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Abstract: Space-time panel data widely exist in many research fields such as economics, management,
geography and environmental science. It is of interest to study the relationship between response
variable and regressors which come from above fields by establishing regression models. This paper
introduces a new fixed effects partially linear varying coefficient panel data regression model with
nonseparable space-time filters. On the basis of approximating the varying coefficient functions
with a powerful B-spline method, the profile quasi-maximum likelihood estimators of parameters
and varying coefficient functions are constructed. Under some regular conditions, we derive their
consistency and asymptotic normality. Monte Carlo simulation shows that our estimates have
good finite performance and ignoring spatial and serial correlations may lead to inefficiency of
estimates. Finally, the driving forces of Chinese resident consumption rate are studied using our
estimation method.

Keywords: partially linear varying coefficient panel data regression model; profile quasi-maximum
likelihood estimation; nonseparable space-time filters; asymptotic property; Monte Carlo simulation
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1. Introduction

A space-time panel dataset is one sample collected from a number of spatial units
over time periods (Li et al. [1]). Such datasets widely exist in economics, management,
geography, environmental science and other research fields. How to effectively analyze
space-time panel datasets and construct space-time panel data regression models has great
theoretical and empirical significance. The space-time panel data regression models are a
natural extension of panel data regression models. In the early 19th century, “regression”
was first mentioned in the works of Legendre and Gauss. Later, at the turn of the 19th and
20th centuries, Galton and Pearson conceptualized regression, there were a number of re-
gression models for analyzing panel data and exploring the association between dependent
variable and regressors (Hsiao [2]; Baltagi [3]; Porter et al. [4]; Zamanzade [5]; Imai and
Kim [6]). Among them, parametric panel data regression models have been widely used to
study linear influence of regressors. Since the 1990s, nonparametric methods have been
gradually applied into regression analysis (Fan and Gijbels [7]; Luo et al. [8]; Ullah et al. [9];
Dai et al. [10]), Li and Stengos [11] first proposed nonparametric panel data regression
models to explore nonlinear influence of regressors. However, such models have their
drawbacks. Parametric panel data regression models need to be precisely pre-specified,
misspecified model forms can lead to inconsistent estimates as well as incorrect policy
prescriptions. Although nonparametric panel data regression models are useful whenever
we are not certain what the correct functional forms are, they may face the “curse of dimen-
sionality” when the dimension of regressors is higher (Fan and Gijbels [7]), namely, the
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estimation accuracy decreases rapidly with the number of regressors increasing. Therefore,
scholars proposed a number of non/semiparametric panel data regression models with
a dimension reduction function to more flexibly overcome the “curse of dimensionality”
encountered in practice, for example, partially linear additive panel data regression model,
partially linear single-index panel data regression model and partially linear varying coef-
ficient panel data regression model. In recent years, a series of their estimation methods
have been also developed, including profile least squares estimation (Baltagi et al. [12];
Chen et al. [13]; Huang et al. [14]; Yong et al. [15]; Zhou et al. [16]; Zhang and Shen [17]),
profile quasi-maximum likelihood estimation (Li et al. [18]; Su and Ullah [19]; Wu et al. [20];
Hu [21]), generalized method of moment estimation (GMM) (Tran and Tsionas [22]; Su and
Ullah [23]), and others (Liu and Zhuang [24]).

All those modeling techniques and corresponding statistical inference methods for
the above-mentioned semiparametric panel data regression models need the assumption
that there is no correlation among the individuals or time periods. Elhorst [25] pointed out
that two problems hampering the modeling of space-time panel data are serial correlation
between the observations on each spatial unit over time and spatial correlation between
the observations on the spatial units at each point in time. Furthermore, Baltagi et al. [12]
mentioned that ignoring the serial correlation in the errors will result in consistent, but
inefficient estimates of the regression coefficients and biased standard errors. Therefore,
some scholars added nonseparable space-time filters, that is, space-time error correlation
are modeled jointly, or separable space-time filters, that is, space-time error correlation are
modeled independently from one another, under the framework of semi/parametric panel
data regression models. The estimation, testing and empirical analysis of these models
have been studied in recent years. Baltagi et al. [26] derived joint and conditional Lagrange
Multiplier (LM) and Likelihood Ratio (LR) test statistics of random effects parametric panel
regression model with separable space-time correlations and presented their small sample
performance using Monte Carlo experiments. Elhorst [25] constructed a random effects
parametric panel regression model with nonseparable space-time filters and presented
its maximum likelihood estimation. Parent and LeSage [27] explored the Markov Chain
Monte Carlo method of random effects parametric panel regression model with separable
space-time filters—both Monte Carlo simulation and an application were used to illustrate
the method. Lee and Yu [28] investigated quasi-maximum likelihood estimation for fixed
effects parametric panel regression model with separable or nonseparable space-time filters,
which might be spatially stable or unstable. They also derived consistency and asymptotic
normality of the estimators under some regular conditions. Bai et al. [29] proposed a
random effects partially linear varying coefficient panel model with separable space-time
filters and derived consistency and asymptotic normality of weighted semiparametric least
squares estimators. Zhao et al. [30] constructed weighted semiparametric least squares esti-
mators and generalized F-type test statistic for random effects partially linear single-index
panel model with separable space-time filters. They also derived the asymptotic properties
of estimators and the asymptotic distribution of F-type test statistic. Li et al. [1] studied
profile quasi-maximum likelihood estimation and generalized F-type test of random effects
partially linear nonparametric panel model with separable space-time filters and obtained
the consistency and asymptotic normality of parametric and nonparametric estimators as
well as asymptotic distribution of generalized F-type test statistic. Monte Carlo simulation
and Indonesian rice farming data were used to illustrate their methods.

To the best of our knowledge, there are no non/semiparametric spatiotemporal econo-
metric models that study both fixed effects and nonseparable space-time filters in the
existing literature. In this paper, we attempt to propose a fixed effects partially linear
varying coefficient panel data regression model (PLVCPDRM) with nonseparable space-
time filters. It can simultaneously capture the linear and nonlinear effects of regressors,
spatial and serial correlations of error structure, and individual fixed effects. Our aim is to
construct profile quasi-maximum likelihood estimators (PQMLE) of this model and sys-
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tematically study their asymptotic properties and finite sample performance. Furthermore,
the proposed estimation method is illustrated by using a real dataset.

The rest of this paper is organized as follows: Section 2 presents a fixed effects PLVCP-
DRM with nonseparable space-time filters and its PQMLEs. Section 3 lays out some regular
assumptions and asymptotic properties. Section 4 reports simulation results for examining
the finite sample performance of the proposed estimators. Section 5 shows the empirical
study for illustrating the proposed methodology. Conclusions are summarized in Section 6.
Appendix A presents a lemma and proofs of the main theorems.

2. Model and Estimation

Consider a fixed effects PLVCPDRM with nonseparable space-time filters:

YNt = XNtβ + Zα,Nt + b + εNt, t = 1, . . . , T, (1)

εNt = ρWεNt + λεN,t−1 + eNt, (2)

where YNt = (y1t, y2t, . . . , yNt)
′, yit are observations of a response variable, i = 1, . . . , N;

XNt = (x1t, x2t, . . . , xNt)
′, Zα,Nt = (z′1tα(u1t), . . . , z′Ntα(uNt))

′, xit = (xit1, xit2, . . . , xitp)
′

and zit = (zit1, zit2, . . . , zitq)
′ are observations of p-dimensional and q-dimensional ex-

ogenous regressors, respectively; β is a regression coefficient vector of xit, α(uit) =
(α1(uit), α2(uit), . . . , αq(uit))

′ is an unknown univariate varying coefficient function vector,
αl(u)(l = 1, . . . , q) are smoothing functions of u, u is an intermediate univariate variable;
b = (b1, . . . , bN)

′ are fixed effects satisfying ∑N
i=1 bi = 0 for identification purpose; W is an

N × N row-normalized non-negative spatial weights matrix with zero diagonals; εNt is
an N × 1 vector of disturbance term, eNt is an N × 1 vector of random error term which
is assumed to be i.i.d.(0, σ2

e ). In order to keep the stationarity of the model (1)–(2), serial
correlation coefficient λ and spatial correlation coefficient ρ should belong to parameter
space Θ = {(λ, ρ) : λ + ρ < 1, λ + ρ > −1, λ− ρ > −1, λ− ρ < 1} (Elhorst [25]; Lee and
Yu [28]), see Figure 1.

−1 1

1

−1

λ

ρ

Figure 1. The parameter space Θ of ρ and λ.

