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Abstract: Mild cognitive impairment (MCI) precedes the Alzheimer’s disease (AD) continuum,
making it crucial for therapeutic care to identify patients with MCI at risk of progression. We
aim to create generalized models to identify patients with MCI who advance to AD using high-
dimensional-data resting state functional magnetic resonance imaging (rs-fMRI) brain networks and
gene expression. Studies that integrate genetic traits with brain imaging for clinical examination are
limited, compared with most current research methodologies, employing separate or multi-imaging
features for disease prognosis. Healthy controls (HCs) and the two phases of MCI (convertible and
stable MCI) along with AD can be effectively diagnosed using genetic markers. The rs-fMRI-based
brain functional connectome provides various information regarding brain networks and is utilized in
combination with genetic factors to distinguish people with AD from HCs. The most discriminating
network nodes are identified using the least absolute shrinkage and selection operator (LASSO).
The most common brain areas for nodal detection in patients with AD are the middle temporal,
inferior temporal, lingual, hippocampus, amygdala, and middle frontal gyri. The highest degree
of discriminative power is demonstrated by the nodal graph metrics. Similarly, we propose an
ensemble feature-ranking algorithm for high-dimensional genetic information. We use a multiple-
kernel learning support vector machine to efficiently merge multipattern data. Using the suggested
technique to distinguish AD from HCs produced combined features with a leave-one-out cross-
validation (LOOCV) classification accuracy of 93.07% and area under the curve (AUC) of 95.13%,
making it the most state-of-the-art technique in terms of diagnostic accuracy. Therefore, our proposed
approach has high accuracy and is clinically relevant and efficient for identifying AD.

Keywords: Alzheimer’s disease; brain networks node; ensemble features selection; MKL-SVM;
genetics information

MSC: 68U07

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition that influences the brain
tissue responsible for memory, thinking, learning, and behavioral tendencies. AD is an
irreversible progressive disorder that often influences the elderly. Recently, studies on the
prodromal stage, sometimes referred to as mild cognitive impairment (MCI), have attracted
significant attention. Based on recent studies, the overall prevalence of AD is over 60 million
over the previous 50 years [1]. Consequently, numerous studies on AD to comprehend
the underlying development and demonstrate the requirement for early, precise diagnosis
to slow the progression of AD have been conducted, although the procedure cannot
be reversed [2]. MCI and AD can be identified using biomarkers that rely on imaging
techniques, such as positron emission tomography (PET), structural magnetic resonance
imaging (sMRI), and resting-state functional MRI (rs-MRI) [3]. Moreover, genome-wide
association studies (GWASs) have demonstrated that genetic variants, such as single-
nucleotide polymorphisms (SNPs), are the inherent causes of AD owing to their aberrant
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expression in cerebral anatomy and function [4,5]. Accordingly, a multimodal fusion
study to examine the relationship between neuroimaging and gene data might represent a
revolution in the study of AD.

Functional MRI (fMRI) [6] has been widely employed as an imaging modality in
brain research. The blood oxygenation level dependency and real-time in vivo imaging of
brain activity using fMRI are beneficial for the production and analysis of hemodynamic
changes [7]. More can be learned about aberrant network connections between mental and
neurological disorders by examining the functional or structural network topology among
patients. Network analysis techniques are widely used to detect brain abnormalities early
in life [8,9]. In addition, a high-throughput genotyping method of large-scale population
DNA samples was examined in previous studies (GWAS) [10] to detect the gene copy
number variation or SNPs, which are high-density genetic markers. This method effectively
determines disease susceptibility. Genetic variables significantly influence many aspects
of health according to GWAS-based research to evaluate SNPs data for the progression of
AD [11,12]. Dukart et al. [13] achieved an efficiency of 76% using Naive Bayes to distin-
guish between stable and transient MCI using PET as a specific biomarker. The efficiency
increased to approximately 87% when integrating apolipoprotein E (APOE) information
with imaging data. According to Dukart et al., the inclusion of genetic elements can assist
imaging features to achieve higher classification accuracy. Graph theory topological metrics,
which are parts of the brain’s functional connectome, have become crucial imaging biomark-
ers to better understand brain networks and identify neurodegenerative disorders [14,15].
The functional connectome systematically shows that the network’s nodal graph metrics,
such as degree, participation coefficient, and shortest path length; global graph metrics,
such as small world, modularity, and global efficiency; as well as functional connections
among brain regions have disease diagnosis potentials. This offers a novel technique to
spot altered brain network patterns [15,16]. Important aspects of brain networks have
been chosen using sparse approaches, such as the least absolute shrinkage and selection
operator (LASSO), because of the higher number of connectome features in the brain [9].
The LASSO regression analysis approach for feature selection and regularization can be
used to choose nodal graph metrics and preserve strong discriminative nodal features [17].
In the recent past, methods to combine and identify brain regions have been developed
using data-driven techniques and machine learning algorithms. Support vector machines
(SVMs), Naive Bayes [18], and deep neural networks [19] have been used to identify in-
dividuals with MCI and healthy controls (HCs) [20]. However, most of these techniques
isolate only one modality feature, resulting in poor classification performance. Multimodal
characteristics should be utilized to offer a thorough and relevant knowledge of biomarkers
in patients with AD. Multiple-kernel-learning SVM (MKL-SVM) [21] can assess the con-
tributions of peculiar biomarkers to classification and partially ease the high-dimensional
multiple-features problem.

