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Abstract: This paper provides a multi-feedback feature selection fuzzy neural network (MFFSFNN)
based on super-twisting sliding mode control (STSMC), aiming at compensating for current distortion
and solving the harmonic current problem in an active power filter (APF) system. A feature selection
layer is added to an output feedback neural network to attach the characteristics of signal filtering
to the neural network. MFFSFNN, with the designed feedback loops and hidden layer, has the
advantages of signal judging, filtering, and feedback. Signal filtering can choose valuable signals to
deal with lumped uncertainties, and signal feedback can expand the learning dimension to improve
the approximation accuracy. The STSMC, as a compensator with adaptive gains, helps to stabilize
the compensation current. An experimental study is implemented to prove the effectiveness and
superiority of the proposed controller.

Keywords: active power filter; fuzzy neural network; multi-feedback feature selection super-twisting
sliding mode control

MSC: 68T07; 93C40

1. Introduction

With the wide application of distributed power generation and electronic transformers,
the construction of modern power grids is developing more electronics. However, because
the access of electronic equipment to power grids has become more frequent nowadays,
non-linear characteristics of the load are more prominent. As a result, harmonic pollution
has increased compared to the past. When the harmonic current flows through the system,
harmonic voltage is generated and has an adverse effect on electronic equipment. Nowa-
days, smart devices are widely used in grids, which are more easily affected by harmonics,
so harmonic compensation technology is becoming more important. To solve this problem,
an active power filter (APF) is an effective device widely used to improve power qual-
ity [1,2]. Working as a compensation circuit, the control method of APF has traditionally
referred to control methods based on grid synchronization for distributed power generation
systems [3]. Traditional PI control has the advantages of theory universality and has been
widely used on many control targets [4]. In traditional control methods, Proportional Reso-
nant (PR) controller is also one of the mainstreams [5]. Angulo et al. developed an implicit
closed-loop current controller and resonant controller, which introduces the concept of a
simplified model to reduce modeling complexity [6]. Yi et al. adopted the direction of the
vector resonance to design a shunt active power filter control scheme, incorporating the
idea of feedback control [7]. Fang et al. discussed the structure and parameter design of a
resonant LCL filter and designed a novel filter to raise performance [8].

To deal with the more changeable situation due to modern load complexity, many
scholars apply advanced control methods, especially adaptive methods, to improve the
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versatility and stability of APF. Wang et al. focused on the finiteness of switch states and
designed a model predictive control scheme [9], achieving multi-objective control through
a value function. Razmjooei et al. presented a novel framework for a time-varying observer
design for a nonlinear system [10], then as a follow-up, proposed an adaptive fast-finite-time
extended state observer, which raises the convergence rate [11], and offered an adaptive fast-
finite-time extended state observer to further reduce the influence of the initial value [12].
An adaptive thyristor-controlled LC-Hybrid active power filter is proposed by Lam et al.,
whose main purpose is to reduce switching loss [13]. Lock et al. developed a one-cycle
control strategy and used DSP as the hardware platform on a shunt active power filter [14],
thus rejecting common-mode currents caused by common-mode voltages. Incremona
et al. designed a sliding mode controller for nonlinear systems under strict constraints
on the system and output [15]. Razmjooei et al. designed a disturbance observer-based
backstepping tracking control to have more accuracy and faster convergence, reflecting the
advantages of feedback control [16].

To deal with the model uncertainty caused by the mutual coupling of voltage and
current in APF and high-order harmonics caused by the switching process, sliding mode
control is often used owing to its versatility [17]. For example, a sliding mode controller
combined with a vector operation technology for APF was proposed by Morales et al.,
which aimed at overcoming the coupling problem of traditional models [18]. In addition, a
neural network is feasible for approximation on the nonlinear part [19,20]. As examples
to show the flexibility of neural networks, a composite learning control of a flexible-link
manipulator is designed using a neural network approximator [19], and a hybrid double
hidden layer perceptron takes the form of a neural network [20]. Wai et al. introduced an
adaptive FNN control for a single-stage boost inverter [21]. A recurrent neural network
(RNN) controller combined with LCL filters was proposed by Fu and Li for grid-connected
converters [22]. A continuous fractional-order nonsingular terminal sliding mode control
was developed to track robot manipulators’ control design [23]. A direct super-twisting
power control method to control a brushless doubly-fed induction generator showed
the adaptive sliding mode’s contribution to reducing output oscillation [24]. A control
method for a micro gyroscope was proposed to combine a sliding mode control and pattern
recognition method [25]. The control methods above show that the combination of SMC
and neural networks is efficient in dealing with an uncertain model.

