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Abstract: A phenomenological 3D anisotropic nonlinear fatigue damage model has been developed
for a short glass fiber-reinforced polyamide. The model is formulated within the framework of
continuum damage mechanics and is based on a proposed anisotropic hyperelastic strain energy
function. The proposed model accounts for the effects of fiber content and nonlinear material behavior.
The mechanical behavior of polyamide reinforced with 20% and 30% wt short glass fiber has been
experimentally investigated under quasi-static and fatigue loading. Fatigue tests under bending
loading are carried out on rectangular specimens cut in the parallel and perpendicular direction to the
mold flow direction. The proposed fatigue damage model allows predicting the fatigue damage of
composite materials reinforced with short fiberglass, considering fiber orientation and fiber content.
The model is used to predict the damage evolution and the number of cycles to failure, and good
agreement between predicted values and experimental data is observed.
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1. Introduction

Numerous industries, including automotive, aeronautics, aerospace, construction,
military, and sports equipment, are currently witnessing significant technological advance-
ments in the use of composite materials. Composite materials are preferred due to their
ability to reduce weight and, as a result, minimize energy consumption. They are also
valued for their resistance to various environmental factors and their flexibility, which
allows them to be shaped in different ways compared to metals [1]. Among the various
types of composites, thermoplastic matrix composites have gained popularity and con-
tinue to experience rapid growth. Despite their many advantages, however, it is often
challenging to obtain parts that meet the expectations of manufacturers. Extreme precision
is required during the implementation of composites, and the slightest defect in impreg-
nation or manufacturing can cause significant deformations within the material [2,3]. As
a result, its mechanical characteristics are weakened, making it imperative to reduce the
deformations within the material. Many factors influence the properties of composite
materials, such as the type of fibers and matrix used or the processing method. However, it
is widely acknowledged that the fiber-matrix interface plays a critical role because stress
transfer occurs through this interface, and good compatibility between the two parts is
necessary. The quality of the interface is closely linked to the presence of a specific surface
treatment known as sizing. The impact of sizing on the properties of glass fiber-reinforced
composite materials has been extensively studied, and it is evident that the quality of
the interface significantly affects the properties of the material. Currently, short carbon
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fiber-reinforced thermoplastic matrix composites have the best adhesion properties, while
glass fiber composites still require improved adhesion properties.

The use of short fiber reinforced thermoplastic composites has gained significant
attention in various industrial fields and applications, including transportation, sports,
aerospace, and automotive industries. These materials must have superior mechanical
and chemical properties, be malleable to form complex shapes and be lightweight. Many
authors have investigated the mechanical behavior of polyamide 66 (PA66GFs) reinforced
with glass fibers in previous studies [4-12]. The properties of composite material are
influenced by various factors, such as fiber type, matrix type, fiber volume fraction and
orientation, interface, and fabrication process. Injection molding is a highly efficient and
productive method for processing PA66GFs, and its mechanical properties depend heavily
on this processing technique.

In addition, it has been shown that the mechanical properties of PA66GFs are primarily
governed by three main variables: fiber characteristics (diameter, length, orientation, and
content), molding conditions (temperature, pressure, and molding speed), and mechanical
testing conditions (deformation speed, test temperature, and hygrothermal condition).
Polyamide 66 reinforced by short glass fiber composites (PA66GFs) display anisotropic
properties, and it has been found that the material properties such as Young’s modulus,
fatigue strength, and tensile strength are significantly higher in the flow direction than
perpendicular to the polymer flow direction when considering the material as a three-
dimensional solid. This orientation dependency of PA66GFs mechanical properties makes
it an anisotropic material, as highlighted by several studies [13-18]. Haut du formulaire.

Composite materials are known to experience damage accumulation, with stiffness
reduction often beginning early in the fatigue life due to various types of damage (matrix
cracking, fiber fracture, fiber pullout, and matrix fiber delamination). The type of failure that
occurs is dependent on the material variables and test conditions. Moreover, the damage
mechanisms can interact differently and have different predominance depending on these
factors. In the case of short fiber reinforced PA66GF subjected to cyclic loading, the damage
evolution occurs in three stages [19-23]. The first stage corresponds to material softening
and damage initiation, characterized by a significant reduction in stiffness during the initial
cycles. The second stage involves coalescence and the propagation of micro-cracks that
occurred during the first stage. This phase is characterized by interfacial fiber-matrix
damage, and a relatively steady reduction in stiffness is observed, corresponding to the
behavior accommodation of the material. In the final stage, fiber fractures occur with the
appearance of macroscopic cracks, leading to the total failure of the material. Degradation
mechanisms result in a rapid reduction in stiffness.

