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Abstract: Precise route planning needs huge amounts of trajectory data recorded in multimedia
devices. The data, including each user’s location privacy, are stored as cipher text. The ability to
plan routes on an encrypted trajectory database is an urgent necessity. In this paper, in order to plan
a public route while protecting privacy, we design a hybrid encrypted random bloom filter (RBF)
tree on encrypted databases, named the encrypted random bloom filter (eRBF) tree, which supports
pruning and a secure, fast k nearest neighbor search. Based on the encrypted random bloom filter tree
and secure computation of distance, we first propose a reverse k nearest neighbor trajectory search on
encrypted databases (RkNNToE). It returns all transitions, in which each takes the query trajectory as
one of its k nearest neighbor trajectories on the encrypted database. The results can be the indicator
of a new route’s capacity in route planning. The security of the trajectory and query is proven via
the simulation proof technique. When the number of points in the trajectory database and transition
database are 1174 and 18,670, respectively, the time cost of an R2NNToE is about 1200 s.

Keywords: public route planning; reverse trajectory query; encrypted trajectory database

MSC: 68P27

1. Introduction

Public route planning is used to find a new route that can cover a large area and
carry a greater amount of passengers. The operation of a new public route can ease
traffic congestion as well as reduce fuel consumption and pollution. Public route planning
requires a lot of trajectory data recorded in various GPS-equipped multimedia devices and
online location-based services (Bikely, Didi, Twitter, and Facebook) [1]. Since trajectory
data include locations, data owners encrypt the trajectory data to preserve their locations’
privacy. Public route planning on an encrypted database is necessary.

In a typical scenario of planning a bus route, a passenger’s transition includes two
points: the source and the destination. The passenger prefers to take the bus, which has
stations close to the two points. If a bus company wants to develop a new route (trajectory)
that provides services to more passengers, it is necessary to predict the passenger flow of
the new route. Note that passengers do not want to leak their location privacy. The new
route should not be published until it is applied. Basically, it is a reverse k nearest neighbor
trajectory (RkNNT) search on an encrypted trajectory database. The transition data and
trajectory data are collected by online location-based service providers; they outsource
their encrypted data to the cloud server to release their storage space. In a secure RkNNT
search on an encrypted trajectory database, the operations of computing and comparing
the distances between different trajectories are frequent, which leads to repeated access
to the online location-based service providers. A proxy cloud can represent all the online
location-based service providers to cooperate with the server cloud, which can reduce the
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online computational burden of the online location-based service providers. The details of
the two-cloud model are introduced in Section 3.3.

Various kinds of queries on encrypted points are proposed, such as k nearest neighbor
(NN) points queries, reverse kNN points queries, range queries, skyline queries and liner
range queries. However, all these schemes cannot be applied to an encrypted trajectory
query, because the similarity measure of trajectories is based on a more complex aggregation
of distances and order between trajectory points, such as dynamic time warping [2], longest
common subsequence [3], and edit distance on a real sequence [4]. There are also some
schemes study the reverse kNN trajectories query [5,6]. However, they only return the
single point, which takes the query trajectory as one of the kNN trajectories. In addition, the
locations are not protected, which leaks the locations of users and the points in trajectories.
These problems motivate us to investigate the RkNNT search on the encrypted databases.

There are two challenges to search the RkNNT on the encrypted databases. One is to
reduce the search space, since computation on large encrypted data is time-consuming. The
other is to search on a certain space without leaking the location’s privacy. To overcome
these two challenges, our main contributions are as follows:

• In this paper, we first design a hybrid tree, eRBFtree. It divides the search space
into subspaces according to the distribution of trajectory points. The division of the
subspace is according to the distribution of transition points. The eRBFtree supports
spatial pruning and fast kNN search on ciphertext.

• We propose a reverse kNN trajectory search on the encrypted database, RkNNToE. We
use eRBFtree to prune the space of encrypted transitions. Then, we give a distance list
(DList), which helps to refine the transitions and reduce the times of the kNN search.
To ensure the correctness of results, we apply the fast kNN search for every transition
as a result.

• Theoretical analysis proves that clouds and users cannot know the locations of data
and the distance between two locations at the same time. The experiment results
confirm that our scheme is practicable in the GeoLife project in Beijing and the bus
lines dataset in Beijing.

2. Related Work

In this section, we present an overview of the existing protocols in terms of trajectory
search on plain text [7] and secure RkNN search [8], which are related to our work in this
paper. The comparison between related schemes and RkNNToE is listed in Table 1. Note
that a trajectory can degrade into a point, so the search method in RkNNT can deal with
the RkNNP search, and a two-type database can degrade into a one-type database.

Table 1. Comparison with related works.

Schemes
Plaintext Ciphertext

[5,6] [9] [10] [11] [8] RkNNToE

Search Type RkNNT RkNNT RkNNT RkNNP RkNNS RkNNT

Query Type T T P P S T

Result Type P T T P S T

Database Type P and T T and T P and T P S T and T
P: point; T: trajectory; S: set.