For the model (1)–(2), it is necessary to identify an appropriate estimation method
to obtain estimators of the unknown parameter vector θ = (β′, γ′, ρ, λ, σ2

e )
′ and varying

coefficient functions αl(·)(l = 1, . . . , q).
Before proceeding to the estimation procedure, the fitting problem of the varying

coefficient functions needs to be solved priority. Polynomial spline method is efficient in
function approximation and numerical computation. Polynomial splines are piecewise
polynomials with the polynomial pieces joining together smoothly at a set of interior
knot points (see De Boor [31]; Huang and Shen [32]; Zou and Zhu [33]). B-spline is a
special form of polynomial spline. Considering that the B-spline basis has better numerical
properties than other basis functions, we use the B-spline method to approximate the
varying coefficient functions αl(u)(l = 1, . . . , q) in the model (1). To be precise, let a =
min{u11, . . . , uNT}, d = max{u11, . . . , uNT} and a = ξ0 < ξ1 < · · · < ξkl

= d(l = 1, . . . , q)
be a partition of interval [a, d]. Using the ξi as knots, we have κl = kl + k0 normalized
B-spline basis function of order (k0 − 1) that forms a basis function for the linear spline
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space Sk0
kl

on U = {uit ∈ R}. Denote B-spline basis function ζ
κl
l (u) = (ζl1(u), . . . , ζlκl

(u))′,

we can approximate αl(u) by some spline function in Sk0
kl

: αl(u) ≈ ζ
κl ′
l (u)γl , where γl =

(γl1, . . . , γlκl
)′ is an unknown κl × 1 spline coefficient vector. Thus, the model (1) can be

written as
YNt = XNtβ + Z̃Ntγ + b + εNt, (3)

where γ = (γ′1, . . . , γ′q)
′, Z̃Nt = (z̃1t, . . . , z̃Nt)

′, z̃′it = z′itζq,K(uit) and

ζq,K(u) =

 ζ11(u) . . . ζ1κ1(u) 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 ζq1(u) . . . ζqκq(u)


is a q× K matrix, K = ∑

q
s=1 κs.

For any N × 1 vector ANt, denote ∆ANt = ANt −AN,t−1 as the first order difference.
By first difference of the model (2)–(3) to eliminate the fixed effects, we have

∆YNt = ∆XNtβ + ∆Z̃Ntγ + ∆εNt, t = 2, 3, . . . , T, (4)

∆εNt = ρW∆εNt + λ∆εN,t−1 + ∆eNt. (5)

Note that ∆YNt = YNt −YN,t−1 is observable for t = 2, 3, . . . , T, ∆εN1 can’t be observed. Let
η = (ρ, λ)′, SN(ρ) = IN − ρW, RN(λ) = λIN , SN = S(ρ0), RN = R(λ0) and IN is an N×N
identity matrix. The Equation (5) can be rewritten as SN(ρ)∆εNt = RN(λ)∆εN,t−1 + ∆eNt

for all t. With backward substitution, we have SN(ρ)∆εN,2 = ∑∞
j=0 Aj

N(η)∆eN,2−j, where

AN(η) = RN(λ)SN(ρ)
−1. By denoting ∆εN,T−1 =

(
∆ε′N2, . . . , ∆ε′NT

)′ and

BN,T−1(η) =


SN(ρ) 0 . . . 0 0
−RN(λ) SN(ρ) . . . 0 0

0 −RN(λ) . . . 0 0
...

...
. . . . . .

...
0 0 . . . −RN(λ) SN(ρ)

,

the matrix form of the Equation (5) can be simply expressed as BN,T−1(η)∆εN,T−1 =

((SN(ρ)∆εN2)
′, ∆e′N3, . . . , ∆e′NT)

′. As Var
[
∑∞

j=0 Aj
N(η)∆eN,2−j

]
= σ2

e KN(η), where

KN(η) ≡ IN +
∞

∑
j=0

Aj(η)(AN(η)− IN)(AN(η)− IN)
′A′jN(η),

and KN = KN(η0), we can obtain Var(BN,T−1(η)∆εN,T−1) = σ2
e ΩN,T−1(η) with

ΩN,T−1(η) =



KN(η) −IN 0 . . . 0 0
−IN 2IN −IN . . . 0 0

0 −IN 2IN . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2IN −IN
0 0 0 . . . −IN 2IN


.

Note that the only unknown element of ΩN,T−1(η) is KN(η). In order to obtain deter-
minant and inverse of ΩN,T−1(η), we define a confirmable block matrix (Hsiao et al [34];
Lee and Yu [28]) as
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PN,T−1(η) =


IN 0 0 . . . 0
IN KN(η) 0 . . . 0
IN KN(η) 2KN(η)− IN . . . 0
...

...
...

. . .
...

IN KN(η) 2KN(η)− IN . . . (T − 2)KN(η)− (T − 3)IN

.

From straight calculation, we know that

DN,T−1(η) ≡ PN,T−1(η)ΩN,T−1(η)P′N,T−1(η)

= diag{KN(η), (2KN(η)− IN)KN(η), (3KN(η)− 2IN)(2KN(η)− IN), . . . ,

[(T − 1)KN(η)− (T − 2)IN ][(T − 2)KN(η)− (T − 3)IN ]}.

Thus, the determinant |ΩN,T−1(η)| = |DN,T−1(η)|/|PN,T−1(η)|2 = |(T − 1)KN(η)− (T −
2)IN | and the inverse Ω−1

N,T−1(η) = PN,T−1(η)
′DN,T−1(η)

−1PN,T−1(η). Therefore, the quasi-
log-likelihood function can be written as

log LN,T(θ) =−
N(T − 1)

2
log
(

2πσ2
e

)
− 1

2
log|IN + (T − 1)(KN(η)− IN)|

+ (T − 1) log|SN(ρ)| −
1

2σ2
e

[
Y− Xβ− Z̃γ

]′
JNT(η)

[
Y− Xβ− Z̃γ

]
,

(6)

where Y = (Y′N1, . . . , Y′NT)
′, X = (X′N1, . . . , X′NT)

′, Z̃ = (z̃11, . . . , z̃NT)
′, JNT(η) = L′N,(T−1)T

B′N,T−1(η)Ω
−1
N,T−1(η)BN,T−1(η)LN,(T−1)T , LN,(T−1)T = L⊗ IN with

L =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

. . . 0
0 0 0 −1 1


as the first order difference transformation matrix of dimension (T − 1)× T.

Motivated by Su and Jin [35], we obtain PQMLEs of parameter vector θ and varying
coefficient functions αl(·)(l = 1, . . . , q) by the following the two-step estimation procedure:

Step 1: Assuming the parameter η is known, the initial estimators of (β′, γ′, σ2
e )
′ can

be obtained by maximizing quasi-log-likelihood function (6):

β̂ IN =
[
X′JNT(η)X

]−1X′JNT(η)
[
Y− Z̃γ̂IN

]
,

γ̂IN =
[

Z̃′JNT(η)Z̃
]−1

Z̃′JNT(η)
[
Y− Xβ̂ IN

]
,

σ̂2
eIN =

1
N(T − 1)

[
Y− Xβ̂ IN − Z̃γ̂IN

]′
JNT(η)

[
Y− Xβ̂ IN − Z̃γ̂IN

]
.

Step 2: With the estimated β̂ IN , γ̂IN and σ̂2
eIN , PQMLE of η can be obtained by maxi-

mizing the concentrated quasi-log-likelihood function of η:

log LN,T(η) =−
N(T − 1)

2
log(2π)− N(T − 1)

2
(log σ̂2

eIN + 1)

− 1
2

log|IN + (T − 1)(KN(η)− IN)|+ (T − 1) log|SN(ρ)|.

The final estimator of η is given by η̂ = arg maxη log LN,T(η). With the estimated η̂, update
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β̂′IN , γ̂′IN and σ̂2
eIN , we can obtain the final PQMLEs as

β̂ =
[
X′(I − Sη̂)

′JNT(η̂)(I − Sη̂)X
]−1X′(I − Sη̂)

′JNT(η̂)(I − Sη̂)Y,

γ̂ =
[

Z̃′JNT(η̂)Z̃
]−1

Z̃′JNT(η̂)
[
Y− Xβ̂

]
, (7)

σ̂2
e =

1
N(T − 1)

[
Y− Xβ̂

]′
(I − Sη̂)

′JNT(η̂)(I − Sη̂)
[
Y− Xβ̂

]
,

where I is an identity matrix of dimension NT, Sη = Z̃
[

Z̃′JNT(η)Z̃
]−1

Z̃′JNT(η). Then, the
estimator of the nonparametric function α(u) can be written as

α̂(u) = ζq,K(u)γ̂. (8)

3. Asymptotic Properties

To derive the asymptotic properties of the estimators, we first introduce some regular
assumptions. For clear exposition, denote θ0 = (β′0, γ′0, η′0, σ2

e0)
′, θ∗0 = (β′0, η′0, σ2

e0)
′ and

η0 = (ρ0, λ0)
′ as the true parameter vector of θ, θ∗ and η, respectively, and α0(u) as the true

varying coefficient function vector of α(u).

Assumption 1. (i) The sequences {xit}N,T
i=1,t=1, {zit}N,T

i=1,t=1 and {uit}N,T
i=1,t=1 are nonstochastic,

and they have bounded support set on Rp, Rq and R1 respectively. In addition, uit forms a sequence
of designs such that they are analogous to a positive and bounded “design density“ fU(u) (Su and
Jin [35]).

(ii) For any bounded continuous function h(·), it holds that

lim
N→∞

1
NT

N

∑
i=1

T

∑
t=1

h(uit) =
∫

U
h(u) fU(u)du. (9)

(iii) The parameter β ∈ Rp in a neighborhood of β0 satisfies |x′itβ| ≤ mx, where mx is a
positive constant.

