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Abstract: This paper establishes a shareholder-stock bipartite network based on the data of large share-
holders’ shareholding in the Shanghai A-share market of China in 2021. Based on the shareholder-
stock bipartite network, the statistically validated network model is applied to establish a shareholder
projected network and a stock projected network, whose structural characteristics can intuitively
reveal the overlapping portfolios among different shareholders, as well as shareholder allocation
structures among different stocks. The degree of nodes in the shareholder projected network obeys the
power law distribution, the network aggregation coefficient is large, while the degree of most nodes in
the stock projected network is small and the network aggregation coefficient is low. Furthermore, the
two projected networks’ community structures are analyzed, respectively. Most of the communities
in the shareholder projected network and stock projected network are small-scaled, indicating that
the majority of large shareholders hold different shares from each other, and the investment portfolios
of large shareholders in different stocks are also significantly different. Finally, by comparing the
stock projected sub-network obtained from the shareholder-stock bipartite sub-network in which the
degree of shareholder nodes is 2 and the original stock projected network, the effectiveness of the
statistically validated network model, and the community division method on the research of the
shareholder-stock bipartite network are further verified. These results have important implications
for understanding the investment behavior of large shareholders in the stock market and contribute
to developing investment strategies and risk management practices.

Keywords: shareholder-stock bipartite network; statistically validated network model; projected
network; community division
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1. Introduction

The financial system plays an increasingly important role in the national economy.
As an important part of the financial system, the stock market has become a medium
for enterprises to finance and provide capital income for investors. The stock market is
a barometer of the development trend of the national economy. Once the stock market
has a large abnormal phenomenon, the national real economy will inevitably be seriously
affected. Therefore, it is particularly important to study the correlation between various
stocks in the stock market and the structural characteristics of stock investors.

The stock market is essentially a complex system, which consists of a large number
of stocks and their investors in the market. In recent years, the research on the stock
market based on the complex network theory has made a lot of progress, but it mainly
focuses on the linkage analysis of some important stock markets or the exploration of the
interaction between the prices of stocks in a stock market. For example, a stock represents
a network node, the connection between nodes represents the correlation between stock
price fluctuations, and the connection weight represents the specific value of correlation.
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Thus, a stock-associated network can be established, and the basic topological properties
and clustering structure of the stock-associated network can be studied [1–4]. In addition to
using stock prices to analyze the stock market, shareholders are also a very important part
of the stock market. The analysis and exploration of shareholders’ investment portfolios
are conducive to a better understanding of the stock market, which may affect corporate
governance and the quality of decision-making. Therefore, in this paper, we will use the
complex network theory to establish a shareholder-stock network to study the investment
relationship of shareholders in the stock market.

Unlike the stock-associated network which only contains stock nodes, the shareholder-
stock network is composed of two different types of nodes: shareholder nodes and stock
nodes, which are connected by the investment relationship between shareholders and
stocks. Shareholder-stock network is a typical, and also very important bipartite network
in complex networks. A bipartite network is composed of two types of nodes, and the
connected edges only exist between different types of nodes. In addition to the shareholder-
stock bipartite network, many networks are also bipartite networks, such as the author-
thesis network [5], actor-film network [6], company-asset network [7,8], etc.

For the research on the nature of the shareholder-stock bipartite network, in addition
to starting from the structure of the network itself, this paper will focus on obtaining the
projected network of the same type of nodes according to the connection relationship of
the bipartite network [9]. The projected network is a network composed of only the same
type of nodes in the bipartite network, and the connection between nodes is based on the
overlap of their connection with another type of node in the original bipartite network.
The simplest way to establish a projected network is to connect two nodes of the same
type when they have at least one common neighbor node. However, this method has
certain limitations which will not only make the number of edges in the projected network
excessive in the process of projection but also cause the loss of some information in the
original bipartite network [9]. Therefore, in this paper, we refer to the statistically validated
network model proposed by Michele Tumminello [9] to establish shareholder projected
network and stock projected network, respectively. Specifically, we perform a statistical test
on each connection in the projected network to verify whether the given link is consistent
with the null hypothesis of a random connection between the nodes corresponding to the
shareholder-stock bipartite network to obtain the projected network. The projected network
obtained by this method retains the structural information of the original shareholder-stock
bipartite network to a large extent.

After obtaining the shareholder projected network and stock projected network, we
will analyze their network structure, including the average degree, clustering coefficient,
and average path of the network [10]. Exploring the topological properties of projected
networks based on the shareholder-stock network will help us to study the specific functions
of the stock market. It has been found that many networks will form a local aggregation
characteristic due to the non-uniformity of connecting edges [11,12]. The network can be
divided into different sub-networks, each of which has a relatively close internal connection,
and the connection between the relative sub-networks is relatively sparse. This ubiquitous
network structure feature is called community or community structure, and accordingly,
each sub-network is called a community. A community is usually composed of network
nodes with similar functions or properties, and its essence is the regional coupling of social
interaction between network nodes. For example, in the social network, the community
structure based on individual characteristics makes human society have significant group
differences [11]; in the World Wide Web, web communities formed by the close association
of hyperlinks have similar discussion topics [13]. Therefore, the research on community
structure helps to analyze the modules, functions, and properties of shareholder projected
network and stock projected network, to better understand the investment characteristics
of the stock market [14]. At present, research methods based on community structure
have been widely applied to social networks, biological networks, financial networks, and
networks in many other fields [15–18].
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There are many methods to divide the community structure of complex networks. For
example, according to the community formation process, there is the hierarchical clustering
method, search method, and other methods. According to the physical properties of the
division method, there is the network topology-based method, network dynamics-based
method, and other methods. In 2003, Newman first proposed the concept of modularity,
also known as Q-value, which can be applied to quantify and judge the quality of commu-
nity division of a complex network [19]. A relatively good partition should satisfy that the
nodes in the same community have a high degree of similarity, and the nodes in different
communities have a low degree of similarity. The modular community division method is
a mainstream community division method at present, which provides a specific objective
function for community structure research [20–25]. Among many algorithms based on
modularity, the Louvain algorithm [26] proposed by Vincent D. Blondel et al. is one of the
most widely used algorithms, because it has the advantages of being fast and accurate,
and is also applicable to large-scale networks. Therefore, this paper will use the Louvain
algorithm to divide the community structure of the shareholder projected network and
stock projected network.

