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Abstract: Cooperative control of vehicle trajectories and traffic signal phases is a promising approach
to improving the efficiency and safety of transportation systems. This type of traffic flow control
refers to the coordination and optimization of vehicle trajectories and traffic signal phases to reduce
congestion, travel time, and fuel consumption. In this paper, we propose a cooperative control method
that combines a model predictive control algorithm for adaptive traffic signal control and a trajectory
construction algorithm. For traffic signal phase selection, the proposed modification of the adaptive
traffic signal control algorithm combines the travel time obtained using either the vehicle trajectory
or a deep neural network model and stop delays. The vehicle trajectory construction algorithm
takes into account the predicted traffic signal phase to achieve cooperative control. To evaluate the
method performance, numerical experiments have been conducted for three real-world scenarios
in the SUMO simulation package. The experimental results show that the proposed cooperative
control method can reduce the average fuel consumption by 1% to 4.2%, the average travel time
by 1% to 5.3%, and the average stop delays to 27% for different simulation scenarios compared to the
baseline methods.

Keywords: adaptive traffic signal control; connected and automated vehicle; trajectory control;
cooperative control
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1. Introduction

Transportation systems play an important role in the world economy. They provide
freight transportation and facilitate supply chains, connect markets and resources, increase
mobility and accessibility, etc. As a result, the development of transportation systems
is necessary for the growth of the economy. According to [1], in 2021, transportation
accounted for 8.4% of the gross domestic product in the U.S. Moreover, transportation-
related industries employed almost 15 million people.

However, there are many challenges that can affect the efficient use of transportation
networks. One of the main problems is congestion, which can lead to traffic delays,
increased fuel consumption, and air pollution. With rising fuel prices, congestion had
a significant negative economic impact on travel costs, freight transportation, and the
supply chain, and increased the cost of goods and services around the world. According
to [2], in the U.S., the typical driver lost 51 h due to traffic congestion in 2022, while in
the UK it was around 80 h. This problem is even more acute in large cities. For example,
in London, the most congested city in the world, drivers lost about 156 h on average
due to congestion. In total, the cost of congestion was over $81 billion in the U.S. and
more than £9 billion for UK drivers in 2022 [2]. Other problems in transportation systems
include the negative impact of transportation on the environment due to air pollution and
gas emissions, the need to improve passenger safety systems, such as the development
of crash avoidance systems, and the need to modernize transportation infrastructure.
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Addressing these problems requires the development of innovative solutions such as
intelligent transportation systems (ITS).

The intelligent transportation system is an advanced application that applies informa-
tion and communication technologies for improving the efficiency, safety, and sustainability
of transportation systems. ITSs provide tools for monitoring [3], traffic flow prediction [4,5],
optimization [6] and control [7,8], public transport management [9], freight transporta-
tion [10], informing travelers [11], and so on. In [12], the authors studied the main stages of
ITS development and reviewed the main works in the field of transportation engineering.
It was concluded that ITSs can help transport agencies and regional departments improve
their traffic management strategies in urban areas, as well as help commuters plan their
trips and choose routes more efficiently.

Currently, the following directions of development of ITS can be distinguished. First,
we note the development of the Internet of Things (IoT) ecosystem and smart cities. The
integration of IoT devices into transportation systems is expected to play an important role
in the future of ITS. Smart cities use advanced technologies such as sensors, cameras, and
IoT devices to collect data on traffic flow, weather, and other factors that affect transport.
This data can be used to optimize traffic flows, reduce emissions and improve the overall
efficiency of transportation systems. Another significant milestone in the development
of ITSs is the development of connected and autonomous vehicles (CAVs). Connected
vehicles (CVs) can exchange information with other vehicles and with infrastructure, while
autonomous vehicles (AVs) can use a wide range of sensors, cameras, and artificial intel-
ligence techniques for driverless navigation. CAVs can reduce traffic accidents, improve
road safety, reduce traffic congestion, and make transport more efficient overall.

Taking into account these factors, we can discuss the transition to cooperative ITS.
Cooperative ITSs use communication and information technologies to improve transport
systems by allowing vehicles, road infrastructure, and other road users to interact and
exchange information in real-time. Examples of cooperative ITS applications include
Advanced Traveler Information Systems (ATIS), Advanced Traffic Management Systems
(ATMS), and Advanced Vehicle Safety Systems (AVSS).

In particular, this paper considers the problem of cooperative control of traffic signals
and vehicle trajectories near signalized intersections. This type of traffic flow control
refers to the coordination and optimization of vehicle trajectories and traffic signal phases
to reduce congestion, travel time, and fuel consumption. Cooperative control can be
achieved using advanced technologies such as Vehicle–to–Infrastructure (V2I) and Vehicle–
to–Vehicle (V2V) communications in Vehicular Ad-hoc Networks (VANETs). The exchange
of information between VANETs members must be secure and confidential [13]. Vehicles
equipped with V2I or V2V communication systems can communicate with infrastructure
objects and other connected vehicles to provide more accurate, safe, and efficient vehicle
control. For example, if a vehicle ahead suddenly brakes, it can send a warning signal to
the vehicle behind, enabling it to brake in time and avoid a collision. Another important
task solved with the help of VANETs is the prediction of the motion state of nearby
nonconnected vehicles [14]. The obtained predictions can be used for the safe movement of
autonomous vehicles in mixed traffic flow environments and optimal route planning. V2I
communication allows vehicles to communicate with infrastructure such as traffic signals
and road sensors. For example, when a vehicle approaches an intersection, it can report
its speed, position, and intended route. The traffic signal can then use this information to
optimize green light phase times, reduce overall stop delays at the intersection, and improve
traffic flow [15]. Similarly, vehicles can adjust their speed to reach the intersection during
the green light phase and reduce stop delays. Cooperative control of vehicle trajectories
and traffic signal phases is a promising approach for improving the efficiency and safety of
transportation systems. This problem is now an active area of research and development
in ITS.
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The objective of this research is to develop and study a method for the coordinated
control of traffic signals and vehicle trajectories in the intelligent connected vehicle environ-
ment. The proposed method consists of the following steps:

1. Construction of vehicle trajectories with the condition that the intersection will be
reached when the green traffic light is on;

2. Estimation of the vehicle arrival time at the intersection, taking into account the
vehicle trajectory or using a neural network prediction model;

3. Assessment of the observed state of the transport network, including the stop delay
for vehicles at the intersection and the arrival time at the intersection for each vehicle;

4. Selection of the traffic signal phase based on the observed state using the selected
adaptive traffic signal control algorithm; and

5. Reconstruction of the vehicle trajectory, for which the predictive traffic signal phase
has changed.

In step 4, it is proposed to use an adaptive traffic signal control algorithm that maxi-
mizes the predicted traffic flow through the intersection [16,17].

The contributions of this paper can be summarized as follows:

• A method of coordinated control of vehicle trajectories and traffic signals; and
• An algorithm for adaptive traffic signal control that maximizes the number of vehicles

passing through the intersection, taking into account the trajectory of their movement
and/or the arrival time at the intersection predicted by the neural network model.

The cooperative control method based on the model predictive control approach [17],
which takes into account the trajectories of lead vehicles on intersection lanes, is new in the
area of research on ITS based on our knowledge. Experimental results in the SUMO traffic
simulation package [18], performed for three simulation scenarios, show the advantages of
the proposed approach compared to the baseline methods.

The rest of the paper is organized as follows. Section 2 provides an overview of
related works on the considered cooperative traffic signal control problem. Section 3
describes a cooperative control method, including a problem formulation, an adaptive
traffic signal control algorithm, and a trajectory construction algorithm. In Section 4,
we describe simulation scenarios and experimental results obtained using the SUMO
microscopic traffic simulator that compares the effectiveness of the proposed method with
the noncooperative and partially cooperative approaches. Finally, we discuss the obtained
results, draw conclusions, and describe possible directions for further research in Section 5.

2. Related Works

The goal of a smart city transportation system is to provide residents with a range of
transportation options that are safe, comfortable, and environmentally friendly. Smart city
transportation systems use advanced technologies such as traffic sensors and intelligent
traffic management systems to optimize traffic flow and reduce congestion. Intelligent
connected vehicles (ICVs) are one of the most important elements of the traffic management
system. ICVs are vehicles equipped with advanced communication and sensing technolo-
gies that enable them to communicate with other vehicles, pedestrians, and infrastructure.
The authors of [19] presented a contract-based and priority transport management system.
In the proposed transport management system, ICVs exchange information about their
current motion states and the state of nearby nonconnected vehicles with each other and the
traffic-managing center. This information is used to optimize the traffic flow of the transport
network by the transport management system. In [20], the authors presented a method to
solve the traffic optimization problem and applied it to optimize the energy consumption of
vehicles in the transport network. In our work, we assume that all vehicles in the transport
system are CAVs, and traffic flow optimization is achieved through the cooperation of an
adaptive traffic signal control algorithm and a vehicle trajectory construction algorithm.
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To provide an overview of the recent research papers on the cooperative traffic signal
control problem, we sequentially consider three topics: adaptive traffic signal control,
vehicle trajectory construction, and cooperative traffic signal control.

2.1. Traffic Signal Control

Traffic signal control (TSC) refers to the management of the timing and sequence of
the traffic signal phases at intersections to optimize traffic flow and minimize congestion.

Early rule-based TSC methods used a set of predefined rules to control traffic signals,
such as fixed-time control [21,22], actuated control [23–25], and adaptive control [7,26,27].
Rule-based methods are simple and easy to implement, but they can be inflexible and
ineffective in environments where traffic changes rapidly.

The second class of traditional TSCs is optimization-based methods [28,29]. These
methods consider the TSC problem as a multiobjective optimization problem and use math-
ematical optimization algorithms to find the optimal signal timing given various constraints
and objectives such as minimizing delays and emissions and maximizing road capacity.
Optimization-based methods are more flexible and can handle changing traffic conditions,
but they are computationally complex and may require accurate environment models.

The third group of methods uses model predictive control (MPC) frameworks to
predict various traffic flow characteristics that will be used to optimize traffic signal
phases [17,30–33]. In [32], the authors used traffic volume prediction to calculate the
optimal traffic signal phase split. In [30], using a simple macroscopic traffic model as input
of the MPC framework was proposed. A point–queue model was considered in [31] to
minimize the queue length for the TSC problem. In [17], the authors predicted the arrival
time of each vehicle at an intersection with a deep neural network model and used this
information to maximize the traffic flow through the intersection.

A more detailed survey of the traditional methods of adaptive and nonadaptive traffic
signal control can be found in reviews [23,34,35].

Due to the active development of artificial intelligence and machine learning methods
in the last decade, reinforcement learning methods have been extensively studied to solve
the TSC problem [7,8,36,37]. Reinforcement learning (RL) is a type of machine learning in
which an agent learns to make decisions by interacting with an environment. The agent
interacts with the environment by performing an action based on an agent’s policy and an
observed environment state and receives a reward based on the action taken. The goal of
the agent is to learn the policy that maximizes the cumulative reward.