For the neural networks, not all the features and data of the neurons have enough
reference value. Moreover, the high-frequency signal change will lead to a significant
decrease in reliability at some time points. Hence, to reduce redundant data, the feature
selection methods came into being with high recognition ability and flexibility. An approach
focused on a function approximation-type problem adopting the way of selecting the
useful features and designing the rules based on the Takagi–Sugeno framework was
proposed in [26], which gives a hint on how to deal with the situation when the original
dimension of the input is very high. In [27], Padungweang et al. studied the probability
density distribution on the Fourier transform and proposed an unsupervised discrimination
analysis for feature selection. In [28], a global and local structure preservation framework
for feature selection has been proposed. The framework conducted feature selection by
integrating both global pairwise sample similarity and local geometric data structure. There
are also some fuzzy neural controllers which make full use of the neural network to improve
the control effect of complex models, reflecting the versatility and structural flexibility of
neural networks [29–34].

Inspired by the methods mentioned above, this manufacturer proposes an adap-
tive super-twisting sliding mode control (STSMC) method for an active power filter
based on a multi-feedback feature selection fuzzy neural network (MFFSFNN). Com-
pared with the existing literature, the major contributions can be briefly summarized in the
following outlines:

(1) Compared with traditional methods, the MFFSFNN-STSMC has the advantage of
high adaptability and tolerance. Traditional methods will perform poorly when dealing
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with the grid without enough accurate system information. However, with the sliding
mode’s low dependence on parameter accuracy and the neural network’s approximation
ability to unknown systems, the proposed method can deal with disturbances and model un-
certainty resulting from changes in the external environment and internal structural errors.

(2) A feature selection layer is added to an output feedback neural network to attach
the characteristics of signal filtering to the neural network. The signal filtering process
can deal with fast-changing input signals of a wider range of amplitudes and helps the
parameters and output converge quickly, thus improving training accuracy. In addition,
choosing suitable process data as a learning object helps reduce computing burden and
increase learning speed by reducing data redundancy. To realize the target, feature degree
and evaluation function are added to the layer to evaluate whether and how to use the
signals. These parameters have formal consistency with the parameters of the feedback
neural network, so the complexity of the system does not increase significantly. Among
them, feature degree is adaptively tuned to improve accuracy and reduce the difficulty
of setting, thus maintaining the dynamic stability of the network structure and signal
throughput. In addition, the signal filtering process also has a positive effect on countering
external disturbance because of its versatility.

(3) An adaptive super-twisting sliding mode is used to assist in dealing with high-
order harmonic problems and guarantee strong robustness. Compared with the traditional
sliding mode, the adaptive gain of STSMC has the advantage of making the output smoother
and helping extend the service life of the system. In addition, because it is a high-order
sliding mode controller, it is less dependent on the accuracy of system information. At the
same time, its adaptive nature helps reduce the dependence on the design of the sliding
mode parameters.

2. Modeling of Active Power Filter

A single-phase APF mainly includes three parts: an AC power supply network called
grid power, a non-linear load, and a DC side controller, which is the main circuit. In this
paper, an inverter circuit with pulse width modulation as a direct control method is chosen
as the main circuit, and a bridge circuit using IGBTs is used as a switching device. The
actual diodes and other electronic components have parameter changes because of various
factors such as temperature, extra resistance, and inductance added to the circuit to have a
basic filtering effect. Though the filtering effect of this additional structure is not enough,
the structure connects the AC and DC side and protects the system from extremely high
currents. It also provides an important basis for system modeling. Therefore, it is also an
important part of the system. In theory, capacitance is used as an energy supply element
adopted in simulation. Because there is a necessity to leave a margin for the capacitance
to charge, the error between the ideal DC side voltage and the actual value is also seen
as a reference for current compensation in the system. Because the topic of the proposed
method is harmonic compensation, which mostly concentrates on the steady state, in order
to protect the circuit from huge instantaneous current, a regulated power supply is used as
the DC side source in the experiment. Though the voltage will still change slightly because
of the load change, the neural network has enough tolerance to deal with the slight change.
To imitate load change in actual use, a single-phase uncontrollable rectifier bridge with
variable load is settled, as shown in Figure 1.

