Approximate Solutions of a Fixed-Point Problem with an Algorithm Based on Unions of Nonexpansive Mappings

Alexander J. Zaslavski

Citation: Zaslavski, A.J Approximate Solutions of a Fixed-Point Problem with an Algorithm Based on Unions of Nonexpansive Mappings. Mathematics 2023, 11, 1534. https:// doi.org/10.3390/math11061534

Academic Editor: Manuel Sanchis
Received: 14 February 2023
Revised: 3 March 2023
Accepted: 20 March 2023
Published: 22 March 2023

Copyright: © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Department of Mathematics, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ajzas1@technion.ac.il

Abstract

In this paper, we study a fixed-point problem with a set-valued mapping by using an algorithm based on unions of nonexpansive mappings. We show that an approximate solution is reached after a finite number of iterations in the presence of computational errors. This result is an extension of the results known in the literature.

Keywords: convergence analysis; fixed point; nonexpansive mapping; set-valued mapping

MSC: 47H09; 47H10; 54E35

1. Introduction

The study of fixed-point problems is an important topic in nonlinear analysis [1-15]. These problems have various applications in mathematical analysis, optimization theory, engineering, medicine, and the natural sciences [14-20]. In particular, in [21], a novel framework for the investigation of iterative algorithms was introduced. This framework was given in terms of a certain nonlinear set-valued map T defined on a space X. For every $x \in X, T(x)$ is a finite union of values of single-valued paracontracting operators. Tam [21] established a convergence for this algorithm. Note that his result was a generalization of the result attained by Bauschke and Noll [22]. In our recent paper [23], we obtained an extension of a result of [21]. It should be mentioned that in [21], X is a finite-dimensional Euclidean space, while in [23] and in the present paper, X is an arbitrary metric space. The main result of [23] was obtained for inexact iterations of operators under the assumption that the common fixed-point problem has a solution. In the present paper, we prove an extension of this result in a case in which the common fixed-point problem has only an approximated solution.

2. Preliminaries

Assume that (X, ρ) is a metric space endowed with a metric ρ and that $C \subset X$ is its nonempty closed set. For every $u \in X$ and every $\Delta \in(0, \infty)$, we set

$$
B(u, \Delta)=\{v \in X: \rho(u, v) \leq \Delta\} .
$$

For every map $A: C \rightarrow C$, we define

$$
\operatorname{Fix}(A)=\{u \in C: A(u)=u\} .
$$

Assume that $T_{i}: C \rightarrow C, i=1, \ldots, m$, where $m \geq 1$ is an integer, $0<\bar{c} \leq 1$, and that for every $j \in\{1, \ldots, m\}$, every $u \in \operatorname{Fix}\left(T_{j}\right)$, and every $v \in C$,

$$
\begin{equation*}
\rho(u, v)^{2}-\rho\left(u, T_{j}(v)\right)^{2} \geq \bar{c} \rho\left(v, T_{j}(v)\right)^{2} . \tag{1}
\end{equation*}
$$

It should be mentioned that inequality (1) is true for many nonlinear operators [14,15]. Assume that

$$
\begin{equation*}
\phi: X \rightarrow 2^{\{1, \ldots, m\}} \backslash\{\varnothing\} . \tag{2}
\end{equation*}
$$

We set

$$
\begin{equation*}
T(u)=\left\{T_{j}(u): j \in \phi(u)\right\} . \tag{3}
\end{equation*}
$$