A representation of deep reinforcement learning (DRL) models (including state, action,
and reward definitions) applied to TSC has been summarized in [36]. In [8], the authors
provided a survey of recent deep RL-based traffic control applications with a focus on traffic
signal control applications. The paper summarizes existing works on this problem and
classifies them by application type, control models, RL settings, and studied algorithms.
The authors also discussed the challenges and open research directions and concluded
that existing approaches still need to be examined in real-world environments. The pa-
per [37] provides a literature review on the TSC problem and discusses the challenges of
synchronized TSC between adjacent signalized intersections.

RL algorithms can be classified into several types depending on learning approaches:
value-based, policy-based, and actor–critic methods.

Q–learning is a value-based algorithm that estimates the expected reward of perform-
ing a certain action in a certain state using Q-values [38]. This approach can be used in
scenarios with a small number of states and actions. To handle the high-dimensional state
space problem, in a Deep Q–Networks (DQN) approach, it was proposed Q–Learning be
combined with deep neural networks to represent Q–values [39–43]. A combination of a
DQN model with a coordination algorithm was investigated in [39]. In [40], the authors
proposed a cooperative DRL framework that controls traffic signals in a region using multi-
ple regional agents and a centralized global agent. A DRL algorithm that extracts useful
features from traffic data to learn the optimal policy was described in [41]. In [42], the
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authors proposed a novel DQN model, a state representation, and a reward definition to
optimize traffic signal control in a partially observable environment with connected vehi-
cles. In a Double DQN approach, it was proposed using two separate neural networks to
estimate Q-values and select the best action [44,45]. This approach addresses the overfitting
problem and shows more stable behavior in complex scenarios.

The second class of RL algorithms includes policy gradient methods. Policy-based algo-
rithms directly optimize the policy, which is a probability distribution of action–state pairs, by
updating the policy parameters based on the gradient of the expected reward [46–48]. In [46],
the authors evaluated a deep deterministic policy gradient algorithm. The paper [47]
investigated a proximal policy optimization (PPO) algorithm with variable time intervals
for traffic signal phases. In [48], the authors proposed a modified PPO algorithm aimed at
better adaptation to traffic conditions.

Actor–Critic methods are a combination of value-based and policy-based algorithms. In
these methods, the actor represents a policy function that is used to select actions, and the
critic represents a value function, which evaluates the actions performed by the actor [49–52].
In [50], the authors presented a multiagent RL method for adaptive TSC based on an
advantage actor–critic algorithm (A2C). In [51], the authors integrated the deep neural
network model that evaluates an environment state from a series of image representations
of the intersection into an actor–critic model. Evaluation of different state representations
for TSC using an asynchronous advantage actor–critic (A3C) algorithm was performed
in [52].

Despite the active development of RL methods for the TSC problem, these methods
have several disadvantages. First, training RL algorithms to solve the TSC problem can
be time-consuming and computationally intensive, especially for large and complex real-
world scenarios. Second, RL algorithms often require accurate environment models to learn
the optimal policy. However, in real-world scenarios, obtaining accurate and complete
information about the environment state can be challenging. Finally, it can be difficult to
generalize RL algorithms to new situations, especially when the state and action spaces are
large or when the environment changes significantly.

As a result, in this paper, the MPC-based method [17] is used as the base adaptive
TSC algorithm.

2.2. Trajectory Construction

The optimal vehicle trajectory construction is necessary to prevent acceleration and
deceleration of vehicles near traffic signals at intersections. This “stop–and–go” traffic
pattern has several disadvantages, including increased fuel consumption and emissions,
increased travel delays, decreased intersection capacity, and increased risk of accidents. In
a connected vehicle environment, it is possible to slow down in advance to avoid stops
and queues at intersections, reduce travel delays and fuel consumption, and improve the
efficiency of the transportation system.

In [53] the authors evaluated an approach for trajectory identification from closed-
circuit television (CCTV) video. The paper [54] describes a model for predicting the
passage time of a queue of vehicles at a signalized intersection. Using this model, the
authors proposed an approach for choosing an optimal speed mode to reduce the number
of stops of connected vehicles.

In [55], the authors presented an optimization model designed to distribute the arrival
time of vehicles at the intersection and minimize network delays. In [33], a time–velocity
planning problem with constraint was formulated and solved to obtain a smooth trajectory,
taking into account the velocity plan and longitudinal dynamics control. The paper [56]
formulated a two-stage model that optimizes a trajectory of the longitudinal and lateral
behavior of CAVs along a signalized arterial under a mixed traffic environment. In [57],
the authors described heuristic algorithms for trajectory design that decompose a hard
trajectory construction problem into a simple constructive heuristic. It was shown that
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the proposed algorithms allow us to find a feasible solution to the original problem. The
computation complexity and optimality of the proposed algorithm were evaluated in [58].

In this paper, we use a modified version of the algorithm proposed in [57] to construct
vehicle trajectories, taking into account speed, acceleration, distance to an intersection, and
a traffic signal phase.

2.3. Cooperative Control

In this subsection, we provide an overview of the research papers on coordinated
signal optimization and CAVs trajectory control.

A review of cooperative control methods in a connected vehicle environment was
presented in [59]. The authors provided an overview of existing approaches, typical traffic
control scenarios, and active and indirect control strategies and concluded that improved
coordinated control in a hybrid traffic flow could significantly improve traffic efficiency.

