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Abstract: Virus plaque assays are conventionally used for the assessment of viral infections, including
their virulence, and vaccine efficacy. These experiments can be modeled with reaction–diffusion
equations, allowing the estimation of the speed of infection spread (related to virus virulence) and
viral load (related to virus infectivity). In this work, we develop a multiscale model of infection
progression that combines macroscopic characterization of virus plaque growth in cell culture with a
reference model of intracellular virus replication. We determine the infection spreading speed and
viral load in a model for the extracellular dynamics and the kinetics of the abundance of intracellular
viral genomes and proteins. In particular, the spatial infection spreading speed increases if the rate of
virus entry into the target cell increases, while the viral load can either increase or decrease depending
on other model parameters. The reduction in the model under a quasi-steady state assumption for
some intracellular reactions allows us to derive a family of reduced models and to compare the
reference model with the previous model for the concentration of uninfected cells, infected cells, and
total virus concentration. Overall, the combination of different scales in reaction–diffusion models
opens up new perspectives on virus plaque growth models and their applications.

Keywords: viral infection; plaque growth; reaction–diffusion equations; wave speed; viral load
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1. Introduction

Virus plaque assays are a conventional experimental test used for the assessment
of viral infections [1]. Plaque size, morphology, clearness, and distribution characterize
virus progression and evolution [2]. In particular, plaque size caused by cell necrosis or
apoptosis in cell culture correlates with virus virulence [3–5] and depends on the viral
cell-to-cell transmission rate and on its ability to avoid the immune response mediated by
interferon produced by infected cells [6]. Plaque assays are also used for the estimation
of virus concentration in a multiplicity of infection tests under the assumption that each
plaque corresponds to a single virion (plaque forming unit), though this may not be the
case for some viruses [7]. Recently, plaque assays were used to assess different variants of
SARS-CoV-2 infection [8].

Virus plaque growth is conditioned by the production of new virus particles in infected
cells using their genetic machinery. Plaque assay tests show that the process of plaque
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growth in time and space depends on its spatial spreading, determined by virus diffusion
in the extracellular matrix [9]. Virus plaque growth can be studied with different modeling
approaches. A reaction–diffusion model of plaque growth is considered in [10] in the
case of reversible host infection. The plaque growth rate is determined by the method
of linearization. Numerical simulations of viral plaque growth described by a reaction–
diffusion model with time delay are presented in [11]. Individual-based models of viral
infection spreading in cell cultures are developed in [12–14]. One- and two-dimensional
models of plaque growth are compared in [15]. Though the 2D model gives a slightly larger
value of the viral load, the main features of plaque growth are the same.

It should be noted that theoretical models of virus plaque assays deal with the concen-
trations of infected cells but not with the intracellular regulation of viral replication. On the
other hand, the models that address intracellular regulation do not take into account the
spatial spread of the infection. Therefore, the investigation of the influence of different
stages of intracellular virus replication on plaque growth requires the development of new
models addressing intracellular regulation and spatial spreading at the same time. We
develop such a model in this work.

A systematic investigation of viral infection spreading in cell culture was started in [15],
where a reaction–diffusion system with time delay for the concentrations of uninfected
cells, infected cells, and virus was used to find the spreading speed and viral load. Different
variants of the SARS-CoV-2 infection were assessed in [16], where it was shown that in
the competition of two viruses in cell culture, the virus with larger individual spreading
speed persists and eliminates another one. These results corroborate the experimental
data [8]. The progression of viral infections in the respiratory tract can also be described as a
reaction–diffusion wave, but its propagation is influenced by the airway liquids (mucus and
periciliary fluid) [17]. Mathematical questions of the existence of reaction–diffusion waves
describing infection spreading in its interaction with the immune response are studied
in [18,19].

This cycle of works describes infection spreading at the level of cell culture or tissue
without taking into account the intracellular regulation of virus replication. This macro-
scopic approach is sufficiently simple that it allows the description of the experimental
data, and there are only a few parameters that can be readily estimated. This approach
can be combined with a more detailed description of intracellular regulation using the
multiscale modeling method. In the case of immovable cells with fixed positions, we
can pass from cells to the intracellular concentrations, considered as functions of space
and of time. Thus, instead of the concentrations of cells, we consider concentrations of
intracellular substances, implicitly associating them with each other. Intracellular proteins
do not diffuse if we neglect direct cell-to-cell transport through cell junctions. On the other
hand, extracellular factors (e.g., interferon) and viruses diffuse and propagate in the culture,
resulting in infection spreading.

In this work, we study infection spreading in cell culture, taking into account a simpli-
fied description of intracellular virus replication. The main stages of this process are shown
in Figure 1, starting with the extracellular virions entering the cell and releasing into the cy-
toplasm its proteins and genetic material. The latter participate in virus replication, together
with some intracellular molecules. New virions are released back into the extracellular
matrix. All steps of intracellular virus replication, including translation, transcription, and
assembly are described here as a single reaction process for viral genomes R and required
proteins A

R + A→ R + Vr.

Here, the depletion of R is neglected, since a single intracellular viral genome induces
the production of multiple new viral genomes.
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(a) (b)

Figure 1. Basic model considered in this work (a) with extracellular virus Ve, intracellular virus Vi,
viral genetic material R, and intracellular proteins A participating in virus replication and production
of new virus particles Vr. In the reduced model (b), two intermediate stages are omitted.

The equation for the extracellular virus concentration Ve,

∂Ve

∂t
= D

∂2Ve

∂x2 − q1Ve + q2Vr − σ1Ve (1)

takes into account extracellular virus diffusion. Its concentration decreases due to its
entry from the extracellular space into cells (q1Ve) and increases due to new virus virions
produced in the infected cells (q2Vr). The last term on the right-hand side of this equation
describes virus death. The intracellular virus concentration Vi is determined by its entry
from the extracellular space followed by its uncoating:

∂Vi
∂t

= q1Ve − k1Vi. (2)

Viral genetic material (DNA or RNA) is released after uncoating, and it can also be
eliminated due to various protective mechanisms:

∂R
∂t

= k1Vi − σ2R. (3)

Virus replication is considered a single-stage process determined by the concentrations
of viral genetic material R and intracellular proteins A:

∂Vr

∂t
= k3 AR− q2Vr. (4)

The last term in this equation characterizes the degradation or elimination of new
viral particles. Finally, intracellular concentrations A participating in virus replication are
described by the equation

∂A
∂t

= −k4 AR. (5)

Let us note that constants k3 and k4 can be different since multiple intracellular
molecules are used in the production of a new virus particle. All concentrations in
Equations (1)–(5) depend on the space variable x and on time t. This system of equa-
tions will be considered on the whole axis in the theoretical analysis and in a bounded
interval in numerical simulations with Neuman (no-flux) boundary conditions and some
non-negative initial conditions. It can be verified by conventional methods that the solution
to this problem is bounded and non-negative.
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More detailed models of intracellular regulation with some intermediate steps in virus
replication can be introduced and considered under quasi-stationary approximation. This
approach justifies models (1)–(5), allowing the analysis presented below.