RkNNT Search. In [12,13], an RkNN points search was studied, which is the founda-
tion of RkNNT search. Refs. [5,6] investigated the problem to find the single points—that
is, the kNN points—for the query trajectory. In 2018, Wang et al. [9] proposed an RkNN
trajectory search, which studies transitions with multiple points. It does not include any
semantic information [10]. In [14,15], the reverse spatial–keyword nearest neighbor queries
were studied. Pan et al. [10] introduced the geo-textual object sequences to achieve an
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RkNN semantic trajectories search. None of the above schemes focus on the privacy of
both the query and data.

Privacy-Preserving RkNN Search. In [16], the private information retrieval was used
to protect the query to achieve the privacy-preserving RkNN search. It does not protect the
database stored in the cloud [17]. Li et al. [17] designed a reference-locked order-preserving
based RNN query, which protects the database, but it is only used for two-dimensional data.
In [11], RkNN over-encrypted multi-dimensional data were proposed, which only support
point data and cannot support trajectory data. In 2023, Zheng et al. [8] proposed a privacy-
preserving set reverse kNN query, which is not suitable for the two-type trajectory database.

3. Problem Formulation

The notations are shown in Table 2.

Table 2. Notations.

Notation Definition

dist(a,b) The distance between a and b

DBp The database of all points

DBτ The database of points in all trajectories

DBo The database of points in all transitions

Sτ , Scan The set of trajectories and the set of candidate transitions

Sre f , Sres The set of refined transitions and the set of results

node(·) The node with identity (·)
loc The vector of location

Nτ
The max number of trajectory points in a leaf node of
the father tree

No
The max number of transition points in a leaf node of
the child tree

i ∈ (a, b) i ∈ (a, . . . , b)

3.1. RkNNT Problem and Definitions

The RkNNT on the plain-text database is introduced in [9]. In this paper, we follow
their definitions.

Definition 1. (Transition) A transition of an object O = (s, d) is a pair of points, describing the
motive object’s source and destination. Do is the set of transitions.

Definition 2. (Trajectory) A trajectory (route) τ of length l is a sequence of points < p1, p2, . . . ,
pNp >, where Np is the number of points in the trajectory, and Dτ is the set of trajectories.

Definition 3. (Point-to-trajectory distance) The distance between a point pi and a trajectory τj is
defined as:

Dist(pi, τj) = max
pj∈τj

dist(pi, pj) (1)

Definition 4. (RkNNT) Given a transition set Do, a trajectory set Dτ and a query trajectory Q,
RkNNT(Q) returns all the transitions in a set D1 ∈ Do. For each O = (s, d) ∈ D1, all trajectories
τ ∈ Dτ that meet Dist(s, τ) ≤ Dist(s, Q) and Dist(d, τ) ≤ Dist(d, Q) are stored in a set D2,
whose size less is than k.
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3.2. Basic Security Primitives
3.2.1. CKKS Encryption

CKKS encryption [18] is a fully homomorphic encryption. It can directly encrypt a
vector and support calculating the inner product on cipher text. In this paper, CKKSenc(·),
CKKSdec(·),CKKSsub(·, ·) and CKKSdot(·, ·) represent the operation of encryption, decryp-
tion, subtraction and inner product, respectively. If CKKSenc(v1) = c1, CKKSenc(v2) = c2,
v1 = (x1, y1) and v2 = (x2, y2), then CKKSdec(CKKSdot(c1, c2)) = v1 · v2, CKKSdec(CKKSsub
(c1, c2)) = (x1 − x2, y1 − y2) and CKKSdec(CKKSdot(CKKSsub(c1, c2), CKKSsub(c1, c2))) =
(x1− x2)

2 +(y1− y2)
2. In this paper, we use the above operations to obtain the distance of two

points and denote a new operation as CKKSdis2(c1, c2) = CKKSdot(CKKSsub(c1, c2), CKKSsub
(c1, c2)).

3.2.2. Security kNN

In our algorithm, a secure kNN point search is based on the Fast and Secure kNN query
(FSknn [19]). In this paper, we will briefly give the main changes compared to the FSknn.

Index-building. In this phase, a data owner (DO) firstly random generates two
vectors v1 ⊥ v2. The method of computing every point’s prefix families is the same
as it in FSknn. However, in this paper, the DO treats all prefixes of all points in sub-
space of a node as keywords kw to embed in one RBF rather than all prefixes of a
point. As shown in Figure 1, an empty RBF is initialized as a two-row and m-column
random binary array. The two elements in the same column are different. RB[i][j] is
the element in the i-th row and j-th column of RBF. For every keyword, the DO sets
RBF[H(h(hk(kw))⊕ rk)][hk(kw)] = 1 and RBF[1−H(h(hk(kw))⊕ rk)][hk(kw)] = 0, where
h(·) = HMAC(·)mod2, hk(·) = HMAC(·), H(·) = SHA256(·)mod2 and k is the num-
ber of hash functions for RBF. Every RBF point is a node rather than a point. An ex-
ample of inserting a keyword is shown in Figure 1. An RBF tree is generated based
on RBFp[H(h(hl(kw))⊕ rp)][i] = RBFl [H(h(hl(kw))⊕ rl)][i]∨ RBFr[H(h(hr(kw))⊕ rr)][i],
where RBFp is the parent RBF of child RBFi, i ∈ (1, 4). An example of constructing an RBF
tree is shown in Figure 2.