In [17], the authors proposed a cooperative traffic signal control method in which
a trajectory optimization algorithm takes into account the predicted traffic signal phase.
However, an adaptive TSC algorithm did not take into account vehicle trajectories. The
two-stage model for signal optimization and trajectory control was presented in [60]. In
the first stage, an algorithm based on a recurrent long short-term memory (LSTM) neural
network is used to predict driver behavior. In the second stage, this information is used as
an input for the DRL model of signal optimization. In [61], the authors proposed a coupled
control method in a mixed traffic environment to optimize the timing of traffic signal phases
and CAV trajectories to reduce energy consumption. However, an experimental study of the
method was conducted on a synthetic scenario with one intersection. In [62], a methodology
for coordinated traffic signal control and trajectory optimization was proposed, formulated
as a mixed-integer nonlinear program. The proposed approach is applicable only to
intersections with exclusive left-turn movements.

This study presents a method for cooperative traffic signal control and trajectory
optimization under a connected vehicle environment. In the next section, we present the
problem statement and description of the developed method.

3. Cooperative Control Method

To describe the proposed method for cooperative traffic signals optimization and CAVs
trajectory control, we sequentially describe its main parts: the adaptive traffic signal control
algorithm, the trajectory construction algorithm, and the cooperative control method that
combines these algorithms.

3.1. Problem Formulation

The main objective of cooperative control of vehicle trajectories and traffic signals is
to optimize the traffic flow and increase the efficiency of the transportation system. To
achieve these objectives, the following metrics are usually considered: traffic delay and
fuel consumption. The key objective is to minimize travel time for vehicles, including
by reducing stop delays at intersections, as this reduces congestion and enhances driver
mobility. The second important criterion is fuel consumption reduction, as this can help
reduce emissions and increase the energy efficiency of the transportation system.

The cooperative control problem can be formulated as follows:

λ·TravelT∑(ATS, ATr) + η·DelayT∑(ATS, ATr) + δ·FuelC∑(ATS, ATr)→ min
ATS ,ATr

, (1)

where TravelT∑(ATS, ATr) is the total travel time of all vehicles at the intersection,
DelayT∑(ATS, ATr) is the total stop delays of all vehicles at the intersection; FuelC∑(ATS, ATr)
is the total fuel consumption by all vehicles; and λ, η, δ are weight coefficients that jointly
characterize the relative importance of a particular factor. To solve this problem, the
adaptive traffic signal control algorithm and the trajectory construction algorithm are used.
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3.2. Adaptive Traffic Signal Control
3.2.1. MPC-Based Algorithm

To solve the adaptive traffic signal control problem, this paper proposes using the
algorithm based on a model predictive control approach [17]. The algorithm consists of two
stages. In the first stage, the number of vehicles passing through the intersection for each
traffic signal phase is estimated. In the second stage, a phase is selected that maximizes the
traffic flow and minimizes the stop delays.

Let us give a formal description of the algorithm in the pseudocode form. Intro-
duce the following notation. We define P as the set of traffic signal phases, τmin as a
minimum phase switching interval, tcur as the duration of the current (active) phase
pcur ∈ P of the traffic signal, and pout ∈ P as the selected (switching) phase. Using
these notations, the adaptive TSC algorithm based on maximizing the predicted weighted
traffic flow (denoted below as MaxPWFlow) can be defined as follows (Algorithm 1).

Algorithm 1: MaxPWFlow algorithm

1: Input data: τmin, tcur, pcur, P
2: Output data: pout
3: if tcur < τmin then
4: pout = pcur
5: tcur = tcur + 1
6: else
7: pout = argmax({PWFlow(p) for p in P})
8: tcur = 0
9: end if

The main step of the algorithm is the prediction of traffic flow characteristics in
function PredFlow, which represents traffic demand and is used to optimize the traffic
signal phases. In this paper, it is proposed using two characteristics: the number of vehicles
crossing the intersection during the time interval of the next phase and the stop delay of
vehicles at the intersection. As a result, function PredFlow(p) for given phase p ∈ P is
defined as follows:

PWFlow(p) = ∑
l∈Lincome

p

∑
c∈Cl

η(c, l)I
(

Tpnext
o ≤ t(c) < Tpnext

o + τmin

)
, (2)

where Lincome
p is the set of lanes with allowed movements when phase p ∈ P is on, Cl is

the set of vehicles on lane l, Tpnext
o is the phase switching time, t(c) is the time that vehicle

c ∈ Cl will cross the intersection, η(c, l) is the coefficient that takes into account the stop
delay of vehicle c on lane l, and I(val) is the indicator function:

I(val) =
{

1, val = True,
0, otherwise.

(3)

Coefficient η(c, l) is defined as follows:

η(c, l) = 1 + α·delay(c, l), (4)

where delay(c, l) is the stop delay of vehicle c on lane l, and α = 0.01 is an experimentally
chosen coefficient.

To estimate crossing time t(c), we consider two options:

• For vehicles with the known (constructed) trajectory, the crossing time is calculated
precisely according to the trajectory since the trajectory determines the vehicle speed
at each time moment; and

• For other vehicles, the crossing time is estimated using a prediction model based on
the deep neural network (DNN) model.
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In this paper, we construct trajectories only for lead vehicles on signalized lanes
closest to intersections. Other vehicles are controlled using a car-following model. This
approach can significantly reduce computational resources. The original Shooting Heuristic
algorithm constructs trajectories sequentially for all vehicles on the lane. According to the
proposed cooperative control method (Section 3.4), the trajectory of the lead vehicle needs
to be reconstructed in some cases. Therefore, it is necessary to sequentially reconstruct
trajectories of all vehicles on the lane when using the original Shooting Heuristic algorithm.
In addition, different types of vehicles allow us to apply the proposed method in a mixed
traffic flow environment with CAV and connected human-driven vehicles. In this case, the
trajectory is constructed only for the lead CAVs on signalized lanes.