Assumption 2. The disturbances {eit}N,T
i=1,t=2 are i.i.d. with zero mean, variance σ2

e0 and E|eit|4+ε <
∞ for some ε > 0.

Assumption 3. (i) For every K, the smallest eigenvalue of Z̃′Z̃/NT and Z̃′JNT(η0)Z̃/NT are
bounded away from zero uniformly in K.

(ii) There is a sequence of constants ζ0(K) satisfying supu∈U
∥∥ζq,K(u)

∥∥ ≤ ζ0(K) such that
ζ2

0(K)K/N→ 0 as N → ∞.
(iii) For any r1-th(r1 ≥ 2) continuously differentiable bounded function α(·) satisfying the

normalization of α0(·), there exist some r2 > 0 such that supu∈U
∣∣z′itα(uit)− z̃′itγ

∣∣ = O(K−r2) as
K → ∞ and

√
NK−r2 → 0 as N → ∞.

Assumption 4. (i) W is a row-normalized and prespecified spatial weights matrix.
(ii) Row and column sums of W in absolute value are uniformly bounded (i.e., UB).
(iii) SN(ρ) is invertible for all ρ ∈ P, where P is compact and the true parameter ρ0 is in the

interior of P. Additionally, S−1
N (ρ) is UB for ρ ∈ P.

Assumption 5. (i) ∑∞
h=1 abs(Ah

N) is UB, where [abs(AN)]ij =
∣∣AN,ij

∣∣ and AN = AN(η0).
(ii) JNT(η) is UB.
(iii) The limit of the information matrix (A4) in Appendix A is nonsingular.
(iv) limN→∞

1
N(T−1) [X, Z̃]′JNT(η)[X, Z̃] is nonsingular.
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Assumption 6. limN→∞ TNT,1
(
η, σ2

e
)
6= 0 for

(
η, σ2

e
)′ 6= (

η0, σ2
e0
)′, where TNT,1 is defined

in (A1).

Remark 1. The fixed bounded design in Assumption 1 is typically assumed in spatial econometric
literature, see Kelejian and Prucha [36], Kelejian and Prucha [37], Su and Jin [35] and Cheng and
Chen [38]. Assumption 1 (ii) parallels Assumption 1 of Su and Jin [35] and Assumption 2.1 (iv) of
Hu et al. [39]. It means that if {uit}N,T

i=1,t=1 are i.i.d. with the density fU(·), the Equation (9) holds
with probability 1. Assumption 2 presents regularity assumptions for error terms eit. Assumption 3
is a set of mild conditions on the B-spline method (see Newey [40]; Hu et al. [39]; Yong et al. [15];
Zhang [41]). Assumption 3(i) ensures that Z̃′Z̃ and Z̃′JNT(η0)Z̃ are asymptotically nonsingular,
which parallels Assumption 3 of Zhang [41] and Assumption 2(i) of Newey [40]. Newey [40] gave
some primitive conditions for power series and splines such that Assumption 3(ii)–(iii) hold. In
addition, Assumption 3(iii) is the counterpart assumption in the kernel method. Assumption 4
provides the basic features of the spatial weight matrix. The uniform boundedness of W and S−1

N (ρ)
limits the spatial correlation to a manageable degree in Assumptions 4(ii)–(iii). Assumption 5(i) is
the absolute summability condition and row/column sum boundedness condition for disturbances,
which will play an important role for the proofs of asymptotic properties. To prove the absolute
summability of AN , a sufficient condition is ‖AN‖ < 1 for any matrix norm (see Corollary 5.6.16
in Horn and Johnson [42]) that satisfies ‖AN‖ = ‖abs(AN)‖. When ‖AN‖ < 1, ∑∞

h=0 Ah
N exists

and can be defined as (IN − AN)
−1. Under the condition that the inverse of the variance matrix of

(1− φ)1/2eNt +(AN − IN)
(
eN,t−1 + ANeN,t−2 + A2

NeN,t−3 + . . .
)

is UB for φ = 0, 1 and T−2
T−1 ,

Assumption 5(ii) can be certified. Assumption 5(iii)–(iv) is used for establishing the uniqueness
identification and asymptotic normality of the proposed estimators. Assumption 6 specifies an
identification condition for the estimators of parameters when Assumption 5(iv) is not satisfied.

In order to prove consistency of the parametric estimators, we need to obtain the
expected value function for the quasi-log-likelihood function (6) divided by the effective
sample size N(T − 1). The relationship B∗NTε = e between ε = (ε′N1, . . . , ε′NT)

′ and e =
(e†′

N1, . . . , e′NT)
′ (the first block of N in e are not exactly the original eN1 and all the entries

are i.i.d. under normality) would be used frequently, where

B∗NT =


Q∗N 0 . . . 0 0
−RN SN . . . 0 0

0 −RN . . . 0 0
...

...
. . . . . .

...
0 0 . . . −RN SN


NT×NT

and Q∗N =
(

∑∞
j=0 Aj

N Aj′
N

)−1/2
SN . Thus, e†

N1 = Q∗NS−1
N ∑∞

j=0 Aj
NeN,1−j and

Q∗N Var(εN1)Q∗′N = σ2
e0 IN under the normality of disturbances. Split B∗NT into four block ma-

trices, one of which is Q∗N . Utilizing the formula
(

A 0
B C

)−1

=

(
A−1 0

−C−1BA−1 C−1

)
for inversion of a block matrix, we have that

B∗−1
NT =



Q∗−1
N

ANQ∗−1
N S−1

N
A2

NQ∗−1
N ANS−1

N S−1
N

...
...

...
. . .

...
...

...
. . . . . .

AT−1
N Q∗−1

N AT−2
N S−1

N AT−3
N S−1

N · · · · · · ANS−1
N S−1

N


.
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Define QN,T(θ) = E(log LN,T(θ)/N(T − 1)), then

QN,T(θ) =−
1
2

log
(

2πσ2
e

)
+

1
N

log|S(ρ)| − 1
2N(T − 1)

log|IN + (T − 1)(KN − IN)|

− 1
2σ2

e N(T − 1)
e′B∗−1′

NT JNT(η)B∗−1
NT e.

(10)

However, when e† = (e†′
N1, . . . , e′NT)

′ are not normally distributed, elements in e†
N1

are uncorrelated but not necessarily independent of each other even though they are
independent with eNt(t = 2, . . . , T). Consider the case that the process starts at a finite
past period, such as t = −m. Denote eN,T+m = (e′N,1−m, e′N,1−(m−1), . . . , e′N0, e′N1, . . . , e′NT)

′,

which includes the original i.i.d. disturbances vectors, we have e† = FNT,N(T+m)eN,T+m,
where

FNT,N(T+m)

=


(

∑m
j=0 Aj

N Aj′
N

)− 1
2 · Am

N . . .
(

∑m
j=0 Aj

N Aj′
N

)− 1
2 · AN

(
∑m

j=0 Aj
N Aj′

N

)− 1
2 · IN

IN
. . .

IN


is UB. Under non-normality, we can obtain

QN,T(θ) =−
1
2

log
(

2πσ2
e

)
+

1
N

log|S(ρ)| − 1
2N(T − 1)

log|IN + (T − 1)(KN − IN)|

− 1
2σ2

e N(T − 1)
e′N,T+mF′NT,N(T+m)B

∗−1′
NT JNT(η)B∗−1

NT FNT,N(T+m)eN,T+m.
(11)

To show the consistency of θ̂, we follow Lee [43] by identifying θ0 based upon the
maximum value of QN,T(θ) and showing the uniform convergence of 1

N(T−1) log LN,T(θ)−
QN,T(θ) to zero, consistency of θ̂ follows.

Theorem 1. Suppose Assumptions 1–6 hold, θ0 is globally identifiable and θ̂ is consistent with θ0.

Theorem 2. Suppose Assumptions 1–6 hold, as N → ∞ simultaneously, we have

√
NT
(
θ̂∗ − θ∗0

) L→ N
(

0, Σ−1
θ∗0

+ Σ−1
θ∗0

Ωθ∗0
Σ−1

θ∗0

)
.

where “ L→” means convergence in distribution, Σθ∗0
= − lim

N,T→∞
E
(

1
N(T−1)

∂2 log LN,T(θ∗0)
∂θ∗∂θ∗′

)
is an

expected Hessian matrix showed in (A5) and E
(

1
N(T−1)

∂ log LN,T(θ
∗
0 )

∂θ∗
∂ log LN,T(θ

∗
0 )

∂θ∗′

)
= Σθ∗0

+ Ωθ∗0
+

oP(1) with Ωθ∗0
defined in (A6).

Theorem 3. Suppose Assumptions 1–5 hold, we have

|α̂(uit)− α̂0(uit)| = OP

(
ζ0(K)(

√
K/
√

N + K−r2)
)

.

Remark 2. The term K/N essentially corresponds to a variance term and K−2r2 to a bias term.