Figure 1. Inserting a keyword on an empty RBF.

Figure 2. Index structure: RBF tree.

Token generation. When a data user (DU) wants to find the kNN in the database,
the DU needs to generate k pairs of hashes and locations that serve as the search token
following the same method in FSknn. However, when the token is generated by the DO, it
only needs to generate the token based on one radius disre f rather than L radiuses.
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Query processing. The method of the cloud is the same as it in FSknn. However, the
stop condition is to find kNN trajectories in all query points’ kNN points set rather than to
find more than kNN points for every query point.

Post-processing. If there are not kNN trajectories in all query points’ kNN points set,
the DU needs to expand the search radius and repeat search kNN points following the
same method in FSknn. However, if the token is generated by the DO, it does not need to
expand the search radius or repeat search for kNN points.

3.3. The System and Threat Models

As shown in Figure 3, there are four entities: a data owner (DO), two clouds (cloud1
and cloud2) and a data user (DU). The details are described as follows.

Figure 3. The model of RkNNToE search.

The DO is a data owner. The data include the transition data and the trajectory data.
The DO wants to update the encrypted trajectory data and transition data to cloud2 to
release the storage space.

The DU is a user who wants to process the RkNNT search on the database stored
in cloud2. The DU sends a query to trigger the service; the query includes the encrypted
information of the data user’s trajectory.

cloud1 (proxy cloud) is the proxy of the DU and DO, which is responsible for directing
cloud2 to filter and refine the transitions, and calling the DU to construct the token for every
point in the refined transitions.

cloud2 (server cloud) provides storage space for data owners. cloud2 is responsible
for searching nearest neighbor points for every point in a query trajectory and refined
transitions, computing the distance between points or points and nodes with the cloud1’s
help, and sending the encrypted transition points to the DU.

Overview: As shown in Figure 3, the DO sends the index and encrypted points to
cloud2 and a distance list (DList) to cloud1 to complete data outsourcing. If the DU wants
to conduct an RkNN trajectory search, he sends the encrypted request to cloud2. cloud2
cooperates with cloud1 to prune and refine transitions that cannot be the RkNN transition
of the query trajectory. cloud1 obtains the refined transitions and sends a request for NN
points token for every point in refined transitions to the DO. The DO generates and sends
the tokens to cloud2. cloud2 cooperates with cloud1 to find the NN trajectories of all refined
transitions based on the NN points. cloud1 obtains the transitions that take the query
trajectory as one of the kNN trajectories and returns the results to the DU.

3.4. Secure Requirements for MTS

Our scheme is under the assumptions that two clouds follow the processing of search
and cannot actively attack the system or collude with each other (honest-but-curious). The
DO and DU cannot collude with any cloud, but they can be a malicious attacker. Note that
we mainly focus on the location privacy of points. The identity is on plain text.

Data Security. The location of every point in the transition and trajectory should not
be learned by both clouds. An attacker cannot know the points’ locations in the encrypted
database.
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Index Security. The index is secure, which means that cloud2 cannot know the specific
point pointed by every leaf node of the index, and every node cannot reveal the location of
both trajectories and transitions.

Query Security. Both the encrypted requests cannot reveal the location of every point
in the query trajectory. Both clouds cannot know the specific location.

4. The Proposed Scheme

In this section, first, we generalize the main idea of the search. However, all informa-
tion of the index is not protected, and the trajectories and transitions are not encrypted.
Then, we proposed a secure scheme with encrypted index and encrypted data, which
should be processed in a two-cloud model. It can satisfy the secure requirements and
counter-threat model.

4.1. Main Idea of RkNNT Search

The reverse trajectories searching are divided into four steps: building a hybrid quad
tree, generating a filter set and pruning transition, refining transitions and returning results.
The whole processing is shown in Algorithm 1.

Algorithm 1: Reverse Trajectory Search (Q, DBp)

Input: Q: query, DBp: all points in the database DBp = DBτ ∪ DBo
Output: RkNN(Q): The reverse kNN trajectories for Q

1 DBp → hybrid Quadtree
2 for all qi ∈ Q do
3 kNN(qi, DBτ)→ Table

4 FilterSet(Table)→ Sτ

5 PruneTransition(Sτ , DBo)→ Scan
6 RefineTransition(Scan, DList)→ Sre f
7 for all O = {s, d} ∈ Sre f do
8 kNN(s, DBτ)→ Ss kNN(d, DBτ)→ Sd kNNTrajectorySet(Ss, Sd)→ Sτ′

CompareDistance(dis(τk−th, O), dis(Q, O))→ Sres

9 return Sres

4.1.1. Building Hybrid Quad Tree

On the plain-text trajectory database, we build a hybrid quad tree base on quad
tree [20] in DBp. DBp includes all the points in DBτ and DBo. The space in a node is
partitioned into four equal subspaces. The subspace is stored in the child node. The
partitioning will not be stopped until there are less than n points in the subspace. First, the
partitioning is based on DBτ , it will not be stopped until there are less than Nτ points in
the subspace. The quad tree in this phase is called the father tree. The trajectory points are
stored in every leaf node of the father tree. Then, every subspace in the leaf node of the
father tree is partitioned. The partitioning is based on all points in this subspace; it will not
be stopped until there is less than No points in one leaf node. The quad tree takes the leaf
node of the father tree, as its root node is called the child tree. Figure 4 shows the structure
of a hybrid quad tree. The bold tree is the father tree. The others are child trees. Every
non-leaf node of the hybrid quad tree stores the location vectors of four vertexes. Every
leaf node stores the identities and location vectors of points in this leaf node. This is shown
in line 1 of Algorithm 1.
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Figure 4. The partition for all points.