Using Kirchhoff’s voltage theory on the voltage loop of the AC side and main circuit,
it can be obtained that

Us = L
dic

dt
+ Ric + QUdc (1)

where Us is the supply voltage, set as a sine wave, ic represents a compensation current, Udc
is a DC-side capacitor voltage, and L and R are the link components in the main circuit of
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the active filter main circuit. Q is a switch function. Because extra components are already
added, IGBT can be considered an ideal circuit. Then, define switch function Q as follows:

Q =

{
1 VT1, VT4on, VT2, VT3o f f
−1 VT2, VT3on, VT1, VT4o f f

(2)

On the DC-side, the contribution of integral control to voltage stability is invalid, so
proportional control is used, and the state equation of the compensation current is chosen
as the main subject. The equation is written as follows:

.
ic = −

R
L

ic +
Us

L
− Udc

L
Q (3)

Generally, it is necessary to have more and higher-level model information in order to
design a higher-order controller to improve system performance. Therefore, the model of
active power filter is usually considered a second-order model. Then, taking the derivative
of Equation (3), obtains

..
ic = − R

L

.
ic +

.
Us
L −

.
Udc

L Q

= − R
L (−

R
L ic +

Us
L −

Udc
L Q) +

.
Us
L −

.
Udc

L Q

= R2

L2 ic +
.

Us
L −

R
L2 Us + ( R

L2 Udc −
.

Udc
L )Q

(4)

There is a problem in that Q is not perfectly constant, so on the turning point, the
model does not work. But thanks to the fact that the turning point only lasts for an instant
on the filtering effect of the inductance, it will not have a visibly bad effect on the system.

To get a standard model, Equation (4) can be sorted as

..
x = f(x) + Bu (5)

where x = ic, f (x) = R2

L2 ic +
.

Us
L −

R
L2 Us, B = R

L2 Udc −
.

Udc
L , u = Q.

Due to the errors of internal parameters and external disturbances in actual use and
the modeling error, the state equation inevitably has uncertainties. Finally, the target system
can be summarized as

..
x = f(x) + Bu+ϕ(t) (6)

where ϕ(t) represents the lumped uncertainty.
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3. Structure of Multi-Feedback Feature Selection Fuzzy Neural Network

The multi-feedback feature selection fuzzy neural network can feed internal signals,
external signals, and specific weight variables simultaneously so that the entire neural
network has more information for reference. Using a fuzzy neural network instead of the
traditional fuzzy method helps deal with the complexity of the APF system because, in
the fuzzy neural network, fuzzy rule bases can be arranged adaptively, reducing manual
dependence and improving its effectiveness. MFFSFNN has the advantage of adaptive
feedback neural networks, the initial value whose related parameters can be set arbitrarily
and have self-correction and self-optimization ability. By adding the feature selection layer
to the neural network to filter the input signal, MFFSFNN has the ability to deal with the
irregular high-frequency oscillating signal. This characteristic is effective in the APF control
method for the inevitable current fluctuation of the PWM wave.

The structure of MFFSFNN is shown in Figure 2.
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(1) Input layer. Its main function is to combine the input X = [x1 x2 . . . xm]
T and the

previous round’s output exY as the new input of the network to the next layer. Usually,
variables related to power supply current are selected as the input, which is far smaller than
the network output. Still, to keep the health of the learning process, the inputs should play
a major role, so the input layer and the output layers are connected by the outer weights
wro to cut the magnitude of exY. The output of this layer is θ = [θ1, θ2 . . . θm]

T .

θm = xm · wrom · exY (7)

(2) Fuzzy layer. This layer aims at calculating the membership. The Gaussian function
is selected as the membership function. This layer can adaptively adjust the related
parameter during the approximation process to reduce the dependence on the accuracy of
the initial value. The output of this layer combines the output of the input layer and the
feedback signal of the previous round of the fuzzy layer. Assume the nodes number is 3
µ1i, µ2j . . . ( i = 1 ∼ 3, j = 1 ∼ 3); there are

µ1i = exp[−‖θ1 + wri · exµ1i − c1i‖2

b2
1i

] (8)

µ2j = exp[−
‖θ2 + wrj · exµ2j − c2j‖2

b2
2j

] (9)
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where wri, wrj are the internal feedback parameters, c = [c11 . . . c13, c21 . . . c23]
T is the center

vector, and b = [b11 . . . b13, b21 . . . b23]
T is the base width. Considering the fact that inputs

are fast-changing and the initial inputs are usually unstable, internal feedback is used to
control the sensitivity of the fuzzy layer and study speed.