When K is chosen as N
1

1+2r2 so that these two terms go to zero at the same rate, which occurs when

K goes to infinity at the same rate as N
1

1+2r2 (and the side condition ζ0(K)2K/N → 0 is satisfied),

the convergence rate will be N−
r2

1+2r2 .
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Theorem 4. Suppose Assumptions 1–5 hold, as N → ∞ simultaneously, we have

Λ−1/2
u (α̂(u)− α∗(u)) L−→ N(0, σ2

e0 IK),

where Λu = ζq,K(u)[Z̃′JNT(η0)Z̃]−1Z̃′JNT(η0)B∗−1
NT B∗′−1

NT J′NT(η0)Z̃[Z̃′JNT(η0)Z̃]−1ζ ′q,K(u),
α∗(u) = ζq,K(u)γ0, IK is an identity matrix of dimension K.

4. Simulation Studies

In this section, we report the results of Monte Carlo simulation experiments to examine
the finite sample performance of the proposed estimation method. In order to illustrate the
estimation accuracy of parameters, we use the sample mean (Mean), the sample standard
deviation (SD) and the root mean square error (RMSE) as the evaluation criteria. Here,

RMSE =

(
1

mcn

mcn

∑
i=1

(
θ̂i − θ0

)2
) 1

2

,

where mcn is the simulation times, θ̂i(i = 1, 2, . . . , mcn) are the parametric estimates of each
simulation and θ0 is the true value. For the nonparametric estimates, we consider the mean
absolute deviation error (MADE) as the evaluation criterion which is defined as

MADEj = Q−1
Q

∑
q=1

∣∣ĝj
(
uq
)
− gj

(
uq
)∣∣, j = 1, 2, . . . , mcn,

where
{

uq
}Q

q=1 are Q fixed grid points at support set of u.

Example 1. The first example is to evaluate the performance of the estimation procedure. Consider
the following data-generated processes:

yit = xit1β1 + xit2β2 + zit1α1(uit) + zit2α2(uit) + bi + εit,

εit = ρ
N

∑
j=1

wijε jt + λεi,t−1 + eit,
(12)

where xitp ∼ U[−2, 2](p = 1, 2), zitq ∼ U[−2, 2](q = 1, 2), uit ∼ U[−3, 3], bi ∼ i.i.d.N(0, 1),
eit ∼ i.i.d.N(0, 0.5), the link functions α1(uit) = 0.5uit + sin(1.5uit) and α2(uit) = u2

it + 0.5uit,
(β1, β2) = (1, 1.5). As in Su [44], the spatial weighting matrix is set to the Rook weight matrix.
Sample size is T = 10, 15, 20 and N = 25, 49, 81. For each case, we ran 500 simulations. The R
software was used.

Table 1 summarizes Means, Medians, SDs and RMSEs for parametric estimates of β̂1, β̂2, ρ̂, λ̂
and σ̂2

e when the true values of spatial correlation coefficient and serial correlation coefficient are set
as (ρ, λ) = (0.4, 0.4), (0.2, 0.7) and (0.7, 0.2), respectively. Tables 2 and 3 give the median and SD
of MADE values of α̂1(u) and α̂2(u) at 20 fixed grid points in all cases, respectively. We have the
following finds: (1) The estimates of β1, β2, ρ, λ, σ2

e are close to true values for all cases; (2) SDs and
RMSEs for β̂1, β̂2, ρ̂, λ̂, σ̂2

e are fairly small for all cases; (3) For fixed T(or N), as N(or T) increased,
the SDs and RMSEs for estimates of all parameters decrease; (4) The SDs and Medians for 500
MADEs of α̂1(u) and α̂2(u) at 20 fixed grid points decrease as T or N is increased. Based on these
findings, we conclude that the estimates of all parameters and varying coefficient functions are fairly
close to their true values, and the deviations decrease with increasing of sample size. Overall, our
proposed estimators for the model (12) perform well in finite sample cases.
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Table 1. Simulation results of parametric estimates β̂1, β̂2, ρ̂, λ̂ and σ̂2
e .

T = 10 T = 15 T = 20

N Parameter (ρ, λ) (0.2, 0.7) (0.4, 0.4) (0.7, 0.2) (0.2, 0.7) (0.4, 0.4) (0.7, 0.2) (0.2, 0.7) (0.4, 0.4) (0.7, 0.2)

25 β1 Mean 0.9998 0.9993 0.9990 0.9994 0.9978 0.9968 0.9999 0.9998 0.9999
Median 0.9985 0.9962 1.0002 1.0004 0.9987 0.9989 1.0002 1.0003 1.0003

SD 0.0344 0.0391 0.0399 0.0277 0.0310 0.0309 0.0235 0.0261 0.0259
RMSE 0.0344 0.0390 0.0398 0.0277 0.0310 0.0310 0.0235 0.0260 0.0259

β2 Mean 1.4971 1.4972 1.4963 1.4976 1.4978 1.4983 1.5015 1.5011 1.5004
Median 1.4970 1.4940 1.4960 1.4984 1.4978 1.4975 1.5018 1.5017 1.5007

SD 0.0357 0.0394 0.0380 0.0273 0.0300 0.0296 0.0231 0.0257 0.0257
RMSE 0.0357 0.0395 0.0381 0.0273 0.0300 0.0296 0.0231 0.0257 0.0257

ρ Mean 0.2513 0.4282 0.7199 0.2354 0.4139 0.7103 0.2303 0.4125 0.7089
Median 0.2489 0.4335 0.7214 0.2385 0.4162 0.7130 0.2317 0.4115 0.7060

SD 0.0948 0.0640 0.0396 0.0713 0.0465 0.0279 0.0601 0.0417 0.0236
RMSE 0.1076 0.0698 0.0443 0.0795 0.0484 0.0297 0.0671 0.0435 0.0252

λ Mean 0.7598 0.4237 0.2022 0.7423 0.4153 0.2029 0.7339 0.4091 0.1984
Median 0.7625 0.4368 0.1995 0.7484 0.4101 0.1965 0.7339 0.4054 0.2000

SD 0.0921 0.0955 0.0592 0.0723 0.0616 0.0409 0.0626 0.0526 0.0316
RMSE 0.1096 0.0982 0.0591 0.0837 0.0633 0.0410 0.0711 0.0533 0.0316

σ2
e Mean 0.4196 0.4020 0.3950 0.4483 0.4366 0.4334 0.4608 0.4507 0.4473

Median 0.4172 0.4139 0.3944 0.4490 0.4388 0.4368 0.4606 0.4501 0.4496
SD 0.0438 0.0443 0.0470 0.0385 0.0361 0.0383 0.0349 0.0313 0.0328

RMSE 0.0915 0.1075 0.1149 0.0644 0.0729 0.0768 0.0524 0.0584 0.0621

49 β1 Mean 1.0005 1.0012 1.0017 0.9984 0.9984 0.9994 0.9993 0.9991 1.0006
Median 0.9994 1.0026 1.0036 0.9991 0.9998 0.9980 1.0003 0.9989 0.9999

SD 0.0267 0.0293 0.0286 0.0185 0.0207 0.0209 0.0176 0.0195 0.0175
RMSE 0.0267 0.0293 0.0286 0.0185 0.0207 0.0209 0.0176 0.0194 0.0175

β2 Mean 1.5010 1.5006 1.5002 1.5014 1.5011 1.5008 1.4982 1.4977 1.5027
Median 1.5009 1.4944 1.5011 1.5009 1.5015 1.5022 1.4981 1.4970 1.5007

SD 0.0264 0.0290 0.0283 0.0187 0.0204 0.0215 0.0159 0.0179 0.0181
RMSE 0.0264 0.0290 0.0283 0.0187 0.0204 0.0216 0.0159 0.0180 0.0181

ρ Mean 0.2545 0.4213 0.7109 0.2456 0.4135 0.7064 0.2347 0.4042 0.7059
Median 0.2538 0.4209 0.7133 0.2446 0.4110 0.7079 0.2297 0.4023 0.7064

SD 0.0728 0.0466 0.0321 0.0645 0.0403 0.0233 0.0556 0.0282 0.0168
RMSE 0.0908 0.0512 0.0338 0.0789 0.0424 0.0241 0.0655 0.0285 0.0177

λ Mean 0.7540 0.4207 0.2089 0.7482 0.4079 0.1997 0.7410 0.4066 0.1961
Median 0.7533 0.4122 0.1995 0.7446 0.3983 0.1944 0.7468 0.4042 0.1959

SD 0.0780 0.0847 0.0512 0.0661 0.0481 0.0353 0.0570 0.0388 0.0272
RMSE 0.0947 0.0900 0.0519 0.0817 0.0486 0.0354 0.0701 0.0393 0.0275

σ2
e Mean 0.4412 0.4291 0.4238 0.4680 0.4526 0.4481 0.4759 0.4650 0.4582

Median 0.4378 0.4205 0.4179 0.4649 0.4536 0.4452 0.4714 0.4614 0.4590
SD 0.0378 0.0350 0.0393 0.0319 0.0277 0.0311 0.0290 0.0261 0.0252

RMSE 0.0692 0.0790 0.0857 0.0551 0.0549 0.0605 0.0417 0.0436 0.0488

81 β1 Mean 1.0013 1.0016 1.0018 0.9995 0.9996 1.0000 1.0001 1.0001 0.9997
Median 1.0004 1.0029 1.0036 1.0002 0.9999 1.0003 1.0002 1.0003 1.0003