4.1.2. Generating Filter Points and Pruning Transitions

If a reverse trajectory search is needed, we find the NN trajectory points for every
query trajectory point and construct a table. In Figure 5, the NN points of query points
(q1, q2, q3) are in node(1), node(2), node(3) and node(4). Then, we find the trajectory, which
has more than two points in the table, such as T1. All points in these trajectories are called
filter points. In Figure 6, the filter points are T11 and T12. We form a polyline based on
perpendicular bisectors between the points from one trajectory and the query points. The
polyline divides the space into two subspaces. If one node is intersected by the polyline,
then we check whether the child node meets the above condition. Then, node(1) and the
node(3) are intersected by the polyline in Figure 5. Its child node needs to be checked. If
the node is the leaf node of the child tree, we list all the transitions’ identity and compute
the distance between the transition points and the filter points. If there are more than
k trajectories closer to the transition than the query trajectory, the transition is pruned.
In Figure 6, leaf node(3, 2, 3) is intersected by the polyline, and we compare the distance
dist(O2, Q) with the distance dist(O2, T1). Since dist(O2, Q) > dist(O2, T1), transition O2
can be pruned. If one node is in the subspaces of two filter points with one trajectory
identity, the node is closer to the trajectory than the query trajectory. If there are more than
k polylines that make one node meet the above condition, there are more than k trajectories
closer to the node than to the query trajectory. All transitions in these nodes are closer to the
k trajectories than to the query trajectory. All transitions in these nodes can be pruned. In
Figure 5, the node(3, 1) is in the subspace of T11 and T12, all points in node(3, 1) are closer
to trajectory T1 than to query trajectory Q. Since transition O1 = (s1, d1) is in node(3, 1), it
can be pruned. All the rest of the transitions are called candidate transitions. The candidate
transitions in Figure 5 are O0 and O3.

Figure 5. The quad tree structure for all points.
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Figure 6. The example of RkNN search.

4.1.3. Refining Transitions and Returning Results

For every candidate transition, we compute the distance between every point in
transition and the query trajectory. We check the nodes in the quad tree by using a circle, of
which the radius is the distance and the center point is the transition point. For the nodes
in the circles of one transition, we record the identities of trajectories in these nodes. For
the nodes that intersect with the circle, the child node needs to be checked further. If the
node is a leaf node, we compute the distance between every transition point and trajectory
in the leaf node. We record the identities of trajectories which are closer to the transition
than the query trajectory. If the total number of recorded identities is more than k, then
the candidate transition is deleted. In Figure 6, the circles of point s3 and d3 are drawn.
The nodes (2, 1, 4) and (4, 4, 1) are in the circle, respectively. The trajectory T2 is closer to
the transition O3. It can be deleted in the candidate transitions. The rest of the candidate
transitions are called refined transitions. For every point of the refined transitions, we find
the NN points in the quad tree and check whether there are two points of query trajectory
in it. If two points of the query trajectory are in the NN points of one transition, it is inserted
in the set RkNN(Q). The RkNN(Q) is the search results. In Figure 5, the NN point for the
point s0 is q2 and the NN point for the point d0 is q3. The RkNNT(Q) in Figure 5 is O1.

4.2. Reverse Search on Encrypted Trajectory Database

In this section, the points of transitions and trajectories are encrypted, and the hybrid
quad tree is replaced by an encrypted RBF tree (eRBFtree) and the distance list (DList). This
section is consists of four phases: setup, eRBFtree building, query encryption and search.

4.2.1. Setup

The data owner generates the parameters of CKKS and RBF tree as shown in Section 3.2.
It encrypted all the location vectors of points in database DBp. For a point with identity ID
and location loc, its item is {ID, CKKSenc(loc)}. The cloud2 generates its private key sk2
and public key pk2; it publishes the public key pk2 to the DO and DU.

4.2.2. eRBFtree and DList Building

As shown in Figure 7, building an eRBFtree includes two steps. The first step is
building the RBF tree in the database DBτ and the partitioning of space is the same to
the partitioning of the father tree in Section 4.1.1. Every leaf node of the RBF tree stores
the encrypted items of trajectory points. Every non-leaf node stores an RBF and four
encrypted points {CKKSenc(V1), . . . , CKKSenc(V4)}, where Vi, i ∈ (1, 4) is the four vertices
of the node. The second step is building the child trees in the database DBo. Every leaf
node of the child tree stores encrypted items of transition points. Every non-leaf node
stores four encrypted points {CKKSenc(V1), . . . , CKKSenc(V4)}. The DList is a table, in
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which every row records (IDo, p) : {dis1, SID1
τ}, {dis2, SID2

τ}, . . . . The keywords (IDo, p)
are the identity of transition and one point in the transition. The value disi is the maximum
distance from the point p to its nearby nodes. The value SIDi

τ is the set of trajectories’
identities in these nodes. The values are listed in increasing order by the disi. The eRBFtree
and the DList are constructed by the data owner. The DO encrypts the eRBFtree with all
the items by the public key pk2 and sends the cipher text to cloud2. The DO sends the DList
and the secret key of CKKS to cloud1.