In this paper, a shareholder-stock bipartite network will be established based on the
data of all stocks in the Shanghai A-stock market and the top ten shareholders holding these
stocks in 2021. Then, the statistically validated network model will be used to establish
the corresponding shareholder projected network and stock projected network. The basic
topological properties of the two projected networks are further explored. The results
show that the clustering coefficient of the shareholder projected network is large, and the
degree of the nodes is a power-law distribution, meeting the characteristics of scale-free
networks and small-world networks. The average degree and clustering coefficient of the
stock projected network are both small. The degree of most nodes in the stock projected
network is also small, and the occurrence with the highest frequency is the node with a
degree of 2.

Subsequently, the Louvain algorithm will be used to analyze the community structure
of the shareholder projected network and stock projected network, respectively. Combined
with the fact that the ranking of PageRank (PR) value of all nodes in the largest community
sub-network is highly consistent with their ranking in the original network, we test the
effectiveness of the community division method. In addition, we divide all communities
into large-scale communities and small-scale communities according to whether the number
of nodes in the community accounts for more than 1%. Then, the specific number and scale
of large and small communities in the division results are studied in depth, reflecting the
essential characteristics of major shareholders’ shareholding. Finally, the stock projected
sub-network obtained from the bipartite sub-network with 2 degrees of shareholders in the
original shareholder-stock bipartite network is analyzed separately and compared with
the original stock projected network. It was found that the two networks have strong
structural similarities, thus further demonstrating the effectiveness of the statistically
validated network model in the study of the shareholder-stock bipartite network problem.

The paper is organized as follows. In Section 2, we discuss the concept of a statisti-
cally validated network model, the basic topological properties of the network, and the
community division algorithm. In Section 3, we specifically present the establishment
process of the shareholder projected network and stock projected network and the results
of a simple structural analysis of the two networks. In Section 4, we present the results of
the community division of two projected networks and conduct in-depth research on the
division results. Finally, we draw some conclusions.

2. Models and Methods
2.1. Shareholder-Stock Bipartite Network

A complex network can be regarded as a set of non-empty finite point V and bipartite
relations E, where E is the edge set formed by the specific relations between nodes in V.
For the shareholder-stock bipartite network, shareholder nodes and stock nodes, having
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different natures, can be regarded as two groups of different types. The connection between
these two groups of different types of nodes represents the shareholding relationship of
shareholders. As shown in Figure 1, if a shareholder holds a stock, an edge is created
between the shareholder node and the stock node. There is no direct connection between
the stock nodes and no direct connection between the shareholder nodes as well.

Figure 1. Graphical representation of a shareholder-stock bipartite network.

For a shareholder-stock bipartite network containing n shareholders and m stocks, we
establish an investment matrix E = eij, where 1 ≤ i ≤ n , 1 ≤ j ≤ m . If the shareholder
node i holds stocks j, then eij = 1. On the contrary, eij = 0. That is, the shareholder-stock
bipartite network is a 0-1 network, and the elements in the investment matrix E is either 0
or 1.

2.2. Statistical Validated Network Models

After obtaining the shareholder-stock bipartite network, we establish the connection
between shareholders through some common characteristics of shareholders’ investment
in stocks, so as to obtain a shareholder projected network. Similarly, we also establish the
connection between stocks according to this characteristic statistically validated network
model method. The process of a simple method to derive a projected network is displayed
in Figure 2. In the figure, if two shareholder nodes connect to at least one same stock node
in the shareholder-stock bipartite network, the two shareholder nodes will be connected in
the shareholder projected network. However, this method is too simple and will cause a
serious loss of information in the original bipartite network [9]. Therefore, we will refer to
Michele Tumminello et al. [9] and introduce the method of a statistically validated network
model to establish the projected network. Specifically, to obtain the projected network, a
statistical test on each connection in the projected network is performed to verify whether
the given link is consistent with the null hypothesis of a random connection between the
nodes corresponding to the shareholder-stock bipartite network. The projected network
obtained in this way retains the structural information of the original shareholder-stock
bipartite network to a large extent.

Figure 2. Graphical representation of a simple shareholder projected network.

First of all, we record the two different types of node sets in the bipartite network as
set A and set B, where set A represents the node of projection and set B represents another
type of node set. Take the shareholder-stock bipartite network to establish the shareholder
projected network as an example. Set A represents the shareholder set and set B represents
the stock set. Then, set B is divided into different subsets according to the degree of each
node in set B, and the number of nodes in the subset is recorded as NB. Then, according
to the connection relationship of the shareholder-stock bipartite network, the nodes in
set A connecting different subsets of B are split to obtain the bipartite network divided
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according to the degree of set A. Through the analysis of sub-networks, the hypergeometric
distribution is as follows:

H(x|NB, ki, k j) =
(ki

x)(
NB−ki
kj−x )

(NB
kj
)

(1)

(where ki and k j are the degrees of nodes i and j in the sub-network), we can obtain the
probability that each node pair in set A has x common neighbors. Based on this probability,
we can perform statistical tests on node i and node j, and define the following Pij

Pij = 1−
kij−1

∑
x=0

H(x|NB, ki, k j) (2)

where kij represents the number of neighbors that node i and node j have. The Pij value can
be applied to determine whether there is a connection for statistical verification between a
pair of nodes. Then, statistical tests are performed on all node pairs of set A in the bipartite
network, and a statistical threshold is set to be S = 0.01/Nt to perform Bonferroni [27]
correction, where Nt = NA(NA − 1)/2, NA is the number of nodes of set A in the bipartite
network. If Pij ≤ S, there is an edge connection between the node pairs; otherwise, there is
no edge connection.