SD 0.0205 0.0223 0.0216 0.0156 0.0175 0.0175 0.0126 0.0146 0.0145
RMSE 0.0205 0.0223 0.0216 0.0156 0.0175 0.0175 0.0126 0.0146 0.0145

β2 Mean 1.5012 1.5017 1.5019 1.4996 1.4993 1.4991 1.5002 1.5006 1.5005
Median 1.5023 1.5023 1.5022 1.5000 1.5007 1.5009 1.5009 1.5014 1.5007

SD 0.0197 0.0219 0.0215 0.0147 0.0160 0.0158 0.0127 0.0141 0.0139
RMSE 0.0197 0.0219 0.0215 0.0147 0.0160 0.0157 0.0127 0.0141 0.0139

ρ Mean 0.2654 0.4161 0.7087 0.2489 0.4096 0.7049 0.2463 0.4072 0.7042
Median 0.2458 0.4184 0.7099 0.2497 0.4079 0.7058 0.2455 0.4071 0.7060

SD 0.0624 0.0333 0.0252 0.0522 0.0259 0.0163 0.0492 0.0214 0.0161
RMSE 0.0767 0.0370 0.0266 0.0714 0.0276 0.0170 0.0551 0.0225 0.0166

λ Mean 0.7556 0.4190 0.2088 0.7519 0.4076 0.2016 0.7427 0.4044 0.2013
Median 0.7505 0.4002 0.2006 0.7507 0.4025 0.1973 0.7453 0.4037 0.2000

SD 0.0723 0.0688 0.0442 0.0531 0.0425 0.0274 0.0443 0.0289 0.0231
RMSE 0.0911 0.0712 0.0450 0.0742 0.0430 0.0274 0.0598 0.0292 0.0231

σ2
e Mean 0.4518 0.4362 0.4340 0.4724 0.4577 0.4565 0.4779 0.4654 0.4649

Median 0.4485 0.4333 0.4287 0.4726 0.4570 0.4558 0.4753 0.4656 0.4650
SD 0.0366 0.0305 0.0338 0.0254 0.0223 0.0236 0.0202 0.0174 0.0220

RMSE 0.0604 0.0707 0.0742 0.0475 0.0478 0.0495 0.0335 0.0387 0.0414
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Figures 2 and 3 present the fitting results and 95% confidence intervals of α1(u) and α2(u)
under N = 49 (or 81) and T = 15 (or 20), where the short dashed curves in black are the average
fits over 500 simulations by PQMLE, the solid curves in red are the true values of nonparametric
functions and the two long dashed curves in black are the corresponding 95% confidence bands.
We can see that the short dashed curve is close to the solid curve, and the confidence bandwidth
gradually becomes narrow with the increase of the sample size. They indicate that the nonparametric
estimation procedure is feasible in the case of small samples.

Table 2. The Medians and SDs of MADE values for α̂1(u).

T = 10 T = 15 T = 20

(ρ, λ) N = 25 N = 49 N = 81 N = 25 N = 49 N = 81 N = 25 N = 49 N = 81

(0.2, 0.7) Median 0.0782 0.0553 0.0443 0.0622 0.0426 0.0347 0.0553 0.0405 0.0310
SD 0.0203 0.0148 0.0113 0.0174 0.0105 0.0096 0.0157 0.0101 0.0080

(0.4, 0.4) Median 0.0853 0.0604 0.0488 0.0693 0.0473 0.0379 0.0628 0.0445 0.0337
SD 0.0219 0.0159 0.0121 0.0193 0.0116 0.0110 0.0177 0.0112 0.0092

(0.7, 0.2) Median 0.0835 0.0588 0.0495 0.0670 0.0491 0.0383 0.0627 0.0424 0.0334
SD 0.0217 0.0150 0.0117 0.0187 0.0128 0.0108 0.0177 0.0107 0.0090

Table 3. The Medians and SDs of MADE values for α̂2(u).

T = 10 T = 15 T = 20

(ρ, λ) N = 25 N = 49 N = 81 N = 25 N = 49 N = 81 N = 25 N = 49 N = 81

(0.2, 0.7) Median 0.0776 0.0532 0.0444 0.0683 0.0442 0.0350 0.0563 0.0378 0.0306
SD 0.0213 0.0152 0.0115 0.0183 0.0115 0.0091 0.0143 0.0112 0.0078

(0.4, 0.4) Median 0.0856 0.0599 0.0480 0.0672 0.0498 0.0384 0.0618 0.0426 0.0336
SD 0.0231 0.0166 0.0125 0.0198 0.0128 0.0099 0.0153 0.0123 0.0088

(0.7, 0.2) Median 0.0846 0.0606 0.0476 0.0653 0.0460 0.0375 0.0607 0.0413 0.0329
SD 0.0226 0.0159 0.0129 0.0191 0.0113 0.0097 0.0153 0.0115 0.0090

Example 2. The second example is used to show that misspecification for the model (12) will lead
to inconsistent parameter estimates. Here are the three most likely misspecified models, which
ignore the spatial correlation, serial correlation and spatio-temporal correlations in the model (12),
respectively: {

yit = xit1β1 + xit2β2 + zit1α1(uit) + zit2α2(uit) + bi + εit,

εit = λεi,t−1 + eit,
(13)


yit = xit1β1 + xit2β2 + zit1α1(uit) + zit2α2(uit) + bi + εit,

εit = ρ
N

∑
j=1

wijε jt + eit,
(14)

yit = xit1β1 + xit2β2 + zit1α1(uit) + zit2α2(uit) + bi + eit, (15)

where all variables in the above models are the same as the model (12). No loss of generality, we only
study the case that ρ = 0.4 and λ = 0.4. Additionally, we set N = 25, 49, T = 10 and mcn = 500.
The experimental results are presented in Table 4.
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Figure 2. The fitting results and 95% confidence intervals of α1(u) in the model (12).



Mathematics 2023, 11, 1531 13 of 24

−
2

0
2

4
6

8
1
0

1
2

−3 −2 −1 0 1 2 3

N=49,T=10,ρ = 0.2,λ = 0.7

−
2

0
2

4
6

8
1
0

1
2

−3 −2 −1 0 1 2 3

N=49,T=10,ρ = 0.4,λ = 0.4

−
2

0
2

4
6

8
1
0

1
2

−3 −2 −1 0 1 2 3

N=49,T=20,ρ = 0.2,λ = 0.7

−
2

0
2

4
6

8
1
0

1
2

−3 −2 −1 0 1 2 3

N=49,T=20,ρ = 0.4,λ = 0.4

−
2

0
2

4
6

8
1
0

1
2

−3 −2 −1 0 1 2 3

N=81,T=10,ρ = 0.2,λ = 0.7

−
2

0
2

4
6

8
1
0

1
2

−3 −2 −1 0 1 2 3

N=81,T=10,ρ = 0.4,λ = 0.4

−
2

0
2

4
6

8
1
0

1
2

−3 −2 −1 0 1 2 3

N=81,T=20,ρ = 0.2,λ = 0.7

−
2

0
2

4
6

8
1
0

1
2

−3 −2 −1 0 1 2 3

N=81,T=20,ρ = 0.4,λ = 0.4

Figure 3. The fitting results and 95% confidence intervals of α2(u) in the model (12).

Table 4 lists the Means, Medians, SDs, RMSEs and MRs of parameter estimates in the
models (12)–(15), where MR is the growth rate of RMSE on the basis of that in the model (12).



Mathematics 2023, 11, 1531 14 of 24

From Table 4, we can see that: (1) The Means and Medians for the estimates of all parameters in
the model (12) are closer to true values as sample size increases. However, it is easy to see that
the Means and Medians of β̂1, β̂2, ρ̂, λ̂ and σ̂2

e in the models (13)–(15) do not converge with the
increasing of N, indicating that they are not stable. (2) The SDs and RMSEs of almost all parameter
estimators in the models (13)–(15) are larger than that in the model (12). In particular, the SDs
and RMSEs of σ̂2

e do not decrease with the increasing of sample size. (3) MRs of most parameter
estimators are greater than 0% and increase with the increasing of sample size, especially for β̂2, ρ̂
and σ̂2

e . In addition, MRs of σ̂2
e in the models (13) and (14) are less than 0%, which again indicates

that the estimator of σ2
e is unstable. It can be concluded that model misspecification would result

in inconsistent parameter estimators. It further indicates that our proposed model is more effective
and reliable.

Table 4. Simulation results of parametric estimates for the models (12)–(15).

