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Abstract: In this paper, we study a fixed-point problem with a set-valued mapping by using an
algorithm based on unions of nonexpansive mappings. We show that an approximate solution is
reached after a finite number of iterations in the presence of computational errors. This result is an
extension of the results known in the literature.
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1. Introduction

The study of fixed-point problems is an important topic in nonlinear analysis [1–15].
These problems have various applications in mathematical analysis, optimization theory,
engineering, medicine, and the natural sciences [14–20]. In particular, in [21], a novel
framework for the investigation of iterative algorithms was introduced. This framework
was given in terms of a certain nonlinear set-valued map T defined on a space X. For every
x ∈ X, T(x) is a finite union of values of single-valued paracontracting operators. Tam [21]
established a convergence for this algorithm. Note that his result was a generalization of
the result attained by Bauschke and Noll [22]. In our recent paper [23], we obtained an
extension of a result of [21]. It should be mentioned that in [21], X is a finite-dimensional
Euclidean space, while in [23] and in the present paper, X is an arbitrary metric space. The
main result of [23] was obtained for inexact iterations of operators under the assumption
that the common fixed-point problem has a solution. In the present paper, we prove an
extension of this result in a case in which the common fixed-point problem has only an
approximated solution.

2. Preliminaries

Assume that (X, ρ) is a metric space endowed with a metric ρ and that C ⊂ X is its
nonempty closed set. For every u ∈ X and every ∆ ∈ (0, ∞), we set

B(u, ∆) = {v ∈ X : ρ(u, v) ≤ ∆}.

For every map A : C → C, we define

Fix(A) = {u ∈ C : A(u) = u}.

Assume that Ti : C → C, i = 1, . . . , m, where m ≥ 1 is an integer, 0 < c̄ ≤ 1, and that
for every j ∈ {1, . . . , m}, every u ∈ Fix(Tj), and every v ∈ C,

ρ(u, v)2 − ρ(u, Tj(v))2 ≥ c̄ρ(v, Tj(v))2. (1)

It should be mentioned that inequality (1) is true for many nonlinear operators [14,15].
Assume that

φ : X → 2{1,...,m} \ {∅}. (2)
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We set
T(u) = {Tj(u) : j ∈ φ(u)}. (3)

for each u ∈ C and
F(T) = {u ∈ C : u ∈ T(u)}. (4)

In this paper, we study the fixed-point problem

Find x ∈ X such that x ∈ T(x).

This problem was introduced and studied in [21]. It should be mentioned that in [21],
X was a finite-dimensional Euclidean space, and the mappings Ti, i = 1, . . . , m were
paracontracting. Tam [21] considered a sequence of iterations {xk}∞

k=0 ⊂ X satisfying
xk+1 ∈ T(xk) for every integer k ≥ 0 and established its convergence under the assumption
that the mappings Ti, i = 1, . . . , m had a common fixed point. In [21], this convergent
result was applied to sparsity-constrained minimization. Note that the result in [21] was a
generalization of the result attained by Bauschke and Noll [22]. In our recent paper [23], we
considered mappings acting on a general metric space and obtained two extensions of the
result from [21]. In the first result, we studied exact iterations of the set-valued mapping,
while in the second one, we dealt with its inexact iterations while taking computational
errors into account. More precisely, in [23], for a given computational error δ > 0, we
considered a sequence {xk}∞

k=0 ⊂ X satisfying B(xk+1, δ) ∩ T(xk) 6= ∅ for every integer
k ≥ 0 and analyzed its behavior. This result was also obtained under the assumption
that the mappings Ti, i = 1, . . . , m had a common fixed point. In the present paper, we
generalize this result. Instead of assuming the existence of a common fixed point, we
suppose that there exists an approximate common fixed point z such that

B(z, γ) ∩ Fix(Ti) 6= ∅, i = 1, . . . , m,

where γ is a given small positive constant. In other words, a small neighborhood of z
contains a fixed point of every mapping.

We fix
θ ∈ C.

For any u ∈ R1, we set

buc = max{j : j as an integer and j ≤ u}.

We prove the following theorem in the presence of computational errors. This theorem
shows that after a certain number of iterations, we obtain an approximate solution to our
fixed-point problem. The number of iterations depends on the computational error.