Mechanical components made of PA66GFs are frequently subjected to random or cyclic
loading during their service life, which can result in irreversible damage [24]. To ensure
that these components meet the necessary requirements of safety, economy, and reliability,
it is critical to evaluate their cyclic behavior and the evolution of fatigue damage. However,
these properties are usually determined through expensive, complex, and time-consuming
experimental tests. Therefore, numerical simulations should be employed to predict the
evolution of damage and to provide a reliable estimate of fatigue life. Nevertheless, to
enable numerical simulations, the development of simple and accurate fatigue damage
models is essential.

The fatigue damage of composite materials has been extensively investigated and
documented in the literature. In their work, Amjadi and Fatemi [25] introduced a fatigue
damage model that focuses on the critical plane approach for predicting the fatigue life of
SGFR thermoplastics under tension-tension or tension-compression loading. Their model
takes into account the effects of fiber orientation and mean stress, as well as temperature
and frequency. They applied this damage model to a general fatigue model in order to
incorporate these additional effects.

Several researchers have proposed different fatigue damage models for short glass
fiber-reinforced polyamide composites. Toubal et al. [21] developed an analytical model
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based on cumulative damage to predict damage evolution. The model used a new damage
parameter determined via the final Young’s modulus [20]. Chebbi et al. [9,26] also proposed
a 1D fatigue damage model based on young modulus degradation for predicting damage
evolution in short glass fiber reinforced PA66GFs composite materials, using a similar
approach and modifying the phenomenological model proposed by Chaboche [27]. Pour-
sartip et al. [28] developed a phenomenological model where the unidirectional damage
growth rate is a power function of mean stress and stress magnitude, independent of
damage when cycle loading reaches constant stress magnitude. Recently, Chen et al. [29]
proposed a novel damage model that integrates multiple deformation mechanisms using
the modified Mori-Tanaka model and Transformation Field Analysis (MT-TFA) approach
for predicting monotonic and cyclic stress—strain responses applied on short fibers re-
inforced polyamide composites. Liu et al. [30] and Kawai [31] used an expression for
damage that varies with the compression and tension regime and is related to the dam-
age itself and the amount of strain applied. Van Paepegem et al. [32] proposed a fatigue
damage model that uses the amplitude of stress instead of the strain amplitude, which
was validated by experimental results prepared on a flat woven glass/epoxy composite.
Taheri-Behrooz et al. [33] presented multiple damage models, including four previously
studied models for unidirectional stiffness degradation, upon which they based their own
proposed models.

The use of Continuum Damage Mechanics (CDM) in conjunction with a fatigue
predictor has been a common approach in the development of fatigue-damage formalism.
Kachanov [34] was the first to introduce the CDM theory to explain the process of material
degradation, and it was later extended to include fatigue damage due to its effectiveness in
modeling the behavior of composite materials.

In the formulation of fatigue damage models, the small strain assumption is often
used instead of the hyperelastic approach. The assumptions can be integrated with single
or multiple damage variables corresponding to isotropic or anisotropic damage models,
respectively. Ladeveze et al. [35] formulated a new phenomenological fatigue damage model
using an anisotropic damage formulation and the CDM theory for laminate composite sheets
in the plane stress assumptions. This model was later reformulated by Sedrakian et al. [36]
to account for the strain energy and facilitate finite element implementation.

Nouri et al. [37] extended this method for predicting nonlinear cumulative fatigue
damage in short glass fiber reinforced polyamide 66 under mechanical loading. The damage
rate was assumed to be the sum of an exponential law and a power function to capture
the three stages of damage typically observed in this material. Avanzini et al. [38] used
a simplified version of the model to predict the fatigue behavior of a PEEK-based short
fiber reinforced composite, considering isotropic fatigue damage with one damage variable.
In related work, the authors [39] used a similar approach to model fatigue damage in
short fiber reinforced PEEK, modifying the damage state variable to accurately describe
the damage behavior. The fatigue damage model was implemented into a finite element
code. Payan et al. [40] modeled the behavior of laminated carbon/epoxy composites under
static and cyclic loading with plane stress assumptions and an orthotropic elastic potential.
This model was later used by Hochard et al. [41] to develop a nonlinear cumulative
damage model for woven-ply laminates in the framework of CDM subjected to cyclic and
static loadings.

Wang et al. [42] employed the CDM theory in combination with a hyperelastic ap-
proach to describe the fatigue life of carbon-filled natural rubbers as a function of nominal
strain amplitude under cyclic loading. They derived the damage evolution using Ogden
strain energy density (SED) [43]. Ayoub et al. [44,45] improved upon the Continuum
Damage Mechanics model proposed by Wang et al. [42] by utilizing a generalized form of
Ogden SED and developing the theoretical framework for multiaxial loading. They tested
the model using fatigue tests on a styrene-butadiene rubber (SBR) material under both con-
stant and variable amplitude loading conditions to validate its applicability. The proposed
model requires three damage parameters in addition to the constitutive law parameters.
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Calvo et al. [46] proposed an uncoupled directional continuum damage model for
biological soft tissues with fiber reinforcement using a hyperelastic approach. Their model
considers two damage variables, one for the matrix and one for the fibers. Several damage
models have been proposed recently [47-50] for metallic materials that can be extended for
thermoplastic-based composites.