3.2.2. Crossing Time Prediction Algorithm

To predict the crossing time t(c) of vehicle c ∈ Cl , we propose using a DNN-based
model. As an input to the DNN model, a set of features describing the vehicle movement
and the traffic state in the intersection area is used. The feature set includes:

• Distance from the current vehicle position to the intersection;
• Vehicle speed;
• Vehicle acceleration;
• Maximum allowed speed;
• Number of preceding vehicles;
• Type of the expected movement direction at the intersection; and
• Speed and position of the nearest vehicle on the outgoing lane.

The DNN model predicts the crossing time based on the defined input feature set.
The DNN model consists of seven dense layers. The architecture of the DNN model is

shown in Figure 1.
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All figures and tables should be cited in the main text as Figure 1, Table 1, etc.

Table 1. Simulation scenario parameters.

Scenario Traffic Signals Intersections Segments Trips

“Cologne-3” 3 29 48 2830
“Cologne-8” 8 78 149 1740

“Cologne-316” 316 2928 5808 13,530

For the vehicle that is controlled directly, the crossing time is calculated based on its
trajectory. In the next subsection, we describe the trajectory construction algorithm.
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3.3. Trajectory Construction

To formulate the trajectory optimization problem, we introduce some notation. Let the
considered vehicle c ∈ Cl enter lane l adjacent to the intersection in position l0 at time t0
with speed v0. Denote the lane length as L, the maximum vehicle traveling speed on lane l
as vmax, the maximum vehicle acceleration as a, and the maximum vehicle deceleration as a.

The vehicle trajectory tr must be feasible and safe and satisfy the following constraints:

tr(t0) = l0,

0 ≤ tr′(t) ≤ vmax, a ≤ tr′′ (t) ≤ a, ∀t ∈ (−∞,+∞),

G(T(tr, L)) = T(tr, L),

(5)

where tr′(t) is the first-order derivative (speed), tr′′ (t) is the second-order right derivative
(acceleration), T(tr, L) is the time that the vehicle will arrive at the intersection (i.e., reaches
position L), and G(t) is the function that returns the time when the green light for lane l is
on, greater than or equal to t. Function G(t) can be defined as follows:

G(t) = min
{

t′ : t′ ≥ t ∧ t′ ∈
[
T0 + nTc, T0 + nTc + Tg

)
, n ∈ Z+

}
, (6)

where To is the traffic signal cycle start time, Tg, Ty, and Tr are the durations of the green
light, the yellow light, and the red light, respectively, Tc = Tg + Ty + Tr is the duration of
the traffic signal phase, and Z+ is the set of positive integers.

In this paper, a modified version of the Shooting Heuristic (SH) algorithm [57] is used
to build the trajectory. We construct trajectories only for lead vehicles on signalized lanes
closest to intersections. Other vehicles are controlled using a car-following model [18].

The first step of the algorithm is the Forward Shooting Process (FSP), which con-
structs a two-section trajectory. The first section describes a uniformly accelerated mo-
tion from the starting position described by the tuple (t0, v0, l0) until the cruising speed
vcruise ∈ (0, vmax] is reached. Traveling along the first section of the trajectory takes
(vcruise − v0)/a f seconds. The second section describes a uniform rectilinear motion with
speed vcruise from time t0 + (vcruise − v0)/a f until the vehicle enters the intersection. The
vehicle enters the intersection at time t̂+ defined as follows:

t̂+(vcruise, a f ) = t0 +


−v0−
√

(v0)
2+2a f L

a f , i f L ≤ vcruise
2−(v0)

2

2a f ,

L
vcruise

+ (vcruise−v0)
2

2a f vcruise
, otherwise.

(7)

The constructed trajectory tr f is required if the vehicle traveling along the trajectory
enters the intersection with the green light on, i.e., the following condition is satisfied:
G
(

T
(

tr f , L
))

= T
(

tr f , L
)

. Otherwise, the second step of the SH algorithm is performed,
which is called the Backward Shooting Process (BSP).

In the BSP step, trajectory tr f is revised. First, the second section of the trajectory
is shifted along the time axis to the start of the next green phase G(t̂+). This shifted
section becomes the initial section of a modified trajectory trb. Sections of trajectory trb

are constructed from the initial section with acceleration ab ∈ (0, a] and deceleration
ab ∈ [a, 0) . Finally, the trajectories tr f and trb merge into a feasible trajectory tr. The set of
parameters (a f , ab, ab, vcruise) defines the smoothness of trajectory tr.

Figure 2 plots the time-space trajectories of the human-driven vehicles and CAV
trajectories constructed using the SH algorithm.



Mathematics 2023, 11, 1540 10 of 19

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 19 
 

 

becomes the initial section of a modified trajectory btr . Sections of trajectory btr  are con-
structed from the initial section with acceleration (0, ]bа a∈  and deceleration [ , 0)ba a∈

. Finally, the trajectories ftr  and btr  merge into a feasible trajectory tr . The set of pa-
rameters , , ,( )bf b

cruisea а a v  defines the smoothness of trajectory tr . 
Figure 2 plots the time-space trajectories of the human-driven vehicles and CAV tra-

jectories constructed using the SH algorithm. 