This study presents research on brain network features and genetic information. The
combined analysis of genetic information and brain imaging for predictive identification
faces numerous challenges, including computational and statistical issues [22], as well as
the heterogeneity of different feature modalities. Similarly, models may run into multi-
collinearity issues for likely related high-dimensional genetic variables [23], given that
genetic features with high dimensions sometimes have redundant information. We use the
group-LASSO for brain nodes and ensemble feature selection for genetic information with
MKL-SVM to learn genetic information and brain imaging to increase the precision of AD
diagnosis and fully utilize the information between various modalities. We also compare
the performance of our model with random forest (RF) and extreme gradient boost (XGB)
classifiers. The block diagram of the proposed approach is shown in Figure 1.
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Figure 1. Block diagram of the suggested dementia classification method. 

2. Materials and Methods 
2.1. Data 

The dataset utilized in this experimental study was collected from the Alzheimer’s 
disease neuroimaging initiative (ADNI) database, which contains various neuroimaging 
and genetics datasets. The ADNI collection was accredited by the institutional review 
board (IRB) for each data collection site. To minimize the potential effects of various image 
acquisition and genotyping methods, considering the category balance problem, we eval-
uated participants with brain imaging and genetic data acquired at the same age. Table 1 
shows participants’ demographics that were reviewed in detail in this study. 

Table 1. Detailed demographic information of the participants. 

Group HC MCIs MCIc AD 
Nos. of Subjects 32 33 35 45 

Male/Female 17/15 18/17 20/15 23/22 
Age 74.82 ± 7.13 73.50 ± 7.4 73.35 ± 12 75.67 ± 8.71 
CDR 0 0.5 0.5 ± 0.4 0.7 ± (0.3) 

Education 17.1 16.03 16.50 15.83 

Figure 1. Block diagram of the suggested dementia classification method.

2. Materials and Methods
2.1. Data

The dataset utilized in this experimental study was collected from the Alzheimer’s
disease neuroimaging initiative (ADNI) database, which contains various neuroimaging
and genetics datasets. The ADNI collection was accredited by the institutional review
board (IRB) for each data collection site. To minimize the potential effects of various
image acquisition and genotyping methods, considering the category balance problem,
we evaluated participants with brain imaging and genetic data acquired at the same age.
Table 1 shows participants’ demographics that were reviewed in detail in this study.
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Table 1. Detailed demographic information of the participants.

Group HC MCIs MCIc AD

Nos. of Subjects 32 33 35 45

Male/Female 17/15 18/17 20/15 23/22

Age 74.82 ± 7.13 73.50 ± 7.4 73.35 ± 12 75.67 ± 8.71

CDR 0 0.5 0.5 ± 0.4 0.7 ± (0.3)

Education 17.1 16.03 16.50 15.83

MMSE 18.30 ± 5.1 29 ± 1.0 24.8 ± 3.31 29.1 ± 1.7

2.2. Data Acquisition

The ADNI (http://adni.loni.usc.edu; accessed on 27 September 2022) provided fund-
ing to obtain and distribute data for this investigation. Informed consent was obtained
from the volunteers in compliance with the guidelines of the IRB. All techniques were used
in compliance with the applicable rules and regulations. In this study, the experimental
samples from the ADNI comprised 45 AD patients, 33 MCIs, 35 MCIc, and 32 HC, each
of which had resting fMRI and SNP data. There was no significant age difference in the
groups. Nonetheless, there was a significant difference in the MMSE and CDR across all
group combinations (p < 0.05). It showed that MCIc patients had a greater risk of AD than
MCIs. All groups had a male dominance and male-to-female ratio was 54:46.

fMRI images were acquired using a 3.0-T Philips medical scanner and all rs-fMRI
imaging modalities were accessed using the ADNI database. The individual subjects
were instructed not to think and lie down calmly while scanning to obtain brain fMRI
images. The arrangement criteria to obtain the imaging modalities are mentioned below:
TE = 30 ms, pulse sequence = GR, TR = 3000 ms, flip angle = 80◦, pixel spacing X = 3.31
and Y = 3.31 mm, data matrix = 64 × 64, axial slices = 48, slice thickness = 3.33 ms, and
time points = 140 with no slice gap.

The Human 610-Quad BeadChip was used to genotype the data and pre-processing
was performed as per the accepted quality assurance and impeachment practices. The SNPs
value, which ranges from 0 to 1 or 2, represents the minor allele count. Only a minor portion
of SNPs represent significant predictors of dementia and are connected to alterations in
specific brain regions, whereas the majority of variants may not be associated with the
pathogenesis of the disease. We used SNPs information from the top 54 AD candidate
genes provided in previous studies to eliminate the large SNPs features [11,24,25].