for each $u \in C$ and

$$
\begin{equation*}
F(T)=\{u \in C: u \in T(u)\} . \tag{4}
\end{equation*}
$$

In this paper, we study the fixed-point problem

$$
\text { Find } x \in X \text { such that } x \in T(x)
$$

This problem was introduced and studied in [21]. It should be mentioned that in [21], X was a finite-dimensional Euclidean space, and the mappings $T_{i}, i=1, \ldots, m$ were paracontracting. Tam [21] considered a sequence of iterations $\left\{x_{k}\right\}_{k=0}^{\infty} \subset X$ satisfying $x_{k+1} \in T\left(x_{k}\right)$ for every integer $k \geq 0$ and established its convergence under the assumption that the mappings $T_{i}, i=1, \ldots, m$ had a common fixed point. In [21], this convergent result was applied to sparsity-constrained minimization. Note that the result in [21] was a generalization of the result attained by Bauschke and Noll [22]. In our recent paper [23], we considered mappings acting on a general metric space and obtained two extensions of the result from [21]. In the first result, we studied exact iterations of the set-valued mapping, while in the second one, we dealt with its inexact iterations while taking computational errors into account. More precisely, in [23], for a given computational error $\delta>0$, we considered a sequence $\left\{x_{k}\right\}_{k=0}^{\infty} \subset X$ satisfying $B\left(x_{k+1}, \delta\right) \cap T\left(x_{k}\right) \neq \varnothing$ for every integer $k \geq 0$ and analyzed its behavior. This result was also obtained under the assumption that the mappings $T_{i}, i=1, \ldots, m$ had a common fixed point. In the present paper, we generalize this result. Instead of assuming the existence of a common fixed point, we suppose that there exists an approximate common fixed point z such that

$$
B(z, \gamma) \cap \operatorname{Fix}\left(T_{i}\right) \neq \varnothing, i=1, \ldots, m
$$

where γ is a given small positive constant. In other words, a small neighborhood of z contains a fixed point of every mapping.

We fix

$$
\theta \in C .
$$

For any $u \in R^{1}$, we set

$$
\lfloor u\rfloor=\max \{j: j \text { as an integer and } j \leq u\} .
$$

We prove the following theorem in the presence of computational errors. This theorem shows that after a certain number of iterations, we obtain an approximate solution to our fixed-point problem. The number of iterations depends on the computational error.

Theorem 1. Let $M>0, \epsilon \in(0,1]$,

$$
\begin{gather*}
\gamma \in\left(0,(18)^{-1}(4 M+4)^{-1} \epsilon^{2} \bar{c}\right), \tag{5}\\
z \in B(\theta, M) \tag{6}
\end{gather*}
$$

satisfy

$$
\begin{gather*}
B(z, \gamma) \cap \operatorname{Fix}\left(T_{i}\right) \neq \varnothing, i=1, \ldots, m, \tag{7}\\
Q=\left\lfloor 8 \epsilon^{-2} M^{2} \bar{c}^{-1}\right\rfloor+1, \tag{8}
\end{gather*}
$$

and $\delta \in(0, \gamma)$. Assume that $\left\{x_{k}\right\}_{k=0}^{\infty} \subset C$,

$$
\begin{equation*}
\rho\left(\theta, x_{0}\right) \leq M \tag{9}
\end{equation*}
$$

and that

$$
\begin{equation*}
B\left(x_{k+1}, \delta\right) \cap T\left(x_{k}\right) \neq \varnothing, k=0,1, \ldots . \tag{10}
\end{equation*}
$$

Then, there is a nonnegative integer $p<Q$ for which

$$
\begin{equation*}
B\left(x_{p}, \epsilon\right) \cap T\left(x_{p}\right) \neq \varnothing . \tag{11}
\end{equation*}
$$

In the theorem above, we assume the existence of a point z that satisfies (7), which means that z is an approximate fixed point for all of the mappings $T_{i}, i=1, \ldots, m$. This result has a prototype in [23], which was obtained under the assumption that z is a common fixed point for all $T_{k}, k=1, \ldots, m$.

3. Proof of Theorem 1

Proof. Assume that for every nonnegative integer $k<Q$, relation (11) is not true. Then, for every nonnegative integer $k<Q$,

$$
\begin{equation*}
B\left(x_{k}, \epsilon\right) \cap T\left(x_{k}\right)=\varnothing . \tag{12}
\end{equation*}
$$

We set

$$
\begin{equation*}
M_{0}=2 M+1 \tag{13}
\end{equation*}
$$

According to (7), for every $k \in\{1, \ldots, m\}$, there is

$$
\begin{equation*}
z_{k} \in \operatorname{Fix}\left(T_{k}\right) \tag{14}
\end{equation*}
$$

such that

$$
\begin{equation*}
\rho\left(z, z_{k}\right) \leq \gamma . \tag{15}
\end{equation*}
$$