The objective of this paper is to investigate the fatigue damage behavior of glass
fiber-reinforced polyamide 66 under both small and large deformations. To this end, a 3D
anisotropic damage model is proposed for short glass fiber-reinforced polyamide based on
the CDM theory. The model is developed using a hyperelastic finite deformation description
of the elastic response and is an extension of the results reported by Chebbi et al. [8] for
transversely anisotropic hyperelasticity where only the quasi-static uniaxial tensile and
bending material behavior is considered. In addition, it is also an extension of the results
illustrated in Chebbi et al. [9,26] for 3D anisotropic fatigue damage, where only a 1D elastic
fatigue damage model is considered based on the degradation of the elastic modulus to
predict the damage growth in composite materials.

The proposed 3D anisotropic fatigue damage model for short glass fiber-reinforced
polyamide is developed in the framework of CDM theory and includes internal variables
that introduce scalar variables for the fibers and matrix damages. The model takes into
account the orientation of fibers due to the injection process of composite materials and
is used to study the orthotropic material behavior under fatigue loading. To validate
the model, material parameters are first determined through tensile tests on PA66GF in
longitudinal and transverse directions. The fatigue damage of the PA66GF composite is
then studied through both numerical simulations and experimental tests. The numerical
simulations are performed via the developed finite element code and are used for sensitivity
analysis of the effect of model parameters on damage evolution. The fatigue experimental
tests are used to validate the proposed fatigue damage model.

2. Fatigue Damage Model Formulation
2.1. Constitutive Equations for Hyperelastic Material Model

Consider a continuum body with a reference placement Q) C R® and a material particle
defined by its position X € R® in the reference configuration. Denote by ¢(X,t) : QO x R — R3
the mapping function between the reference configuration and the deformed configuration
and F(X, t) is the deformation gradient.

_ 99
F=-0 = det(F) 1)

where | > 0 is the local volume ratio. As a measure of strain, the right symmetric Cauchy—
Green strain tensor is considered and defined as follows:

C=F'F 2)

The fully elastic constitutive response is applicable for an extremely slow deformation
and is expressed via a free energy. In the case of short glass fiber reinforced polyamide, the
free energy is assumed to be composed of two separate terms, as described below.

ll] = ;7111 lpm + lpf(cfﬂk)/k = 1/"'/” (3)

Subscripts m and f are for matrix and fiber, c denotes the fibers volume fraction,
1m € [0,1] is normalized scalar considered for the matrix damage variable, 7; € [0,1],
i =1, ..., n are normalized scalars considered for fibers damage variables. These damage
variables give an account of the evolution of the damage within the family of fibers or
variables responsible for the damage, which can occur on the interface of the fiber-matrix.
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Py, the matrix energy, is the isotropic part of the ground matrix. This strain energy po-
tential is formulated considering the invariants terms and the incompressibility assumption.
It is expressed as follows:

P =yu(l, ), h=]"=1 4)
where

I = t#(C), I = %[(tr(C))z ()] 5)

For the fiber energy 7, N favored fiber directions are studied and characterized
by unit vectors defined in the reference configuration by A, (« =1,...N). Upon defor-
mation, the unit vectors A, (¢ = 1,...N) are transformed into Aya, (« = 1,..N), where

« (@ =1,...N) are unit vectors in the deformed configuration, and A, are the stretches
along the fibers directions
A2 =A,-CA,, May = FA, 6)

The energy function ¢y should be an even function of A, (a =1,..N), expressed
as follows:

Py = tpf(c, CAyn),a=1,..N,k=1,.,n (7)

According to Spencer [51], the energy function iy can be formulated as a function of a
set of pseudo invariants as follows:

Y5 = Yy (C, 14(aﬂ),15(aﬁ),§a5, 77k)/ a=1,.6;=1..Nk=1,.,n 8)
where Iy(,p) and I5(,p) are defined as
Iy(ap) = Aa-C-Ap, Isop) = Ax-C*Ap )
and
gucﬁ = Aoc‘Aﬁ (10)
In order to obtain the stress tensor, we differentiate Equation (3) with respect to time

- M, Y o
lp_[”machJracf] C+¢mnm+2 Uf (11)

The internal dissipation D;,;; is given by the second principle of thermodynamics and
is expressed as follows:

Dint:%s:'c-q;zo (12)
Py ' 0
Din =[5~ 20 30 ~2 5| 5~y — 12 S 13

Therefore, the second Piola—Kirchhoff stress tensor may be written as the sum of the
matrix and fiber contributions:

S = 1uSm + S¢ (14)
where 5 lP
Pm 9Ivr
Sm=2%3¢6 51 =2%5¢ (15)

2.2. Energy Function

For the matrix isotropic free energy function, i,,;, the incompressible Yeoh model [52]
is considered as in [8]. This free energy is written as

Ym = Pw(h) = C1(I; —3) + Co(I; — 3)* + C3(I; - 3)° (16)
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where Cy, C, and Cj3 are material properties. The second Piola—Kirchhoff stress tensor of
matrix contribution is then

=23 ac 47
where the first derivatives of the two first invariants, with respect to C tensor, are given
in [53,54].

811 -1
— =1-CsC 18
5C 33 (18)
ol _
50 = il - C—Cx(l — Cx)C ! (19)

where Cs3 is the (3,3) components of the right Cauchy—Green strain tensor, Equation (2).
For the fibers, the energy function is supposed as follows:

Yy = kilﬂkl/]fk + Aq(c) (14,(11) - 1) (14,(22) - 1) (20)

2

e = Ax(c) (14,(kk) - 1) s k=12
2

ez = As(c) (14,(12) - 512)

where Ay (k =1,...,4) are material properties. These materiel properties must satisfy the
following conditions which are required by the fact that the fiber energy ¢ vanishes at
zero volume fraction of glass fibers

(21)

A(0)=0,k=1,..,4 (22)

The second Piola—Kirchhoff stress tensor relative to fibers. Equation (15)b is deduced
from Equation (20) as

3
5f=k_2177k Sfk+Sa (23)
g1 Ay
Sp1 = 441(0) (Lian) 1) —as S = #42(0) (Ly ) 1) —e (24)

9y 12) 9ly(22) 9ly(11)
: } 25)

c Sry = 2A4(c) [(14,(11) - 1) 5c T (14,(22) - 1) 5C

where the first derivatives of the invariants I, ), Equation (9) with respect to tensor C, is

Sr3 =4As3(c) (14,(12) - @12)

Iyp) 1
ac 2

(Ax®Ap+Ap @A) 0 =1,2; p=1,2 (26)

2.3. Damage Evolution Equations
Using Equation (14), the internal dissipation, Equation (13), can be rewritten as

Dint = Dint,m + Dint,f (27)

where
Dint,m = _Ymﬁm >0 (28)

s =~ Y 20, Y= ¥ k1,3 29
int,f — Z My =2V, Y= aﬁk’ =1,.., ( )
k=1
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Y and Yy (k=1,...,3) are the thermodynamic dual variables associated with the
damage variables #,, and 1x (k = 1,...,3), respectively. Using Equations (13) and (20), they

are given by
Ym = le
{ Yy =9, k=13 (30)

Therefore, the evolution equation of the thermodynamic force variables Y;;, and
S :

Yy (k=1,..,3) are
{Ym = 264;,,1 :
lIJ
Yk = ZTé : ka :

The evolution of damage variables 7, and (4, k =1,...,3) are obtained from an
irreversible equation as follows. Let =, and Z (k =1,...,3) defined by the following

expressions [54]
B = 2Ym, By =+/2 (32)

and let Z,,; and &y (k = 1,...,3) be the maximum value of =, and (k = 1, ..., 3), respec-
tively, over the closed time interval [0, t] [55].

(31)

Ept = ma 2Yu(s), Exy = max 1/2Yi(s) (33)
s€(—oo, s€(—oo,t)

The damage criteria in strain space are defined by the following expressions:
(Pm:Em_Em,tS quok:Ek_Ek,tS O,kzl,...,3 (34)

For ¢, < 0 no evolution of damage variable 7,; occurs. For ¢, < 0 no evolution of
damage variable 7 occurs. The equations ¢, = 0 and (¢ = 0, k =1,...,3) define the
damaged surfaces with normals:

agom

0Pk
e Ni= k=1,..3 (35)

Nm —
Loading conditions are

{ @m = 0and Ny, : C >0 (36)

Pr = Oande:C>0, k=1,..3

Finally, the evolution equation of damage variables #,, and 7, (k = 1, ..., 3) are given
by [56,57]

: Bt (B, i) Em if  @m = 0et Ny-E >0
= 37
T { 0 otherwise (37)
o= G0 B if =0 NeE>0 4y (38)
ke 0 otherwise ! T

where h,, and h; are functions that describe the damages evolutlons From Equatlon (39),

it can be deduced that the evolution equations =, and = are related to Y, and Yy,

respectively, as follows:
1

m

Yy (39)