(3) Feature selection layer. The main purpose of this layer is to filter the input signal.
This layer attaches a kind of feature degree to the inputs, judges their worth, and decides
how to deal with them. Set the availability parameters as α1(i) and α2(j) there are

α1i = 1− exp(−( β1iωbiexβ1i)
2)

α2j = 1− exp(−(β2jωbjexβ2j)
2)

(10)

where β is a feature degree, exβ is the feature degree in the previous round, and ωb is a
recurrent weight. After obtaining the availability parameters, they would be compared with
the system error level to determine whether it meets the current system requirements and
save the results to the entry limit parameter di and dj. The detailed function is expressed as

d1i =

{
M αi ≤ Te
1 αi > Te

d2j =

{
M αj ≤ Te
1 αj > Te

(11)

where Te =
1

1+k(x1
2+x2

2)
represents the system error level, working as the threshold. When

using this function, there is a requirement that the optimal value of x is 0. M is the
eigenvalue, which should meet the need of 1 6= M 6= M2, x1 and x2 are two inputs for the
system, and k is a positive constant to decide the strictness of the selection. The output of
this layer is expressed as

µ′1i = µ1iα1i
µ′2j = µ2jα2j

(12)

(4) Rule layer. This layer is used to determine whether and how to use the signal and
decide the form of the output of this layer by judging the entry limit parameters. Each
node in the rule layer is marked as ∏. This layer completes the comparison, selection, and
multiplication of the input signal. The output of the rule layer is as follows:

hk =

{
µ′1i · µ′2j d1id2j 6= M
max(µ′1i, µ′2j) d1id2j = M

(13)

where k = 3× (i− 1) + j, i = 1 ∼ 3, j = 1 ∼ 3, k = 1 ∼ 9. Among the two circumstances,
d1id2j = M shows that there is only one input meeting the requirement. Because α, which
is smaller than 1, is multiplied to µ, the bigger value usually meets the requirement.
Therefore, the maximum value function is used to select the suitable output. d1id2j 6= M
shows the two inputs, both or neither, meet the requirement. When they both meet the
requirement, it is reasonable to use both of them, and in this situation, adding α to µ does
not significantly influence the results for α, which is extremely close to 1. When neither,
there are two circumstances. In the stable phase, because α is smaller, hk in this situation
should be smaller than those both meeting the requirement, and nodes of this kind should
have a smaller influence on the final output. Therefore, it can also be used. In the early
study phase, it is normal that all the inputs do not meet the requirements, but in this phase,
this kind of data is needed to adjust the parameters of the neural network, so the inputs
which do not meet the requirement are also required.

The manual of the feature selection layer, rule layer, and their connection method is
shown in Figure 3b for reference.

(5) Output layer. This layer mainly uses a weighted average method to integrate the
outputs of the rule layer to calculate the final result of the network. The output neuron is
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connected with all the neurons in the rule layer through the weight w = [w1, w2, . . . , wk].
The signal node of the output layer is marked as ∑, which represents the calculation of all
the inputs. The sum of the signals is expressed in the following form:

Y =
9

∑
k=1

wkhk = w1h1 + w2h2 + . . . + wkhk (14)

Finally, the output feeds back to the input layer with the outer feedback weight wro.
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4. Controller Design and Stability Analysis

The configuration of the proposed control scheme is depicted in Figure 3, which mainly
has two parts, including the MFFSFNN and STSMC methods. The MFFSFNN provides a
solution to the unknown model and parameter uncertainty problem of the actual system
by obtaining the system model through adaptive approximation, adding the advantage of
low dependency on the precise parameters of the actual system to the control method. The
STSMC is used to compensate for bias caused by neural networks.