Bonferroni correction reduces the number of false positives to the minimum, but the
test is too strict, resulting in a significant increase in the number of false negatives, which
cannot ensure sufficient accuracy [27]. Especially when the number of nodes in set A
is large or the edge overlap of set A and B in the bipartite network is low, Bonferroni
correction will lead to too few links in the mapping network. Therefore, we use FDR [28] to
correct all the calculated P values in the bipartite network. First, we arrange the P values in
ascending order (P1 < P2 < · · · < PK < · · · < PNt) . The FDR correction method is used
to find the maximum tmax, starting from the maximum P value, controlling the inequality
Pij ≤ tmax ∗ S. FDR correction controls the false/true positive ratio to a certain range, which
can better reduce the error rate. In this study, we used both Bonferroni correction and FDR
correction.

2.3. Basic Topological Properties of Network

The network topology determines its function and affects its dynamic behavior. The
basic topology of the network includes the average degree, aggregation coefficient, the
degree distribution of nodes, etc. These statistics have different definitions and calculation
methods according to the characteristics of network edge attributes (direction, weight).
The real network topology is generally small world and scale-free [10]. Analyzing the
topological properties of complex networks in the context of the stock market is helpful to
study the functions of the network. We will calculate the average degree and aggregation
coefficient of the shareholder projected network and stock projected network.

2.3.1. Average Degree

In an undirected network, we take ki to represent the degree of node i, that is, the
number of edges directly connected by node i. The average degree of all nodes in the
network is called the average degree of the network which is represented by < k >. The
calculation formula of < k > is given as follows:

< k >=
2M
N

(3)

where N represents the number of nodes in the network and M represents the number of
edges in the network.
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2.3.2. Clustering Coefficient

The clustering coefficient is used to quantitatively describe the probability that the
neighbors of a node are also neighbors of each other, whose calculation formula is given
as follows:

Ci =
Ei

1
2

ki(ki − 1)
=

2Ei
ki(ki − 1)

=
∑j 6=k,k 6=i,i 6=j aijajkaki

ki(ki − 1)
(4)

where Ei represents the actual number of edges between ki neighbor nodes of node i.
aij indicates whether there is a connection between node i and node j. If there is a con-
nection between the two nodes, aij = 1, otherwise aij = 0. The clustering coefficient
C of a network is defined as the average of the clustering coefficients of all nodes in
the network.

C =
1
N

N

∑
i=1

Ci (5)

Obviously 0 ≤ C ≤ 1. The clustering coefficient of a network reflects the overall
tightness of the network.

2.4. Community Division and Louvain Algorithm

A quantity called modularity was proposed by Newman et al. (2003) to measure the
quality of community structure [20]. Modularity is calculated by the ratio of the edges in
the community to all edges in the network, minus its expected value [29] when the degree
of all nodes in the network is constant and all the connections are randomly generated. The
calculation formula is as follows:

Q =
1

2M ∑
ij
[eij −

wiwj

2M
]δ(ci, cj) (6)

where M is the number of network edges, and it is the sum of the weights of all connected
edges in a weighted network; eij is the element in the network connection matrix. If nodes
i and j are connected, eij = 1, otherwise eij = 0. It represents the weight of the edges
between nodes i and nodes j in a weighted network; wi is the degree of node i; ci represents
a community containing node i; Function δ(ci, cj) indicates whether node i and node j
belong to the same community. If you are in the same community δ = 1. On the contrary,
δ = 1. Modularity describes a kind of “expectation”. If the sum of the weights of the
internal edges of the community is higher than its expected value in the corresponding
random network, the value of Q will be large and the effect of community division is
also good.

The Louvain algorithm is a community division algorithm based on modularity. The
basic idea is to traverse all neighborhood community tags for nodes in the network, and
select community tags that maximize the modular increment. After maximizing the mod-
ularity, each community is regarded as a new node and repeated the process until the
modularity is no longer increased [24]. Specifically, the algorithm is mainly divided into the
modular optimization stage and the network aggregation stage. In the modular optimiza-
tion stage, each node is considered a community label. Each node traverses all its neighbor
nodes, tries to update its own community label to the community label of the neighbor
node, and selects the community label with the largest modular increment ∆Q until all
nodes cannot increase the modular degree by changing the community label. This is the first
stage of the algorithm. At the end of the iteration, the local modular of the network reaches
the maximum value. Then, in the network aggregation stage, we merge each community
into a new node. The weight of the edges between any two new nodes is equal to the sum
of the weights of all the edges between the two communities. In this way, we obtain a
new network. Then, we repeat the iterative process of the modular optimization stage for
the new network until the modularity is no longer increased. At this point, the division
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of community structure is complete. The modular increment ∆Q calculation method is
as follows:

∆Q = [
∑in +2ki,in

2M
− (

∑tot +ki
2M

)2]− [
∑in
2M
− (

∑tot
2M

)2 − (
ki

2M
)2] (7)

where ∑in represents the sum of connected edge weights in community C, ∑tot represents
the sum of weights of edges associated with nodes in C, ki is the sum of weights of the
associated edges of node i, ki,in represents the sum of connecting edge weights from node i
to all the nodes in community C, M is the number of network edges, and in a weighted
network is the sum of all connecting edge weights.

2.5. Node Importance and PageRank Algorithm

In a network, different nodes play different roles to different extents, which can be
reflected by node importance. There are many methods to measure the importance of
nodes, such as nodal centrality [30], proximity centrality [31], PageRank algorithm [32],
and so on. In this paper, we use the PageRank algorithm developed by Lawrence Page to
rank the importance of nodes.