Figure 7. The structure of eRBFtree. [·] is the encryption of ·.

4.2.3. Query Encryption

The query includes tokens and items for points qj, j ∈ (1, Np) in the query trajec-
tory. NP is the number of points in the query trajectory. The token Token(qj) is for a
secure kNN search in eRBFtree, which is constructed as shown in Section 3.2.2. The
center point is the point of the query trajectory, and the search radius is set by the
DO. The item {CKKSenc(qj)} is the encrypted location vector of the point qj. The query
Q = {(Token(q1), CKKSenc(q1)), . . . , (Token(qNp), CKKSenc(qNp))} is encrypted by the pub-
lic key of cloud2; then, it is sent to cloud2 to start a reverse search.

4.2.4. Search

In this phase, cloud2 decrypts the query with the private key sk2. Then, cloud2 uses the
tokens Token(qj), j ∈ (1, Np) to search the eRBF tree, obtains the NN trajectory points for
every point in the query trajectory, checks the identities of points and constructs the filter
set. The item in the filter set is {IDτ , CKKSenc(loc1), CKKSenc(loc2), . . . , CKKSenc(locNp)},
where CKKSenc(loc1), CKKSenc(loc2), . . . , CKKSenc(locNp) are NN points of Np query points.
They have the same trajectory identity IDτ . Cloud2 computes distances between every ver-
tex in the node and the filter points by DIS1 = CKKSdis2(CKKSenc(loci), CKKSenc(Vj)), i ∈
(1, 2), j ∈ (1, 4). Then, cloud2 computes the distance between every vertex in the node and
the query trajectory by DIS2 = CKKSdis2(CKKSenc(qi), CKKSenc(Vj)), i ∈ (1, Np), j ∈ (1, 4).
Afterwards, cloud2 sends DIS1, DIS2 to the cloud1. Cloud1 decrypts them and obtains
the distance between every vertex and the filter points dist(loci, Vj), i ∈ (1, 2), j ∈ (1, 4)
and the distance between every vertex in node and the query trajectory dist(qi, Vj), i ∈
(1, Np), j ∈ (1, 4). The process is from the root node to the leaf node, using the pruning
transition in Section 4.1.2. If one node is filtered, cloud1 notifies cloud2. Then, cloud2 stops
computing the distance of its child node. If the node is a leaf node, cloud2 and cloud1
compute the distance between every transition point in the node and the query trajectory
dist(loci, qj), i ∈ (1, 2), j ∈ (1, Np). After filtering the transitions, cloud2 cooperates with
cloud1 to compute the distance between the candidate transitions and the query trajectory.
The identities of transitions and the cipher text of distance are sent to cloud1. Then, cloud1
decrypts the cipher text and obtains the distance d = dist(loccan

i , qj), i ∈ (1, 2), j ∈ (1, Np).
For every candidate point loccan

i , i ∈ (1, 2) in one transition, cloud1 refers to the DList,
locates the row of keyword loccan

i and finds the maximum values for dishi
meet dishi

≤
min{dist(loccan

i , qj), j ∈ (1, Np)}. Then, cloud1 counts the number of trajectories, of which

two points come from two sets SIDh1
τ and SIDh2

τ . If the number of the trajectories is more
than k, the transition (loccan

1 , loccan
2 ) can be pruned. Then, cloud1 sends the identities of re-
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fined transitions Sre f to cloud2. For every refined transition (s, d) with identity in Sre f , cloud2
sends the identity and a distance disre f = dist(s, Q) + dist(d, Q) to the DO. Then, cloud2
sends the encrypted transition (CKKSenc(locs), CKKSenc(locd)) points to the DO. The tokens
Tokenre f for every point in the refined transition are constructed after the DO obtains the re-
quest {IDO, disre f }, IDO ∈ Sre f from cloud1 and decrypts (CKKSenc(locs), CKKSenc(locd)).
The DO constructs two tokens for every transition, as shown in Section 3.2.2. The center
points are the points of location locs and locd, respectively. The radius is disre f . The DO
sends the set of tokens Tokenre f to cloud2. Cloud2 searches the NN points and checks if there
is less than k trajectories in the NN points. If there are, the transition is one of the reverse
k transitions for the query trajectory. Otherwise, cloud2 computes the distance between
trajectories and transitions with the help of cloud1. Cloud1 compares the distance between
the trajectory and transitions as wel as between the query trajectory and transitions. If
more than k trajectories are closer to one transition, the transition is deleted. The rest of the
refined transitions are the results. Then, cloud1 returns the identities to the DU and cloud2
returns the encrypted locations to the DU.

5. Theoretical Analysis
5.1. Correctness Analysis

In this section, we will discuss the returned results, which are all reverse transitions
for the query trajectory. The discussion is divided into three steps.