[x1-

m Ymr‘—fk—

g]‘»—\

[I]

Under a cyclic loading condition, displacement, or loading controls, the damage will
accumulate with the cycle’s number. The time rate change of damage variables, 77,, and
17;» can be expressed in terms of 77, and 7y, respectively, with respect to the cycle’s number.
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Based on this consideration, the damage fatigue rate could be linked to the number of
cycles N and written as follows:

dnk

d
i/ L hm(Em/Um) ’ W

T = = he(Z, ) (40)

The power law function is commonly utilized in numerous fatigue models for predict-
ing the degradation of mechanical properties. Nevertheless, these models incorporate dis-
tinct effective quantities for damage evolution and characterization of material properties.
Thus, the evolution equation that will be considered in this paper is as follows:(D = 1 — )

dDy, Ay Y5 dDy a Yfk

N [e+ (D = Dyo)™] (1 = D)™’ aN e+ (D, = D) | (1 = D)™

(41)

m0

Where e = 1074, ay, by, ¢k, and dj are material constants and D, is the initial damage.

Next, we use the assumption that the damage of the whole composite PA66GFs
is related to the damage variable D; as the experimental tests are bending tests in the
longitudinal direction. Then, we can write

Dy, =D;1, Dy =D, (42)
2.4. Elasticity Tensor
Starting from Equation (14) yields

. 1. 3
§s=C: EC’C:Cm+Z(ka+Cf4 (43)
k=1

where C,, is the matrix contribution to the material tangent moduli. However, C ks k=14
are the fibers contribution to the material tangent moduli. The C,, is given by [58]

C. — mCmo +%5m®5m if @m=0andN,-C>0 (44)
" 1mCmo otherwise
with ,
d
Cono = 4aclgné (45)
and Cgy is given by
Cpp = 77k(cfk0 +;¢777fkksfk®sfk if (pk:Oande.C>O (46)
! 1kCxo otherwise
with o1 51
4(kk 4(kk
Cpro = BAk(c) [a(c) a(c)} k=1,2 (47)
g2y _ g2
Cs0 = 843(c) {a(c) ® a(c)] (48)
and finally Cy, is given by
oly11) _ Olymny  Olymoy Iy
Cpa = 444(0) [ ac ®ac T ac ¥ ac } “9)

3. Experimental Study

The experimental investigation involved the use of polyamide 66, which was rein-
forced with short glass fibers at weight percentages of 10%, 20%, and 30%. The molding



Mathematics 2023, 11, 1508

9o0f21

injection process was utilized to manufacture four grades of composites, namely, PA66GF00,
PA66GF10, PA66GF20, and PA66GF30, with glass contents of 0%, 10%, 20%, and 30% based
on polyamide 66. Rectangular plates with specific dimensions and ISO 527-2 tensile spec-
imens were produced, as detailed in Chebbi et al. [9]. The mechanical properties were
characterized via tensile tests in accordance with the ISO 527-2 standard specification.
The specimens were cut along both the longitudinal and transverse directions, which are
parallel and perpendicular, respectively, to the direction of mold flow. Room temperature
tensile tests were conducted using a 10 kN INSTRON testing machine equipped with a
RUDLPH laser extensometer, with a crosshead speed of 1 mm/min.

The specimens were subjected to cyclic loading using a fatigue-testing machine that
was constructed in-house, as described in Chebbi et al. [9]. The adjustable crank-linkage
mechanism was utilized to apply the alternating displacement (1(t)) to one end of the
specimen (point B) while the other end was clamped (point A). Consequently, the specimen
was loaded as a clamped—clamped beam with one moving clamp (as shown in Figure 1).
The amplitude of the displacement (#max) and the displacement ratio (R; = #min/ 4 pax )
were adjustable parameters. The force acting on the composite sample was measured using

a force gauge connected to the sample fixture.
/AVANG

Tu(t) )

Fixed clamp Moving clamp

N
_ A B

k L= 60 mm W//A

Figure 1. Specimen clamping.

e=4 mm

The fatigue tests were conducted at room temperature with a constant alternating
displacement, using a cyclic frequency of 2 Hz for load cycles. The aim was to mini-
mize the increase in temperature due to the self-heating phenomenon, as proposed by
Handa et al. [59]. The variation of the displacement applied to the specimen during the
test, as well as the resultant force, were recorded instantaneously. Three minimum tests
were performed for each variation of displacement between 8 mm and 12.5 mm.