N = 25,T=10 N = 49,T=10

Model β1 β2 ρ λ σ2
e β1 β2 ρ λ σ2

e

Model
(12) Mean 1.9993 1.4972 0.4282 0.4237 0.4020 1.0012 1.5006 0.4213 0.4207 0.4291

Median 0.9962 1.4940 0.4335 0.4368 0.4139 1.0016 1.4944 0.4209 0.4122 0.4205
SD 0.0391 0.0394 0.0640 0.0955 0.0443 0.0293 0.0290 0.0466 0.0847 0.0350

RMSE 0.0390 0.0395 0.0698 0.0982 0.1075 0.0293 0.0290 0.0512 0.0900 0.0790
Model

(13) Mean 0.9989 1.4996 - 0.5610 0.5508 1.0011 1.5012 - 0.5456 0.5735

Median 0.9981 1.4985 - 0.5649 0.5485 1.0026 1.4924 - 0.5689 0.5778
SD 0.0429 0.0464 - 0.1066 0.0671 0.0324 0.0328 - 0.0694 0.0499

RMSE 0.0428 0.0463 - 0.1930 0.0841 0.0324 0.0328 - 0.1612 0.0888
MR 97.4% 17.21% - 96.54% −21.77% 10.58% 13.10% - 79.11% 12.41%

Model
(14) Mean 0.9984 1.4956 0.4145 - 0.4145 1.0009 1.5003 0.4542 - 0.4410

Median 0.9961 1.4939 0.4667 - 0.4139 1.0006 1.5003 0.4567 - 0.4379
SD 0.0440 0.0426 0.0670 - 0.0499 0.0310 0.0328 0.0448 - 0.0351

RMSE 0.0439 0.0427 0.0942 - 0.0989 0.0310 0.0328 0.0703 - 0.0686
MR 12.56% 8.10% 34.96% - −8.00% 5.80% 13.10% 37.30% - −13.16%

Model
(15) Mean 0.9969 1.4991 - - 0.6073 1.0000 1.5007 - - 0.6309

Median 0.9964 1.4982 - - 0.5955 0.9987 1.5032 - - 0.6278
SD 0.0550 0.0544 - - 0.0953 0.0368 0.0408 - - 0.0677

RMSE 0.0549 0.0543 - - 0.1434 0.0367 0.0407 - - 0.1473
MR 40.76% 37.46% - - 33.39% 25.25% 40.34% - - 86.45%

Note: True values (β10, β20, σ2
e0)
′ = (1, 1.5, 0.5)′ for the models (12)–(15), λ0 = 0.4 for the model (13) and ρ0 = 0.4

for the model (14).

5. Real Data Analysis

In this section, we employ the proposed model and its estimation method to study the
driving forces of Chinese resident consumption rate. This dataset was collected on 1 August
2022) from the China Statistical Yearbook (http://www.stats.gov.cn/sj/ndsj/) for 2008 to
2020 and covers 30 provincial administrative regions (except Tibet, Taiwan, Hong Kong
and Macau). Based on the research results drawn by Ding and Chen [45] and Ding [46], let
YC be response variable and LR, CR, ER, GR and TR be regressors. There is no doubt that
per capita disposable income has an important impact on the resident consumption rate.
Therefore, we assume that the impacts of the above regressors on resident consumption
rate may be realized through per capita disposable income and IR is selected as their
intermediate variable. The definitions of these variables and their meanings are given in
Table 5.

http://www.stats.gov.cn/sj/ndsj/
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Table 5. Variable definitions and their meanings.

Response Variable Definition

YC The ratio of resident consumption to GDP

Regressors Definition

LR The ratio of the population over 65 to the
population between 14 and 65

CR The ratio of the population under 14 to the
population between 14 and 65

ER The ratio of the population with junior college
degree or above to total population

GR The ratio of the male population to total
population

TR The ratio of the tertiary industry to GDP

Intermediate Variable Definition

IR Growth rate of per capita disposable income

Firstly, Table 6 and Figure 4 show the descriptive statistics of the response variable, five
regressors and intermediate variable. From observing Table 6, we can draw the conclusion
that LR, CR, ER, GR, TR and IR are steady, as well as concluding that GR has a small
fluctuation range. In addition, Figure 4 presents the scatter plots between YC versus each
regressor (LR, CR, ER, GR and TR). It can be found that the regressor LR has a linear
effect on the response variable YC. The rest of the regressors have nonlinear effects on the
response variable YC.

Table 6. The descriptive statistics of the response variable, five regressors and intermediate variable.

Min 1st Qu. Median Mean 3rd Qu. Max SD Range

YC 0.2160 0.3260 0.3609 0.3642 0.4001 0.5811 0.0579 0.3651
LR 0.0744 0.1132 0.1361 0.1407 0.1612 0.2548 0.0351 0.1804
CR 0.0965 0.1791 0.2311 0.2289 0.2767 0.3981 0.0639 0.3016
ER 0.0285 0.0806 0.1063 0.1219 0.1398 0.4769 0.0698 0.4484
GR 0.4873 0.5057 0.5108 0.5117 0.5168 0.5519 0.0091 0.0645
TR 0.2830 0.3875 0.4461 0.4581 0.5100 0.8400 0.0990 0.5570
IR −0.0285 0.0795 0.0890 0.0946 0.1162 0.2038 0.0355 0.2323
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Figure 4. Scatter plots of the response variable versus five regressors, respectively.
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Based on the above comprehensive analysis, the study on driving forces of Chinese
resident consumption rate can be analyzed by establishing the following PLVCPDRM with
nonseparable space-time filters:

YCit = LRitβ + CRitα1(IRit) + ERitα2(IRit) + GRitα3(IRit) + TRitα4(IRit) + bi + εit

εit = ρ
N

∑
j=1

wijε jt + λεi,t−1 + eit, i = 1, . . . , 30, t = 1, . . . , 13,
(16)

where W = (wij)30×30 is a normalized spatial weight matrix calculated by the Euclidean
distance in the light of the longitude and latitude coordinates of any two provinces.

Table 7 reports the estimation results of parameters in the model (16). It can be seen
that ρ̂ = 0.6126 and λ̂ = 0.3674 are significant. Namely, it indicates that there exist strong
and positive spatial and serial correlations among the disturbance terms in the model (16).
Furthermore, β̂ = −0.1751 < 0 is significant, which means that the linear effect of LR on
the resident consumption rate is negative. Figure 5 shows the varying coefficient effects of
CR, ER, GR and TR to YC and their 95% confidence intervals. It can be seen that CR, ER,
GR and TR have obvious nonlinear effects on resident consumption rate with IR.

Table 7. Estimation results of parameters in the model (16).

β ρ λ σ2
e

Estimator −0.1751 *** 0.6126 *** 0.3674 *** 0.0005 ***
SD 0.1072 0.1432 0.0329 9.6963 × 10−5

Notes: *** represents that the regressor is significant under the significance level 1%.
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Figure 5. Varying coefficient effects of CR, ER, GR and TR to YC and their 95% confidence intervals,
respectively.

6. Concluding Remarks

In order to sufficiently use the information of spatial and serial correlations in the dis-
turbances when modeling space-time data by regression models, we propose a fixed effects
PLVCPDRM with nonseparable space-time filters. It can not only simultaneously capture
non/linear effects of regressors and space-time correlations of error structure, but also
overcome the “curse of dimensionality” in multivariate nonparametric regression models.
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In this paper, the PQMLEs of unknown parameters and varying coefficient functions
for this model are constructed. Under the regular assumptions, we prove that the estimators
satisfy consistency and asymptotic normality. Monte Carlo simulations show that the
proposed estimators have good finite sample performances. In addition, ignoring spatial
and serial correlations in errors of the model would result in inconsistent and inefficient
estimators. Finally, a Chinese resident consumption rate dataset is used to illustrate our
estimation method.

This paper mainly focuses on the estimation of a fixed effects PLVCPDRM with
nonseparable space-time filters. In the future, we may study the methods of variable
selection, Bayesian estimation and quantile regression for the proposed model in our paper;
we can also use the proposed method to study similar semiparametric panel data regression
models with space-time filters.
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Appendix A

To prove the theoretical results, the following facts and lemma will be used frequently
in the sequel.

Fact 1: If A1,NT and A2,NT are NT × NT matrices that are uniformly bounded in row
sums (resp., column sums), then A1,NT A2,NT is also uniformly bounded in row sums (resp.,
column sums).

Fact 2: If A1,NT is uniformly bounded in row sums (resp., column sums) and A2,NT is
a conformable matrix whose elements are uniformly O(oNT), then so are the elements of
A1,NT A2,NT (resp. A2,NT A1,NT).

The above two Facts can be found in Su and Jin [35].

Lemma A1. Under Assumptions 1–3, we have that

(i) Z̃′Z̃/NT − IK = OP

(
ζ0(K)

√
K/
√

N
)

.

(ii) Z̃′JNT(η0)Z̃/NT − IK = OP

(
ζ0(K)

√
K/
√

N
)

.

Proof. (i) See the proof of Theorem 1 in Newey [40] (pp. 161–162); (ii) It follows from
Assumption 3(i) by similar proof of (i).

Proof of Theorem 1. Substituting ε(β, γ) = ε + X(β0 − β) + Z̃(γ0 − γ) into the quasi-log-
likelihood function (6), we have that
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log LN,T(θ) =−
N(T − 1)

2
log
(

2πσ2
e

)
+ (T − 1) log|SN(ρ)| −

1
2

log|ΩN,T−1(η)|

− 1
2σ2

e
ε′JNT(η)ε−

1
σ2

e
ε′JNT(η)[X(β0 − β) + Z̃(γ0 − γ)]

− 1
2σ2

e
[X(β0 − β) + Z̃(γ0 − γ)]′JNT(η)[X(β0 − β) + Z̃(γ0 − γ)]

= log LNT,1(θ) + log LNT,2(θ) + log LNT,3(θ),

where

log LNT,1(θ) =−
N(T − 1)

2
log
(

2πσ2
e

)
+ (T − 1) log|SN(ρ)| −

1
2

log|ΩN,T−1(η)|

− 1
2σ2

e
ε′JNT(η)ε,

log LNT,2(θ) = −
1
σ2

e
ε′JNT(η)[X(β0 − β) + Z̃(γ0 − γ)],

log LNT,3(θ) = −
1

2σ2
e
[X(β0 − β) + Z̃(γ0 − γ)]′JNT(η)[X(β0 − β) + Z̃(γ0 − γ)].