Taking the uncertainty and disturbance into consideration, the APF system model is
expressed as

..
q = f + Bu + ϕ(t) (15)
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The designed sliding surface is

s = ce +
.
e (16)

where c is a sliding mode constant, e,
.
e are the tracking error and its derivative, as

e = q− qr (17)

.
e =

.
q− .

qr (18)

Then,
.
s = c

.
e +

..
e = c

.
e +

..
q− ..

qr (19)

Substituting Equation (15) into Equation (19) yields

.
s = c

.
e + f + Bu− ..

qr + ϕ(t) (20)

Considering there is no way to know the specific source, the specific value and
influence of parameter uncertainty and disturbance cannot be considered a computable
function, so ignore it for a while. When the sliding mode is in a steady state, where

.
s

converges to 0, the equivalent control law can be obtained as follows:

ueq =
1
B
(

..
qr − c

.
e− f ) (21)

STSMC is used as a compensator, widely used in the control method for its adaptability
and smoothness. The switching control law is designed as

usw = −k1

√
|s|sgn(s)−

∫
k2sgn(s)dt (22)

where k1 and k2 are positive constants, and k1 > ρ > |ϕ(t)|, k2 > δ >
∣∣ .
ϕ(t)

∣∣. Among them
ρ is the upper bound of system uncertainty and disturbance and δ is the upper bound of
the change rate of system uncertainty and external disturbance.

Then the total control law u is

u =
1
B
(

..
qr − c

.
e− f )− k1

√
|s|sgn(s)−

∫
k2sgn(s)dt (23)

The neural network approximates the unknown model part f of the system, and the
approximate result is f̂ , so in actual use, the control law can be rewritten as

u =
1
B
(

..
qr − c

.
e− f̂ )− k1

√
|s|sgn(s)−

∫
k2sgn(s)dt (24)

where f̂ = ŵT ĥ(x, ĉ, b̂, ŵr, ŵb, β, ŵro).
To determine the error information and let the approximation result be smooth, set

the first Lyapunov function as

V1 =
1
2

s2 (25)

Then, its derivative can be obtained as
.

V1 = s
.
s

= s(c
.
e + f + Bu− ..

qr + ϕ(t))
= s( f − f̂ − Bk1

√
|s|sgn(s)− Bk2

∫
sgn(s)dt + ϕ(t))

(26)

If the unknown model f is approximated successfully, the parameters will have their
optimal values, set best weight as w∗, and similarly, best base width b∗, center vector c∗,
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inner feedback gain w∗r , feature degree β∗, current parameter ωb
∗ and outer feedback gain

w∗ro, then f = w∗Th∗ + ξ, where h∗ = h∗(x, c∗, b∗, w∗r , w∗b , β, w∗ro) and ξ is the mapping error.
Learning errors of the above-mentioned parameter are defined as

h̃ = h∗ − ĥ
w̃ = w∗ − ŵ
b̃ = b∗ − b̂
c̃ = c∗ − ĉ
w̃r = w∗r − ŵr
w̃b = w∗b − ŵb
β̃ = β∗ − β̂
w̃ro = w∗ro − ŵro

(27)

Therefore, the approximation error of the unknown part can be quantified as

f − f̂ = w∗Th∗ + ξ − ŵT ĥ

= (w∗T − ŵT)ĥ + (w̃T + ŵT)h̃ + ξ

= w̃T ĥ + w̃T h̃ + ŵT h̃ + ξ

(28)

Define
ξ0 = w̃T h̃ + ξ (29)

Then Equation (28) becomes

f − f̂ = w̃T ĥ + ŵT h̃ + ξ0 (30)

In order to formulate the connection between the internal signals and parameters of
the neural network, the Taylor expansion of h̃ is performed, as

h̃ = ∂h̃
∂c

∣∣∣|c=ĉ (c∗ − ĉ) + ∂h̃
∂b

∣∣∣|b=b̂ (b
∗ − b̂) + ∂h̃

∂wr

∣∣∣|wr=ŵr (w
∗
r − ŵr)