In this study, a family of related mathematical models is presented to describe and
analyze the 1D diffusion-mediated spatio-temporal kinetics of viral infection spreading
in cell culture. The models differ in the details of the description of the intracellular viral
life cycle. In Section 2, we derive analytical expressions for the basic viral reproduction
number, the virus propagation wave speed, and the total viral load. Numerical simulations
are presented that specify the quantitative dependencies of these basic characteristics on
the model parameters. In Section 3, two models of reduced complexity compared to the
reference one are derived and analyzed. Validation of the kinetics of virus replication in
infected cells is performed in Section 4. The study concludes with a Discussion in Section 5.

2. Viral Load and Spreading Speed
2.1. Virus Replication Number

Consider the reaction part of the system (1)–(5), that is, the model without diffusion in
the first equation:

dVe

dt
= q2Vr − q1Ve − σ1Ve, (6)

dVi
dt

= q1Ve − k1Vi, (7)

dR
dt

= k1Vi − σ2R, (8)

dVr

dt
= k3 AR− q2Vr, (9)

dA
dt

= −k4 AR. (10)

The solution to this system with a positive initial condition is bounded and positive.
Stationary points of this system are Vr = 0, Ve = 0, Vi = 0, R = 0, and any A.

The system linearized about stationary point (A = A0, 0, 0, 0, 0) is similar to the
previous one where A in Equations (9) and (10) is replaced by A0. We consider the
corresponding matrix:

A =


−q1 − σ1 0 0 q2

q1 −k1 0 0
0 k1 −σ2 0
0 0 k3 A0 −q2

.

Its characteristic polynomial has positive coefficients. According to Descartes’ rule of
signs, it has a positive root if and only if the last coefficient is negative:

det(A) = (q1 + σ1)k1σ2q2 − q2q1k1k3 A0 < 0. (11)

We introduce the viral replication number:

Rv =
q1k3 A0

σ2(q1 + σ1)
.

This number represents the ratio of virus replication and virus elimination rates [16,17,20].
If Rv > 1, then inequality (11) holds and has a positive eigenvalue, such that its solution
grows with time. The virus replication number represents the ratio of virus production
and elimination rates. Virus concentration grows if the virus replication number is larger
than 1.
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2.2. Viral Load in the Case of Uniform Virus Distribution

Consider the previous model (6)–(10) under the assumptions

A(0) = A0, Ve(0) = Vi(0) = Vr(0) = R(0) = 0, (12)

A(∞) = A f , Ve(∞) = Vi(∞) = Vr(∞) = R(∞) = 0. (13)

Integrating Equations (6) and (7) from 0 to ∞, we obtain

q2 I(Vr) = (q1 + σ1)I(Ve), q1 I(Ve) = k1 I(Vi), (14)

where
I(Vr) =

∫ ∞

0
Vr(t)dt , I(Ve) =

∫ ∞

0
Ve(t)dt .

Taking a linear combination of Equations (8) and (10) and integrating, we have

− k2

k4

(
A f − A0

)
= k1 I(Vi)− σ2 I(R). (15)

From Equations (9) and (10)

k3

k4
(A f − A0) = −q2 I(Vr). (16)

Finally, dividing Equation (10) and integrating, we obtain

ln
(A f

A0

)
= −k3 I(R). (17)

Expressing the integrals from equalities (14)–(17), we obtain the following equation

Rv(ω− 1) = ln ω (18)

with respect to ω = A f /A0. Equation (18) has a solution ω ∈ (0, 1) if and only if Rv > 1.
This case corresponds to infection progression. The total quantity of replicated virus, I(Vr),
can now be determined from Equation (16):

I(Vr) =
k3 A0

k4q2
(1−ω) ≈ k3 A0

k4q2
. (19)

The last approximation is applicable for large Rv since ω � 1. The total quantity of
extracellular virus is given by the following expression:

I(Ve) ≈
k3 A0

k4(q1 + σ1)
. (20)

2.3. Viral Load in the Wave

Consider now system (1)–(5) with diffusion. As is known from the previous works
(e.g., in [15,18]), infection spreads in cell culture as a reaction–diffusion wave (Figure 2).
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(a) (b)

Figure 2. Numerical simulations of system (1)–(5). (a) Concentration profiles as functions of space;
(b) viral load as a function of time. The values of parameters are as follows: D1 = 0.001 cm2 h−1,
k1 = 0.5 h−1, q1 = 0.09 h−1, σ1 = 0.01 h−1, k3 = 1000 mL (h × unit)−1, q2 = 0.1 h−1, σ2 = 0.36 h−1,
k4 = 0.4 mL (h × copy)−1; Initial conditions: Ve(0) = 1 copy/mL, A = 4 unit/mL, Vi = Vr = R = 0.
Normalization (for the left plots): max(Ve) = 3619.4; max(Vi) = 635.8; max(R) = 845.7; max(Vr) = 8863.8;
max(A) = 4.

Consider the travelling wave solution Ve(x, t) = v(x − ct), R(x, t) = u(x − ct),
A(x, t) = w(x− ct), Vi(x, t) = y(x− ct), Vr(x, t) = z(x− ct) with the limits at infinity:

v(±∞) = u(±∞) = y(±∞) = z(±∞) = 0, w(−∞) = w f , w(+∞) = w0, (21)

where w f is the unknown final concentration of the intracellular components. Thus, the sys-
tem takes the form:

Dv′′ + cv′ + q2z− q1v− σ1v = 0, (22)

cy′ + q1v− k1y = 0, (23)

cu′ + k1y− σ2u = 0, (24)

cz′ + k3wu− q2z = 0, (25)

cw′ − k4wu = 0, (26)

where prime designates the derivative on ξ = x− ct. Integrating Equations (22)–(25) over
ξ ∈ (−∞,+∞), separating variables, and integrating the last Equation (26), and using the
boundary conditions, we obtain the following system of equations:

q2 J(z) = (q1 + σ1)J(v), (27)

q1 J(v) = k1 J(y), (28)

k1 J(y) = σ2 J(u), (29)

c ln
w f

w0
= −k4 J(u), (30)

ck3

k4
(w0 − w f ) = q2 J(z). (31)

Here, we use notation J( f ) =
∫ +∞
−∞ f dξ. Excluding the integrals from this system, we

obtain the equation
Rv(w̃− 1) = ln w̃, (32)

where w̃ = w f /w0, and Rv = q1k3w0/(σ2(q1 + σ1)) is the same as (11) in reaction system,
where A0 is substituted by w0. This equation has a non-zero solution in w̃ ∈ (0, 1) for
Rv > 1. In this case, the viral load is determined by the equality

J(v) =
∫ +∞

−∞
vdξ = − cσ2

q1k4
ln w̃ (33)
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or
J(v) =

cw0

q1 + σ1

k3

k4
(1− w̃). (34)

If w̃� 0, then ln w̃ ≈ −Rv and

J(v) ≈ cw0k3

(q1 + σ1)k4
, (35)

where c is the wave speed, which will be determined below.