The PageRank algorithm was originally proposed for identifying the importance of
web pages. It is based on the following two important assumptions: (1) The quantity
hypothesis: if a page node receives a higher number of links from other nodes, the page
is more important. (2) Quality assumption: a high-quality page will pass more weight to
other pages through the link. So, the more important the page connected to page A is, the
more important page A is. In the initial stage, the PageRank algorithm sets the same value
for each node, then distributes each node’s current value evenly to the link connected to
the node so that each link obtains the corresponding weight. After all nodes are allocated,
we sum the link weights connected to each node to obtain a new PageRank score, and a
round of PageRank calculation is completed. After several rounds of calculation, until the
score stabilizes, the final value obtained by each node is obtained. The value of the node
can be expressed as:

PageRank(pi) =
1− q

N
+ q ∑

pj

PageRank(pj)

L(pj)
(8)

where qε[0, 1] is the damping factor, generally q = 0.85. Its meaning is the probability
of randomly continuing to jump backward after reaching a node. L(pi) is the number of
nodes pi point to other nodes, while N is the number of all nodes. After stabilization, the
larger the PageRank (PR) value is, the more important the node is. The PageRank algorithm
can be applied to any set of entities with cross-referencing properties, as well as nodes in
complex networks.

3. Basic Analysis of Network Structure
3.1. Establishment of Shareholder-Stock Bipartite Network

This paper uses the data of all the stocks in the Shanghai A-share market and the
corresponding top ten shareholders on 30 June 2021 (data source: Wind Information).
Some of the original data are shown in Table 1. These data include 1993 stocks and 16,513
shareholders in total, of which 98.49% stocks have complete top ten shareholders, while the
remaining 1.51% stocks have less than ten shareholders. Due to the large amount of data
contained in 1993 stocks and its 16,513 large shareholders, the corresponding shareholder-
stock bipartite network will also be complex. In order to better study the investment
behavior of shareholders in the stock market, we will pretreat the stock and shareholder
data to some extent. Specifically, for convenience, we numbered the 16,513 shareholder
nodes from 1 to 16,513 in pinyin order, and then established a bipartite network based on
the relationship between shareholders’ shares, resulting in a node size of 16,513 × 1993
shareholder-stock bipartite network.
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Table 1. Original data of some stocks and their ten major shareholders.

Stock Name (Code) Ten Major Shareholders

SPD Bank 1 (600,000.SH)

Shanghai International Group Co., Ltd.
China Mobile Group Guangdong Co., Ltd.
Fude Life Insurance Co., Ltd.—Traditional

Fude Life Insurance Co., Ltd.—capital
Shanghai SDIC Asset Management Co., Ltd.
Fude Life Insurance Co., Ltd.—Universal H

China Securities Finance Co., Ltd.
Shanghai Guoxin Investment Development Co., Ltd.

Hong Kong Central Clearing Co., Ltd. (Lugutong)
Central Huijin Asset Management Co., Ltd.

Huaneng International (600,011.SH)

Huaneng International Power Development Company
Hong Kong Central Clearing (Agent) Co., Ltd.

China Huaneng Group Co., Ltd.
Hebei Construction Investment Group Co., Ltd.

China Huaneng Group Hong Kong Co., Ltd.
China Securities Finance Co., Ltd.
Jiangsu Guoxin Group Co., Ltd.

Liaoning Energy Investment (Group) Co., Ltd.
Fujian Investment and Development Group Co., Ltd.

Dalian Construction Investment Group Co., Ltd.
1 SPD Bank is the abbreviation of Shanghai Pudong Development Bank.

3.2. Establishment of Projected Network

The shareholder-stock bipartite network contains two different types of nodes: share-
holder nodes and stock nodes. After obtaining this network, we set shareholder nodes
as set A and stock nodes as set B. When using the statistically validated network model
to build the mapping network, we can choose to project in two different directions to
obtain the shareholder projected network and the stock projected network, respectively. In
this paper, we use Python to build a projected network and use Gephi to draw network
relevant diagrams.

3.2.1. Shareholder Projected Network

First, by projecting to the direction of set A, we construct shareholder projected
network. In the shareholder projected network, the connection between two shareholder
nodes indicates that two shareholders have similar stock portfolios. The specific process
of establishing the shareholder projected network is as follows: First, because the value
range of the stock node degree in the shareholder-stock bipartite network is 3–10, we
divide the set B into eight small sets which node degrees are 3, 4, 5, 6, 7, 8, 9, and 10,
respectively. Then, according to the connection relationship in the shareholder-stock
bipartite network, the corresponding shareholder nodes in each small set are selected,
while the connection edges of shareholder nodes and stock nodes in the original bipartite
network are retained. In this way, eight shareholder-stock bipartite sub-networks based
on the stock node degree separation can be obtained. The shareholder-protected sub-
network is established according to each bipartite sub-network. Finally, by combining all
the obtained shareholder projected sub-networks, the shareholder projected network of
the original shareholder-stock bipartite network is obtained. Specifically, regarding the
acquisition of shareholder-protected sub-networks, we will discuss the following three
situations:

1. In the bipartite networks with stock node degrees of 3, 4, 5, 6, 7, and 8, we find that the
degree of shareholders’ set nodes is 1, and these bipartite networks only contain one stock
node, which leads to the sum of probability that any node in the shareholders’ set has

x public neighbors calculated for i and j is 0, that is, probability ∑
kij−1
x=0 H(x|NB, ki, k j)

is always 0, where kij is the number of public neighbors between node pairs i and j;
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0 ≤ x ≤ kij − 1. Therefore, when these bipartite networks are projected, there is no
connection between any node, and the resulting shareholder projected network does not
contain connected edges, all of which are isolated shareholder nodes;

2. In the bipartite network with the stock node degree of 9, we traverse the node pairs of
the shareholder set and calculate the corresponding Pij matrix according to the formula.
We first adopted the Bonferroni correction and set the threshold value as S = 0.01/Nt.
Where Nt = NA(NA − 1)/2, Nt = 135. If Pij ≤ S, then there is a connection between
node i and node j in the corresponding shareholder projected network. By comparing
calculations, we found that under the Bonferroni correction, none of the Pij satisfies the
threshold. We then correct it using the FDR method, and the results are shown in Figure 3;

3. In the bipartite network with the stock node degree of 10, we also traverse the node
pairs of the shareholder set to obtain the value corresponding to node i and node j.
After FDR correction, the projected network with a node degree of 10 is obtained, as
shown in Figure 4.