In order to prove that 1
N(T−1)

log LN,T(θ) − QN,T(θ)
P→ 0 uniformly for θ, it is suffi-

cient to prove that 1
N(T−1) log LNT,j(θ)− QNT,j(θ)

P→ 0 uniformly for θ according to that

log LNT,3(θ) is deterministic by Assumption 4, where QNT,j(θ) = E 1
N(T−1) log LNT,j(θ),

j = 1, 2. For case j = 1, as ε = B∗−1
NT FNT,N(T+m)eN,T+m, we have that

1
N(T − 1)

log LNT,1(θ)−QNT,1(θ)

=− 1
2σ2

e

[
1

N(T − 1)
e′N,T+mF′NT,N(T+m)B

∗−1′
NT JNT(η)B∗−1

NT FNT,N(T+m)eN,T+m

−E
1

N(T − 1)
e′N,T+mF′NT,N(T+m)B

∗−1′
NT JNT(η)B∗−1

NT FNT,N(T+m)eN,T+m

]
.

By using Lemma 7 in Yu et al. [47], we have that 1
N(T−1) log LNT,1(θ)−QNT,1(θ)

P→ 0 uni-

formly for θ when T is fixed due to the explicit forms of FNT,N(T+m), B∗−1
NT and JNT(η) which

are UB from Assumption 4. For case j = 2, similarly, as B∗−1
NT and JNT(η) are UB, using

Lemma 8 in Yu et al. [47], we have that 1
N(T−1) e′N,T+mF′NT,N(T+m)B

∗−1′
NT JNT(θ)[X(β0 − β) +

Z̃(γ0 − γ)]
P→ 0 when T is fixed.

To prove that QN,T(θ) is uniformly equicontinuous, we just need to investigate
QNT,1(θ) and QNT,3(θ) according to that QNT,2(θ) = 0. It is easy to know that

QNT,1(θ) =−
1
2

log
(

2πσ2
e

)
+

1
N

log|SN(ρ)| −
1

2N(T − 1)
log|ΩN,T−1(η)|

− 1
2σ2

e N(T − 1)
E
[
e′N,T+mF′NT,N(T+m)B

∗−1′
NT JNT(η)B∗−1

NT FNT,N(T+m)eN,T+m

]
.

It is obvious that − 1
2 log

(
2πσ2

e
)
+ 1

N log|SN(ρ)| is uniformly equicontinuous for η and σ2
e ,

so is log|ΩN,T−1(η)|. Furthermore, we know that

E[e′N,T+mF′NT,N(T+m)B
∗−1′
NT JNT(η)B∗−1

NT FNT,N(T+m)eN,T+m] = σ2
e0 tr[B∗−1′

NT JNT(η)B∗−1
NT ]
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by FNT,N(T+m)F′NT,N(T+m) = I. With the explicit form of JNT(η), 1
σ2

e
tr[B∗−1′

NT JNT(η)B∗−1
NT ] is

uniformly equicontinuous for η and σ2
e . Thus, QNT,1(θ) is uniformly equicontinuous for θ

and σ2
e . For QNT,3(θ), we find that QNT,3(θ) is a linear quadratic form of parameters β and

γ, and a function of JNT(η). Thus, it is uniformly equicontinuous for θ.
To prove identification uniqueness of θ0, note that

E
1

N(T − 1)
log LN,T(θ)− E

1
N(T − 1)

log LN,T(θ0) ≡ TNT,1

(
η, σ2

e

)
+ TNT,2(θ), (A1)

where

TNT,1

(
η, σ2

e

)
=− 1

2N(T − 1)
log
∣∣∣σ2

e ΩN,T−1(η)
∣∣∣+ 1

N
log|SN(ρ)|+

1
2N(T − 1)

log
∣∣∣σ2

e0ΩN,T−1

∣∣∣− 1
N

ln|SN |

− 1
2σ2

e N(T − 1)
E
[
e′N,T+mF′NT,N(T+m)B

∗−1′
NT JNT(η)B∗−1

NT FNT,N(T+m)eN,T+m

]
+

1
2

and

TNT,2(θ) = −
1

2σ2
e N(T − 1)

[
X(β0 − β) + Z̃(γ0 − γ)

]′
JNT(η)

[
X(β0 − β) + Z̃(γ0 − γ)

]
.

Consider an auxiliary nonseparable space-time disturbance process: εNt = ρWεNt +
λεN,t−1 + eNt(t = 1, . . . , T), where its quasi-log-likelihood function is

log Lp,NT(η, σ2
e ) =−

N(T − 1)
2

log
(

2πσ2
e

)
+ (T − 1) log|SN(ρ)| −

1
2

log|ΩN,T−1(η)|

− 1
2σ2

e
ε′JNT(η)ε.

According to the information inequality for the auxiliary nonseparable space-time distur-
bance process, we know that TNT,1

(
η, σ2

e
)
≤ 0 for any η and σ2

e . Additionally, TNT,2(θ) is a
quadratic function of β and α with a negative semidefinite matrix given θ. We can find that
identification uniqueness of β0 and γ0 would be possible when

lim
N→∞

1
N(T − 1)

[X, Z̃]′JNT(η)[X, Z̃]

is nonsingular given any value of η in Assumption 5 (iv), then TNT,2(θ) < 0 for any β 6= β0
and γ 6= γ0. In addition, when

lim
N→∞

TNT,1

(
η, σ2

e

)
6= 0

for
(
η, σ2

e
)′ 6= (η0, σ2

e0
)′ in Assumption 6 is satisfied, the identification uniqueness of η0 and

σ2
e0 is obtained. This completes the proof.

Proof of Theorem 2. Denote θ∗ = (β′, ρ, λ, σ2
e )
′ and θ∗0 = (β′0, ρ0, λ0, σ2

e0)
′. According to

the Taylor expansion of the first-order condition from maximizing the quasi-log-likelihood
function

log LN,T(θ
∗) =− N(T − 1)

2
log
(

2πσ2
e

)
− 1

2
log|IN + (T − 1)(KN(η)− IN)|

+ (T − 1) log|SN(ρ)| −
1

2σ2
e
[Y− Xβ]′(I − Sη)

′JNT(η)(I − Sη)[Y− Xβ],
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we have

√
N(T − 1)

(
θ̂∗ − θ∗0

)
= −

(
1

N(T − 1)
∂2 log LN,T(θ̃

∗
NT)

∂θ∗∂θ∗′

)−1
1√

N(T − 1)

∂ log LN,T(θ
∗
0 )

∂θ∗
,

where θ̃∗NT lies between θ̂∗ and θ∗0 and converges to θ∗0 in probability by Theorem 1. The
proof is completed if we can show that

1√
N(T − 1)

∂ log LN,T(θ
∗
0 )

∂θ∗
L→ N

(
0, Σθ∗0

+ Ωθ∗0

)
, (A2)

1
N(T − 1)

∂2 log LN,T(θ
∗
0 )

∂θ∗∂θ∗′
− Σθ∗0

= oP(1) (A3)

and

1
N(T − 1)

∂2 log LN,T(θ̃
∗
NT)

∂θ∗∂θ∗′
− 1

N(T − 1)
∂2 log LN,T(θ

∗
0 )

∂θ∗∂θ∗′
= oP(1) uniformly in θ̃∗NT . (A4)

To prove that (A2)–(A4) hold, we need to compute the following scores under the
non-normality of errors:

∂ log LN,T(θ
∗
0 )

∂β
=

1
σ2

e0
X′(I − Sη0)

′JNT(I − Sη0)B∗−1
NT FNT,N(T+m)eN,T+m + oP(1),

∂ log LN,T(θ
∗
0 )

∂ρ
=− 1

2σ2
e0

e′N,T+mF′NT,N(T+m)B
∗−1′
NT (I − Sη0)

′ ∂JNT
∂ρ

(I − Sη0)B∗−1
NT FNT,N(T+m)eN,T+m

− (T − 1) tr
(

WS−1
N

)
− 1

2
tr
(

K−1
N

∂KN
∂ρ

)
+ oP(1),

∂ log LN,T(θ
∗
0 )

∂λ
=− 1

2σ2
e0

e′N,T+mF′NT,N(T+m)B
∗−1′
NT (I − Sη0)

′ ∂JNT
∂λ

(I − Sδ0)B∗−1
NT FNT,N(T+m)eN,T+m

− 1
2

tr
(

K−1
N

∂KN
∂λ

)
+ oP(1),

∂ log LN,T(θ
∗
0 )

∂σ2
e

=
1

2σ4
e0

e′N,T+mF′NT,N(T+m)B
∗−1′
NT (I − Sη0)

′JNT(I − Sη0)B∗−1
NT FNT,N(T+m)eN,T+m

− N(T − 1)
2σ2

e0
+ oP(1).