2.4. Wave Speed

To determine the wave speed, we use the linearization method, in which we replace
the value of w in the system (22)–(26) by its value w0 at infinity:

Dv′′ + cv′ + q2z− q1v− σ1v = 0, (36)

cy′ + q1v− k1y = 0, (37)

cu′ + k1y− σ2u = 0, (38)

cz′ + k3w0u− q2z = 0. (39)

We search for the solution in the form v(ξ) = pe−λξ , u(ξ) = qe−λξ , y(ξ) = me−λξ ,
z(ξ) = le−λξ . Substituting this solution into the system (36)–(39), we obtain the following
characteristic equation:∣∣∣∣∣∣∣∣

Dλ2 − cλ− (q1 + σ1) 0 0 q2
q1 −cλ− k1 0 0
0 k1 −cλ− σ2 0
0 0 k3w0 −cλ− q2

∣∣∣∣∣∣∣∣ = 0, (40)

or
(Dλ2 − cλ− q1 − σ1)(cλ + k1)(cλ + σ2)(cλ + q2) = −q1q2k1k3w0. (41)

We denote µ = cλ and express c2, and thus we obtain

c2 = min
µ>µ0

Dµ2(µ + k1)(µ + σ2)(µ + q2)

(µ + q1 + σ1)(µ + k1)(µ + σ2)(µ + q2)− q1q2k1k3w0
, (42)

where µ0 > 0 is the value for which the denominator in the right-hand side of the last
formula vanishes.

2.5. Numerical Simulations

The system of Equations (1)–(5) has been solved numerically using a finite-difference
method with the first order of time approximation and the second order of space approx-
imation. Numerical code is implemented in the C++ language with the MS Visual Studio
translator. The CPU time required to calculate one time step on a mesh containing 10,000 nodes
was about 1 millisecond for system (1)–(5) and about twice less for system (46)–(48).

An example of numerical simulation is shown in Figure 2 with concentration distribu-
tions in space (left) and the total viral load as a function of time (right). Let us note that the
wave speed equals 0.059 cm/h in numerical simulation and 0.058 cm/h by Formula (42).
The total viral load calculated with Formula (35) equals 5829 copy/cm2, which is in good
agreement with the numerical results shown in Figure 2b.

The dependence of the wave speed and viral load on model parameters are shown in
Figures 3 and 4. The total viral load increases with the increase in parameters k1, q2, and k3.
The total viral load inversely depends on the parameters σ1, σ2, and k4. The abrupt change
in the dependence on σ2 is determined by the transition to another regime: when σ2 is big
enough, Rv becomes less than 1, and the infection does not develop, i.e., J(Ve) = 0.
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(a) (b)

Figure 3. The dependence of the total viral load in the system (1)–(5) on parameters. (a) All the
parameters are in their estimated ranges from Table 1, and the ranges are projected to the [0, 1] interval
by a linear function. For each varying parameter, the other ones are fixed using the following values:
k1 = 0.055, q1 = 0.1, σ1 = 3, σ2 = 0.08, k3 = 100, q2 = 8, k4 = 0.1, D = 0.01, A0 = 1, L = 10 cm.
Units of the parameters are the same as in Figure 2. (b) The parameter k4 is in the range [1.9× 10−5,
1.9× 10−4], and parameter σ2 is in range [0.129, 0.131]. These are the ranges corresponding to the
straight lines for these parameters on the left figure. The dependence for the parameter q1 is represented
for the other set of fixed parameters (values from Table 1).

(a) (b)

Figure 4. The dependence of the wave speed in the system (1)–(5) on parameters. (a) All the
parameters are in their estimated ranges from Table 1, and the ranges are projected to the [0, 1]
interval by a linear function. Fixed parameters are the same as listed in Figure 3. (b) Different values
for the fixed parameters (from Table 1); the results for q1 correspond to Figure 3b.

The total viral load can grow or decay depending on the parameter q1. Figure 3
shows this dependence for two sets of parameters. The model predicts that the wave
speed increases with the values of parameters k1, k3 and decreases for the parameters σ1,
σ2 similarly to the total viral load (Figure 3a). The parameter q2 has almost no influence
on the wave speed or k4. The second set of parameters does not qualitatively alter these
dependencies (Figure 3b), but the curves change their relative positions, and this results in
the observed qualitative changes in dependencies for the total viral load.
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Table 1. Parameter estimation for the model (1)–(5). Ranges for the parameters k3 and k4 are
calculated using respective ranges for parameters from ([21], Table 2, p. 9) and Formula (84).

Parameter Corresponding
Parameter from [21] Value from ([21], Table 2)

σ1 dV 0.12 h−1, range: (0.06, 3.5), tuned to (0.06, 0.2)
q1 k f use 0.5 h−1, range: (0.33, 1)
q2 krelease 8 h−1 range: (8, 7200)
k1 kuncoat 0.5 h−1, range: (0.33, 1)
σ2 dgRNA 0.2 h−1, range: (0.069, 0.69), tuned to (0.069, 0.4)
k3 Equation (84) 0.003, range: (1.05× 10−10, 3.7× 106),

range using tuned values: (8.6× 10−9, 7.5× 105)
k4 Equation (84) 6.093, range: (2.35× 10−7, 4.2× 109),

range using tuned values: (1.9× 10−5, 8.4× 108)

3. Simplified Models
3.1. Model Reduction

In this section, we study a simplified model obtained by reducing system (1)–(5) to a
model of three equations. Suppose that parameters q1, k1, k3, and q2 are big enough, and
q1 = q10 × N, k1 = k10 × N, k3 = k30 × N, q2 = q20 × N, where N is a large parameter.
Then, the second equation has the form:

1
N

∂Vi
∂t

= q10Ve − k10Vi. (43)

If N → ∞, we formally obtain:

Vi =
q10

k10
Ve. (44)

Similarly, from Equation (4),

Vr =
k30

q20
AR. (45)

Substituting these expressions into (1)–(5), we obtain the following system of
three equations:

∂V
∂t

= D
∂2V
∂x2 + k1 AR− k2V − σ1V, (46)

∂R
∂t

= k2V − σ2R, (47)

∂A
∂t

= −k1 AR, (48)

where we use, for convenience, the following notation: Ve → V, k3 = k4 → k1, q1 → k2. We
obtained the system containing three variables: extracellular virus V, intracellular viral
proteins R, and cell proteins A participating in the production of new virions (Figure 1b).