4. Identification of the Anisotropic Hyperelastic Behavior of PA66GFs

The parameters of the energy potential (defined in Equations (16) and (20)), including
Cy, Gy, C3,A1(c), and Ay(c), were identified via an inverse method with three experimental
tests. Two tensile tests were conducted in the longitudinal and transverse directions for
PA66GFs, and a tensile test was conducted for the pure matrix. A finite element (FE)
model was developed based on the specimens used in the tensile tests. Load control was
employed, and an error function was expressed as follows:

n 1/2
f= 3 (uf - Uf"p)zl (50)

k=1
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This error function is the sum of different contributions from loaded nodes estimated
at different load levels. ULE, U]f P are, respectively, the nodal displacements from the Finite
Element simulation and from the experiments. The non-linear least squares minimization
problems Equation (50) is solved via the Levenberg-Marquardt algorithm. The FE model
uses a four-node quadrilateral shell element proposed by Dammak et al. [60].

The material properties for the matrix, relative to the Yeoh model, are obtained in
Ref. [8] as C; = 128Mpa, C; = —4670Mpa, and C3 = 1.5237 x 105Mpa.

With Cy, €y, and C3 obtained, the experimental results of uniaxial tensile tests of
PA66GFs along the longitudinal direction are used to obtain the material parameter A;(c).
The predicted composite responses are plotted in Figure 2. A good agreement with the
experimental data is observed under moderate deformation.

2500
2000 o
f””
1500
z
—§ 1000 = = =Num_GF30
—~ o Exp GF30
- = =Num_GF20
500 o  Exp _GF20
----- Num_GF10
o  Exp GFI0

L B S B e R S S S S B S S S e B S e e

0 0.5 1 1.5 2 2.5 3 3.5 4
Displacement (mm)

Figure 2. Load-displacement curves of tensile tests on PA66GFs: longitudinal direction.

Finally, the material parameter A;(c) for the studied material was obtained by fit-
ting the transverse uniaxial tensile test data as plotted in Figure 3. The experimental
data are in good agreement with predicted results within the applicable domain of the
presented model.

1000
900
800
700
600
Z 500
el - -
£ 400 Num_GF30
— o  Exp GF30
300 =+ = Num_GF20
200 o  Exp GF20
----- Num_GF10
100 o  Exp GF10
0 - —T-TTTTTT T T 7T T T T T T T T T T T T T
0 0.5 1 1.5 2 2.5 3

Displacement (mm)

Figure 3. Load-displacement curves of tensile tests on PA66GFs: transverse direction.
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The other two material parameters, As(c) and A4(c), in the anisotropic hyperelastic
model cannot be determined without additional experimental tests, such as shear tests. As
these tests have not yet been conducted, the material parameters are currently considered
to be valueless.

Az(c) = A4(c) =0.0 (51)

The material properties for the longitudinal and transverse directions, Aj(c) and
Ay(c), were determined via a nonlinear least squares method and are summarized in
Table 1 for three different volume fractions.

Table 1. Identification of the material parameter A;(c) and A;(c).

wt% c Aq(c)[Mpa] Ay (c)[Mpa]
PA66GF10 10 0.04489 62.04 3.915
PA66GF20 20 0.09565 192.1 16.12
PA66GF30 30 0.15349 347.3 34.21

The evolution of Aj(c) and Ay(c) can be calculated by second-order polynomial
functions with a good correlation factor.

Al(c) = C(Alo + A11C)
{ Ay (c) = (A + Anic) (52)

The values of the material properties A1(c) and A;(c) identified for the three different
materials are plotted as a function of the fiber volume fraction, c, in Figure 4. It is worthwhile
to notice the difference between the longitudinal and transverse directions.

350 - o Al i
300 A o A2 p
— - = Al(c) Parabolic approximation . /
250 4 ~°°°° A2(c) Parabolic approximation . s
R
£ 200 1 iy
\2/ 7
. 4 . R?=0.998
100 A - s
P
50 A - @)
- e----_---—----_-o
0 %—.—.—-r.--'-_“'ﬁ» ______ | | |

0 0.02 0.04 006 0.08 01 012 0.14 0.16
Volume fraction (c)

Figure 4. Function A (c) and A(c) as function of the volume fraction c.
The final whole model parameters are summarized in Table 2.

Table 2. Set of anisotropic model parameters.

Ci[Mpa] ~ C;[Mpa]  C3[Mpa]  Ago[Mpa]  Ayn[Mpa]  Ax[Mpa] Ay [Mpa]
128 —4570  1.523710° 1320 6245 56.4 1194
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Young modulus in longitudinal and transverse directions can be expressed as follows:

{ E; = 6Cy + 8c(Aqg + cApp) (53)

Er =6C1 + 8C(A20 + CA21)

These moduli are given in Table 3 for PA66, PA66GF10, PA66GF 20, and PA66GF 30.
The results obtained are in good agreement with those obtained through experimental
characterization [8]. It is interesting to note the difference between Young’s modulus in the
longitudinal and transverse directions. This difference is induced by the orientation of the
fibers in these directions.

