w2(t) for all t ≥ 0 and vice versa.

Proof. The assertion (i) is firstly proved. It is trivial that if w1(t) = w2(t) for all t ≥ 0, then
Sh[1]X (t) = Sh[2]X (t), for all t ≥ 0. Hence, RSh[1]X (Tn) = RSh[2]X (Tn), for all n = l, l + 1, . . . . To
prove the converse, assume that Tn,v follows the PDF (18) with v(t) = F̄X(t). We then have

RSh[2]X (Tn)− RSh[1]X (Tn) = E[Sh[2]X (Tn,v)]− E[Sh[2]X (Tn,v)]

=
∫ +∞

0
(Sh[2]X (t)− Sh[2]X (t))

v(t)r(t)sνn(t)∫ +∞
0 v(t)r(t)sνn(t)dt

dt

= Cn

∫ +∞

0

(
1

w2(t)
− 1

w1(t)

)
hX(t)svl−1(t)v(t)r(t)sv′n(t)dt

= Cn ≺ φ, sv′n �= 0, for all n = 1, 2, . . . .
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where v′n = vl+n−1 − vl + 1 for which 1 = v′1 < v′2 < . . .,

φ(t) =
(

1
w2(t)

− 1
w1(t)

)
hX(t)svl−1(t)v(t)r(t)

and Cn = 1∫ +∞
0 v(t)r(t)sνn (t)dt

> 0. Therefore, we deduce that if RSh[1]X (Tn) = RSh[2]X (Tn),

for all n = l, l + 1, . . . , then ≺ φ, sv′n �= 0, for all n = 1, 2, . . .. From Lemma 2 in Alomani
and Kayid [13], since s(t) is a monotone function, thus, sv′n , n = 1, 2, . . . constitutes a
complete sequence and, therefore, φ(t) = 0 which is equivalent to w1(t) = w2(t), for all
t ≥ 0. The proof of (i) is complete. We now prove the assertion (ii). It is plain to see
that if w1(t) = w2(t) for all t ≥ 0, then Sm[1]

X (t) = Sm[2]
X (t), for all t ≥ 0. Consequently,

RSm[1]
X (Tn) = RSm[2]

X (Tn), for all n = l, l + 1, . . . . We prove now the converse part. We get

RSm[2]
X (Tn)− RSm[1]

X (Tn) = E[Sm[2]
X (Tn,v)]− E[Sm[2]

X (Tn,v)]

=
∫ +∞

0
(Sm[2]

X (t)− Sm[2]
X (t))

v(t)r(t)sνn(t)∫ +∞
0 v(t)r(t)sνn(t)dt

dt

= Cn

∫ +∞

0
(w2(t)− w1(t))mX(t)svl−1(t)v(t)r(t)sv′n(t)dt

= Cn ≺ φ∗, sv′n �= 0, for all n = 1, 2, . . . .

where
φ∗(t) = (w2(t)− w1(t))mX(t)svl−1(t)v(t)r(t).

Hence, if RSm[1]
X (Tn) = RSm[2]

X (Tn), for all n = l, l + 1, . . . , then ≺ φ∗, sv′n �= 0, for
all n = 1, 2, . . .. From Lemma 2 in Alomani and Kayid [13], as in the proof of assertion
(i), it follows that φ∗(t) = 0 which means w1(t) = w2(t), for all t ≥ 0. The proof is now
complete.

Remark 3. In Theorem 1(i), let us take w1(t) = hY(t) and w2(t) = hX(t). Then, for all
n = l, l + 1, . . ., we get RSh[1]X (Tn) = E

[
hX(Tn,v)
hY(Tn,v)

]
and RSh[2]X (Tn) = 1. It is, therefore, deduced

from Theorem 1 that E
[

hX(Tn,v)
hY(Tn,v)

]
= 1, for all n = l, l + 1, . . . , if and only if hX(t) = hY(t), for all

t ≥ 0, which means that X and Y are equal in distribution. This is the result of Theorem 3(i) in
Alomani and Kayid [13]. In Theorem 1(ii), if one take w1(t) = 1

mY(t)
and w2(t) = 1

mX(t)
. Then,

for all n = 1, 2, . . ., we get RSm[1]
X (Tn) = E

[
mX(Tn,v)
mY(Tn,v)

]
and RSm[2]

X (Tn) = 1. From Theorem 1 it

follows that E
[

mX(Tn,v)
mY(Tn,v)

]
= 1, for all n = 1, 2, . . . , if and only if mX(t) = mY(t), for all t ≥ 0,

which means that X and Y are identically distributed. This is the result of Theorem 4(i) in Shrahili
and Kayid [11].