3.2. Virus Replication Number

The corresponding ODE system has the form:

dV
dt

= k1 AR− k2V − σ1V, (49)

dR
dt

= k2V − σ2R, (50)

dA
dt

= −k1 AR. (51)
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The stationary point of this system of equations can be easily determined. From
Equation (51), we conclude that AR = 0. Therefore, from Equation (49), V = 0, and from
Equation (50), R = 0.

Consider a linear approximation where A = A0 > 0 in Equation (49). Then, linear
system of Equations (49) and (50) has a positive eigenvalue if and only if Rv > 1, where

Rv =
k1k2 A0

(k2 + σ1)σ2

is the virus replication number. If this condition is satisfied, then solutions V and R of this
system grow over time.

3.3. Viral Load

Let us complete system (49)–(51) with the initial conditions

A(0) = A0, V(0) = V0, R(0) = 0. (52)

It can be easily verified that the solution satisfies V(t) → 0, R(t) → 0, A(t) → A f
as t → ∞, where A f ≥ 0 is some constant. Indeed, since V′ + R′ + A′ = −σ2R, and all
variables are non-negative for t ≥ 0, then R(t)→ 0. We conclude from Equation (49) that
V(t)→ 0. Since A′(t) ≤ 0, then A(t) has a limit as t→ ∞.

Taking a sum of Equations (49) and (51) and integrating from 0 to ∞, we obtain

A f − A0 −V0 = −(k2 + σ1)I(V), (53)

where I(V) =
∫ ∞

0 V(t)dt. Integrating Equation (50), we conclude that

k2 I(V) = σ2 I(R). (54)

Finally, dividing Equation (51) and integrating, we obtain

ln
(A f

A0

)
= −k1 I(R). (55)

Excluding the integrals from equalities (53)–(55), we obtain the equation

ln ω = Rv(ω− 1−ω0)

with respect to ω = A f /A0, where ω0 = V0/A0. Assuming that ω0 � 1, we have the final
form of this equation

ln ω = Rv(ω− 1). (56)

It has a unique solution ω ∈ (0, 1) if and only if Rv > 1. If this condition is satisfied,
then there is an outbreak of virus production. Otherwise, if Rv < 1, its concentration
converges to 0 and ω = 1.

The total viral load VT = I(V) can now be found as follows:

VT =
A0

k2 + σ1
(1−ω) ≈ A0

k2 + σ1
. (57)

The last approximation holds for ω � 1, which holds for sufficiently large Rv .

3.4. Spatial Infection Spreading

We now consider spatial distribution of viral infection in a cell culture described by
the system (46)–(48). We consider this system on the whole real axis and look for a traveling
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wave solution, V(x, t) = v(x− ct), R(x, t) = u(x− ct), A(x, t) = w(x− ct), where c is the
wave speed. Substituting these functions in system (46)–(48), we obtain the following system:

Dv′′ + cv′ + k1uw− k2v− σ1v = 0, (58)

cu′ + k2v− σ2u = 0, (59)

cw′ − k1uw = 0. (60)

This system is considered on the whole axis with the limits at infinity:

v(±∞) = u(±∞) = 0, w(−∞) = w f , w(∞) = w0. (61)

Here, w0 is a given constant, and w f is unknown. We will determine it below.

3.4.1. Final Amounts of Cell Proteins and Viral Load

We proceed as before for the ODE system. Taking a sum of Equations (58) and (60)
and integrating over the whole axis, we obtain

c(w0 − w f ) = (k2 + σ1)J(v), (62)

where J(v) =
∫ ∞
−∞ v(x)dx. Next, from Equation (59),

k2 J(v) = σ2 J(u). (63)

Finally, from Equation (60),

c ln

(
w0

w f

)
= k1 J(u). (64)

Excluding the integrals from Equations (62)–(64), we obtain the equation

ln ω̃ = Rv(ω̃− 1) (65)

with respect to ω̃ = w f /w0, where Rv = k1k2w0/((k2 + σ1)σ2) is the same parameters as
before with A0 replaced by w0. The viral load in the wave

J(v) = c
w0

k2 + σ1

depends on the wave speed. We will determine it below.

3.4.2. Wave Speed

In order to determine the wave speed in problem (58)–(61), we use the linearization
method where the function w(ξ) is replaced by its value at infinity. Then, we obtain the
system of two linear equations:

Dv′′ + cv′ + k1uw0 − k2v− σ1v = 0, (66)

cu′ + k2v− σ2u = 0. (67)

The minimal wave speed should be determined as the minimal value of c for which
this system has a positive solution decaying at infinity. We look for its solution in the form
v(ξ) = pe−λξ , u(ξ) = qe−λξ . Substituting these functions in Equations (66) and (67), we
obtain the characteristic equation

(Dλ2 − cλ− k2 − σ1)(cλ + σ2) + k1k2w0 = 0.



Mathematics 2023, 11, 1526 12 of 23

Denote µ = λc. Then, from the last equation, we obtain

c2 = F(µ) ≡ Dµ2(µ + σ2)

(µ + σ2)(µ + k2 + σ1)− k1k2w0
.

The minimal wave speed is given by the equality

c2
0 = min

µ>µ0
F(µ), (68)

where µ0 > 0 is the value for which the denominator of the function F(µ) vanishes.
We simulate the full system of five equations with increased values of constants

q1, k1, k3, and q2 (q1 = 10, k1 = 10, k3 = k4 = 10, q2 = 10, where units and other
parameters are the same as in Figure 2). Such an increase allows the model to be reduced
and allows a comparison of the results for the full and reduced systems. In the simulations,
the total viral load equals 0.04 copy/cm2, and the wave speed equals 0.09 cm/h. Using
the Formulas (35) and (42), we obtain that the total viral load is 0.039 copy/cm2 and the
wave speed is 0.096 cm/h, while Formula (68) (with k1 = 10, k2 = 10, σ1 = 0.01, σ2 = 0.36,
w0 = 4, D = 0.001) gives wave speed 0.18 cm/h.