Table 3. Young’s modulus in longitudinal and transverse directions.

wit% 0 0.1 0.2 0.3
Ep 768 1342 2235 3565
Er 768 807.5 898.5 1062

5. Fatigue Damage Model
5.1. Numerical Implementation

The flowchart in Figure 5 outlines the looping scheme used for the fatigue damage
model implemented in the in-house finite element code. The cycle jump procedure is used
to integrate the damage growth rate equation (Equation (41)) by extrapolation, which allows
for a computationally efficient simulation. The incremental method is used to calculate the
increment of the cyclic internal variables at all Gauss points. The evolutionary variables
are then extrapolated and used to calculate the next cycle jump. After a certain number of
increments (AN cycles), the total damage is estimated via the fourth-order Runge-Kutta
integration method (Equation (54)) [61]. This damage estimate can be used to predict new
material properties, and the simulation is repeated iteratively until total failure (D = 1).

1
DniaNn = Dy + E(Kl + 2K, + 2K3 + K4 ) AN (54)
where
K1 = f(N, Dn)

K, = f(N + 3AN, Dy + AN -K;
K3 = f(N+ 1AN, Dy + 1AN Ky
Ky = f(N + AN, Dy + AN-K3)

(55)

where AN is the discretization step size, and f(N, Dy) = g—f].

5.2. Sensitivity Study

The following paragraph provides a sensitivity analysis of the damage fatigue model
(Equation (48)) on its four parameters, namely, 4, b, ¢, and d. This analysis aims to examine
the impact of each parameter on the evolution and kinetics of damage, as well as the
number of cycles until failure. Additionally, the study aims to optimize the process of
identifying the damage model parameters. The structure being modeled is a rectangular
plate with the dimensions of 60 x 15 x 4 mm. The first edge of the structure is fixed,
and a sinusoidal displacement is applied to the second edge, as illustrated in Figure 6.
The simulation utilizes material properties acquired through quasi-static identification, as
indicated in Table 2. The modeled structure is meshed using four-node shell elements.
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Figure 6. Finite element model and boundary conditions.

A numerical sensitivity analysis was carried out on the PA66GF20 sample with a
prescribed displacement of 10 mm. In each test, one parameter was modified while the
others remained constant. Table 4 shows the initial values of the damage model parameters.
For the remainder of the study, the initial damage value, D r0, (Equation (48)), was set to
zero. The damage evolution curves at the outer layer fixed extremes of the specimen are
illustrated in Figures 7-10.
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Table 4. Initial values of damage fatigue model parameters.

a b c d
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Figure 7. Influence of parameter (2) on damage evolution.
""" b= b3z == =bell -===-b=] ——b=832 — —b=Il
1~ 1 : 1+
| |
A 0.8 | 2 0.8 -
E‘J I ! &
£ 06 I i £ 0.6
2 04 ' / S 04 /!
C ] PR 7 ’/’
4% / _,—’—’ % _—”—’/
£ 02 LT S 02 ey
g —_—
O T T T T T 0 T T T T 1
0 20000 40000 60000 80000 100000 0 0.2 0.4 0.6 0.8 1
Number of cycles N Normalized fatigue life (N/Ny)
Figure 8. Influence of parameter (b) on damage evolution.
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Figure 9. Influence of parameter (c) on damage evolution.

As depicted in Figure 7, which shows fatigue damage evolution in relation to nor-
malized fatigue life, the parameter (a) does not affect the kinetics of damage. However, it
significantly impacts the damage rate of the second stage. As a result, increasing the value
of the parameter (a) reduces the number of cycles required for failure to occur.
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Figure 10. Influence of parameter “d” on the damage evolution.

Figure 8 demonstrates that the parameter (b) has a notable impact on the kinetics
of damage. This parameter is responsible for initiating damage during the third stage.
However, increasing its value decreases the number of cycles needed to reach failure.

Modifying the parameter (c) alters the evolution and kinetics of fatigue damage, as
depicted in Figure 9. Increasing this parameter causes a rapid evolution of damage during
the first stage, resulting in a decrease in the fatigue life of the composite specimen.

Figure 10 displays the impact of the parameter (d) on the evolution and kinetics of
damage. This parameter has a significant impact on the damage slope of the second stage
and the onset of the third stage. As the value of the parameter (d) increases, the rate of
damage evolution accelerates, leading to a considerable decrease in the fatigue life of the
structure. This may result in rapid degradation of the material. However, the parameter
(d) has no impact on the first stage of damage evolution.