2.3. Data Pre-Processing

Data processing assistants for resting-state fMRI (DPARSF) [26] and statistical para-
metric mapping (SPM12) [27] were used for rs-fMRI pre-processing. To guarantee that
the first signal was stabilized and that the participants could adapt to their surroundings,
the first 10 time points were not used. The final slice underwent a timing adjustment. A
six-parameter rigid-body spatial transformation was used to compensate for the impact
of head movement. The middle slice of the testing method was used as a reference point
for a realignment study, and none of the participants were disqualified for not satisfying
the requirements for head motion confined to less than 3 mm or 3◦. Gray matter, white
matter, and cerebrospinal fluid were segregated from the converted structural images after
each individual structural image was linearly co-registered with the mean functional MRI.
Subsequently, rs-fMRI data were concurrently resampled into 3 mm isotropic voxels and
spatially adjusted to the MNI space using parameters determined from the normalization
of structural images. All normalized fMRI images were smoothed with a 6 mm full-width
at half-maximum Gaussian kernel. Linear detrending and bandpass filtering at 0.01–0.1 Hz
were used to reduce high-frequency physiological noise and low-frequency drift.

http://adni.loni.usc.edu
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2.4. Construction of Graph Matrix

We examined the graph theory morphological characteristics of brain functional
networks using the graph theoretical network analysis toolbox (GRETNA) [28] based on
statistical parametric mapping (SPM12) and MATLAB R2021a based on binary undirected
matrices. The brain connectivity network was built using the average time series for each
area based on the automated anatomical labeling (AAL) atlas [29]. The implementation of
separate coefficients of Pearson correlation for every pairing of the 90 regions of interest
(ROIs) resulted in the definition of the edges of functional links. Consequently, an adjacency
matrix (functional connectivity matrix) was created. N, the number of nodes in the network,
was translated into N(N − 1)/2 edges in the final functional connection networks. We
limited the study to positive correlations by setting zero to a negative correlation because
of its unclear interpretation. A thresholding approach based on network sparsity was
used to eliminate minor connections while preserving the topological characteristics of
graph theory by choosing a proper threshold value for network sparsity [30]. The sparsity
criteria were set to acquire a binary undirected network. In our proposed methodology, we
only applied the nodal graph matrix, such as the betweenness centrality, nodal clustering
coefficient, degree centrality, nodal efficiency, nodal local efficiency, and nodal shortest
path. The modularity (W) of a brain network measures how effectively a network can be
divided into modules [31]. The utilization of an improved greedy optimization approach is
shown in Equation (1):

W =
Mn

∑
d=1

[ed/E− (sd/2E)2] (1)

where E denotes the total number of networks of edges in the brain, ed is the number
of within-module edges in module d, and sd is the sum of the connected edges at each
node inside module d. The modular structure was discovered using modified greedy
optimization. The following formulas were used to compute the intra-module connection
density Cd and inter-module connectivity density Cd,t at the module level:

Cd =
2 ∑i,jεd εi,j

Nd(Nd − 1)
(2)

where i and j represent the nodes, εi,j are the edges between node i and j within the d
module, and Nd represents the overall nodes in module d.

Cd,t =
∑iεd,jεt εi,j

Nd × Nt
(3)

Nd stands for the number of nodes inside module d, Nt represents the number of
nodes inside module t, and εi,j represents the edges connecting module d and t. Here, i and
j represent the corresponding edges for nodes i and j. The following metrics were used to
assess the participation coefficient (PC) and within-module degree (MD) at the nodal level:

MDi =
xi − xd

σd
(4)

where xi denotes the nodal degree of node i inside module d, xd represents the regular
node degree for all nodes in d, and σd denotes the standard deviation for the node degree
for all nodes in d within the module.

PCi = 1−
Mn

∑
d=1

(
ki,d

ki

)2
(5)

where i represents the number of nodes in brain networks, which means that, in our case,
we used the ALL 90 atlas, a 90-region server, as the brain node in our model; Pearson’s
correlation [28] was used to define the edge among those ROIs; similarly, d represents the
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number of modules in brain networks. A brain network’s nodes are often arranged in
modules, which means that nodes from the same module are strongly linked to one another
while nodes from different modules are sparsely linked [32,33]. The number of connection
link between nodes i and d is ki,d, and Mn is the number of modules. The link between
node i and every other node within Mn is a representation of these connections ki.

2.5. Features Selection

The main objective of feature selection is to determine a few key features from the
feature pool that will increase diagnostic accuracy. We used the group-LASSO [17] method
for the nodal graph matrix and ensemble for genetic features that combines the feature
subsets produced from various filters utilizing feature classes with those selected using
various feature selection techniques (Chi-Square, InfoGain, and ReliefF) [34]. A brief
explanation of each feature-selection method is provided below.

2.5.1. Group Least Absolute and Shrinkage Selection Operation

The relevant feature set was chosen using the group-LASSO, which is a dynamic
process [35]. This technique relies on feature reduction and regularization. The 90 AAL
functional region atlases were used to partition the brain into 90 nodes. The group topology
of the nodal graph metrics easily follows from the fact that each node corresponds to a
set of node graph theoretical properties. This method employed the group-LASSO as the
feature selection strategy for nodal graph metrics, given the group characteristics.

minw

N

∑
i=1

log

(
1 + exp

(
−ai ×

(
n

∑
j=1

m

∑
k=1

w(j, k), b(j, k) + c

)))
+ λ

n

∑
j=1
‖wj,k‖q (6)

where w(j, k) and b(j, k) represent the weight and value for the jth region of interest and
kth nodal matrix, respectively; ai is the label of the ith participant. b(j, k) was balanced
using Fisher Z-transformation to prevent scale imbalance. With the default value of λ = 1,
we calculated w(j, k) using [36].

2.5.2. Chi-Square

This feature’s ranking method measures each feature’s chi-squared statistic in relation
to the class to determine the significance of each feature; the greater the chi-squared, the
more significant the feature for the particular job [37].