Figure 3. Shareholder projected sub-network of bipartite sub-network with stock node degree of 9 s.

Figure 4. Shareholder projected sub-network of bipartite sub-network with stock node degree of 10 s.

Finally, we obtain a total of 8 shareholder projected sub-networks. Among them, the
shareholder projected sub-networks with stock node degrees of 3, 4, 5, 6, 7, and 8 are all
isolated shareholder nodes. Only the shareholder projected networks with stock node degrees
of 9 and 10 have connected edges. We combine these 8 shareholder projected sub-networks to
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obtain the total shareholder projected network corresponding to the original shareholder-stock
bipartite network. The total shareholder projected network is shown in Figure 5.

Figure 5. Total shareholder projected network obtained from the original shareholder-stock bipartite
network.

3.2.2. Stock Projected Network

In addition to the stock projected network, we can also project the shareholder-stock
bipartite network to the stock direction. In the stock projected network, the connection
between nodes indicates that two stock nodes have similar shareholder allocation structures.
Similarly, we use the statistically validated network model to build the stock projected
network. First, we divide the shareholder nodes into 30 shareholder subsets according
to the degree of shareholder nodes in the shareholder-stock bipartite network. Then,
according to the edge connection in the shareholder-stock bipartite network, the stock
node corresponding to the shareholder node in each shareholder set is selected, and
the edge connection between the shareholder node and the stock node in the original
bipartite network is retained. In this way, the corresponding 30 shareholder-stock bipartite
sub-networks are obtained. The number of shareholder nodes and stock nodes in each
bipartite network is shown in Table 2 below. It can be seen from the table that the number
of shareholder nodes with a degree of 1 is the largest, reaching 13,958, and the total
number of stocks they invest in is 1980, indicating that most large shareholders are major
shareholders of one certain stock. In addition, as the degree of shareholder nodes increases,
the number of shareholder nodes will become less and less, indicating that the number of
large shareholders who invest more than one share at the same time is less and less.

Finally, according to each shareholder-stock bipartite sub-network, the stock-protected
sub-networks are established. In a bipartite network, the establishment of the statistically
validated network model is calculating the sum of the probabilities of each pair of nodes
in the stock collection having x(0 ≤ x ≤ kij − 1) common neighbor by calculating the
hypergeometric distribution. This is the calculation of the probability

kij−1

∑
x=0

H(x|NB, ki, k j),

where kij is the number of public neighbors between node pairs i and j. Then, Pij is
calculated accordingly. Therefore, if the stock nodes i and j have common neighbor nodes
and the number of common neighbor nodes is kij > 1, it is possible for nodes i and j to have
connected edges. Therefore, by observing the above table, we find that the product of the
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number of shareholders and the corresponding shareholder degree in a bipartite network
with more than 10 shareholder nodes is equal to the number of stocks, revealing that the
number of common neighbor nodes connected by any stock node in these sub-networks is
zero (kij = 0), which further indicates that there is no edge in the networks obtained by
these bipartite network projects. Namely, there are all isolated stock nodes in the stock
projected networks.

Table 2. The size of shareholder-stock bipartite sub-network divided by the degree of shareholder nodes.

Shareholder Node
Degree Number of Shareholders Corresponding Number of Stocks

1 13,958 1980
222 941941941 120312031203
333 248248248 602602602
4 95 340
5 74 317
6 50 265
7 24 141
8 13 95
9 17 138
10 9 84
11 4 44
12 7 82
13 5 65
14 5 70
15 2 30
16 4 64
17 1 17
18 2 36
23 2 46
24 1 24
26 1 26
27 2 54
29 2 58
30 1 30
37 1 37
42 2 84

105 1 105
134 1 134
137 1 137
466 1 466

For the bipartite network with other shareholder degrees of 1 to 10, we, respectively,
traverse each node pair of the stock set and calculate the corresponding Pij matrix according
to the formula, after FDR correction, the corresponding stock projected network is obtained.
Finally, the 30 stock projected networks are combined to obtain the stock projected network
of the original bipartite network. The network is shown in Figure 6 below:
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Figure 6. Total stock projected network obtained from the original shareholder-stock bipartite network.

3.3. Analysis of The Overall Structure of Projected Networks
3.3.1. Shareholder Projected Network

First of all, as shown in Figure 7, we establish a frequency distribution map with 10
as the interval for the degree of nodes in the shareholder projected network and conduct
regression analysis. It is found that the degree distribution of nodes presents a power-law
distribution, which meets the scale-free characteristics of the network. We establish a model
f (x) = a ∗ ebx to fit, where a = 2235 and b = 0.1315. Then, we calculate the average
degree and clustering coefficient of the network. The average degree is 4.124 and the
clustering coefficient is 0.928. The network has a large clustering coefficient, meeting the
characteristics of the small-world network.

Figure 7. The frequency distribution diagram of node degree and the fitting curve of shareholder
projected network.

From the degree distribution of nodes, we can see that there are nodes connected with
many nodes in the network, that is, “hubs”. These “hubs” play a crucial role in the stability
of the network. It is far from enough to only consider the node degree of the “hub” nodes.
We will use the PageRank algorithm based on network centrality to calculate the PageRank
(PR) values of all nodes in the shareholder projected network, so as to obtain the more critical
node numbers. The results show that shareholder No. 11747 Hong Kong Securities Clearing
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Company Limited (Mainland Stock Connect) had the largest PR value, while shareholder
No. 14756 China Securities Finance Co., Ltd. and shareholder No. 14927 Central Huijin Asset
Management Co., Ltd., respectively, have the second and third PR values.

3.3.2. Stock Projected Network

First, we establish a frequency distribution diagram for the degree of nodes in the
stock projected network. As shown in Figure 8, the degree of most nodes in the stock
projected network is small, and the number of nodes with a degree less than or equal to
5 accounts for 92.3% of the total number of nodes; The maximum frequency occurs at the
position where the node degree is 2, and the number of stock nodes with the stock degree
of 2 accounts for 21.7% of the total number of nodes. Then, we calculate the average degree
and clustering coefficient of the network, and the average degree is 2.545, the clustering
coefficient is 0.132, and the aggregation of the stock projected network is small.