 
 

(a) (b) 

Figure 2. Time-space vehicle trajectories: (a) Trajectories of human-driven vehicles; (b) Trajectories 
constructed using the Shooting Heuristic algorithm. 

To optimize the constructed trajectory tr , a weighted sum of several factors is used 
as the optimization objective function: 

( ) ( ) ( ) ( ),M tr TravelT tr DelayT tr FuelC trλ η δ= ⋅ + ⋅ + ⋅  (8) 

where ( )TravelT tr  is the travel time of the vehicle along trajectory tr , ( )DelayT tr  is the 
stop delay, ( )FuelC tr  is the fuel consumption along trajectory tr , and , ,λ η δ  are the 
weight coefficients. 

To calculate the fuel consumption, we use the model based on data from [63]. Ac-
cording to the model, the fuel consumption at time moment t  depends on speed 

( )'v tr t=  and acceleration ( )''a tr t=  of the vehicle [18]: 

.

0, 0,
( ( )) 3014 (299.3 149 9.014 ) ,

2671.2
otherwise

a
if a

Fuel vC tr t v
<

= + −⋅ ⋅ + ⋅


 (9) 

The trajectory optimization problem can be formulated as follows: 

, , ,

max

( , , , )) min( ,

0 , 0 ,

0, 0 .

bf b
cruise

a а a v

f b

b
cruise

f b b cruise
M tr a а a v

a a а a

a a v v

→

< ≤ < ≤

≤ < ≤ ≤

 (10) 

To solve the optimization problem, a subgradient algorithm was used [58]. In the first 
step, a set of control parameters , , ,( )bf b

cruisea а a v  is selected from the trajectory con-
structed by the SH algorithm. 

Then, the numerical subgradient is calculated by slightly changing the current con-
trol parameters. Next, the algorithm searches along the subgradient direction trying to 

Figure 2. Time-space vehicle trajectories: (a) Trajectories of human-driven vehicles; (b) Trajectories
constructed using the Shooting Heuristic algorithm.

To optimize the constructed trajectory tr, a weighted sum of several factors is used as
the optimization objective function:

M(tr) = λ·TravelT(tr) + η·DelayT(tr) + δ·FuelC(tr), (8)

where TravelT(tr) is the travel time of the vehicle along trajectory tr, DelayT(tr) is the stop de-
lay, FuelC(tr) is the fuel consumption along trajectory tr, and λ, η, δ are the weight coefficients.

To calculate the fuel consumption, we use the model based on data from [63]. Accord-
ing to the model, the fuel consumption at time moment t depends on speed v = tr′(t) and
acceleration a = tr′′ (t) of the vehicle [18]:

FuelC(tr(t)) =

{
0, i f a < 0,
3014+v·(299.3·a−149+9.014·v)

2671.2 , otherwise.
(9)

The trajectory optimization problem can be formulated as follows:

M(tr(a f , ab, ab, vcruise))→ min
a f , ab ,ab , vcruise

,

0 < a f ≤ a, 0 < ab ≤ a,

a ≤ ab < 0, 0 ≤ vcruise ≤ vmax.

(10)

To solve the optimization problem, a subgradient algorithm was used [58]. In the
first step, a set of control parameters (a f , ab, ab, vcruise) is selected from the trajectory
constructed by the SH algorithm.

Then, the numerical subgradient is calculated by slightly changing the current control
parameters. Next, the algorithm searches along the subgradient direction trying to minimize
the objective function (N1). This numerical subgradient search process is repeated until
certain terminal criteria (the maximum number of steps when searching along a gradient)
are met.

The constructed optimal trajectory is used in the cooperative control method described
in the next subsection.
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3.4. Cooperative Control

The proposed cooperative control method combines the adaptive traffic signal con-
trol algorithm (described in Section 3.2) and the CAVs trajectory construction algorithm
(described in Section 3.3).

To provide cooperative control, it is necessary to redefine function G(t) used as the
constraint in the vehicle trajectory algorithm (N0) in the BSP step. Since we consider
adaptive traffic signal control, in which the time of the traffic signal cycle is not constant,
the function definition (N2) cannot be used.

Let p ∈ P be the active phase of the traffic signal, pnext ∈ P be the predicted traffic
signal phase obtained as a result of the adaptive TSC algorithm, and τmin be the minimum
phase switching interval. We define the start time of phase p as Tp

o and the start time of
phase pnext as Tpnext

o = Tp
o + τmin. c(p, l) ∈ {green, yellow, red} denotes the traffic light

for phase p and lane l.
Using this notation, we define function G(t, l, p, pnext) as follows:

G(t, l, p, pnext) =


t, if c(p, l) = green ∧

(
c(pnext, l) = green ∨ t < Tpnext

o

)
,

max
{

t, Tpnext
o

}
, if c(p, l) 6= green ∧ c(pnext, l) = green,

max
{

t, Tpnext
o + τmin

}
, otherwise.

(11)

The cooperative control method can be described as follows:

1. Construct trajectories for all lead vehicles on each lane l assuming c(pnext, l) = green
for all lanes;

2. Calculate the crossing time t(c):

a. For the lead vehicles, t(c) is calculated based on the constructed trajectory;
b. For other vehicles, t(c) is calculated using the crossing time prediction algorithm

described in Section 3.2.2;

3. Select the next phase pnext using the adaptive traffic signal control algorithm MaxP-
WFlow described in Section 3.2:

a. Calculate the traffic demand using (2);
b. Select the next phase that maximizes the traffic demand; and

4. Given the predicted next phase pnext, reconstruct trajectories for all lead vehicles for
which the assumption c(pnext, l) = green is not satisfied.