The result of Theorem 1 can be useful in many ways. In the sequel, before we close the
paper, some examples of characterization properties are brought.

Example 1. Let Z be a lifetime RV with CDF FZ. Suppose that wZ(·), a quantity of distribution,

characterizes FZ. Let us denote HX,Z(t) = limδ↓0
P(XwZ ,t≤δ)

δ and MX,Z(t) := E[wZ(t)Xt]. Then,
it is obvious that when X has a particular (known) distribution, then HX,Z(t) and also MX,Z(t) each
characterizes FZ, uniquely. Let us now suppose that Zi follows CDF FZi , i = 1, 2. From Theorem 1(i),
we conclude that HX,Z1(Tn) = HX,Z2(Tn), for all n = l, l + 1, . . ., if, and only if, wZ1(t) = wZ2(t),
for all t ≥ 0, and equivalently, Z1 is identical in distribution with Z2. From Theorem 1(ii), it is
realized that if MX,Z1(Tn) = MX,Z2(Tn), for all n = l, l + 1, . . ., if, and only if, wZ1(t) = wZ2(t),
for all t ≥ 0, and this means that Z1 and Z2 have a common distribution.
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In the following example, using Theorem 1 we characterize the exponential distribu-
tion. Gupta and Kirmani [30] proves that the coefficient of variation of residual lifetime
determines the underlying distribution uniquely.

Example 2. Suppose that w1(t) = 1√
V(Xt)

and w2(t) = 1
mX(t)

. Then, RSm[1]
X (Tn) =

E[(CVX(Tn,v))−1] where (CVX(t))−1 = mX(t)√
VX(t)

is the reciprocal coefficient of variation of Xt.

Further, RSm[2]
X (Tn) = 1. Let l ∈ N. From Theorem 1(ii), E[(CVX(Tn,v))−1] = 1, for all

n = l, l + 1, . . . if, and only if, 1√
V(Xt)

= 1
mX(t)

, for all t ≥ 0, which holds if, and only if,

CVX(t) = 1 , for all t ≥ 0, i.e., when X has an exponential distribution with unspecified mean.

In the next example, another characterization of the exponential distribution using
Theorem 1 is stated. Gupta and Kirmani [9] in their Theorem 3.1 proved that the ratio of the
HR function of a distribution divided by the MRL function of that distribution determines
the distribution uniquely. We can plainly see that this ratio is constant if, and only if, X has
an exponential distribution.

Example 3. Suppose that w1(t) = mX(t) and w2(t) = θhX(t) where θ > 0 is a constant. Then,
RSh[1]X (Tn) = E

[
hX(Tn,v)
mX(Tn,v)

]
and RSh[2]X (Tn) = 1. Fix l ∈ N. From Theorem 1(i), E

[
hX(Tn,v)
mX(Tn,v)

]
= 1,

for all n = l, l + 1, . . . if, and only if, mX(t) = θhX(t), for all t ≥ 0, which is satisfied if, and only
if, Sh[1]X (t) = hX(t)

mX(t)
= 1

θ , for all t ≥ 0, i.e., X has an exponential distribution with mean
√

θ.

Nanda et al. [38] introduced a reliability measure, called aging intensity (AI) func-
tion, defined as the ratio of the HR function to a baseline HR function. Let us take
HX(t) = 1

t
∫ t

0 hX(x)dx for t > 0. The AI function is then defined as

AIX(t) =
hX(t)
HX(t)

=
thX(t)∫ t

0 hX(x)dx
.

In the following example, the waxbill family of distributions is characterized using
Theorem 1(i).

Example 4. Suppose that w1(t) = HX(t) and w2(t) =
hX(t)

α where α > 0 is free of the time t.