+ ∂h̃
∂wb

∣∣∣|wb=ŵb
(w∗b − ŵb) +

∂h̃
∂β

∣∣∣|β=β̂ (β∗ − β̂) + ∂h̃
∂wro

∣∣∣|wro=ŵro (w
∗
ro − ŵro) + Oh

= dhc · c̃ + dhb · b̃ + dhwr · w̃r

+dhwb · w̃b + dhβ · β̃ + dhwro · w̃ro + Oh

(31)

where Oh represents higher-order terms. The coefficient matrix dhc, dhb, dhwr , dhwb , dhβ, dhwro

is as follows: 

dhc =

[
∂h̃1
∂c

T
, ∂h̃2

∂c

T
· · · ∂h̃k

∂c

T]T

|c=ĉ

dhb =

[
∂h̃1
∂b

T
, ∂h̃2

∂b

T
· · · ∂h̃k

∂b

T]T∣∣
b=b̂

dhwr =

[
∂h̃1
∂wr

T
, ∂h̃2

∂wr

T
· · · ∂h̃k

∂wr

T]T

|wr=ŵr

dhwb =

[
∂h̃1
∂wb

T
, ∂h̃2

∂wb

T
· · · ∂h̃k

∂wb

T]T∣∣wb=ŵb

dhβ =

[
∂h̃1
∂β

T
, ∂h̃2

∂β

T
· · · ∂h̃k

∂β

T]T∣∣∣β=β̂

dhwro =

[
∂h̃1

∂wro

T
, ∂h̃2

∂wro

T
· · · ∂h̃k

∂wro

T]T

|wro=ŵro

(32)
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Substituting Equation (31) into Equation (30) yields

f − f̂ = ŵT(dhc · c̃ + dhb · b̃ + dhwr · w̃r + dhwb · w̃b

+dhβ · β̃ + dhwro · w̃ro + Oh) + ξ0 + w̃T ĥ

= ŵT(dhc · c̃ + dhb · b̃ + dhwr · w̃r + dhwb · w̃b

+dhβ · β̃ + dhwro · w̃ro) + ŵTOh + ξ0 + w̃T ĥ

(33)

Define total approximation error as Om = ŵTOh + ξ0. It can be seen that the neural
network method will have inevitable errors for its approaching mapping method and fuzzy
method. Therefore, as a result, a compensator like STSMC used here is necessary.

Choose the Lyapunov function as

V = 1
2 s2 + 1

2η1
w̃Tw̃ + 1

2η2
c̃T c̃ + 1

2η3
b̃T b̃

+ 1
2η4

w̃T
r w̃r +

1
2η5

w̃T
b w̃b +

1
2η6

β̃T β̃ + 1
2η7

w̃T
row̃ro

(34)

Then, the derivative of Equation (34) can be obtained as

.
V =

.
V1 +

1
η1

w̃T
.

w̃ + 1
η2

.
c̃

T
c̃ + 1

η3

.

b̃
T

b + 1
η4

.
w̃

T
r w̃r

+ 1
η5

.
w̃

T
b w̃b +

1
η6

.
β̃

T
β̃ + 1

η7

.
w̃

T
row̃ro

= s( f − f̂ − Bk1
√
|s|sgn(s)− Bk2

∫
sgn(s)dt + ϕ(t))

+ 1
η1

w̃T
.

w̃ + 1
η2

.
c̃

T
c̃ + 1

η3

.

b̃
T

b̃ + 1
η4

.
w̃

T
r w̃r

+ 1
η5

.
w̃

T
b w̃b +

1
η6

.
β̃

T
β̃ + 1

η7

.
w̃

T
row̃ro

(35)

Substituting Equation (33) into Equation (35) yields

.
V = sw̃T ĥ + 1

η1
w̃T

.
w̃ + sŵTdhc · c̃ + 1

η2

.
c̃

T
c̃ + sŵTdhb · b̃ + 1

η3

.

b̃
T

b̃

+sŵTdhwr · w̃r +
1
η4

.
w̃

T
r w̃r + sŵTdhwb · w̃b +

1
η5

.
w̃

T
b w̃b

+sŵTdhβ · β̃ + 1
η6

.
β̃

T
β̃ + sŵTdhwro · w̃ro +

1
η7

.
w̃

T
row̃ro

+sOm − Bk1s
√
|s|sgn(s)− Bk2s

∫
sgn(s)dt + sϕ(t)

(36)

Let sTw̃T ĥ + 1
η1

w̃T
.

w̃ = 0, it can be obtained that

.
w̃ = −

.
ŵ = −η1sT ĥ (37)

Similarly, other adaptation laws can be obtained, and finally, the adaptation laws can
be derived as 

.
w̃ = −

.
ŵ = −η1sT ĥ

.
c̃

T
= −

.
ĉ

T
= −η2sTŵTdhc

.

b̃
T
= −

.
b̂

T
= −η3sTŵTdhb.

w̃r
T = −

.
ŵr

T = −η4sTŵTdhwr.
w̃b

T = −
.