3.5. Second Simplified Model

Consider system (1)–(5) and reduce it to the three-equation model under the assump-
tion that another set of reactions is fast. As before, from Equation (3) we obtain:

R =
k10

σ20
Vi =

q10

σ20
Ve, (69)

where σ2 = σ20 × N. Substitute this expression into the remaining equations:

∂A
∂t

= − k4q10

σ20
AVe, (70)

∂Vr

∂t
=

k3q10

σ20
AVe − q2Vr, (71)

∂Ve

∂t
= D

∂2Ve

∂x2 + q2Vr − (q1 + σ1)Ve. (72)

We introduce notation

U = κ1 A, I = κ2Vr, V = Ve. (73)

a ∼ k4q1

σ2
=

k3q1κ2

σ2κ1
, β ∼ q2, b ∼ q2

κ2
, σ ∼ (q1 + σ1), U0 ∼ κ1 A0, (74)

and obtain the system:

∂U
∂t

= −aUV,
∂I
∂t

= aUV − βI,
∂V
∂t

= D
∂2V
∂x2 + bI − σV. (75)

This system of equations for the concentrations of uninfected cells U, infected cells
I, and virus V was considered previously in [15], taking into account the time delay.
In the current model, A corresponds to the concentration of cell proteins participating
in virus replication (see, e.g., [22]), Vr corresponds to the concentration of viral copies
inside the infected cells after the replication, and Ve corresponds to virus concentration in
the extracellular space. Therefore, we can reduce the multiscale model with intracellular
regulation to the macroscopic model for cell concentrations. Their respective spreading
speeds and viral loads are in agreement with each other.

We find the total viral load in the five-equation system with increased q1, k1, and σ2,
which correspond to this reduced system. In the simulations, the viral load is 106 copy/cm2

and the wave speed is 0.116 cm/h. The viral load and the wave speed obtained with (35)
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and (42) are 107 copy/cm2 and 0.118 cm/h, respectively, and the viral load and the wave
speed obtained by corresponding formulas from [15] are 221 copy/cm2 and 0.24 cm/h,
respectively. Further increases in coefficients q1, k1, and σ2 results in a better correspondence
between full and reduced models (Table 2).

Table 2. The results of comparison of the total viral load and the wave speed obtained in the numerical
simulation of the full system with the results obtained by analytical formulas from [15] for the second
reduced model. The increase in coefficients q1, k1, and σ2 leads to better correspondence. Parameters
q1, k1, and σ2 are measured in h−1, J(Ve) is measured in copy/cm2, and c is in cm/h. Values of other
parameters are D = 0.01, σ1 = 0.1, k3 = 0.1, k4 = 0.1, q2 = 0.1, A0 = 1000, with the same units
as in Figure 2. Corresponding values of the parameters of system (75) are a = 0.1 (h × copy)−1,
b = 0.1 copy/(h × cell), β = 0.1 h−1, U0 = 1000 cell/mL, and κ1 = κ2 = 1.0.

Value of
q1 = k1 = σ2

Numerical
J(Ve)

Numerical c J(Ve) by [15] c by [15]

1 106 0.116 221 0.24
2 54 0.11 99 0.21
5 17 0.09 25 0.13
10 5.1 0.05 6.2 0.06

4. Model Validation

We showed in the previous section that model (1)–(5) can be reduced to the model
of three Equations (75) for the concentrations of uninfected cells, infected cells, and virus.
The latter is used to describe the experimental results for various virus types, including
Delta and Omicron variants of the SARS-CoV-2 infection [15,16]. Therefore, the formulated
multiscale model can also be used to describe these data.

In this section, we validate the model by comparing it with kinetics of the SARS-CoV-2
life cycle presented in [21], where a detailed model of theintracellular reactions is consid-
ered, and the parameters for this model are estimated using the appropriate virological
and molecular biology data. As this model contains more intermediate stages, and it does
not take into account the space variable, a direct comparison is impossible. Therefore, we
adapt the model and consider system (1)–(5) under the homogeneous condition, with an
additional assumption that q2 = 0, since original and replicated virions are considered
in [21] separately. Thus, we obtain the following system

dVe

dt
= −(q1 + σ1)Ve,

dVi
dt

= q1Ve − k1Vi, (76)

dR
dt

= k1Vi − σ2R,
dVr

dt
= k3 AR,

dA
dt

= −k4 AR. (77)

System (76), (77) can be solved directly:

Ve = Ve(0)× e−(q1+σ1)t,

Vi = C1e−k1t + B1e−(q1+σ1)t, B1 =
q1Ve(0)

k1 − (q1 + σ1)
, C1 = Vi(0)− B1,

R = C2e−σ2t + B2e−k1t + B3e−(q1+σ1)t,

B2 =
k1C1

σ2 − k1
, B3 =

k1B1

σ2 − (q1 + σ1)
, C2 = R(0)− B2 − B3,

A = A(0)× exp
(

k4C2

σ2
e−σ2t +

k4B2

k1
e−k1t +

k4B3

q1 + σ1
e−(q1+σ1)t

)
,

Vr = Vr(0) + k3

∫ t

0
AR dt, (78)
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where the last integral can be found in elementary functions.
On the other hand, we reduce the system from [21] to the following five equations (see

Appendix A) and obtain the following model:

d[Vf ree]

dt
= krelease[Vassembled]−

(
k f use + dV

)
[Vf ree], (79)

d[Vendosome]

dt
=

k f usekbind

kdiss
[Vf ree]− (kuncoat + dendosome)[Vendosome], (80)

d[gRNA(+)]

dt
= kuncoat[Vendosome]− dgRNA[gRNA(+)], (81)

d[Vassembled]

dt
= k3[SP][gRNA(+)]

3 − (krelease + dassembled)[Vassembled], (82)

d[SP]
dt

= −k4[SP][gRNA(+)]
3, (83)

where
k3 =

kassemb
kVrel nSP

W, k4 =
kassemb
KVrel

W, (84)

W =
ktransl fN

dN−gRNAnN

ktr(+)
ktr(−)

dgRNAK2
NSPdgRNA(−)

(
ktransl fORF1

dNSP

)2
. (85)

Comparing this model with the system (1)–(5), we obtain following correspondences
for variables:

Ve ∼ [Vf ree], Vi ∼ [Vendosome], R ∼ [gRNA(+)], Vr ∼ [Vassembled], A ∼ [SP]

and parameters:

q1 ∼ k f use, σ1 ∼ dV , k1 ∼ (kuncoat + dendosome) ≈ kuncoat, σ2 ∼ dgRNA, q2 ∼ krelease.

The values of parameters and their ranges for the model (1)–(5) are listed in Table 1.
The results of the calculation of this model and its comparison with the results from ([21],
Figure 2) are presented in Figure 5. The curves are similar, but there is no time delay.

After the comparison with results from [21], we obtain the ranges of parameters for the
five-equation model (Table 1), and we establish the nature of the dependence of the viral
load on the parameters in this model. These dependencies are shown in Figures 3 and 4.