2.5.3. InfoGain

InfoGain uses the entropy theory [38]. To reduce the uncertainty level in the classifica-
tion task, a weight was produced for each variable by estimating the extent to which class
entropy decreased when the value of that characteristic was known.

2.5.4. ReliefF

The ReliefF feature selection determines how well the features can distinguish between
data points that are close to one another in the attribute space [39]. Essentially, a sample
instance is selected from the dataset and its feature values are compared to those of one
(or more) of its nearest neighbors for each class. Subsequently, based on the presumption
that a “good” feature should have the same value for examples from the same class and
different values for instances of different classes, a relevance score is provided for each
feature. An appropriate number of sample examples are considered iteratively and the
scores for the characteristics are updated accordingly.

2.6. Random Forest Classifier

The random forest (RF) model is a decision-tree-derived ensemble tree-based learning
system. To assess the link between independent and dependent variables, the RF method
averages predictions over numerous individual trees. Instead of using the original sample,
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the individual trees are constructed using bootstrap samples. This process, known as
bootstrap aggregating, aids in preventing overfitting throughout the model generation
process [40].

2.7. Extreme Gradient Boosting Multi-Classifier (XGB) Classifier

As a decision tree’s natural extension, XGB incorporates multiple decision trees to
determine the result rather than relying just on one. It can be used for problems involving
supervised learning, such as regression, classification, and ranking [41].

2.8. SVM Classifier

The SVM [21] divides the classification group using the best hyperplane as a super-
vised learning approach. SVM can learn in a certain feature space using training data. Sub-
sequently, the test dataset is categorized according to its organization in the n-dimensional
feature space. The SVM is a highly reliable machine learning algorithm in neuroscience
and has been used in several neuroimaging applications [22,23]. A linearly separable
feature vector can be mathematically divided into lines in a 2D field. The line equation
is represented by y = ax + b. The equation becomes a(x1 − x2) + b = 0 by substituting x
with xi and y with x2. If we specify x = (x1, x2) and w = (a− 1), we obtain w.x + b = 0,
which results in the hyperplane equation. As in Equation (7), a hyperplane is represented
as follows:

f (y) = zT∅(y) + b (7)

where y denotes input data, zT denotes a hyperplane, and ∅(y) represents a function that
maps a vector y into a higher dimensionality. Equation (7) remains unchanged if z and b
use equal values to scale correctly. A hyperplane can also provide an exclusive pair (z, b)
to make any decision boundary, represented as follows:

min
∣∣∣zT∅(yi) + b = 1, i = 1, 2, . . . , N.

∣∣∣ (8)

where y1, y2, . . . , yN represents the training features. The hyperplane in Equation (8) is
considered canonical. A given hyperplane is expressed as follows:

zT∅(x) + b = 0, which is same as zT∅(y) = 0(which has more dimensions) (9)

Based on Cortes and Vapnik (1995) [42], the equation below indicates a vector x that is
not suitable for this hyperplane:

zT∅(x) + b = ±s‖z‖ (10)

where s represents the vector value corresponding to x for hyperplane representation.
Consequently, the distance s(x) and z vector for the resulting hyperplane are exactly
similar to the output vector f (y) from the SVM. Additionally, this study used the kernel-
support vector approach, which can effectively handle nonlinear problems using the linear
classification method and swaps a linearly unclassifiable vector into a linearly classifiable
vector. The intended notion is a vector that is linearly unclassifiable in low dimensions but
may be linearly classifiable in high dimensions. The kernel is mathematically expressed
as follows:

K(x, y) = (x, y)d (11)

where x and y represent the features in the input. d represents the kernel parameter. The
Gaussian radial bias functions are represented as follows:

K(x, y) = exp
(
−‖x− y‖2

2σ2

)
(12)
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where x and y represent two input samples and ‖x− y‖2 is the Euclidean distance between
two features as a square distance.

Multi-kernel learning (MKL) [43], which enables various kernel functions to represent
various subsets of features, broadens the scope of the SVM theory. The multi-kernel
SVM [21] approach was used to separate AD cases from controls. The standard SVM, on
which our multi-kernel SVM was based, merged several kernel functions linearly before
training an SVM classifier using the fused kernel. Equation (13) defines the fused kernel
function as a linear combination of fundamental kernels [44].

K
(

xi, xj
)
= w1K1

(
xi, xj

)
+ w2K2

(
xi, xj

)
+ w3K3

(
xi, xj

)
. . . (13)

where K
(

xi, xj
)

is the equivalent fundamental kernel and w is its weight. Similarly,
K1, K2, K3 . . . represent the distinct kernel function. We chose fundamental kernels, such
as linear, polynomial, and radial basis functions, to formulate the final kernel function.
Equation (14) represents the decision function [42] in the classification:

f (x) = sgn

{
n

∑
i=1

αi × yi ∑
d

K
(
xi, xj

)
+ b

}
(14)

where × is the dot product of the vector and i is the Lagrange multiplier. sgn is a repre-
sentation of a symbolic function connected to a class label. In the linear equation, yi is the
expected outcome and b is the intercept. Only two output values exist for the decision
function f (x) : −1 and + 1.