Theorem 1. Let M > 0, ε ∈ (0, 1],

γ ∈ (0, (18)−1(4M + 4)−1ε2 c̄), (5)

z ∈ B(θ, M) (6)

satisfy
B(z, γ) ∩ Fix(Ti) 6= ∅, i = 1, . . . , m, (7)

Q = b8ε−2M2 c̄−1c+ 1, (8)

and δ ∈ (0, γ). Assume that {xk}∞
k=0 ⊂ C,

ρ(θ, x0) ≤ M (9)

and that
B(xk+1, δ) ∩ T(xk) 6= ∅, k = 0, 1, . . . . (10)
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Then, there is a nonnegative integer p < Q for which

B(xp, ε) ∩ T(xp) 6= ∅. (11)

In the theorem above, we assume the existence of a point z that satisfies (7), which
means that z is an approximate fixed point for all of the mappings Ti, i = 1, . . . , m. This
result has a prototype in [23], which was obtained under the assumption that z is a common
fixed point for all Tk, k = 1, . . . , m.

3. Proof of Theorem 1

Proof. Assume that for every nonnegative integer k < Q, relation (11) is not true. Then,
for every nonnegative integer k < Q,

B(xk, ε) ∩ T(xk) = ∅. (12)

We set
M0 = 2M + 1. (13)

According to (7), for every k ∈ {1, . . . , m}, there is

zk ∈ Fix(Tk) (14)

such that
ρ(z, zk) ≤ γ. (15)

According to (6) and (9),
ρ(x0, z) ≤ 2M. (16)

Let i ∈ [0, Q− 1] be an integer. According to (10), there is

x̂i+1 ∈ T(xi) (17)

for which
ρ(xi+1, x̂i+1) ≤ δ. (18)

Equations (3) and (17) imply that there is an integer j ∈ [1, m] for which

x̂i+1 = Tj(xi). (19)

It follows from (1) and (19) that

ρ(zj, xi)
2 ≥ ρ(zj, x̂i+1)

2 + c̄ρ(xi, x̂i+1)
2. (20)

According to (12) and (19),
ρ(xi, x̂i+1) > ε. (21)

In view of (20) and (21),

ρ(zj, xi)
2 ≥ ρ(zj, x̂i+1)

2 + c̄ε2. (22)

Assume that
ρ(z, xi) ≤ M0. (23)

(In view of (13) and (16), equation (23) holds for i = 0.) Equations (15) and (23) imply
that

ρ(zj, xi) ≤ ρ(zj, z) + ρ(z, xi) ≤ M0 + γ. (24)

It follows from (5), (13), (22), and (24) that

ρ(zj, x̂i+1)
2 ≤ ρ(zj, xi)

2 − ε2 c̄ ≤ (M0 + γ)2 − ε2 c̄
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= M2
0 + γ(γ + 2M0)− ε2 c̄ ≤ M2

0 + γ(1 + 2M0)− ε2 c̄

≤ M2
0 − 7γ(1 + 2M0) ≤ (M0 − 2γ)2

and
ρ(zj, x̂i+1) ≤ M0 − 2γ. (25)

According to (15) and (25),

ρ(z, xi+1) ≤ ρ(z, zj) + ρ(zj, x̂t+1) + ρ(x̂i+1, xi+1)

≤ M0 − 2γ + γ + γ ≤ M0

and
ρ(z, xi+1) ≤ M0. (26)

According to (22),
ρ(zj, x̂i+1)

2 ≤ ρ(zj, xi)
2 − ε2 c̄. (27)

Equations (15) and (23) imply that

|ρ(xi, z)2 − ρ(xi, zj)
2|

≤ (ρ(xi, z) + ρ(xi, zj))|ρ(xi, z)− ρ(xi, zj)|

≤ (ρ(xi, z) + ρ(xi, z) + γ)ρ(zj, z) ≤ γ(2M0 + 1). (28)

It follows from (15), (18), and (26) that

|ρ(xi+1, z)2 − ρ(x̂i+1, zj)
2|

≤ (ρ(xi+1, z) + ρ(x̂i+1, zj))|ρ(xi+1, z)− ρ(x̂i+1, zj)|

≤ (2M0 + γ + δ)(ρ(zj, z) + ρ(x̂i+1, xi+1)) ≤ (2M0 + 2)(γ + δ). (29)

By (5), (13), (22), and (29),

ρ(xi+1, z)2 ≤ ρ(zj, x̂i+1)
2 + 2γ(2M0 + 2)