According to (6) and (9),

$$
\begin{equation*}
\rho\left(x_{0}, z\right) \leq 2 M . \tag{16}
\end{equation*}
$$

Let $i \in[0, Q-1]$ be an integer. According to (10), there is

$$
\begin{equation*}
\widehat{x}_{i+1} \in T\left(x_{i}\right) \tag{17}
\end{equation*}
$$

for which

$$
\begin{equation*}
\rho\left(x_{i+1}, \widehat{x}_{i+1}\right) \leq \delta . \tag{18}
\end{equation*}
$$

Equations (3) and (17) imply that there is an integer $j \in[1, m]$ for which

$$
\begin{equation*}
\widehat{x}_{i+1}=T_{j}\left(x_{i}\right) \tag{19}
\end{equation*}
$$

It follows from (1) and (19) that

$$
\begin{equation*}
\rho\left(z_{j}, x_{i}\right)^{2} \geq \rho\left(z_{j}, \widehat{x}_{i+1}\right)^{2}+\bar{c} \rho\left(x_{i}, \widehat{x}_{i+1}\right)^{2} . \tag{20}
\end{equation*}
$$

According to (12) and (19),

$$
\begin{equation*}
\rho\left(x_{i}, \widehat{x}_{i+1}\right)>\epsilon . \tag{21}
\end{equation*}
$$

In view of (20) and (21),

$$
\begin{equation*}
\rho\left(z_{j}, x_{i}\right)^{2} \geq \rho\left(z_{j}, \widehat{x}_{i+1}\right)^{2}+\bar{c} \epsilon^{2} . \tag{22}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
\rho\left(z, x_{i}\right) \leq M_{0} . \tag{23}
\end{equation*}
$$

(In view of (13) and (16), equation (23) holds for $i=0$.) Equations (15) and (23) imply that

$$
\begin{equation*}
\rho\left(z_{j}, x_{i}\right) \leq \rho\left(z_{j}, z\right)+\rho\left(z, x_{i}\right) \leq M_{0}+\gamma . \tag{24}
\end{equation*}
$$

It follows from (5), (13), (22), and (24) that

$$
\rho\left(z_{j}, \widehat{x}_{i+1}\right)^{2} \leq \rho\left(z_{j}, x_{i}\right)^{2}-\epsilon^{2} \bar{c} \leq\left(M_{0}+\gamma\right)^{2}-\epsilon^{2} \bar{c}
$$

$$
\begin{gathered}
=M_{0}^{2}+\gamma\left(\gamma+2 M_{0}\right)-\epsilon^{2} \bar{c} \leq M_{0}^{2}+\gamma\left(1+2 M_{0}\right)-\epsilon^{2} \bar{c} \\
\leq M_{0}^{2}-7 \gamma\left(1+2 M_{0}\right) \leq\left(M_{0}-2 \gamma\right)^{2}
\end{gathered}
$$

and

$$
\begin{equation*}
\rho\left(z_{j}, \widehat{x}_{i+1}\right) \leq M_{0}-2 \gamma . \tag{25}
\end{equation*}
$$

According to (15) and (25),

$$
\begin{aligned}
\rho\left(z, x_{i+1}\right) & \leq \rho\left(z, z_{j}\right)+\rho\left(z_{j}, \widehat{x}_{t+1}\right)+\rho\left(\widehat{x}_{i+1}, x_{i+1}\right) \\
& \leq M_{0}-2 \gamma+\gamma+\gamma \leq M_{0}
\end{aligned}
$$

and

$$
\begin{equation*}
\rho\left(z, x_{i+1}\right) \leq M_{0} . \tag{26}
\end{equation*}
$$

According to (22),

$$
\begin{equation*}
\rho\left(z_{j}, \widehat{x}_{i+1}\right)^{2} \leq \rho\left(z_{j}, x_{i}\right)^{2}-\epsilon^{2} \bar{c} . \tag{27}
\end{equation*}
$$