Figure 8. Scatter graph of node degree frequency of stock projected network.

4. Community Structure of Projected Network

In the previous section, based on the established shareholder-stock bipartite network,
we obtained shareholder projected network and stock projected network. Next, we will
divide the two projected networks into communities, and analyze the community structure
in depth, so as to explore the potential investment relationship and characteristics between
stocks and their large shareholders.

4.1. Shareholder Projected Network
4.1.1. Community Division of Shareholder Projected Network

In the previous calculation, the clustering coefficient of the shareholder projected
network is 0.928, which shows that the network shows more obvious aggregation charac-
teristics. Next, we use the Louvain algorithm to divide the community of the shareholder
projected network. We use Python to implement the Louvain algorithm. When the default
resolution is 1, the shareholder projected network is divided into 604 communities, as
shown in Figure 9. The communities with fewer nodes are gray, while the communities
with more nodes are distinguished by various color markers. In the division results, there
are 250 communities with only one isolated node, while the number of nodes in the largest
community is 1784, accounting for about 10% of the total number of shareholder nodes.
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Figure 9. The result of community structure division of shareholder projected network.

4.1.2. The Largest Community Sub-Network of Shareholder Projected Network

The largest community obtained from the community division of the shareholder
projected network is located in the network center, with 1784 shareholder nodes. Next, we
take out the largest community separately, remove the edges between the community and
other communities, and only retain the connection within the community. In this way, the
largest community sub-network is obtained and its structure will be analyzed (Figure 10).

Figure 10. Sub-network of the largest community.

First of all, we conduct regression analysis on the frequency distribution graph of
node degrees in the largest community sub-network and find that the degrees of nodes
follow a power-law distribution. At the same time, we also calculate the average degree
and clustering coefficient of the network. The average degree is 12.796 and the clustering
coefficient is 0.908. The network has the characteristics of a large clustering coefficient and
a short average path. Through calculation, we find that the largest community still meets
the characteristics of scale-free networks and small-world networks. Then, we use the
PageRank algorithm to calculate the importance of network nodes in the largest community
sub-network and compare the results with those of these nodes in the original shareholder
projected network. The results are shown in Figure 11. The shareholders of Hong Kong
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Securities Clearing Co. (number 11747), China Securities Finance Co. (number 14756),
and Central Huijin Asset Management Co. (number 14927) have high PR values. The
results show that the ranking of all nodes in the largest community in the community
sub-network is highly consistent with their ranking in the original network. Therefore, the
largest community sub-network basically retains the basic properties of all nodes in the
original shareholder projected network and maintains the structural characteristics of the
network, which reflects the effectiveness of the Louvain algorithm in dividing communities
in the shareholder projected network.

Figure 11. Comparison of PR value of all nodes in the largest community sub-network with those in
the original shareholder projected network.

4.1.3. Community Structure Analysis of Shareholder Projected Network

According to the nature of the community structure, it is typical that the nodes
within the community are relatively closely connected, while the connections between
communities are relatively sparse. For each divided community, we will retain its internal
nodes and connections and remove connections between different communities to form an
independent community sub-network. Then, we will discuss all community sub-networks:

First, we establish a frequency chart for the interval of 10 nodes in all community sub-
networks and conduct regression analysis. The established fitting model is f (x) = a ∗ ebx,
where a = 296.1, b = −0.1425. The scatter plot and fitting curve of frequency are shown in
Figure 12:

Figure 12. The frequency distribution diagram of node number of all communities and the fitting curve.
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According to the regression results, it is found that the number of nodes in all com-
munities presents a power law distribution. Then, we conduct statistical analysis on the
number of nodes in all community sub-networks and draw the corresponding pie-shaped
distribution chart according to the number of nodes in each community sub-network, as
shown in Figure 13. The figure shows that 91.2% of the community sub-networks con-
tain no more than 100 nodes, 5.5% of the community sub-networks have a number of
nodes ranging in [100,200], and only 3.3% of the community sub-networks have more than
200 nodes.

Figure 13. Insert two pictures side by side.

Further, we calculate the proportion of the number of nodes in each community to the
total number of nodes and define the community whose proportion is greater than 1% as a
large-scale community. The proportion of communities less than or equal to 1% is named
small-scale. According to this definition, all communities of the shareholder projected
network are divided into two types: large-scale communities and small-scale communities.
First, we analyze large-scale communities. A total of 33 large communities are obtained
through community division. Figure 10 above already shows the largest community sub-
network, while the remaining 32 large-scale community network diagrams are arranged
from large to small by the number of nodes, as shown in Figure 14. The top sub-diagram
shows an enlarged view of a community sub-network. We calculate the average degree and
clustering coefficient of all large communities and draw their corresponding broken line
chart with the number of nodes in the community which has been shown in Figure 15. The
results of this figure show that with the increase in the number of nodes in the community,
the average degree and clustering coefficient of nodes in the network will fluctuate to some
extent, but the overall trend will decline with the increase in the number of nodes.
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Figure 14. Sub-network of the other large-scale communities except the largest community.
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Figure 15. Change of average degree and clustering coefficient with number of nodes in large-scale
communities.

Finally, we calculate the average and variance of the number of nodes in all different
types of communities, and the results are shown in Table 3. From Table 3, we can see
that the average number of nodes in large-scale communities is 217.63, about 10 times the
average number of nodes in all communities and about 20 times the average number of
nodes in small-scale communities. The variance of the number of community nodes is the
largest among all variances, which is also in line with expectations. The above calculation
results show that the number of large-scale communities in the shareholder projected
network is small. Most of the communities are small-scale and the scale of large-scale
communities is far larger than that of small-scale communities. Therefore, only a small
number of shareholders have similar portfolios of stocks, while most shareholders have
different holdings of stocks.

Table 3. Statistical analysis of different types of community sets.