4. Experiments

The purpose of the experimental study was to evaluate the effectiveness of the pro-
posed cooperative control method in real-world simulation scenarios. SUMO (Simulation
of Urban MObility) [18] was used as the simulation platform. SUMO is an open-source
traffic simulation package designed for the microscopic simulation of multimodal traffic
scenarios in large-scale road networks. SUMO supports autonomous driving, vehicle
communications, traffic management, traffic signal control, and other features.

4.1. Case Study

We applied the proposed method to 3 simulation scenarios based on the well-established
“TAPAS Cologne” SUMO scenario [64]:

• Simulation scenario in an arterial corridor “Cologne-3” [65];
• Simulation scenario in a small road network “Cologne-8” [65]; and
• Simulation scenario in a large road network “Cologne-316” [17].

The main scenario parameters are presented in Table 1.
Figure 3 shows the road networks of the described scenarios. Red dots represent intersections.
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Each scenario was simulated in 10 episodes with 10 different random seeds. In each
episode, the departure time and departure position when the vehicle entered the network
were different.

In this study, we used 3 performance measurements to evaluate the effectiveness of
the proposed method: the average travel time, the average stop delays, and the average
fuel consumption.

4.2. Baseline Methods

In the experimental study, we compared the proposed cooperative control method with
noncooperative adaptive traffic signal control strategies and semicooperative approaches
in which the traffic signal phase is taken into account to construct the vehicle trajectory,
but the trajectory is not used in adaptive traffic signal control. A direct comparison of the
proposed method with other cooperative control approaches is difficult for several reasons:
existing algorithms do not provide source code or datasets for comparison, use different
traffic simulation software tools, ignore lane changes, etc.
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Namely, we compared the following methods:

• IDQN: the independent DQN adaptive traffic signal control algorithm, in which each
intersection is controlled by 1 RL agent [65];

• IPPO: the independent proximal policy optimization algorithm [65];
• A2C: the advantage actor–critic algorithm [66];
• MaxPWFlow: the MPC-based algorithm described in Section 3.2.1 [17];
• Trajectory Control: the semicooperative algorithm with MPC-based adaptive TSC

control [17];
• Trajectory Control + RL: the semicooperative algorithm with IDQN-based adaptive

TSC control; and
• Cooperative Control: the method of cooperative control proposed in this paper.

4.3. Experimental Results

In the first stage of the experimental study, we evaluated the convergence of the
training process of the RL algorithms. To compare the training process, we collected the
average stop delays depending on the episodes. Figure 4 shows the learning curves for
each algorithm in the “Cologne-8” and “Collogne-316” scenarios. The learning curves
were averaged with a sliding window over 5 episodes. According to Figure 4, the IDQN
algorithm required more episodes to achieve a stable average stop delay measurement.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 19 
 

 

In the experimental study, we compared the proposed cooperative control method 
with noncooperative adaptive traffic signal control strategies and semicooperative ap-
proaches in which the traffic signal phase is taken into account to construct the vehicle 
trajectory, but the trajectory is not used in adaptive traffic signal control. A direct compar-
ison of the proposed method with other cooperative control approaches is difficult for 
several reasons: existing algorithms do not provide source code or datasets for compari-
son, use different traffic simulation software tools, ignore lane changes, etc. 

Namely, we compared the following methods: 
• IDQN: the independent DQN adaptive traffic signal control algorithm, in which each 

intersection is controlled by 1 RL agent [65]; 
• IPPO: the independent proximal policy optimization algorithm [65]; 
• A2C: the advantage actor–critic algorithm [66]; 
• MaxPWFlow: the MPC-based algorithm described in Section 3.2.1 [17]; 
• Trajectory Control: the semicooperative algorithm with MPC-based adaptive TSC 

control [17]; 
• Trajectory Control + RL: the semicooperative algorithm with IDQN-based adaptive 

TSC control; and 
• Cooperative Control: the method of cooperative control proposed in this paper. 

4.3. Experimental Results 
In the first stage of the experimental study, we evaluated the convergence of the train-

ing process of the RL algorithms. To compare the training process, we collected the aver-
age stop delays depending on the episodes. Figure 4 shows the learning curves for each 
algorithm in the “Cologne-8” and “Collogne-316” scenarios. The learning curves were av-
eraged with a sliding window over 5 episodes. According to Figure 4, the IDQN algorithm 
required more episodes to achieve a stable average stop delay measurement. 

 
(a) 

 
(b) 

Figure 4. Learning curves of the RL algorithms: (a) “Cologne-8” scenario; (b) “Cologne-316” scenario.



Mathematics 2023, 11, 1540 14 of 19

Table 2 compares the average fuel consumption for each scenario. The table includes
the average values and standard deviation over 10 episodes. As shown in the table, the
proposed cooperative control method reduced the fuel consumption compared with the
baseline methods in each scenario. The average reduction in fuel consumption ranged from
1% for the “Cologne-316” scenario to 4.2% for the “Cologne-3” scenario in comparison with
noncooperative control.

Table 2. Average fuel consumption (ml) for different simulation scenarios.