Let us also note that the simplified model (75) is similar to the model studied previ-
ously in [15], where the values of parameters were determined by the comparison with
the experimental data. This model reduction provides an additional validation of the
parameter choice.



Mathematics 2023, 11, 1526 15 of 23

Figure 5. Comparison of the kinetics of SARS-CoV-2 replication predicted by model (1)–(5) (right)
with results from ([21], Figure 2) (left). The values of parameters are estimated from the model
reduction (Table 1): k1 = 0.5, q1 = 0.5, σ1 = 0.12, σ2 = 0.2, k3 = 0.003, q2 = 0, k4 = 6.093, and the
initial conditions are Ve(0) = 1, A(0) = 1, Vi(0) = 0, R(0) = 0, Vr(0) = 0. From top to bottom: [Vf ree]

corresponds to Ve, [gRNA(+)] corresponds to R, and [Vassembled] corresponds to Vr. The difference in
maximal values of [Vassembled] and Vr is explained by biases due to numerous transformation of the
parameters required for reduction in obtaining coefficient k3, which influences the amplitude of Vr

accordingly (78), and the absence of a decrease in the end part of the plot is explained by the fact that
there is no mortality in the model (1)–(5) for Vr (and q2 = 0 for these calculations).

5. Discussion
5.1. Different Models of Infection Progression

The basic model of infection progression in cell culture represents a reaction–diffusion
system of equations with time delay for the concentrations of uninfected cells, infected
cells, and viruses [15]. It allows the determination of the main characteristics of infection
progression, such as the spreading speed and viral load. This model admits numerous



Mathematics 2023, 11, 1526 16 of 23

developments, including virus mutation [20], competition [16], and mucus motion in the
respiratory tract [17].

All these models treat cell culture as a continuous medium where infected cells produce
new viral particles, both of them modeled through their concentrations. Neglecting cell
division and motion, as is usually the case in virus plaque assays, we can associate the space
variable x not to the local quantity of cells but to the concentrations of some intracellular
substances. This approach is not applicable in the case of cell division or motion, which
would not allow the description of intracellular concentrations with kinetic equations.

In this work, we combine the macroscopic model of infection spread with a model
of intracellular regulation. We deliberately consider a simplified model problem with
a one-stage virus replication process. We show how this model can be reduced to the
previous macroscopic models. This two-scale approach opens new perspectives in the
modeling of viral infections.

Infection spreading in cell culture includes two processes: virus replication inside
infected cells and virus motion (diffusion) between cells [9]. The model of intracellular
virus replication does not depend on the space variable. It is validated by a comparison
with a more complete model of intracellular regulation in [21]. The model with diffusion
and space variables is validated by the comparison with the previous model in [20], which
was justified by the experimental data.

Let us note that experiments on virus plaque assays are carried out in a monolayer
of cells so the corresponding modeling problem is two-dimensional. The comparison of
2D and 1D models was performed in [15]. It was shown that the 1D model gives a good
approximation of the 2D model. In the results presented in Figure 2a for the concentration
of infected cells, the interval where this concentration is close to 0 can be interpreted as
plaque radius.

5.2. Complete and Reduced Models
5.2.1. Comparison with the First Reduced Model

The basic characteristics of reaction–diffusion models, and in particular, of the current
model, are the viral replication number Rv, total viral load J(v), and wave speed c. We will
compare their values with the corresponding values for the reduced model (46)–(48).

Let us recall that the virus replication number determines the condition of infection
progression. In both models, Rv inversely depends on the extracellular virus degradation
rate σ1 and on the degradation rate σ2. It has the same dependence on the rate of virus
penetration into the cell q1 (similar to k2 in the reduced model). It is also proportional to the
virus replication rate k3 (similar to k1 in the reduced model). Thus, the qualitative structure
of the viral replication number remains the same for both models.

Next, we obtain Equation (32) for w̃, which is the ratio of intracellular components
after infection progression to the initial quantity of them. This equation coincides with
Equation (65) for the model from Section 3; however, the virus replication number is defined
with (11) now. For the total viral load J(v), which is the integral of the extracellular amount
of virus over space, the Equations (34) and (35) coincide with the corresponding equations
from the Section 3, irrespective of the new formula for Rv. Thus, a more detailed model
gives the same estimation for the total viral load as a coarser one.

Comparing the Formula (42) for the wave speed to the (68), we conclude that the
numerator now has three factors with degradation coefficients for the viral genomes (DNA
or RNA) σ2, and also for the virus replication rate q2 and for the intracellular viral genome
production coefficient k1. In the denominator, the first term is essentially the same, and the
last term contains production coefficients not only for extracellular viruses q2 and k1,
but also for intracellular virus q1 and virus replication k3. As for the viral replication
number Rv, the wave speed has the same biological interpretation as in the reduced model,
while the formula is more detailed for the complete model.
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5.2.2. Comparison with the Second Reduced Model

In the previous work [16], we considered the model of virus propagation in cell culture
in terms of cell populations, i.e., at the cell level; it contains the quantities of uninfected
cells, infected cells, and viruses. The approach to the model construction suggested in this
work is principally different. In this work, the virus quantity and their productions are
considered irrespective of types of virus and target cells. This allows us to take into account
intracellular reactions, receptors, and features of virus replication, and thus, we obtain
more flexible but still quite simple models.

In the model from [16], the virus replication number Rv directly depends on the rate
of cell infection a, a rate of virus production b, and the initial quantity of uninfected cells
u0, and it inversely depends on the death of infected cells β and virus degradation σ. In the
model from Section 3, the Rv directly depends on the rate of virus replication k1, the rate of
virus DNA (RNA) production k2, and initial quantity of intracellular components A0, and it
inversely depends on the degradation rate σ2, and the virus consumption, including virus
degradation k2 + σ1. If we correlate the indicated coefficients in the order in which they are
listed, we will obtain the same formulas for Rv in both models. Such a correlation is natural
since the virus DNA (RNA) is produced in infected cells, so its production and degradation
correspond to the production and death of infected cells. Virus replication in the infected
cells uses viral proteins located inside the cells. Although the intracellular components
of the model from Section 3 refer to infected cells, they act as a resource required for the
virus to propagate, just like uninfected cells in the model from [16]. Though the meaning
of the coefficients is similar, the quantitative values of the coefficients in both models are
different. This should be taken into account for the application of the model and for the
comparison of the results. Both models under consideration have the same Equation (32)
for w̃; however, the formulas for the total viral load are different. The formulas for the
wave speed have the same structure as already been analyzed above.