Community Mean of the Number of
Nodes

Variance of the Number of
Nodes

AL 1 25.77649007 8023.064282
EM 2 22.86069052 2901.25091
DM 3 217.6363636 2103.807163
DI 4 11.58421053 632.8744875

1 AL means all communities. 2 EM means all communities except the largest. 3 DM means all large-scale
community. 4 DI means all small-scale community.
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4.2. Stock Projected Network
4.2.1. Community Division of Stock Projected Network

We also use the Louvain algorithm to divide the community of the stock projected
network. When the resolution is 1, we divide the community of the stock projected
network, as shown in Figure 16 below. The communities with fewer nodes are gray,
while the communities with more nodes use various color tags to distinguish. A total of
317 communities were divided, including 249 communities with only one isolated node.

Figure 16. Community structure division of stock projected network.

4.2.2. Community Structure Analysis of Stock Projected Network

Based on the above community division results, we conducted an in-depth analysis
of 68 communities with multiple nodes. Based on each community, we obtain an inde-
pendent sub-network by retaining the nodes and connections within the community and
removing the connections between nodes in different communities. Then, we discuss these
68 community sub-networks.

By calculating the proportion of the number of nodes in each community in the total
number of stock nodes, we find that there are 38 communities where the proportion of
the number of stock nodes in the total number of stock nodes in the community sub-
network is less than or equal to 1%, while there are 30 communities where the proportion
is greater than 1%. Similarly, we define the former as a small-scale community and the
latter as a large-scale community. Then, we conduct statistical analysis on these two types
of communities.

First, we consider small-scale communities. By observing the sub-networks of different
communities, we find that 29 of the 38 small-scale communities contain only two nodes and
only one connecting edge. The average degree of this structure is 1, the clustering coefficient
is 0, and there is no aggregation feature. In addition, for the remaining nine communities,
we also calculate the average degree and clustering coefficient of each community, present
the average degree and clustering coefficient results of all 38 small-scale communities in
the right figure of Figure 17. It can be seen from the above results that the node clustering
coefficient of small communities is 0 and the average degree of nodes is also small.

Then, we consider 30 large-scale communities. We calculate the average degree and
clustering coefficient of nodes in each community. It is found that the clustering coefficient
of large-scale communities is still low and the average degree is also small. The value is
only slightly higher than the average degree and clustering coefficient of small communities
(see the left figure of Figure 17 for specific results).



Mathematics 2023, 11, 1545 20 of 25

Finally, we calculate the proportion of the number of community nodes of two different
types in the total number of stock nodes and the results are shown in Figure 18. One block
of 18% represents the sum of the number of all small-scale community nodes in the total
number of stock nodes, while each other block represents the proportion of the number of
a large-scale community node in the total number of stock nodes. The figure shows that
there is no significant difference in the number of nodes in all large-scale communities,
and the number of nodes in each community is between 2% and 4% of the total number of
stock nodes.

All the above results show that the number of large-scale communities in the stock
projected network is very small. Most of the communities are small-scale communities, even
lonely nodes. Even large-scale communities are relatively small. Therefore, the allocation of
the top ten shareholders of most stocks is obviously different, or even completely different.
Only a small part of the stocks will form several small sets, and each set contains only a
small number of stocks. Their top ten shareholder allocation has certain similarities with
each other.

Figure 17. Comparison of average degree and agglomeration coefficient of large-scale and small-scale
communities.

Figure 18. Proportion of nodes in large-scale and small-scale communities.
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4.2.3. Comparison between Stock Projected Network with Shareholder Node Degree 2 and
Original Stock Projected Network

From the statistically validated network model, we can see that the stock projected
network is composed of different projected sub-networks, and these projected networks
are obtained from the projection of the shareholder-stock bipartite network with the same
shareholder degree. Next, we will discuss the community structure of the stock projected
network whose shareholder degree is 2 in Table 2 and compare it with the original stock
projected network.

From the results in Section 3.2.2, we can obtain the stock protected sub-network with
a shareholder degree of 2. Through calculation, we find that the stock projected sub-
network contains 1800 stock nodes, 910 edges, and an average degree of 1.517, and the
clustering coefficient is 0.01. The original stock projected network contains 1993 stock nodes,
2537 edges, an average degree of 2.545, and a clustering coefficient of 0.132. The results
show that the stock projected sub-network with a shareholder node degree of 2 has most of
the nodes of the original stock projected network, but the edges are less reserved. Therefore,
most of the stocks have a shareholder whose node degree is 2, while there are more
shareholders whose node degree is not 2.

Later, we also use the Louvain algorithm to divide the stock projected sub-network
with a shareholder degree of 2 into communities. The resolution is still set to 1 and the
network is divided into 315 communities, including 250 single-node communities. The
results are shown in Figure 19. The communities with fewer nodes are gray, while the
communities with more nodes are distinguished by various color tags. We first exclude the
single-node communities and then calculate the proportion of the number of nodes in the
remaining communities to the total stock nodes. There are 37 small communities with a
proportion of the number of community stock nodes less than or equal to 1%, and 29 large
communities with a proportion of the number of stock nodes greater than 1%.

Figure 19. Community division results of stock projected network with shareholder node degree of 2.

We compare the community division results obtained above with those of the original
stock projected network, as shown in Table 4. Among them, the stock projected sub-network
with a shareholder degree of the number of 2 is divided into 315 communities, which is
only two different from the original stock projected network. In addition, the numbers of
single-node communities, small-scale communities, and large-scale communities are also
very close, with a difference of 1. The similarity of community structure roughly indicates
that the connection information contained in two projected networks is similar. This result
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shows that the shareholder-stock bipartite network with a shareholder degree of 2 can
basically reflect the similarity of investment of the top ten shareholders of most stocks
in the original shareholder-stock bipartite network. This phenomenon is also reasonable
from the theoretical analysis because, in the original shareholder-stock bipartite network,
the shareholder node degree of 1 means that there are no identical shareholders among
the stocks invested by these shareholders. In such case, the stock projected sub-network
cannot be obtained according to the bipartite network with shareholder node degree
of 1. However, the number of shareholders with a node degree greater than 2 in the
original shareholder-stock bipartite network is very small as a whole, so the scale of the
stock-protected sub-network obtained is also quite small. A statistically validated network
model is used to build the stock projected network by projecting and merging the bipartite
networks with different shareholder degrees. Therefore, the stock projected sub-network
obtained by the shareholder-stock bipartite network with shareholder degrees of 2 does
have a strong structural similarity with the stock projected network obtained by the original
shareholder-stock bipartite network. All the above conclusions also reflect the effectiveness
of using a statistically validated network model to research the shareholder-stock bipartite
network in this paper.