Model “Cologne-3” “Cologne-8” “Cologne-316”

IDQN 64.24 ± 0.84 88.51 ± 1.76 334.74 ± 3.37
IPPO 64.42 ± 0.88 88.52 ± 1.74 416.93 ± 8.85
A2C 66 ± 0.6 93.68 ± 1.75 355.62 ± 9.36

MaxPWFlow 62.15 ± 0.4 86.48 ± 1.77 328.62 ± 1.81
TrajectoryControl 60.55 ± 0.46 84.42 ± 1.58 331.76 ± 1.75

Trajectory Control + RL 61.76 ± 0.43 86.52 ± 1.6 333.82 ± 1.7
Cooperative Control 59.57 ± 0.43 83.41 ± 1.5 325.25 ± 1.71

In the next step, we evaluated the average travel time and average stop delays. These
measurements are presented in Tables 3 and 4, respectively.

Table 3. Average travel time (sec) for different simulation scenarios.

Model “Cologne-3” “Cologne-8” “Cologne-316”

IDQN 57.9 ± 1.08 89.89 ± 2.07 332.15 ± 3.19
IPPO 58.25 ± 1.01 89.51 ± 1.98 406.94 ± 7.92
A2C 60.57 ± 0.9 95.15 ± 2.09 350.28 ± 8.32

MaxPWFlow 55.01 ± 0.57 87.69 ± 2.03 327.08 ± 1.85
TrajectoryControl 53.48 ± 0.7 85.57 ± 1.88 328.68 ± 1.72

Trajectory Control + RL 54.5 ± 0.52 88.11 ± 1.83 331.83 ± 1.85
Cooperative Control 52.12 ± 0.44 84.32 ± 1.89 323.96 ± 1.95

Table 4. Average stop delays (sec) for different simulation scenarios.

Model “Cologne-3” “Cologne-8” “Cologne-316”

IDQN 7.49 ± 0.82 4.46 ± 0.28 18.2 ± 4.52
IPPO 7.57 ± 0.81 4.01 ± 0.14 101.45 ± 9.24
A2C 8.9 ± 0.67 7.44 ± 0.31 29.12 ± 9.41

MaxPWFlow 6.08 ± 0.36 3.18 ± 0.15 14.79 ± 0.75
TrajectoryControl 3.65 ± 0.4 0.71 ± 0.18 11.15 ± 0.67

Trajectory Control + RL 3.27 ± 0.34 0.86 ± 0.1 12.52 ± 1.46
Cooperative Control 3.38 ± 0.37 0.62 ± 0.07 10.76 ± 0.87

As can be seen from the presented results, the cooperative control method showed the
best results in 8 out of 9 cases. The semicooperative approach “Trajectory Control + RL” led to
an insignificant reduction in the average stop delays by 0.1 s only for the “Cologne-3” scenario.

The performance measures by the average travel time criteria showed that the pro-
posed method led to a reduction of the travel time from 1% for the “Cologne-316” scenario
to 5.3% for the “Cologne-3” scenario in comparison with the MaxPWFlow algorithm. These
results are similar to the average fuel consumption performance comparison. The average
stop delay measurements showed that cooperative adaptive traffic signal control and tra-
jectory optimization have the potential to reduce the stop delays by up to 27% compared to
the MaxPWFlow algorithm in the “Cologne-316” large-scale scenario.

The obtained results allow us to conclude that the best result among the RL-based
algorithms was shown by the value-based IDQN algorithm. However, more episodes are
required to train this algorithm, as shown in Figure 4. In addition, the RL-based algorithms
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had a higher standard deviation, which indirectly indicated that these algorithms provided
less robust results than the MPC-based TSC algorithm.

Next, we analyzed the performance measures in more detail. Figure 5 plots the con-
sidered measurements for each simulation episode of the “Cologne-316” scenario. To make
the figure clearer, we show the results of the best algorithms of each type. Figure 5 shows
that the proposed method performed better in each episode of the considered scenario.
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Finally, we evaluated the computation time of the 2 main operations of the proposed
method. The process of choosing the next phase of a traffic signal took 5 ms on average; and
the construction of trajectory for 1 vehicle took 240 ms on average. The proposed method
can be used in real-time processing. Additionally, it should be noted that the proposed
method can be parallelized to further reduce computation time.

5. Conclusions

The development of connected and autonomous vehicles (CAVs) is the key trend in
the development of intelligent transportation systems. CAVs can reduce traffic accidents,
improve road safety, reduce traffic congestion, and make transport more efficient overall.

This paper proposed a method for cooperative control of traffic signals and vehicle
trajectories near signalized intersections. The cooperative control method combines the
adaptive traffic signal control algorithm based on maximizing the predicted weighted
traffic flow and the CAVs trajectory construction algorithm.

The effectiveness of the proposed approach was experimentally evaluated in the
SUMO microscopic traffic simulation package in three real-world scenarios. The results
show that our method can reduce the average fuel consumption by 1% to 4.2%, the average
travel time by 1% to 5.3%, and the average stop delays to 27% for different simulation
scenarios compared to the best adaptive traffic signal control approach.

There are some limitations to the practical application of the proposed method. First,
we assume that all vehicles in the transport network are CAVs. However, currently, the
percentage of autonomous vehicles on the roads is extremely low. Second, we assume that
there are no communication delays between vehicles and infrastructure, and the vehicle
state information is ground truth data. Nevertheless, in reality, the exchange of information
takes some time, and this information may not be accurate enough.

In future work, we plan to consider several areas of research. First, the proposed
method assumes there is no communication delays between vehicles and infrastructure,
which in reality is not true. Second, a comparison with other cooperative control methods
is planned. Finally, an important research direction is the modification of the proposed
method for application in a mixed environment with CAVs and human-driven vehicles.
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