≤ ρ(zj, xi)
2 − c̄ε2 + 2γ(2M0 + 2)

≤ ρ(xi, z)2 − ε2 c̄ + γ(2M0 + 1) + 2γ(2M0 + 2)

ρ(xi, z)2 − ε2 c̄ + 3γ(2M0 + 1)

≤ ρ(xi, z)2 − ε2 c̄/2. (30)

Thus, we have shown by induction that (23) and (30) hold for i = 0, . . . , Q− 1. By (16)
and (30),

4M2 ≥ ρ(z, x0))
2

≥ ρ(z, x0)
2 − ρ(z, xQ)

2

=
Q−1

∑
i=0

(ρ(z, xi)
2 − ρ(z, xi+1)

2) ≥ Qc̄ε2/2,

and
Q ≤ 8M2 c̄−1ε−2.

This contradicts (8). The contradiction that we have reached proves Theorem 1.

4. Extensions

We use the notation and definitions introduced in Section 2.
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Lemma 1. Assume that M0 > 0,
z ∈ B(θ, M0), (31)

B(z, 1) ∩ Fix(Ti) 6= ∅, i = 1, . . . , m, (32)

x0 ∈ B(θ, M0), (33)

x1 ∈ C, and
B(x1, 1) ∩ T(x0) 6= ∅. (34)

Then,
ρ(x1, θ) ≤ 3M0 + 3.

Proof. According to (3), there is an integer j ∈ [1, m] for which

ρ(x1, Tj(x0)) ≤ 1. (35)

According to (32), there is
zj ∈ Fix(Tj) (36)

for which
ρ(z, zj) ≤ 1. (37)

Equations (1), (31), (33), and (35)–(37) imply that

ρ(x1, θ) ≤ ρ(θ, Tj(x0)) + ρ(Tj(x0), x1)

≤ 1 + ρ(θ, z) + ρ(z, zj) + ρ(zj, Tj(x0))

≤ 1 + M0 + 1 + ρ(zj, x0)

≤ 2 + M0 + ρ(θ, x0) + ρ(θ, z) + ρ(z, zj)

≤ 3 + 3M0.

Lemma 1 is proved.

Theorem 2. Let M > 0, ε ∈ (0, 1],

γ ∈ (0, (18)−1(12M + 12)−1ε2 c̄),

z ∈ B(θ, M)

satisfy
B(z, γ) ∩ Fix(Ti) 6= ∅, i = 1, . . . , m,

Q = b8ε−2(3M + 3)2 c̄−1c+ 1,

and δ ∈ (0, γ).
Assume that {xk}∞

k=0 ⊂ C,
ρ(θ, x0) ≤ M,

and that
B(xk+1, δ) ∩ T(xk) 6= ∅, k = 0, 1, . . . .

Then, there is j ∈ {1, . . . , Q} for which

B(xj, ε) ∩ T(xj) 6= ∅.

Proof. Lemma 1 implies that
ρ(x1, θ) ≤ 3M + 3.

The application of Theorem 1 to the sequence {xi+1}∞
i=0 implies our result.



Mathematics 2023, 11, 1534 6 of 7

Theorem 3. Let M > 0, ε ∈ (0, 1],

{ξ ∈ C : B(ξ, ε) ∩ T(ξ) 6= ∅} ⊂ B(θ, M), (38)

γ ∈ (0, (18)−1(12M + 12)−1ε2 c̄),

z ∈ B(θ, M)

satisfy
B(z, γ) ∩ Fix(Ti) 6= ∅, i = 1, . . . , m,

Q = b8ε−2(3M + 3)2 c̄−1c+ 1,

and δ ∈ (0, γ).
Assume that {xk}∞

k=0 ⊂ C,
ρ(θ, x0) ≤ M,

and that
B(xk+1, δ) ∩ T(xk) 6= ∅, k = 0, 1, . . . .

Then, there exists a strictly increasing sequence of natural numbers {qj}∞
j=1 such that

1 ≤ q0 ≤ Q (39),

and for each integer j ≥ 0,
qj+1 − qj ≤ Q (40)

B(xqj , ε) ∩ T(xqj) 6= ∅. (41)

Proof. Theorem 2 implies that there exists q0 ∈ {1, . . . , Q} for which

B(xq0 , ε) ∩ T(xq0) 6= ∅.