2.9. Evaluation Matrices

This study used LOOCV with the MKL-SVM classifier to increase the diagnostic
precision for Alzheimer’s detection. Accuracy, specificity, sensitivity, and receiver operating
characteristic (ROC) curves were generated to assess the classification performance. A plot
of the true positive vs. the false positive rate resulted in the ROC, which assessed the ability
of a binary classifier to diagnose problems. The area under the curve (AUC), as assessed by
ROC, was negatively associated with the classifier’s performance. Moreover, we measured
Cohen’s kappa values for each classification group [45], which measure the inter-rater
reliability between the two individuals. Kappa calculates the proportion of information
scores in a table’s major diagonal and modifies these scores to account for the amount of
agreement that may be inferred from chance only. Cohen’s kappa is determined using
Equation (15), where pe is the percentage of observed agreement among raters and po is
the fictional chance of random agreement. The Kappa coefficient never exceeded 1. Scores
below 1 indicate less than the best agreement, whereas scores of 1 indicate full agreement.
Exceptionally, Kappa might have received a poor grade. Thus, two groups agreed less than
would be expected by chance.

LOOCV is a widely used data shuffling and resampling method to assess the gen-
eralization notion for a predictive model design and to avoid the under or overfitting of
classifiers. Predictive modalities, such as classification, frequently employ LOOCV. To
address this type of problem, a framework is adjusted using a known dataset, which is
sometimes referred to as the training set, and an unknown feature set is assessed using the
model as the test set. The objective is to develop a testing sample for the model while still
in the training phase and to subsequently show how the model can be adapted to diverse
unknown datasets. Multiple divisions employ various LOOCV phases to reduce variability
and the average of the findings is considered. LOOCV is a reliable method to assess model
performance. The classifiers’ performance in this study was validated using ROC curves.
In this method, HC is referred to as negative samples, patients with AD as positive samples,
true positives (TP) as the number of positive samples that are correctly categorized, false
positives (FP) as the number of negative datasets classified as positives, true negatives (TN)
as the number of positive datasets classified as negative, and false negatives (FN) as the
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number of positive datasets classified as negative samples. The following formula applies
to the term’s accuracy, specificity, and precision:

K =
p0 − pe

1− pe
(15)

Accuracy =
TP + TN

TP + FP + FN + TN
(16)

Speci f icity =
TN

TN + FP
(17)

Sensitivity =
TP

TP + FN
(18)

3. Results

We assessed the effectiveness of the method through experiments across various
cognitive-level healthy versus Alzheimer’s and mild cognitive impairments, which are
convertible after certain periods with non-convertibility. We utilized a multi-kernel SVM,
RF, and XGB with LOOCV to evaluate the model design in our experiments. MKL-SVM
is a classic but powerful machine learning algorithm for disease diagnosis because of the
limited number of datasets. First, we constructed brain functional networks from rs-fMRI to
examine the distinguishing characteristics of the nodal graph metrics for disease diagnosis.

The combination of genetic data and brain imaging has recently gained increasing
attention. Brain imaging genomics conducts a complete analysis of genetic information
and brain imaging data to generate new insights that can enhance our comprehension of
brain functions influenced by diseases. The most discriminating brain areas and SNPs must
be identified for an accurate diagnosis of AD. Potential biomarkers for clinical diagnosis
can be derived from SNPs data and brain areas that were mostly used in the experiment.
As shown in Table 2, we used 54 susceptibility loci found in a recent AD GWAS or GWAS
meta-analysis [11,24] in our proposed methodology. We retrieved SNPs matching the
requirements below using PLINK v1.9 [46]: by a recent AD GWAS or GWAS meta-analysis
with genotyping call rate >95%, Hardy Weinberg Equilibrium > 1.00 × 106, and minor
allele frequency >5%. We ran a GWAS (linear regression) in PLINK for each group based
on the results collected including variables such as age, gender, and education. We created
genetic characteristics for each group using the 54 genes [24] linked to AD. To build a
matrix, we first chose the top 54 SNPs for each gene. The matrix was then created using
the associated p-values of the SNPs. Each person has a unique brain that varies in size.
Associated with extreme values, we used the Min-Max [47] normalization strategy based
on this consideration. After that, we corrected the findings of numerous tests using the
Bonferroni method. Further, we analyzed 54 AD-related genes and their corresponding loci
using the feature-ranking technique, as shown in Figure 2, to access relevant GWAS features.
The distribution of various brain network nodes for various classification groups that were
consistently chosen in our experiments is shown in Figure 3. Individuals’ memory functions
are mostly accessed by the hippocampal and amygdala regions. Thus, these regions are
fundamental biomarkers for cognitive decline and can assist in the early diagnosis of
AD, and hippocampal network regions serve as crucial prospective biomarkers in the
identification of HC in the three phases of the disease condition. Amygdala networks were
also used as parameters in the early diagnosis of HC and MCI. This is because, during
AD development, network disruption first occurs in the hippocampus and amygdala. In
addition, the precentral, cuneus, and inferior parietal lingual network nodes were used
in other classification groups. Our findings agree with state-of-the-art methods, which
employed an intrinsic brain-based CAD system to identify essential brain areas linked to
AD [48]. The AOPE gene is where SNPs that have been repeatedly chosen to classify AD and
HC originate from a genetic perspective. As previously mentioned, different parts of brain
network nodes are crucial in disease identification and are the most significant risk factors
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for the development of AD. Two approaches were devised to examine the distinguishing
characteristics of nodes based on regional network parameters and nodal graph metrics. On
the one hand, we examined the brain networks that were most often used and had the most
significant variations in nodal graph metrics. The AAL 90 atlas was used to designate the
node positions in individual rs-fMRI brain imaging. From the feature selection using the
group-LASSO, among the 90 ROIs, we selected the most significant nodal graph metrics as
inputs. Forty-four ROIs were observed to be the most important nodes to separate patients
with AD from HC; each ROI had approximately four to seven nodal topological measures
that differed significantly from the others. Moreover, we used feature selection as a group-
LASSO to identify the distinctive characteristics of each nodal graph attribute. Therefore,
cingulate, temporal, superior frontal, parietal gyri, and lingual regions, which correspond to
the default mode network, cingulo-opercular network, and dorsal attention network, were
the most prevalent brain regions with the discriminatory nodal graph features and more
relevant node graph metrics. These ROIs were thought to be the most dominant nodes to
separate patients with AD from HC as well as patients with MCIs from MCIc. Consequently,
the temporal, superior frontal, parietal gyri, cingulate, lingual, hippocampus, amygdala,
and cingulo-opercular regions showed the highest significance for AD vs. HC classification,
as shown in Figure 3a. For MCIs vs. MCIc, the hippocampus, amygdala, inferior temporal
gyrus, caudate, insula, and paracentral lobule were the most prevalent brain regions with
the highest-significance nodal graph features, as shown in Figure 3d. Similarly, for AD
vs. MCI classification, the hippocampus, amygdala, lingual, putamen, temporal, and
parietal lobules showed the highest significance. Based on additional comparisons of the
aforementioned dominant brain parts, individuals with MCI had significantly lower values
for degree and betweenness centrality as well as typically larger values for nodal shortest
path in the frontal lobe, for example, temporal lobe, bilateral superior frontal gyri, limbic
lobe, bilateral inferior temporal gyri, left median cingulate and paracingulate gyri, and
parietal lobe. However, the MCI group had considerably lower values of nodal shortest
path and significantly higher values of betweenness and degree centrality in the occipital
lobe, which contrasted the agreement of the nodal graph in various brain regions.