5.3. Biological Interpretations

The virulence of infection correlates with the size of viral plaques [3–5], while this
size is determined by the speed of infection spread. Hence, the wave speed in the reaction–
diffusion models of viral infection has a direct biological interpretation by means of infection
virulence. The analysis presented in this work for the two-scale model of infection progres-
sion in cell culture allows us to determine the spreading speed through the parameters of
virus transport (diffusion) and of intracellular regulation.

Furthermore, the infectivity of respiratory viral infections, that is, the rate of their
transmission from infected to uninfected individuals, is proportional to the viral load in
the upper respiratory tract. Therefore, we can use the formulated model to determine how
virus infectivity depends on the parameters of the model.

As is usually the case for reaction–diffusion models, the spreading speed is propor-
tional to the square root

√
D of the diffusion coefficient. Since virions diffuse as inert

particles, their diffusion coefficient depends on their size and on the properties of the
medium with values of about 10 µm2/s determined in biophysical experiments.

The parameters of intracellular regulation in the two-scale model include the rates of
virus entrance to the cell q1 and its exit from cell q2. The first one is particularly important,
and it was largely discussed for the SARS-CoV-2 infection. The spike protein in the
new coronavirus undergoes numerous mutations and leads to the emergence of new
variants, some of them being more virulent than the original variants. The formula for the
wave speed (42) shows that it increases as a function of q1 (Figure 4), but this increase is
quite weak.

On the other hand, viral load determined by formula (35) is proportional to the wave
speed c and inversely proportional to q1. Figure 3 shows that viral load can increase or
decrease for larger values of q1 depending on other parameters. Thus, mutations in the
spike protein increasing the virus penetration rate into the host cell lead to the increase in
virus virulence but not necessarily an increase in viral load. Note that a comprehensive
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analysis of the viral load kinetics and infection severity requires consideration of innate
and adaptive immune responses (see, for example, [23]).

Overall, the developed family of mathematical models, differing in their complexity,
provide a solid analytical basis for further applications in the analysis of the pathogenesis
of viral infections via multi-scale and hybrid modeling approaches.

6. Conclusions

Viral infection propagates in cell culture as a reaction–diffusion wave [15,16,20]. In this
work, we studied the influence of intracellular regulation of virus replication on infection
progression. We determined viral load and spreading speed depending on the rate of
virus penetration inside cells and on the rate of virus replication. These results allow the
comparison of different SARS-CoV-2 variants for which mutations in the spike protein
can influence the entrance rate. Let us recall that viral load in the upper respiratory
tract determines the infectivity of respiratory viral infections, that is, the rate of disease
transmission from infected to uninfected individuals. On the other hand, the speed of
infection spreading determines the size of viral plaques, which correlates with the severity
of symptoms. Therefore, we determine how the virus entrance and replication rates
influence the infectivity and severity of the disease. The model developed in this work is
validated by the comparison with the model of intracellular virus replication [21] and with
the model of infection spreading without intracellular regulation [15].

Author Contributions: Conceptualization, G.B. and V.V.; methodology, V.V.; software, N.B.; valida-
tion, A.M.; formal analysis, A.M.; investigation, A.M.; writing—original draft preparation, A.M..;
writing—review and editing, V.V.; supervision, V.V.; funding acquisition, G.B. All authors have read
and agreed to the published version of the manuscript.

Funding: The research was funded by the Russian Science Foundation grant number 18-11-00171.
(to G.B. and V.V.).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. System Reduction

Consider the following system of equations from [21]:

d[Vf ree]

dt
= −kbind[Vf ree]− dV [Vf ree] + kdiss[Vbound], (A1)

d[Vbound]

dt
= kbind[Vf ree]−

(
k f use + kdiss + dV

)
[Vbound], (A2)

d[Vendosome]

dt
= k f use[Vbound]− (kuncoat + dendosome)[Vendosome], (A3)

d[gRNA(+)]

dt
= kuncoat[Vendosome]− dgRNA[gRNA(+)], (A4)

d[NSP]
dt

= ktransl fORF1[gRNA(+)]− dNSP[NSP], (A5)

d[gRNA(−)]

dt
= ktr(−) [gRNA(+)]θRdRp − dgRNA(−) [gRNA(−)], (A6)

d[gRNA]

dt
= ktr(+)

[gRNA(−)]θRdRp −
(

kcomplexθcomplex + dgRNA

)
[gRNA], (A7)

d[N]

dt
= ktransl fN [gRNA]− kcomplexnNθcomplex[gRNA]− dN [N], (A8)

d[SP]
dt

= ktransl fSP[gRNA]− kassembnSPθassemb[N − gRNA]− dSP[SP], (A9)
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d[N − gRNA]

dt
= kcomplexθcomplex[gRNA]−

(
kassembθassemb + dN−gRNA

)
[N − gRNA] (A10)

d[Vassembled]

dt
= kassembθassemb[N − gRNA]− (krelease + dassembled)[Vassembled], (A11)

d[Vreleased]

dt
= krelease[Vassembled]− dV [Vreleased], (A12)

where

θRdRp =
[NSP]

[NSP] + KNSP
, θcomplex =

[N]

[N] + KN
, θassemb =

[SP]
[SP] + KVrel nSP

. (A13)

Accordingly [21] (Table 2, p. 9), dV = 0.12 � kbind = 12, kdiss = 0.61 � kbind = 12.
Divide both parts of (A1) on kbind and for big enough kbind the first equation gives:

[Vbound] ≈ a[Vf ree], a =

(
kbind
kdiss

+
dV

kdiss

)
≈ kbind

kdiss
. (A14)

We substitute the last in (A2) and for the [Vf ree] we get:

d[Vf ree]

dt
=

(
kbind

a
− k f use − kdiss − dV

)
[Vf ree]

and as bbind/a ≈ kdiss:
d[Vf ree]

dt
=
(
−k f use − dV

)
[Vf ree]. (A15)

This equation corresponds to Equation (1).

Substitute (A14) in (A3), and, as k f use × a ≈ k f usekbind
kdiss

, get the equation corresponding
to (2):

d[Vendosome]

dt
=

k f usekbind

kdiss
[Vf ree]− (kuncoat + dendosome)[Vendosome]. (A16)

Equation (A4) corresponds to the Equation (3) as is.
Consider the Equation (A5). In this equation, dNSP = 0.069 � ktranls fORF1 = 2.16.

Doing the same procedure as for the first equation we get:

[gRNA(+)] ≈
dNSP

ktransl fORF1
[NSP]. (A17)

Consider Equation (A6). For the term θRdRp = [NSP]
[NSP]+KNSP

: max([NSP]) ≈ 40
([21] (Figure 2, p. 10)), and KNSP = 100, so this term can be approximated with:

θRdRp ≈
[NSP]
KNSP

. (A18)

Thus for the considered equation we have:

d[gRNA(−)]

dt
=

ktr(−)

KNSP
[gRNA(+)][NSP]− dgRNA(−) [gRNA(−)].