Assume that p ∈ {0, 1, . . . }, qj, j = 0, . . . , p are natural numbers such that for any
integer j satisfying 0 ≤ j < p, (40) holds, and assume that (41) is true for all j = 0, . . . , p.
We set

yi = xi+qp , i = 0, 1, . . . .

According to (38) and (41),
ρ(θ, y0) ≤ M.

Clearly, all of the assumptions of Theorem 2 hold with xi = yi, i = 0, 1, . . . , and
Theorem 2 implies that there is j ∈ {1, . . . , Q} for which

B(yj, ε) ∩ T(yj) 6= ∅.

We set
qp+1 = qp + j.

Clearly,
B(xqp+1 , ε) ∩ T(xqp+1) 6= ∅.

Thus, by induction, we have constructed the sequence of natural numbers {qj}∞
j=1 and

proved Theorem 3.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 1534 7 of 7

References
1. Bejenaru, A.; Postolache, M. An unifying approach for some nonexpansiveness conditions on modular vector spaces. Nonlinear

Anal. Model. Control 2020, 25, 827–845. [CrossRef]
2. Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990.
3. Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA;

Basel, Switzerland, 1984.
4. Kassab, W.; Turcanu, T. Numerical reckoning fixed points of (E)-type mappings in modular vector spaces. Mathematics 2019,

7, 390. [CrossRef]
5. Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhäser/Springer: Cham, Switzerland, 2015.
6. Khamsi, M.A.; Kozlowski, W.M.; Reich, S. Fixed Point Theory in Modular Function Spaces. Nonlinear Anal. 1990, 14, 935–953.

[CrossRef]
7. Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands,

2001; pp. 1–34.
8. Kozlowski, W.M. An introduction to fixed point theory in modular function spaces. In Topics in Fixed Point Theory Springer: Cham,

Switzerland, 2014; pp. 15–222.
9. Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applica-

tions. Pure Appl. Func. Anal. 2016, 1, 63–84.
10. Okeke, G.A.; Abbas, M.; de la Sen, M. Approximation of the fixed point of multivalued quasi-nonexpansive mappings via a faster

iterative process with applications. Discret. Dyn. Nat. Soc. 2020, 2020, 8634050. [CrossRef]
11. Okeke, G.A.; Ugwuogor, C.I. Iterative construction of the fixed point of Suzukis generalized nonexpansive mappings in Banach

spaces. Fixed Point Theory 2022, 23, 633–652.
12. Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [CrossRef]
13. Reich, S.; Zaslavski, A.J. Genericity in nonlinear analysis. In Developments in Mathematics; Springer: New York, NY, USA, 2014;

Volume 34.
14. Zaslavski, A.J. Approximate solutions of common fixed point problems. In Springer Optimization and Its Applications; Springer:

Cham, Switzerland, 2016.
15. Zaslavski, A.J. Algorithms for solving common fixed point problems. In Springer Optimization and Its Applications; Springer:

Cham, Switzerland, 2018.
16. Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review.

Pure Appl. Func. Anal. 2018, 3, 565–586.
17. Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2,

243–258.
18. Gibali, A.; Reich, S.; Zalas, R. Outer approximation methods for solving variational inequalities in Hilbert space. Optimization

2017, 66, 417–437. [CrossRef]
19. Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two

Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685–699.
20. Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl.

Funct. Anal. 2018, 3, 349–369.
21. Tam, M.K. Algorithms based on unions of nonexpansive maps. Optim. Lett. 2018, 12, 1019–1027. [CrossRef]
22. Bauschke, H.H.; Noll, D. On the local convergence of the Douglas-Rachford algorithm. Arch. Math. 2014, 102, 589–600. [CrossRef]
23. Zaslavski, A.J. An algorithm based on unions of nonexpansive mappings in metric spaces. Symmetry 2022, 14, 1852. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.15388/namc.2020.25.18044
http://dx.doi.org/10.3390/math7050390
http://dx.doi.org/10.1016/0362-546X(90)90111-S
http://dx.doi.org/10.1155/2020/8634050
http://dx.doi.org/10.1090/S0002-9939-1962-0148046-1
http://dx.doi.org/10.1080/02331934.2016.1271800
http://dx.doi.org/10.1007/s11590-018-1249-7
http://dx.doi.org/10.1007/s00013-014-0652-2
http://dx.doi.org/10.3390/sym14091852

	Introduction
	Preliminaries
	Proof of Theorem 1
	Extensions
	References