(1) In the first step, we find the filter set Sτ and prune the O = (s, d) ∈ DBo so
that ∃Dτ = {τ1, . . . , τk} such that dist(s, τi) < dist(s, Q) and dist(d, τi) < dist(d, Q), i ∈
(1, . . . , k). According to Definition 4, the transition cannot be in RkNNT(Q). We call the
transition that is not in RkNNT(Q) a negative transition and the transition that is in
RkNNT(Q) a positive transition. In this step, we only prune a part of the negative transitions.
There are also many negative transitions in set Scan.

(2) In the second step, we use the candidate set Scan and DList to delete the O =
(s, d), s ∈ Scan or d ∈ Scan so that there exists {diss < dist(s, Q), SIDs

τ} in the row of
point s, {disd < dist(d, Q), SIDd

τ} in the row of point d and SIDs
τ ∩ SIDd

τ has more than
k trajectory identities. It also means that ∃Dτ′ = {τ′1, . . . , τ′k} ⊂ (SIDs

τ ∩ SIDd
τ) such that

dist(s, τi) < dist(s, Q) and dist(d, τi) < dist(d, Q), i ∈ (1′, . . . , k′). In this step, we also
delete a part of negative transitions. It is unclear whether there are any negative transitions
in set Sre f .

(3) In the third step, we know that if a transition takes the query trajectory as one
of its kNN trajectories, the transition must be the RkNNT of the query trajectory. For
every transition O = (s, d) ∈ Sre f , we find all trajectory points with distance to s or d
less than disre f = dist(s, Q) + dist(d, Q). If a trajectory τ has only a point with distance
to s or d less than disre f , then dist(s, τ) + dist(d, τ) > disre f . If a trajectory τ has no point
with distance to s or d less than disre f , then dist(s, τ′) + dist(d, τ′) > 2disre f . So if only
a trajectory has one point with distance to s less than disre f and the other one point has
distance to d less than disre f , it is possibly closer to the transition O = (s, d) than the
query trajectory Q. For every transition O = (s, d) ∈ Sre f , we list all NN trajectories τi
meets dist(s, τi) + dist(d, τi) ≤ 2disre f and check the size of Dτ = {τ1, . . . , τj} such that
dist(s, τi) + dist(d, τi) < dist(s, Q) + dist(d, Q), i ∈ (1, . . . , j). If the size of Dτ is not more
than k, the transition must be the positive transitions; otherwise, the transition must be the
negative transition.

5.2. Security Definitions and Analysis

The two-clouds model is honest-but-curious, and the RkNNToE is processed in two
phases. The definition of leakage functions [21] of two phases and the formal proof are
proposed. It shows that RkNNToE is secure in an honest-but-curious clouds model.

Definition 5. In an honest-but-curious clouds model, there are two participants Ci, i ∈ (1, 2) in
a protocol P . For Ci, fi and Oi are the execution function and its output, while viewi is the view
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during an execution of P . The protocol P is secure against a probabilistic polynomial time (PPT)
honest-but-curious adversary if there exist simulators S1 and S2 such that:

(S1( f1,L1), f2) ≡ (view1, O2) (2)

( f1,S2( f2,L2)) ≡ (O1, view2) (3)

where ≡ means computational indistinguishability.

Lj
i is the leakage function of cloud i ∈ (1, 2) in phase j ∈ {setup, search}. Given a

collection of points DBp from the DO and a query trajectory Q from the DU,

Lsetup
1 (DBp) = {DL, [EI, [id, p]]}

Lsetup
2 (DBp) = {EI, (OID, [loc])i, (TID, [loc])j, |DBp|, |DBτ |, |DBO|}

Lsearch
1 (DBp, Q) = {D(Q), DL, Scan, Sre f }

Lsearch
2 (DBp, Q) = {Tokeni, Tokenj, |Q|, |Sre f |, |Scan|,S(Q),A(Q), (OID, [loc])i, (TID, [loc])j},

where DL is the distance list, EI is the eRBF tree, id is the identity of point p, [·] is the cipher
text of ·, | · | is the size of ·, OIDi is the identity of transition i and TIDj is the identity of
trajectory j.

Definition 6. (Search Pattern S) The search pattern leakage reveals whether the keywords in the
token of every query point have appeared before.

Definition 7. (Access Pattern A) Given a search query Q, the access pattern is defined as the
identifier of trajectory points in the nearest neighbor of query points.

Definition 8. (Distance Pattern D) Given a search query Q, D(Q) = dist(pi, qj), qj ∈ Q, pi ∈
Scan. Informally, this part of leakage can be derived from the query, D leaks the distances between
the points in candidate transitions and query points.

Theorem 1. Under the permitted leakage functions LSetup
1 , LSetup

2 , LSearch
1 and LSearch

2 , if CKKS
and the FSknn [19] are secure in the two honest-but-curious clouds model, then RkNNToE is
secure in the two honest-but-curious clouds model.