5.3. Validation of the Fatigue Damage Model

The fatigue model proposed in this paper was used to investigate the fatigue behavior
of PA66GF20 and PA66GF30 specimens under bending tests. First, the materials parameters
were identified via a nonlinear least squares method. An objective function representing
the difference between the values of the numerical and experimental results was deter-
mined and minimized using the Levenberg-Marquart algorithm [62]. For each material,
four constants are obtained, and the results are summarized in Table 5. Experimentally
measured force-cycle history for PA66GF20 and PA66GFO0 specimens are presented in
Figures 11 and 12, respectively. The higher the applied displacement, the higher the initial
force acting in the composite specimen. The curves show three stages. The first stage
is characterized by a rapid decrease in material stiffness. In the second stage, the force
acting in the composite specimen decreases in a relatively steady manner. The last stage
corresponds to the propagation and the coalescence of cracks until the brutal rupture. In
addition, increasing the amplitude of the applied displacement reduces the fatigue life
without changing the damage kinetics. Numerical results for the force degradation are
presented in Figures 13 and 14, respectively. The three stages of damage evolution are
well established. It is interesting to note the good agreement between the experimental
and the numerical results, which proves the accuracy of the damage model used in these
simulations and its efficiency in reproducing the fatigue behavior of the studied compos-
ites. Furthermore, simulated the number of cycles until failure is in good agreement with
experimental ones, as shown in Tables 6 and 7.

Table 5. Material parameters of the fatigue damage model for PA66GF20 and PA66GF2030.

Composite a b c d

PA66GF20 23 x 1078 8.32 0.99 3.33
PA66GF30 1.05 x 1078 8.9 1.0 3.33




Mathematics 2023, 11, 1508 16 of 21

150 -
— Umax = 10 mm
130 _k ......... Umax=1 1,5 mm
\ = = = Umax = 12 mm
k — « = Umax = 12,5 mm
110 T,
z
o 90
o
1S
o
70
50
W+r——————— T
0 20000 40000 60000
N (Cycles)

Figure 11. Experimentally measured force-cycle history for PA66GF20 specimens.
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Figure 12. Experimentally measured force-cycle history for PA66GF30 specimens.
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Figure 13. Simulated force-cycle history for PA66GF20 specimens.
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Figure 14. Simulated force-cycle history for PA66GF30 specimens.

Table 6. Experiment and numerical number of cycles to failure of PA66GF20.

Imposed Displacement 10 11.5 12 12.5

Exp results 65,000 14,200 9060 7740

Num results 57,000 15,330 10,580 7461
Error % 12.3 7.9 16.7 3.6

Table 7. Experimental and numerical number of cycle to failure of PA66GF30.

Imposed Displacement 8.35 9.11 10 11.2 11.78
Experimental results 26,000 12,850 5830 1582 855
Numerical results 28,200 12,047 4857 1617 1000
Error % 8.4 6.2 16.6 22 16.9

Figures 15 and 16 depict the damage evolution as a function of the number of cycles
at the extreme fixed outer layer of the PA66GF20 and PA66GF30 specimens, respectively.
The simulated curves exhibit the three stages of damage evolution that are typical of these
materials. The numerical results demonstrate the model’s capability to accurately replicate
the behavior of the composites under investigation.

In Figure 17, the damage contours in the deformed configuration are illustrated for
the PA66GF30 specimen under a bending test with an imposed displacement of 8.35 mm.
It is evident that the maximum value of damage is concentrated at the clamped cross-
section. However, it is also important to note a substantial level of damage at the moving
section where the imposed displacement was applied. These findings were verified through
experimental observations, where most of the tested specimens were found to have failed
at the fixed section.
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Figure 15. Simulated damage evolution at the extreme fixed outer layer of PA66GF20 specimens.
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6. Conclusions

The present paper introduced a new 3D anisotropic fatigue damage model that is
based on phenomenological principles. The model is used to predict the mechanical
behavior of short glass fiber-reinforced polyamide 66 when subjected to fatigue tests. The
model merges both the hyperelastic approach and continuum damage mechanics in the
same framework. This model allows taking into account the orientation of the fibers by
considering the different fiber contents. To determine the hyperelastic constitutive model,
tensile tests were conducted in both the longitudinal and transverse directions. The fatigue
damage model was incorporated into an in-house finite element code, and a parametric
study was conducted to examine how the model’s evolution and kinetics were affected by
the model parameters. This sensitivity analysis enabled us to enhance the procedure for
determining the parameters of the fatigue damage model. The accuracy of the proposed
model was tested against experimental results, which demonstrated its effectiveness. The
simulated results accurately predicted the evolution of damage and captured the specific
damage kinetics related to PA66GFs. Furthermore, it was revealed that the developed
model’s performance was satisfactory compared to the experimental findings.
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