Then, RSh[1]X (Tn) = E[AIX(Tn,v)] and RSh[2]X (Tn) = α. Let l ∈ N be fixed. By Theorem 1(i),
E[AIX(Tn,v)] = α, for all n = l, l + 1, . . . if, and only if, αHX(t) = hX(t), for all t ≥ 0, which is
satisfied if, and only if,

Sh[1]X (t) = AIX(t) =
hX(t)
HX(t)

= α, for all t ≥ 0,

which holds from Theorem 2.1 in Nanda et al. [38], equivalently if, X has Weibull distribution with
the shape parameter α.

We say X follows a Hall–Wellner family of distributions, written as X ∼ HW(A, B)
whenever it has the following SF:

F̄X(t) =
(

B
At + B

) 1
A +1

+
, A > −1, B > 0;

where a+ stands for max{0, a} when a ∈ R. It is noticeable that if A > 0, A = 0 and
−1 < A < 0 then the HW family corresponds to, respectively, a Pareto, an exponential and
a resealed beta distribution. Note that in this case X has a linear MRL function obtained as
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mX(t) = At + B and, thus, m′X(t) = A. The example below presents a characterizations of
the Hall-Wellner family of distributions.

Example 5. Let us assume that w1(t) = 1
mX(t)

and w2(t) = θhX(t) where θ > 0. Then,

RSh[1]X (Tn) = E[1 + m′X(Tn,v)] and RSh[2]X (Tn) = 1
θ . Take l ∈ N as a fixed number. From

Theorem 1(i), E[1 + m′X(Tn,v)] =
1
θ , for all n = l, l + 1, . . . if, and only if, 1

mX(t)
= θhX(t), for all

t ≥ 0, which holds if, and only if,

Sh[1]X (t) = hX(t)mX(t) = 1 + m′X(t) =
1
θ

, for all t ≥ 0,

which holds, equivalently if, X ∼ HW
(

1
θ − 1, µ

)
where µ = E(X).

Remark 4. Characterization relationships have been shown to be useful for constructing potential
indices for testing statistical hypotheses and then performing the test on real data sets. For example,
a characterization property of the exponential distribution can be used to construct goodness-of-fit
tests for exponentiality (see, e.g., Angus [39], Ascher [40], Ahmad and Alwasel [41], Baringhaus
and Henze [42], and Alwasel [43] among others). Characterization properties of other distributions
can also be found in Metiri et al. [44] and the references there. In general, from a mathematical
point of view, the characterization properties lead to typical functional equations and non-standard
methods used to solve them. The practical aspect behind these properties can be seen in the model
construction based on some properties of the observed statistics. Simulation studies are usually used
to validate the characterization relationships. For example, in the context of Example 5, since X
has distribution F that belongs to the Hall-Wellner family of distributions, simulated observations
of X and then estimated the variance δn(F) = RSh[1]X (Tn)− RSh[2]X (Tn) for n = 1, 2, . . . using
the simulated data show that for an l ∈ N, and n = l, l + 1, . . ., δn(F) is close to zero. However,
the deviations δn(F), n = 1, 2, . . . can be a potential index for constructing a goodness-of-fit test for
the linear mean residual life model. In this context, using real data, if δn(F), for n = l, l + 1, . . . or
supn≥l δn(F) is sufficiently close to zero for some l ∈ N, then strong circumstantial evidence can
be gathered that the model can be accepted as the underlying one.

Remark 5. To answer the question of how exactly a practitioner might use the results in a specific
problem, some comments are made here. One of the advantages of the main characterization results
(given in Theorem 1) is that the specification or deterministic determination of a problem is based on
the criterion of sequences with matching tails. In the context of the characterization of exponential
distributions, it is well known that E(Xt) = E(X), for all t ≥ 0 if and only if X is exponentially
distributed. Moreover, CVX(t) = 1, for all t ≥ 0 if and only if X is exponentially distributed
(see, e.g., Example 2). The statements E(Xt) = E(X), for all t ≥ 0 and CVX(t) = 1, for all
t ≥ 0 each contain an unmanageable number of conditions because time is a continuous feature,
so a practitioner cannot use these statements to characterize the exponential distribution. In the
characterization results we have presented in this paper, countable conditions have been considered
to characterize a particular situation. This can give the practitioner some real clues to work
with. For example, consider a situation where the practitioner wants to test whether X1, X2, . . .,
which denote the identically distributed random lifetimes of a particular type of electronic device,
follows an exponential distribution using a real data set. Let us perform a test and examine these
devices in parallel with a series system containing n components with independent and identically
distributed lifetimes Y1, Y2, . . . , Yn, which have a general (arbitrary) continuous lifetime distribution.
The lifetime of the series system is Tn = min{Y1, Y2, . . . , Yn}, whose density function satisfies
the Equation (18). This is an empirical experiment to obtain a lot of data about the lifetime of the
device and also the series system with n number of components. Note that the determination of n is
also available to the practitioner and series systems with different numbers of components can be
considered. The random variables [X − Tn | X > Tn] for n = 1, 2, . . . are then observable, so the
mean and coefficient of variation can be estimated. For example, if it turns out that the estimated
mean and coefficient of variation for some l ∈ N and the number of components of the series system
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n = l, l + 1, . . . do not vary greatly, then one obtains a large practical proof of the claim that the
devices have exponential lifetimes.