Table 2. AD-related SNPs with position and id.

Gene Symbol rs-ID Position Gene Symbol rs-ID Position

ADAMTS4 rs4575098 161155392 ECHDC3 rs7920721 11720308
CR1 rs6656401 207692049 SPI1 rs3740688 47380340
CR1 rs2093760 207786828 CELF1 rs10838725 47557871
CR1 rs4844610 207802552 MS4A6A rs983392 59923508
BIN1 rs4663105 127891427 MS4A2 rs7933202 59936926
BIN1 rs6733839 127892810 MS4A6A rs2081545 59958380

INPP5D rs10933431 233981912 PICALM rs867611 85776544
INPP5D rs35349669 234068476 PICALM rs10792832 85867875
CLNK rs6448453 11026028 PICALM rs3851179 85868640

MEF2C-AS1 rs190982 88223420 FERMT2 rs17125924 53391680
HLA-DRB1 rs9271058 32575406 FERMT2 rs17125944 53400629

CD2AP rs9473117 47431284 SLC24A4 rs10498633 92926952
CD2AP rs9381563 47432637 SLC24A4 rs12881735 92932828
CD2AP rs10948363 47487762 SLC24A4 rs12590654 92938855
GPR141 rs2718058 37841534 ADAM10 rs442495 59022615
GPR141 rs4723711 37844263 KAT8 rs59735493 31133100
PILRA rs1859788 99971834 SCIMP rs113260531 5138980

ZCWPW1 rs1476679 100004446 ABI3 rs28394864 47450775
NYAP1 rs12539172 100091795 ABCA7 rs111278892 1039323
EPHA1 rs10808026 143099133 ABCA7 rs3752246 1056492

EPHA1-AS1 rs7810606 143108158 ABCA7 rs4147929 1063443
EPHA1-AS1 rs11771145 143110762 PVRL2 rs41289512 45351516

PTK2B rs28834970 27195121 CD33 rs3865444 51727962
PTK2B rs73223431 27219987 CASS4 rs6024870 54997568
CLU rs4236673 27464929 CASS4 rs6014724 54998544
CLU rs9331896 27467686 CASS4 rs7274581 55018260

ECHDC3 rs11257238 11717397 APOE rs429358 45411941
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Figure 3. Highly discriminative brain networks nodal feature for (a) AD vs. HC, (b) HC vs. MCI,
(c) AD vs. MCI, and (d): MCIs vs. MCIc.