Defining

∆NT ≡
[

vec(F′NT,N(T+m)B
∗−1′
NT (I − Sη0)

′ ∂JNT
∂ρ

(I − Sη0)B∗−1
NT FNT,N(T+m)),

vec(F′NT,N(T+m)B
∗−1′
NT (I − Sη0)

′ ∂JNT
∂λ

(I − Sη0)B∗−1
NT FNT,N(T+m)),

− 1
σ2

e0
vec(F′NT,N(T+m)B

∗−1′
NT (I − Sη0)

′JNT(I − Sη0)B∗−1
NT FNT,N(T+m))

]′
×
[

vec((F′NT,N(T+m)B
∗−1′
NT (I − Sη0)

′ ∂JNT
∂ρ

(I − Sη0)B∗−1
NT FNT,N(T+m))

s),

vec((F′NT,N(T+m)B
∗−1′
NT (I − Sη0)

′ ∂JNT
∂λ

(I − Sη0)B∗−1
NT FNT,N(T+m))

s),

− 1
σ2

e0
vec((F′NT,N(T+m)B

∗−1′
NT (I − Sη0)

′JNT(I − Sη0)B∗−1
NT FNT,N(T+m))

s)

]
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and As = A+A′ for any square matrix A, we can obtain the expected Hessian matrix

Σθ∗0
=

1
N(T − 1)

(
1

σ2
e0

X′(I − Sη0)
′JNT(I − Sη0)X 0p×3

∗ 1
4 ∆NT

)
(A5)

which is a symmetric matrix.
According to the above results, it is not hard to obtain that

E
[

1
N(T − 1)

∂ log LN,T(θ
∗
0 )

∂θ∗
∂ log LN,T(θ

∗
0 )

∂θ∗′

]
= Σθ∗0

+ Ωθ∗0
+ oP(1),

where Ωθ∗0
is related to the third and fourth moments of eit. The expression of Ωθ∗0

is as
follows

Ωθ∗0
=

1
N(T − 1)

 0p×p
µ3
σ4

e0
X′(I − Sη0)

′JNT B∗−1
NT FNT,N(T+m)P

∗ (µ4−3σ4
e0)

σ4
e0
P ′P

, (A6)

where

P =

[
−1

2
vecD(F′NT,N(T+m)B

∗−1′
NT (I − Sδ0)

′ ∂JNT
∂ρ

(I − Sδ0)B∗−1
NT FNT,N(T+m)),

−1
2

vecD(F′NT,N(T+m)B
∗−1′
NT (I − Sδ0)

′ ∂JNT
∂λ

(I − Sδ0)B∗−1
NT FNT,N(T+m)),

1
2σ2

e0
vecD(F′NT,N(T+m)B

∗−1′
NT (I − Sδ0)

′JNT(I − Sδ0)B∗−1
NT FNT,N(T+m))

]

and vecD(A) is the column vector formed by diagonal elements of a square matrix A.

The components of 1√
N(T−1)

∂ log LN,T(θ∗0)
∂θ∗ are linear or quadratic functions of eN,T+m.

(A2) can be proved by the central limit theorem for linear quadratic forms of Theorem 1 in
Kelejian and Prucha [48]. (A3) and (A4) can be proved by applying (38)–(41) in Yu et al. [47].
This completes the proof.

Proof of Theorem 3. Note that η̂ is consistent with η0 in Theorem 1, from the Equation (7),
it holds that

γ̂ =[Z̃′JNT(η0)Z̃]−1Z̃′JNT(η0)[Y− Xβ̂]

=[Z̃′JNT(η0)Z̃]−1Z̃′JNT(η0)[X(β0 − β̂) + (Zα0 − Z̃γ0) + Z̃γ0 + ε]

=[Z̃′JNT(η0)Z̃]−1Z̃′JNT(η0)X(β0 − β̂)

+ [Z̃′JNT(η0)Z̃]−1Z̃′JNT(η0)(Zα0 − Z̃γ0)

+ [Z̃′JNT(η0)Z̃]−1Z̃′JNT(η0)ε + γ0,

(A7)

where Zα0 = (z′11α0(u11), . . . , z′NTα0(uNT))
′. Consider the first term of the last equation

in (A7), let 1N be the indicator function for the smallest eigenvalue of Z̃′Z̃/NT and
Z̃′JNT(η0)Z̃/NT being greater than 1/2. Then, limN→∞ P(1N = 1) = 1. By Assump-
tion 3, Lemma A1 and Fact 2, we have that

1N

∥∥∥[Z̃′JNT(η0)Z̃]−1Z̃′JNT(η0)X(β0 − β̂)
∥∥∥2

=1N(β0 − β̂)′X′JNT(η0)Z̃[Z̃′JNT(η0)Z̃]−2Z̃′JNT(η0)X(β0 − β̂)

=OP(
1

NT
)1N(β0 − β̂)′X′JNT(η0)Z̃[Z̃′JNT(η0)Z̃/NT]−1Z̃′JNT(η0)X(β0 − β̂)/(NT)

≤OP(
1

NT
).

(A8)
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For the second term of last equation in (A7), note that
∥∥∥Zα0 − Z̃γ0

∥∥∥ = OP(K−r2) by As-
sumption 3 (iii), then

1N

∥∥∥[Z̃′JNT(η0)Z̃/NT]−1Z̃′JNT(η0)(Zα0 − Z̃γ0)/NT
∥∥∥

=1N

{
(Zα0 − Z̃γ0)

′JNT(η0)Z̃[Z̃′JNT(η0)Z̃/NT]−
1
2 [Z̃′JNT(η0)Z̃/NT]−1

·[Z̃′JNT(η0)Z̃/NT]−
1
2 Z̃′JNT(η0)(Zα0 − Z̃γ0)/NT

} 1
2

≤OP(1)1N

∥∥∥∥[Z̃′JNT(η0)Z̃/NT
]− 1

2 Z̃′JNT(η0)(Zα0 − Z̃γ0)/NT
∥∥∥∥

=OP(K−r2).

(A9)

For the third term of the last equation in (A7), it suffices to prove

E
{

1N

∥∥∥[Z̃′JNT(η0)Z̃/NT]−
1
2 Z̃′JNT(η0)ε/NT

∥∥∥2
}

=1N E
{

ε′JNT(η0)Z̃[Z̃′JNT(η0)Z̃/NT]−1Z̃′JNT(η0)ε
}

/(NT)2

=1N tr
{

F′NT,N(T+m)B
∗−1′
NT JNT(η0)Z̃[Z̃′JNT(η0)Z̃/NT]−1

· Z̃′JNT(η0)B∗−1
NT FNT,N(T+m)

}
/(NT)2

≤K/NT

by FNT,N(T+m)F′NT,N(T+m) = I and JNT(η0)B∗−1
NT B∗−1′

NT JNT(η0) = JNT(η0). According

to the Markov inequality, it follows that 1N

∥∥∥[Z̃′JNT(η0)Z̃/NT]−
1
2 Z̃′JNT(η0)ε/NT

∥∥∥ =

OP(
√

K/
√

N).
Hence, we have that

1N

∥∥∥[Z̃′JNT(η0)Z̃/NT]−1Z̃′JNT(η0)ε/NT
∥∥∥

≤OP(1)1N

∥∥∥[Z̃′JNT(η0)Z̃/NT]−
1
2 Z̃′JNT(η0)ε/NT

∥∥∥
=OP(

√
K/
√

N).

(A10)

Based on (A8)–(A10), the formula (A7) can be written as

‖γ̂− γ0‖ = OP(
√

K/
√

N) + OP(K−r2). (A11)

By Assumption 3, (A11) and Theorem 2, it is easy to obtain that

1N |α̂(uit)− α0(uit)| = 1N |ζq,K(uit)(γ̂− γ0) + (ζq,K(uit)γ0 − α0(uit))|
≤ 1N |ζq,K(uit)(γ̂− γ0)|+ |(ζq,K(uit)γ0 − α0(uit))|

= OP

(
ζ0(K)

(√
K/
√

N + K−r2
))

.

Proof of Theorem 4. According to (A7), we have

γ̂− γ0 = [Z̃′JNT(η0)Z̃]−1Z̃′JNT(η0)B∗−1
NT e + OP

(√
1/N + K−r2

)
.
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Denote α∗(u) = ζq,K(u)γ0, we know

α̂(u)− α∗(u) = ζq,K(u)[Z̃′JNT(η0)Z̃]−1Z̃′JNT(η0)B∗−1
NT e+OP

(∥∥ζq,K(u)
∥∥(√1/N + K−r2

))
.

For any fixed point u ∈ (a, d), as N → ∞, applying the central limit theorem, we can obtain
that

Λ−1/2
u (α̂(u)− α∗(u)) L−→ N(0, σ2

e0),

where Λu = ζq,K(u)[Z̃′JNT(η0)Z̃]−1Z̃′JNT(η0)B∗−1
NT B∗′−1

NT J′NT(η0)Z̃[Z̃′JNT(η0)Z̃]−1ζ ′q,K(u).
This completes the proof of Theorem 4.
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