Table 4. Comparison of the numbers of communities.

A 1 B 2

Total 317 318
Single Node 249 251

Small-scale communities 38 36
Large-scale communities 30 31

1 Stock projected network. 2 projected network of stock investment with shareholder degree of 2.

5. Conclusions

This paper establishes the shareholder-stock bipartite network based on the data of
1993 stocks in the Shanghai A-share market and 16,513 major shareholders holding these
stocks on 30 June 2021 and analyzes the topology of the network to explore the structural
characteristics of overlapping portfolios among different shareholders, as well as similar
shareholder allocation structures between different stocks.

First, we used a statistically validated network model to establish the shareholder pro-
jected network and stock projected network on the basis of the shareholder-stock bipartite
network, and analyzed the structural characteristics of those two projected networks. In
the shareholder projected network, nearly two-thirds of the shareholder nodes were only
connected with several other nodes to form a small isolated sub-network, and only nearly
one-third of the shareholder nodes showed strong aggregation. This shows that most
shareholders only hold overlapping stocks with a few other shareholders. The aggregation
coefficient of the network was large and the degree of nodes shows the characteristics of
power rate distribution, which meets the characteristics of scale-free networks and small-
world networks. In addition, in the stock projected network, the connection between most
nodes was relatively sparse, while the connection between only a small number of nodes
was relatively tight. The average degree and clustering coefficient of the network were
low, and the aggregation was small. The degree of most nodes in the network was small,
and the highest frequency occurred when the node degree was 2. Therefore, the overlap of
shareholder allocation among most stocks is low, and only a small number of stocks have
the same shareholders.

Subsequently, we divided the shareholder projected network into 604 communities,
including 250 communities formed by isolated nodes. In the shareholder projected network,
the average degree and clustering coefficient of nodes in the largest community were both
large, the average path of the network was short, and the degree distribution of nodes
presents the characteristics of power distribution. The PR value ranking of all nodes of
the largest community in the sub-network is highly consistent with that in the original
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network, reflecting the effectiveness of the community division method. In addition, the
number of nodes in all communities of the shareholder projected network also showed a
power-law distribution. According to whether the percentage of the number of nodes in the
community to the total number of shareholder nodes was greater than 1%, we divided all
communities into large-scale communities and small-scale communities. We found that the
average degree and clustering coefficient of nodes all showed a downward trend with the
increase in the number of nodes in the 33 community, although they will fluctuate to some
extent. By comparing the average and variance of the number of nodes in all large-scale
communities and small-scale communities, it was found that the number of large-scale
communities is small. Most of the communities are small-scale and the scale of large-scale
communities is far larger than that of small-scale communities. Therefore, only a small
number of shareholders have similar portfolios of stocks, while most shareholders have
different holdings of stocks.

Then, the stock projected network was divided into 317 communities, including
249 communities with only one isolated node. Similarly, according to whether the per-
centage of the number of nodes in the community to the total number of stock nodes was
greater than 1%, we divided the communities of the stock projected network into large-scale
communities and small-scale communities. In addition to the community composed of a
single isolated node, there were 30 large-scale communities and 38 small-scale communities
in the remaining 68 communities. In the community division results of the stock projected
network, the clustering coefficients and average degree of large-scale communities and
small-scale communities were all low. Compared to small-scale communities, the clustering
coefficient of large-scale communities is slightly higher. Then, the total number of nodes of
large-scale communities and small-scale communities was compared and analyzed. The
results show that the number of large-scale communities in the stock projected network
is very small. Most of the communities are small-scale communities, even with lonely
nodes. Even for large-scale communities, their scale is still relatively small, and the number
of nodes in each community is between 2% and 4% of the total number of stock nodes.
Therefore, the allocation of the top ten shareholders of most stocks is obviously different, or
even completely different. Only a small number of stocks will form several small sets, and
each set contains only a few stocks whose top ten shareholders have certain similarities
with each other.

Finally, we separately analyzed the stock projected sub-network obtained from the
bipartite network with a shareholder degree of 2 in the shareholder-stock bipartite network.
By comparing the community division result of the stock projected sub-network with
that of the original stock projected network, we found that they are very close. Such a
result shows that the stock projected network obtained from the shareholder-stock bipartite
network with a shareholder degree of 2 has a strong structural similarity with the stock
projected network obtained from the original shareholder-stock bipartite network, which is
also in line with the theoretical analysis that the shareholder-stock bipartite network with a
shareholder degree of 2 can basically reflect the similarity of the structure of the top ten
shareholders of most stocks in the original shareholder-stock bipartite network. Thus, the
effectiveness of the statistically validated network model and community division method
in the research of shareholder-stock bipartite networks is further confirmed.

In the future, if more data in other markets are available, we will try to compare the
network structure of different markets to determine whether there are any commonalities
or differences in the way shareholders allocate their portfolios. Moreover, we will conduct
further research to explore how the network structure affects corporate governance and
the quality of decision-making. In addition, it will be valuable to explore the dynamics
of the shareholder-stock bipartite network by analyzing the formation and dissolution of
communities and identifying key drivers of network evolution. In the follow-up study,
more methods, such as longitudinal analysis and multi-layer network analysis, will be
applied to study the implications of the network structure of the shareholder-stock bipartite
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network for financial regulation, including identifying potential areas of systemic risk and
designing regulatory interventions to mitigate these risks.
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