In the last equation, ktr(−)/KNSP = 0.03 � dgRNA(−) = 0.1, thus for this equation
we have:

[gRNA(−)] ≈
ktr(−)

KNSPdgRNA(−)

[gRNA(+)][NSP], (A19)
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and taking into account (A17), we finally have:

[gRNA(−)] ≈
ktr(−)

KNSPdgRNA(−)

dNSP
ktransl fORF1

[NSP]2. (A20)

Consider Equation (A7). In this equation, we approximate the term θRdRp as defined

in (A18). Consider the term θcomplex = [N]
[N]+KN

. Maximum of [N] is about 1.0× 106 [21]

(Figure 2, p. 10), and KN = 5× 106. Thus, this term can be approximated with:

θcomplex ≈
[N]

KN
. (A21)

Taking into account (A18) and (A21), for the Equation (A7) we have:

d[gRNA]

dt
=

ktr(+)

KNSP
[gRNA(−)][NSP]−

( kcomplex

KN
[N] + dgRNA

)
[gRNA].

Consider the first term in the brackets: kcomplex/KN [N] <= 0.08� dgRNA = 0.2, thus
this equation can be rewritten as:

d[gRNA]

dt
=

ktr(+)

KNSP
[gRNA(−)][NSP]− dgRNA[gRNA].

As dgRNA = 0.2� ktr(+)
/KNSP = 10 we have:

[gRNA] ≈
ktr(+)

dgRNAKNSP
[gRNA(−)][NSP].

Using (A19), we get:

[gRNA] ≈
ktr(+)

ktr(−)

dgRNAK2
NSPdgRNA(−)

[gRNA(+)][NSP]2. (A22)

Consider Equation (A8). Using (A21), we get:

d[N]

dt
= ktransl fN [gRNA]−

kcomplexnN

KN
[N][gRNA]− dN [N].

As kcomplnN/KN = 3.6× 10−5 � dN = 0.023� ktransl fN = 37.8, we get:

[gRNA] =
kcomplexnN

KNktransl fN
[N][gRNA] +

dN
ktransl fN

[N],

[N] =
[gRNA]

kcomplexnN
KN ktransl fN

[gRNA] + dN
ktransl fN

.

In the denominator, the coefficient before the first term equals 9.6 × 10−7 and
max([gRNA]) = 104 [21] (Figure 2, p. 10), and the second term equals 0.6× 10−3. As the
first term is much more than the second, we estimate concentration [N] with:

[N] ≈ KNktransl fN
kcomplexnN

(= 0.1× 107). (A23)
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Consider Equation (A9). In the term θassemb = [SP]
[SP]+KVrel

nSP
, max([SP]) ≈ 1.0× 105 �

KVrel nSP = 2.0× 106, thus this term can be approximated with:

θassemb ≈
[SP]

KVrel nSP
. (A24)

Using this estimation we get:

d[SP]
dt

= ktransl fSP[gRNA]− kassembnSP
KVrel nSP

[SP][N − gRNA]− dSP[SP].

Suppose, that the structural proteins are not produced and there is no its degradation,
thus the first and the last terms vanish:

d[SP]
dt

= − kassembnSP
KVrel nSP

[SP][N − gRNA]. (A25)

Consider Equation (A10). Using (A21) and (A24) we get:

d[N − gRNA]

dt
=

kcomplex

KN
[N][gRNA]−

(
kassemb

KVrel nSP
[SP] + dN−gRNA

)
[N − gRNA].

As kcomplex/KN = 0.8× 10−7 � kassemb/(KVrel nSP) = 0.5× 10−6 � dN−gRNA = 0.2
we get:

kcomplex

KNdN−gRNA
[N][gRNA]−

(
kassemb

KVrel nSPdN−gRNA
[SP] + 1

)
[N − gRNA] = 0,

[N − gRNA] =

kcomplex
KN dN−gRNA

[N][gRNA]

kassemb
KVrel

nSPdN−gRNA
[SP] + 1

.

As kassemb/(kVrel nSPdN−gRNA) = 0.25× 10−5 and max [SP] = 105 [21] (Figure 2, p. 10),
then the first term in the denominator is much less than the second one, and:

[N − gRNA] ≈
kcomplex

KNdN−gRNA
[N][gRNA].

Taking into account (A23), we get:

[N − gRNA] ≈ ktransl fN
dN−gRNAnN

[gRNA]

or with respect to (A22) and (A17)

[N − gRNA] ≈W[gRNA(+)]
3, (A26)

where

W =
ktransl fN

dN−gRNAnN

ktr(+)
ktr(−)

dgRNAK2
NSPdgRNA(−)

(
ktransl fORF1

dNSP

)2
. (A27)

Thus, the Equation (A25) for [SP] takes the form:

d[SP]
dt

= −k4[SP][gRNA(+)]
3, (A28)
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where
k4 =

kassembnSP
KVrel nSP

W. (A29)

This equation corresponds to (5).
Consider Equation (A11). Using (A24), we get:

d[Vassembled]

dt
=

kassemb
kVrel nSP

[SP][N − gRNA]− (krelease + dassembled)[Vassembled].

And using Equation (A26), we get:

d[Vassembled]

dt
= k3[SP][gRNA(+)]

3 − (krelease + dassembled)[Vassembled], (A30)

where
k3 =

kassemb
kVrel nSP

W. (A31)

This equation corresponds to Equation (4).
Consider Equation (A12). In our system (1)–(5), this term contributes to the concentra-

tion of extracellular virus, so, in the reduction, the only first term in the right-hand side can
be saved and included into the right-hand side of the Equation (A15) for [Vf ree].

Finally, the reduced system takes the form:

d[Vf ree]

dt
= krelease[Vassembled]−

(
k f use + dV

)
[Vf ree], (A32)

d[Vendosome]

dt
=

k f usekbind

kdiss
[Vf ree]− (kuncoat + dendosome)[Vendosome], (A33)

d[gRNA(+)]

dt
= kuncoat[Vendosome]− dgRNA[gRNA(+)], (A34)

d[Vassembled]

dt
= k3[SP][gRNA(+)]

3 − (krelease + dassembled)[Vassembled], (A35)

d[SP]
dt

= −k4[SP][gRNA(+)]
3, (A36)

where
k3 =

kassemb
kVrel nSP

W, k4 =
kassembnSP
KVrel nSP

W = k3 × nSP, (A37)

W =
ktransl fN

dN−gRNAnN

ktr(+)
ktr(−)

dgRNAK2
NSPdgRNA(−)

(
ktransl fORF1

dNSP

)2
. (A38)
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