Proof. We introduce the leakage function to Definition 5 and prove that for any PPT
adversary, there exist simulators S1 and S2 such that:

(S1( f1,Lsetup
1 ), f2) ≡ (view1, O2) (4)

(S1( f1,Lsearch
1 ), f2) ≡ (view1, O2) (5)

[Simulating Setup] Given Lsetup
1 (DBp) = {DL, [EI, [id, p]]}, S1 randomly generates a

message as the plain text m and encrypts it by using a CPA-secure encryption to obtain [m].
S1 randomly generates the identity of trajectories and transitions. The number of these
trajectories is the same as the one listed in DL. S1 randomly generates many increasing
arrays to represent the distance between the transition points and vertices of each node.
Since the PPT adversary does not know the real distribution of points, and the encryption in
the above simulation is secure, a PPT adversary cannot distinguish between the simulated
view and the real view.

[Simulating Search] Given Lsearch
1 (DBp, Q) = {D(Q), DL, Scan, Sre f }, S1 knows the

identities of transitions that are deleted in the phase of refining transitions Sdel = Scan− Sre f .
From D(Q), S1 knows the distance between the point in Scan and query points. In the
simulated DL′, if a transition is in Sdel , it must have kNN trajectories closer than the query.
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A PPT does not know the locations of every point; it only knows the distance and the
identities of deleted transitions. It cannot distinguish between the simulated DL′ and the
real DL.

( f1,S2( f2,Lsetup
2 )) ≡ (O1, view2), (6)

( f1,S2( f2,Lsearch
2 )) ≡ (O1, view2) (7)

[Simulating Setup] Given Lsetup
2 (DBp) = {EI, (OID, [loc])i, (TID, [loc])j, |DBp|,

|DBτ |, |DBO|}, S2 randomly chooses |DBp| points, encrypts points by CKKS to obtain [loc]′

and assigns the identity to these points. Then, S2 constructs an eRBF tree EI′, which has the
same structure with EI. For each node, S2 randomly generates four vectors V′1, . . . , V′4 and
encrypts them by CKKS. S2 associates encrypts [loc]′ with its corresponding OID or TID
in EI. According to secure analysis in [19], a PPT adversary cannot distinguish between
the simulated view and the real view.

[Simulating Search] GivenLsearch
2 (DBp, Q) = {Tokeni, Tokenj, |Q|, Scan, Sre f ,S(Q),A(Q),

(OID, [loc])i, (TID, [loc])j}, S2 randomly generates plain text loc′ and encrypts it by using
CKKS to get [loc]′. From S(Q), S2 knows whether a point in query has been searched
before or not. From A(Q), S2 knows the identifiers of points which are NN points for a
query point. If a qi ∈ Q is searched before by comparing the token of qi and in previous
tokens, S2 reuses the previous simulated token and returns the previous NN points as
search results. Otherwise, S2 simulates a new search token Token′, which is the token of one
point including k hashes h(kw) and a location. Since S2 knows which leaf node of the eRBF
tree matches the search token Tokenj, S2 randomly generates a k-bit string as the search
token Token. The string has the same size as h(kw) and matches with the same leaf node of
eRBF. A PPT cannot distinguish between the simulated Token′ and the real Token.

5.3. Computational Complexity Analysis

In this section, we analyze the time complexity of RkNNToE, in which the most com-
plexity is caused by computing the distance between two points securely. The complexity of
kNN is shown in [19]. To generate the set Scan, every query point is checked against nodes
and costO(|Q| · (Nvis(eRBFtree) + Nvis(Olea f ))) at most, where Nvis(eRBFtree) is the num-
ber of vertexes in the visited nodes and Nvis(Olea f ) is the number of transition points in
the leaf nodes that are intersected by the polyline. All filter points are checked against
nodes and the cost of computing the distance is O(k · |Q| · (Nvis(eRBFtree) + Nvis(Olea f )))
at most. After obtaining Scan, the cost of computing the distances between all transitions
in set Scan and the query trajectory is O(|Q| · |Scan|). After obtaining Sre f , the cost of
computing the distances between all transitions in set Sre f and their kNN trajectories
is O(2|Sτ′ | · |Sre f |), where Sτ′ is a set of all kNN trajectories of a transition. The total
complexity is O(RkNNToE) = O((k + 1) · |Q| · (Nvis(eRBFtree) + Nvis(Olea f ))) +O(|Q| ·
|Scan|) + O(2|Sτ′ | · |Sre f |). According to [9], the visited nodes are proportional to the
number of points in DBp, f is the fanout of the eRBFtree, and DBτ � DBo. The complex-
ity is O(RkNNToE) = O((k + 1) · |Q| · (Nvis(eRBFtree) + Nvis(Olea f ))) +O(|Q| · |Scan|) +
O(2|Sτ′ | · |Sre f |) = O((k + 2) · |Q| · (|DBo|/ f )).