ŵb
T = −η5sTŵTdhwb

.
β̃

T
= −

.
β̂

T
= −η6sTŵTdhβ.

w̃ro
T = −

.
ŵro

T = −η7sTŵTdhwro

(38)
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Substituting Equation (38) into Equation (36) yields

.
V = s(Om − Bk1

√
|s|sgn(s)− Bk2

∫
sgn(s)dt + ϕ(t))

= −Bk1|s|
√
|s| − B|s|

∫
k2dt + sϕ(t) + sOm

≤ −Bk1|s|
√
|s| − B|s|

∫
k2dt + |s||ϕ(t)|+ |s||Om|

= −Bk1|s|
√
|s| − |s|

∫
(Bk2 −

∣∣ .
ϕ(t)

∣∣− ∣∣∣ .
Om

∣∣∣)dt

(39)

Suppose that Om and its derivative are bounded,
∣∣∣ .
Om

∣∣∣ ≤ Od, where Od is a positive

constant. Similarly, suppose
∣∣ .
ϕ(t)

∣∣ ≤ δ, where δ is a positive constant. Then, Equation (39)
can be interfered as

.
V ≤ −Bk1|s|

√
|s| − |s|

∫
(Bk2 − δ−Od)dt (40)

So, if there is k2 which fits the condition k2 ≥ 1
B (δ + Od), it can be proved that

.
V ≤ −Bk1|s|

√
|s| ≤ 0 (41)

Thus, ∫ t

0
|s|

3
2
dt ≤ − 1

Bk1
(V(t)−V(0)) (42)

Since V(0) and V(t) are bounded because V(t) > 0 and
.

V(t) ≤ 0, it can be concluded

that lim
t→∞

∫ t
0 |s|

3
2 dt is bounded. With the condition that

.
s is bounded and Barbalat’s lemma,

s(t) will asymptotically converge to zero. Since s(t) converge to zero, e will eventually tend
to zero. Thus, the designed controller ensures the asymptotic stability of the closed-loop
control system.

5. Simulation Study

To explore the feasibility and practical effect of the proposed method, this paper
conducted a simulation experiment in MATLAB. The circuit’s main parameters are set as
in Table 1. To show the adaptive ability of MFFSFNN, the circuit increase a set of dynamic
loads at 0.3 s; the initial values of the parameters are set as 1, except wro , which is set as 0.
η1, η2, η3, η4, η5, η6, η7 are set as 5 × 109, 10−9, 10−9, 10−9, 10−9, 10−9, 10−10, respectively.
k1 and k2 are set as 3 and 4, respectively.

Table 1. Simulation parameters of APF.

Name Parameter Value

Single-phase voltage RMS 24 V/50 Hz

Steady-state load R1 = 5 Ω, R2 = 15 Ω, C = 10−3 F

Dynamic load R1 = 15 Ω, R2 = 15 Ω, C = 10−3 F

Main circuit parameters L = 1.8 × 10−2 H, R = 1 Ω, Vref = 50 V

Sample time 10−5 s

Switching frequency 10 kHz

Figures 4 and 5 are the simulation output when the system is directly affected by
harmonics. Because of the distortion of load current and nonlinear load, the power supply
current cannot maintain a perfectly sinusoidal wave, especially on the top. As a result,
total harmonic distortion (THD) is up to 13.04%, showing that the power quality is largely
influenced and emphasizing the necessity for compensation.
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Then, Figure 6 to Figure 7 is the system output with the proposed control method.
Figure 5 is the tracking curve of compensation current with the error curve. The magnitude
of the error is within ±0.1, showing good tracking performance using the control method.
Figure 5 is the controller output, where Ueq and Usw have similar amplitude, showing that
the neural network and sliding mode control have their part in this control method.
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Figure 7. Controller output (a) Ueq, (b) Usw.