The AOPE gene is a source of SNPs that is widely used to identify various diseases.
In our experiment, these SNPs were determined to be the top contributors, followed by
CR1, PVRL2, and CASS4 in order of importance. APOE is associated with disorders
that can be measured via neuroimaging, particularly those that influence default mode
networks. We performed an ensemble feature selection algorithm for the SNPs in each
group as shown in Figure 4. Our analysis revealed the most significant pathogenic genes
related to diseases and showed that risk genes, such as PVRL2, CASS4, GPR141, CR1, and
INPP5D, were strongly linked to AD. Additionally, these genes are known to be associated
with cognitive impairment. CR1 primarily influences AD progression by influencing Aβ
deposition, changes in brain shape, and glucose metabolism. Many SNPs from the same
gene, including CR1 and CASS4, were chosen during the experiment. Our results agree
with those of previous studies and aid in the clinical diagnosis and future investigation
of AD.
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Figure 4. Effect of ensemble features selection on Classification accuracy for Alzheimer’s-associated
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After obtaining the most prevalent brain node and SNPs features, we analyzed the per-
formance of the individual feature set with the combined multi-mode feature set. Because
genetic features are high-dimensional, we proposed ensemble feature ranking algorithms
to select the important SNPs feature sets. The ensemble feature ranking outperformed
the individual feature ranking algorithms. This study used genetic information (SNPs)
and network nodal characteristics obtained from rs-fMRI to perform classification analysis.
The MKL-SVM classifier with integrated feature methodologies exhibited the highest per-
formance accuracy, although, in some cases, XGB outperformed the MKL-SVM. Overall,
the performance of MKL-SVM classifiers was better among the others. The nodal matrix
outperformed SNPs because changes in brain connectivity are phenotypic characteristics
that are closely associated with diagnostic categories. However, the model’s performance
was enhanced compared with using either brain networks or SNPs features by including
both genetic and brain network node factors as model predictors. The performance of
integrating genetic and imaging data was superior to that of a single modality, particularly
when classifying MCI as convertible with stable MCI.

The specificity and sensitivity in Table 3 and the AUC shown in Figure 5 were deter-
mined to assess the effectiveness of the MKL-SVM classifier among RF and XGB using
the combined feature vectors. Our classification process using brain nodal networks and
SNPs feature combinations produced the best performance with 93.03% accuracy, 95.15%
sensitivity, 94.17% specificity, 87.17% Cohen’s kappa, and 95.13% AUC for AD vs. HC
classification. Similarly, for the MCIs vs. MCIc classification, we obtained 83.73% accuracy,
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90.31% sensitivity, 92.37% specificity, 83.09% Cohen’s kappa index, and 91.07% AUC. For
the AD vs. MCI classification, we obtained 77.43% accuracy, 85.75% sensitivity, 90.01%
specificity, 76.00% AUC, and 84.15% Cohen’s kappa index. Similarly, for the HC vs. MCI
classification, we obtained 84.01% accuracy, 92.13% sensitivity, 87.17% specificity, 82.79%
AUC, and 83.31% Cohen’s kappa index, as shown in Figure 6. Overall, MKL-SVM exhibited
a better performance, but for AD vs. MCI classification on rs-fMRI features, there was a
similar performance accuracy with RF and XGB.

Table 3. Binary classification performance results for different stages of AD using different classifiers.

Group Features Classifiers AUC ACC SEN SPEC Cohen’s Kappa

AD vs. HC SNPs MKL-SVM 89.73 75.5 88.33 91.28 74.41
RF 84.55 72.31 86.82 89.11 70.12

XGB 87.13 74.17 87.31 90.32 73.13

rs-fMRI MKL-SVM 91.51 84.51 94.17 88.54 81.57
RF 86.04 83.12 90.19 92.03 82.48

XGB 92.31 73.95 91.57 92.48 85.01

rs-fMRI + SNPs MKL-SVM 95.13 93.03 94.16 94.17 87.17
RF 87.08 88.53 86.93 89.05 83.07

XGB 90.45 92.71 90.91 93.75 85.01

AD vs.MCI SNPs MKL-SVM 65.12 63.35 82.37 56.78 63.87
RF 60.14 61.05 65.41 60.14 65.78

XGB 62.05 63.03 67.14 63.71 65.01

rs-fMRI MKL-SVM 75.37 72.71 84.7 79.55 70.13
RF 69.45 72.41 75.12 80.01 68.01

XGB 73.14 72.03 78.45 78.47 69.71

rs-fMRI + SNPs MKL-SVM 76 77.43 85.75 90.01 84.15
RF 74.01 75.45 90.04 88.56 83.89

XGB 74.92 76.03 88.01 91.88 85.03

HC vs. MCI SNPs MKL-SVM 77.21 64.71 91.02 81.45 70.44
RF 75.71 60.14 80.78 80.09 77.31

XGB 77.02 63.72 88.67 80.78 78.85

rs-fMRI MKL-SVM 80.11 75.03 85.78 90.55 80.77
RF 75.53 71.23 83.78 85.47 78.23

XGB 78.18 74.11 81.91 87.98 80.07

rs-fMRI + SNPs MKL-SVM 82.79 84.01 92.13 87.17 83.31
RF 76.17 80.28 90.03 90.78 80.47

XGB 78.5 81.55 92.07 94.01 81.85

MCIs vs. MCIc SNPs MKL-SVM 84.37 65.73 89.05 83.7 77.75
RF 74.23 63.62 87.78 75.45 75.48

XGB 83.37 63.78 89.03 84.77 78.97

rs-fMRI MKL-SVM 87.1 73.08 88.51 82.33 81.05
RF 81.54 70.98 85.33 82.78 82.77

XGB 85.09 72.54 87.07 87.41 80.32

rs-fMRI + SNPs MKL-SVM 91.07 83.73 90.31 92.37 83.09
RF 88.45 82.47 91.04 93.01 78.75

XGB 88.98 82.97 88.97 92.88 82.79
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4. Discussion