6. Performance Evaluation

In this section, we conduct experiments on the two databases: the aGPS trajectory
dataset (Transition dateset) collected in Geolife project in Beijing [22–24] and the bus lines
dataset (Trajectory dataset) in Beijing [25]. There are 18,670 transitions in the transition
database. The bus lines dataset has 1891 trajectories and 1174 bus stations. All algorithms
are implemented in Python language in Windows 10 and examined on a computer with an
Intel(R) Core (TM)i5-10505 and 16.00 GB RAM. We randomly generate a query trajectory by
selecting an ordered sequence from the trajectory database, since the randomly generated
points cannot keep the spatial continuity as a trajectory. In the experiment, the NN k
trajectories do not share any one point with the query trajectory. The trajectory that is
shared by multiple bus lines is just recorded as one trajectory.
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6.1. Constructing eRBF Tree and DList

Before outsourcing the data, the DO needs to build the eRBF tree. The time cost of
constructing the eRBF index includes two parts: the time of constructing the RBF tree in
database Dτ and the time of constructing the encrypted quad tree in database Dp. The first
part is related with the maximum number (Nτ) of trajectory points in a leaf node of the
father tree. Table 3 shows the time cost of constructing the RBFs in the father tree with
different Nτ . The second part is related to the maximum number (No) of transition points in
a leaf node of the child tree. The total time of constructing the eRBF tree is shown in Figure 8;
the main cost is for encrypting the four vertexes in every node of eRBF tree. With Nτ or No
increasing, the cost of constructing eRBF decreases, since the DList is constructed based on
plain text, and the DO only needs to compute the distance between every transition point
with vertexes in its nearby nodes. Here, we set the nodes in the range of 25 to 200 steps,
and the mean time of constructing the DList is shown in Table 3.

Figure 8. The time cost of constructing the eRBF tree.

Table 3. The cost of constructing father tree and DList.

DB Nτ
Step Length in
Latitude and Longitude

Time Cost of
RBF Tree(s)

Time Cost
of DList(s)

DBτ

2 [0.000230, 0.001237] 5.600787 3.559773

3 [0.000460, 0.002474] 3.796525 3.468612

4 [0.001840, 0.009896] 2.861059 3.470150

5 [0.001840, 0.009896] 2.698736 3.444898

6.2. Generating Query

A query of one point includes the encrypted location and an NN search token. The
time cost of encrypting a location vector is about 0.004516 seconds by CKKS encryption.
The cost of generating a token is related with the search radius. Here, we denote the
minimum range of the leaf node in the father tree as a step length and use the number of
steps to determine the search radius. The step length does not decrease as Nτ increases,
which is shown in Table 3. As shown in Figure 9, the line of “Enc.” is the time of encryption
of a location. As the number of steps increases, the time of generating a token increases. So,
the total time to generate a trajectory query is related to the number of points included in
this trajectory and the search radius for every point in the query.
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Figure 9. The time cost of generating a query.

6.3. Search

In this section, we firstly demonstrate the time cost of the kNN search for a point.
Then we show the total time of two clouds after receiving a RkNNToE request.

6.3.1. NN Trajectories Search

Since the DO needs to search NN trajectories for the refined transitions, it is necessary
to illustrate the efficiency of the kNN search for every transition point. As shown in
Figure 10, as the number of trajectory points in a leaf node of the father tree increases, the
time of searching the NN points increases. As the number of steps in the search radius
increases, the time cost of searching NN points increases. The total cost of searching NN
trajectories for a transition requires twice as much time as that for NN points in Figure 10.

Figure 10. The time cost of searching NN trajectory points.

6.3.2. RkNNToE Search

In this section, we simulate the whole search process in two clouds, which includes
finding NN points for every query point, constructing a filter set and pruning transitions,
refining transitions and finding NN trajectories for every refined transition. In the simulated
search, the eRBF tree is built with Nτ = 2 and No = 2. The experiment settings are
as follows:

The number of points in a query(Np): 2 to 5, default 3. The k in RkNNToE: 1 to 4,
default 2. The number of steps in NN points search: 20 to 200.

The random behavior of a time cost is caused by the random generation query tra-
jectory. The effect of pruning differs widely when the queries are different. According to
Section 5.3, the complexity is mainly affected by Scan and (DBO/ f ) rather than operations
of search k NN trajectories. Scan and (DBO/ f ) are the outputs of pruning, and the size
of the filter set does not linearly increase as k increases. In most cases, when k = 2, the
points in the filter set are a, b, c. {a, c} and {a, b} can form two trajectories. It also causes the
random behavior of time cost. So, we use the median of time cost to analyze the distribution
trend of the results. As shown in Figure 11, when the number of points in a query is 3,
the median time cost decreases as k increases. As k increases, the number of trajectories
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in the filter set increases, and the filtered transition increases. In the refining phase, the
number of candidate transitions decreases, which leads to the reduction of time. As shown
in Figure 12, when k = 2, the median of the time cost is increased as the number of points
in a query increases. As the number of points in a query increases, the number of points in
the trajectories in the filter set increases, which leads to the increased times of computing
distance. It also results in the decrease of pruning space, which means the number of
refined transitions increases. Both conditions cause the cost time to increase.

Figure 11. The effect of k in RkNNToE search (NP = 3).

Figure 12. The effect of the number of points in query (k = 2).

7. Conclusions

In this paper, we studied a method of route planning on an encrypted trajectory
database, RkNNToE, that securely returns all transitions, which are the reverse k nearest
neighbor trajectories of the query trajectory. We designed a hybrid encrypted bloom filter
tree (eRBFtree) for search in the encrypted trajectory database, which supports space
pruning and fast kNN search. Combined with eRBFtree, we gave the pruning strategies to
prune the transition as much as possible and to improve the search efficiency. The security
analysis showed that the query, data and index are secure in the process of RkNNToE. The
experiments showed that RkNNToE can find the results in the RkNNT search efficiently
and correctly.
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