Equations (15) and (23) imply that

$$
\begin{gather*}
\left|\rho\left(x_{i}, z\right)^{2}-\rho\left(x_{i}, z_{j}\right)^{2}\right| \\
\leq\left(\rho\left(x_{i}, z\right)+\rho\left(x_{i}, z_{j}\right)\right)\left|\rho\left(x_{i}, z\right)-\rho\left(x_{i}, z_{j}\right)\right| \\
\leq\left(\rho\left(x_{i}, z\right)+\rho\left(x_{i}, z\right)+\gamma\right) \rho\left(z_{j}, z\right) \leq \gamma\left(2 M_{0}+1\right) . \tag{28}
\end{gather*}
$$

It follows from (15), (18), and (26) that

$$
\begin{gather*}
\left|\rho\left(x_{i+1}, z\right)^{2}-\rho\left(\widehat{x}_{i+1}, z_{j}\right)^{2}\right| \\
\leq\left(\rho\left(x_{i+1}, z\right)+\rho\left(\widehat{x}_{i+1}, z_{j}\right)\right)\left|\rho\left(x_{i+1}, z\right)-\rho\left(\widehat{x}_{i+1}, z_{j}\right)\right| \\
\leq\left(2 M_{0}+\gamma+\delta\right)\left(\rho\left(z_{j}, z\right)+\rho\left(\widehat{x}_{i+1}, x_{i+1}\right)\right) \leq\left(2 M_{0}+2\right)(\gamma+\delta) . \tag{29}
\end{gather*}
$$

By (5), (13), (22), and (29),

$$
\begin{gather*}
\rho\left(x_{i+1}, z\right)^{2} \leq \rho\left(z_{j}, \widehat{x}_{i+1}\right)^{2}+2 \gamma\left(2 M_{0}+2\right) \\
\leq \rho\left(z_{j}, x_{i}\right)^{2}-\bar{c} \epsilon^{2}+2 \gamma\left(2 M_{0}+2\right) \\
\leq \rho\left(x_{i}, z\right)^{2}-\epsilon^{2} \bar{c}+\gamma\left(2 M_{0}+1\right)+2 \gamma\left(2 M_{0}+2\right) \\
\rho\left(x_{i}, z\right)^{2}-\epsilon^{2} \bar{c}+3 \gamma\left(2 M_{0}+1\right) \\
\leq \rho\left(x_{i}, z\right)^{2}-\epsilon^{2} \bar{c} / 2 \tag{30}
\end{gather*}
$$

Thus, we have shown by induction that (23) and (30) hold for $i=0, \ldots, Q-1$. By (16) and (30),

$$
\begin{gathered}
\left.4 M^{2} \geq \rho\left(z, x_{0}\right)\right)^{2} \\
\geq \rho\left(z, x_{0}\right)^{2}-\rho\left(z, x_{Q}\right)^{2} \\
=\sum_{i=0}^{Q-1}\left(\rho\left(z, x_{i}\right)^{2}-\rho\left(z, x_{i+1}\right)^{2}\right) \geq Q \bar{c} \epsilon^{2} / 2,
\end{gathered}
$$

and

$$
Q \leq 8 M^{2} \bar{c}^{-1} \epsilon^{-2} .
$$

This contradicts (8). The contradiction that we have reached proves Theorem 1.

4. Extensions

We use the notation and definitions introduced in Section 2.

Lemma 1. Assume that $M_{0}>0$,

$$
\begin{gather*}
z \in B\left(\theta, M_{0}\right), \tag{31}\\
B(z, 1) \cap \operatorname{Fix}\left(T_{i}\right) \neq \varnothing, i=1, \ldots, m, \tag{32}\\
x_{0} \in B\left(\theta, M_{0}\right), \tag{33}
\end{gather*}
$$

$x_{1} \in C$, and

$$
\begin{equation*}
B\left(x_{1}, 1\right) \cap T\left(x_{0}\right) \neq \varnothing . \tag{34}
\end{equation*}
$$

Then,

$$
\rho\left(x_{1}, \theta\right) \leq 3 M_{0}+3
$$

Proof. According to (3), there is an integer $j \in[1, m]$ for which

$$
\begin{equation*}
\rho\left(x_{1}, T_{j}\left(x_{0}\right)\right) \leq 1 . \tag{35}
\end{equation*}
$$