4. Conclusions

This work had two objectives. The first was to propose the concept of weighted
remaining life, i.e., RV Xw,t = w(t)Xt, whereupon two scaled reliability measures, called
scaled HR and scaled MRL, were introduced. The remaining life of a lifetime unit is not
always affected by the current age of the unit, but perhaps in terms of functions of the
current age. This function is called w(t), which scales the remaining lifetime RV Xt at age t.
Thus, the weighted residual life distribution has been shown to satisfy the properties of an
accelerated life model. The residual lifetime RV is itself not scale-free and, therefore, it is not
useful to perform, for example, a comparison of two lifetime units relatively. The introduced
scaled measures, which refer to the residual lifetime at a random time point, have been
shown to have the scale-free property. This property is necessary in comparative studies
where the influence of the dimension of the variable is not so strong. The second goal of the
work was to derive two characterization properties using the introduced scaled measures.
The property of completeness of sequences in functional analysis is satisfied by a typical
family of density functions of random times. The change of scale w(t) in the scaled HR and
the scaled MRL is shown to be invalid for an infinite number of random times according to
the above typical density. The exponential distribution, the Weibull distribution, and the
family of Hall–Wellner distributions have been characterized as examples where the results
are applicable. The strength of our study is that our characterization results have a dynamic
property, so they can incorporate many quantities that uniquely characterize the underlying
lifetime distribution and are related to the residual lifetime variable, such as the residual
lifetime coefficient of variation and also the ratio of the hazard rate and the mean residual
lifetime functions. The conditions are straightforward and can be aligned with statistical
lifetime test experiments, as illustrated in Remark 5. The weakness of the characterization
properties derived in our work, and also of those obtained by Alomani and Kayid [13],
Shrahili and Kayid [11], and Shrahili and Kayid [12], is that all characterization results
require an infinite number of conditions. However, in the future, a reduction in the number
of conditions could be considered.

For the future of this work, it is also hoped that the authors will apply the introduced
scaled measures and weighted residual lifetime to the stochastic comparison of coherent
systems and, in parallel, to the study of the relative aging behavior of the lifetime of systems.
Other reliability models can also be built using the scaled HR and the scaled MRL, as well
as the weighted residual lifetime. Scaled reliability measures related to the inactivity time
of a lifetime can also be proposed and similar characterization results using these measures
can be sought.

Author Contributions: Conceptualization, M.K.; Investigation, M.K.; Methodology, M.S.; Project
administration, M.S.; Supervision, M.S.; Validation, M.K.; Writing—original draft, M.K.; Writing—
review and editing, M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by Researchers Supporting Project (number RSP2023R464), King
Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank four anonymous reviewers for their constructive comments
and suggestions. The authors acknowledge financial support from the Researchers Supporting Project
number (RSP2023R464), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 1547 14 of 15

References
1. Nassar, M.M.; Mahmoud, M.R. On characterizations of a mixture of exponential distributions. IEEE Trans. Reliab. 1985, 34,

484–488.
2. Navarro, J.; Aguila, Y.D.; Ruiz, J.M. Characterizations through reliability measures from weighted distributions. Stat. Pap. 2001,

42, 395–402.
3. Nagaraja, H. Characterizations of probability distributions. In Springer Handbook of Engineering Statistics; Springer: London, UK,

2006; pp. 79–95.
4. Sunoj, S.M.; Sankaran, P.G.; Maya, S.S. Characterizations of distributions using log odds rate. Statistics 2007, 41, 443–451.
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