In this study, we constructed and implemented a framework to diagnose AD and its
prodromal stage, known as MCI, utilizing SNPs genetic and functional brain networks.
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Although SNPs genes have complex patterns, a vast field of disease analysis shows the
potential for AD identification as complementary features for imaging modalities and
assists in increasing model performance. The maximum accuracy was 93.03% and 95.13%
AUC for AD vs. HC classification. The use of only SNPs had the lowest performance
accuracy when compared with brain network features; however, the performance accuracy
of the model was improved when combined with network characteristics. Similarly, we
obtained the highest accuracy with feature combinations for AD vs. MCI and HC vs. MCI
with 77.43% accuracy and 76.00% AUC, and 84.01% accuracy and 82.79% AUC, respectively.
Furthermore, for the AD vs. MCI classification, no significant improvement in model
performance was observed with genetic data compared with the network feature set from
the results in Table 3 and Figure 7. Therefore, the use of only genetic data was insufficient
but, when combined with network features, produced a more accurate categorization result.
Furthermore, we combined all the selected network features obtained from rs-fMRI and
SNPs and achieved a better classification accuracy compared with the individual features
set for all classification groups with the ensemble and group-LASSO feature selection
method, as shown in Table 3. In summary, this study elucidated the diagnosis of AD
and validated that functional network measurements and genetic tests could be used to
identify people with disease conditions. The topmost discriminative features from rs-
fMRI brain networks, where each region corresponds to a nodal feature, are shown in
Figure 3. In agreement with previous studies, connection anomalies were significantly
influenced in the temporal lobe, including the hippocampus, amygdala, mid-temporal,
fusiform and inferior temporal, and parietal-occipital regions in the AD vs. HC group.
The network connectivity showed a similar pattern for the other two groups, AD vs.
MCI and HC vs. MCI, as shown in Figure 3. In conclusion, the highly sensitive brain
node observed that the characteristics selected in the experiment utilizing the group-
LASSO algorithm had potential. Furthermore, certain brain regions include more disease
information with highly sensitive characteristics, allowing for more accurate categorization.
The significance of temporal regions, superior frontal, lingual, and parietal gyri in AD
diagnosis is generally acknowledged. We recommend that other researchers investigate its
function in AD detection.

Moreover, neuroimaging methods for discriminative classification of AD and MCI
have been previously analyzed. Most studies used various datasets and classification
techniques, both of which significantly influenced the performance accuracy, enabling
the comparison with most challenging state-of-the-art methods. As shown in Table 4,
the accuracy of several ranges for AD and MCI classification is reported from the bi-
nary classification of previous studies in combination with distinct feature selection and
various classifiers.
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Figure 7. A bar chart comparing the performance of various classification groups using MKL-SVM:
(a) AD vs. HC, (b) AD vs. MCI, (c) HC vs. MCI, and (d) MCIs vs. MCIc.

Table 4. Performance evaluation of the suggested method against relevant state-of-the-art techniques.

Reference Methods Modality No of Subjects Group ACC SEN SPE

Dukarat et al.
[13]

Bayesian-Markov-
Blanket+Navie
Bayes

FDG-PAET,
AV45-PET,
SMRI, APOE

122 HC/265
sMCI/177 cMCI/144
AD

AD vs. NC 86.8 87.5 86.1

Brand et al.
[49]

Task-balanced multi-modal
feature selection sMRI, SNPs 201 HC/170 AD/352

MCI
AD vs.
HC/MCI 72.8 - -

Sheng et al. [5] Fisher score+Multitask
feature seletion+SVM sMRI, SNPs 25 AD/25 EMCI/25

EMCI/25 HC AD vs. HC 98 100 96

LMCI vs.
EMCI 80 88 72

LMCI vs. HC 86 88 84
EMCI vs. HC 82 80 84

Bi et al. [50]
Cluster evolutionary
random forest
(CERF)+SVM

fMRI, SNPs 37 AD/37 EMCI/35
HC AD vs. HC 81 - -

EMCI vs. HC 80 - -
EMCI vs. NC 0.803 0.794 0.856

our method Ensemble, group-LASSO,
MKL-SVM fMRI, SNPs 32 HC/33 MCIs/35

MCIc/45 AD AD vs. HC 93.03 95.15 94.17

AD vs. MCI 77.43 85.75 90.01
HC vs. MCI 84.01 92.13 87.17
MCIs vs. MCIc 83.73 90.31 92.37

5. Conclusions

First, we examined SNPs and functional network characteristics from rs-fMRI data
obtained using ADNI core laboratory biomarkers. The accuracy of numerous computer-
aided diagnostic approaches is poor because of the overlap in the data between early brain
shrinkage in patients and normal aging in healthy individuals. This study considered both
imaging and genetic characteristics as potential classifying factors in this study. Patients
with MCIs, MCIc, and AD could be more precisely recognized from HC by efficiently
combining consistent brain imaging and genetic information using techniques such as
ensemble feature ranking and group-LASSO feature selection with MKL-SVM. Combining
SNPs with functional brain networks indicated the possibility of the early detection of
AD. We fed the combined kernel matrix into the MKL-SVM classifier using LOOCV cross-
validation to obtain the classification result. Moreover, we reported the classification
performance in various evaluation matrices, and compared the model performance with
RF and XGB classifiers validating the potency of the proposed method for the enhancement
of classification performance. In the future, we intend to incorporate a longitudinal dataset,
increase the number of datasets, expand the multi-network and multimodal dataset, and
utilize other network analysis approaches for rs-fMRI in addition to other feature selection
methods to increase the efficiency of this method.
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