According to (32), there is

$$
\begin{equation*}
z_{j} \in \operatorname{Fix}\left(T_{j}\right) \tag{36}
\end{equation*}
$$

for which

$$
\begin{equation*}
\rho\left(z, z_{j}\right) \leq 1 \tag{37}
\end{equation*}
$$

Equations (1), (31), (33), and (35)-(37) imply that

$$
\begin{gathered}
\rho\left(x_{1}, \theta\right) \leq \rho\left(\theta, T_{j}\left(x_{0}\right)\right)+\rho\left(T_{j}\left(x_{0}\right), x_{1}\right) \\
\leq 1+\rho(\theta, z)+\rho\left(z, z_{j}\right)+\rho\left(z_{j}, T_{j}\left(x_{0}\right)\right) \\
\leq 1+M_{0}+1+\rho\left(z_{j}, x_{0}\right) \\
\leq 2+M_{0}+\rho\left(\theta, x_{0}\right)+\rho(\theta, z)+\rho\left(z, z_{j}\right) \\
\leq 3+3 M_{0} .
\end{gathered}
$$

Lemma 1 is proved.
Theorem 2. Let $M>0, \epsilon \in(0,1]$,

$$
\begin{gathered}
\gamma \in\left(0,(18)^{-1}(12 M+12)^{-1} \epsilon^{2} \bar{c}\right), \\
z \in B(\theta, M)
\end{gathered}
$$

satisfy

$$
\begin{gathered}
B(z, \gamma) \cap \operatorname{Fix}\left(T_{i}\right) \neq \varnothing, i=1, \ldots, m, \\
Q=\left\lfloor 8 \epsilon^{-2}(3 M+3)^{2} \bar{c}^{-1}\right\rfloor+1,
\end{gathered}
$$

and $\delta \in(0, \gamma)$.
Assume that $\left\{x_{k}\right\}_{k=0}^{\infty} \subset C$,

$$
\rho\left(\theta, x_{0}\right) \leq M
$$

and that

$$
B\left(x_{k+1}, \delta\right) \cap T\left(x_{k}\right) \neq \varnothing, k=0,1, \ldots .
$$

Then, there is $j \in\{1, \ldots, Q\}$ for which

$$
B\left(x_{j}, \epsilon\right) \cap T\left(x_{j}\right) \neq \varnothing .
$$

Proof. Lemma 1 implies that

$$
\rho\left(x_{1}, \theta\right) \leq 3 M+3
$$

The application of Theorem 1 to the sequence $\left\{x_{i+1}\right\}_{i=0}^{\infty}$ implies our result.

Theorem 3. Let $M>0, \epsilon \in(0,1]$,

$$
\begin{gather*}
\{\xi \in C: B(\xi, \epsilon) \cap T(\xi) \neq \varnothing\} \subset B(\theta, M) \tag{38}\\
\gamma \in\left(0,(18)^{-1}(12 M+12)^{-1} \epsilon^{2} \bar{c}\right) \\
z \in B(\theta, M)
\end{gather*}
$$

satisfy

$$
\begin{gathered}
B(z, \gamma) \cap \operatorname{Fix}\left(T_{i}\right) \neq \varnothing, i=1, \ldots, m, \\
Q=\left\lfloor 8 \epsilon^{-2}(3 M+3)^{2} \bar{c}^{-1}\right\rfloor+1,
\end{gathered}
$$

and $\delta \in(0, \gamma)$.
Assume that $\left\{x_{k}\right\}_{k=0}^{\infty} \subset C$,

$$
\rho\left(\theta, x_{0}\right) \leq M
$$

and that

$$
B\left(x_{k+1}, \delta\right) \cap T\left(x_{k}\right) \neq \varnothing, k=0,1, \ldots
$$

Then, there exists a strictly increasing sequence of natural numbers $\left\{q_{j}\right\}_{j=1}^{\infty}$ such that

$$
\begin{equation*}
1 \leq q_{0} \leq Q \tag{39}
\end{equation*}
$$

and for each integer $j \geq 0$,

$$
\begin{gather*}
q_{j+1}-q_{j} \leq Q \tag{40}\\
B\left(x_{q_{j}}, \epsilon\right) \cap T\left(x_{q_{j}}\right) \neq \varnothing \tag{41}
\end{gather*}
$$

Proof. Theorem 2 implies that there exists $q_{0} \in\{1, \ldots, Q\}$ for which

$$
B\left(x_{q_{0}}, \epsilon\right) \cap T\left(x_{q_{0}}\right) \neq \varnothing .
$$

Assume that $p \in\{0,1, \ldots\}, q_{j}, j=0, \ldots, p$ are natural numbers such that for any integer j satisfying $0 \leq j<p,(40)$ holds, and assume that (41) is true for all $j=0, \ldots, p$. We set

$$
y_{i}=x_{i+q_{p}}, i=0,1, \ldots .
$$

According to (38) and (41),

$$
\rho\left(\theta, y_{0}\right) \leq M
$$

Clearly, all of the assumptions of Theorem 2 hold with $x_{i}=y_{i}, i=0,1, \ldots$, and Theorem 2 implies that there is $j \in\{1, \ldots, Q\}$ for which

$$
B\left(y_{j}, \epsilon\right) \cap T\left(y_{j}\right) \neq \varnothing .
$$

We set

$$
q_{p+1}=q_{p}+j .
$$

Clearly,

$$
B\left(x_{q_{p+1}}, \epsilon\right) \cap T\left(x_{q_{p+1}}\right) \neq \varnothing .
$$

Thus, by induction, we have constructed the sequence of natural numbers $\left\{q_{j}\right\}_{j=1}^{\infty}$ and proved Theorem 3.

Funding: This research received no external funding.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bejenaru, A.; Postolache, M. An unifying approach for some nonexpansiveness conditions on modular vector spaces. Nonlinear Anal. Model. Control 2020, 25, 827-845. [CrossRef]
2. Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990.
3. Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984.
4. Kassab, W.; Turcanu, T. Numerical reckoning fixed points of (E)-type mappings in modular vector spaces. Mathematics 2019, 7,390. [CrossRef]
5. Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhäser/Springer: Cham, Switzerland, 2015.
6. Khamsi, M.A.; Kozlowski, W.M.; Reich, S. Fixed Point Theory in Modular Function Spaces. Nonlinear Anal. 1990, 14, 935-953. [CrossRef]
7. Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1-34.
8. Kozlowski, W.M. An introduction to fixed point theory in modular function spaces. In Topics in Fixed Point Theory Springer: Cham, Switzerland, 2014; pp. 15-222.
9. Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder's demiclosedness principle and Reich's lemma and their applications. Pure Appl. Func. Anal. 2016, 1, 63-84.
10. Okeke, G.A.; Abbas, M.; de la Sen, M. Approximation of the fixed point of multivalued quasi-nonexpansive mappings via a faster iterative process with applications. Discret. Dyn. Nat. Soc. 2020, 2020, 8634050. [CrossRef]
11. Okeke, G.A.; Ugwuogor, C.I. Iterative construction of the fixed point of Suzukis generalized nonexpansive mappings in Banach spaces. Fixed Point Theory 2022, 23, 633-652.
12. Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459-465. [CrossRef]
13. Reich, S.; Zaslavski, A.J. Genericity in nonlinear analysis. In Developments in Mathematics; Springer: New York, NY, USA, 2014; Volume 34.
14. Zaslavski, A.J. Approximate solutions of common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016.
15. Zaslavski, A.J. Algorithms for solving common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018.
16. Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Func. Anal. 2018, 3, 565-586.
17. Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243-258.
18. Gibali, A.; Reich, S.; Zalas, R. Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 2017, 66, 417-437. [CrossRef]
19. Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685-699.
20. Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2018, 3, 349-369.
21. Tam, M.K. Algorithms based on unions of nonexpansive maps. Optim. Lett. 2018, 12, 1019-1027. [CrossRef]
22. Bauschke, H.H.; Noll, D. On the local convergence of the Douglas-Rachford algorithm. Arch. Math. 2014, 102, 589-600. [CrossRef]
23. Zaslavski, A.J. An algorithm based on unions of nonexpansive mappings in metric spaces. Symmetry 2022, 14, 1852. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