As shown in Figure 8, with the control of the proposed method, the power supply
current can maintain a sinusoidal wave form through short-time adjustment. The output of
MFFSFNN is shown in Figure 9, from which it can be seen that the learning process takes
about 0.1 s. Considering the fact that the capacitance working as the DC power supply
needs 0.15 s to charge, the learning process is short enough. Figure 10 shows that the THD
is 1.48%, indicating that the method has an excellent control effect for harmonic problems
and greatly contributes to improving power quality.
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An advanced algorithm recently published [35] is taken as a comparison. The compar-
ative result is in Table 2, proving the superiority of the MFFSFNN-STSMC method.

Table 2. Performance comparison in simulation.

MFFSFNN-STSMC OFFNN

Steady-state load 1.48% 2.84%
With dynamic load 1.35% 2.44%

6. Experimental Verification

To prove that the application scope of this method is not limited to simulation, a
dSPACE DS1104 single-phase APF prototype was built, and a series of hardware experi-
ments were carried out. Figure 1 shows the structure of the single-phase APF experimental
model. In addition to APF, the model also has signal acquisition circuits, main controller
systems, IGBT drivers, and PWM generators. The function of the signal acquisition circuit
is to acquire needed signals, where load current, the compensation current, power supply
voltage, and DC side capacitor voltage are required for this example. After digitization,
these signals are sent to the control system (in dSPACE DS1104). The error in the A/D
conversion of the A/D conversion unit is 0.7% according to sensor selection, and the re-
sponse time is 40µs, which fully meets the switching frequency requirements. Then, the
controller sends control information to the PWM generator and drives the IGBT switch for
current compensation. The load uses two sets representing steady-state and dynamic load,
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respectively, and are connected in parallel. The dynamic load is attached with a switch to
imitate load change.

Figure 11 is the experimental prototype, where the setup mainly includes the part
shown in Figure 1. The AC side current simulates harmonics. A programmable power
source is used to simulate AC power with harmonics. The DC power supply is used to
provide voltage on the DC side. The signals detected are IS, IL, Udc, and Us. The reference
voltage and ideal signals are set in dSPACE instead of using another ideal signal generator.
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6.1. Steady-State Experiment

Figure 12 is the output and oscilloscope harmonic distortion results in the steady
state. In Figure 12a, the AC side supply voltage, load current, compensation current,
and AC side supply current are from above to below. It can be seen that with compen-
sation, though the load current has a severe dead zone phenomenon, the power supply
current remains smooth. It can also be seen from Figure 12b that the THD change after
compensation is 3.40%, which shows that the proposed control method still has sufficient
harmonic compensation performance. For comparison, the results of four contrast algo-
rithms from [36] and [8] are shown in Table 3. It can be proved that the proposed method
has performance advantages compared with traditional filtering methods and other neural
network methods.

Table 3. Comparison of THD in the experiment.

Control Method
Performance

THD

MFFSFNN-STSMC 3.40%

ABNNCSMC 6.05%

ANNSMC 6.48%

LCL 5.16%

LLCL 4.40%

The results obtained in the hardware experiment are a bit poorer than those in the
simulation because the time delay in the experiment is more serious than that in the
simulation, and harmonic detection is sensitive to it according to instantaneous reactive
power compensation theory. Though in simulation results, the THD of the proposed
method is about 0.2% higher than that of ABNNCSMC, which is provided in [30]. In
experiments, MFFSFNN-STSMC has better performance, demonstrating the robustness of
the proposed method against delays and other external influences.
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6.2. Dynamic Experiment of Load Change

Considering the sudden changes in the number or performance of user appliances
in actual use, in order to prove the usability of the proposed method in actual use, an
experiment on increasing and decreasing nonlinear load is set to imitate the load mutation.
Figure 13 shows the situation with the load surge, and Figure 14 shows the opposite. In
both situations, the waveform of the power supply current has changed slightly due to the
change in the system environment. In addition, thanks to the self-adaptive ability of the
proposed method, it reverts to standard in no time. THD is 3.16% and 3.60%, close to that
of steady state (3.40%). It shows that the control system will change with the active change
of load to maintain the control performance of the system, showing the robustness and
control ability of the proposed method for complex and uncertain systems.

As a result, the simulation and experiment show that the proposed method has high
robustness, adaptive ability, and rapidity and has been proven practical in experiments.
However, when it comes to practical uses, the computational complexity of the proposed
method is too high for most site controllers. dSPACE here has enough calculation speed,
but in most sites, the controller is inferior, so the calculation and approximation process will
be slowed down, resulting in a decline in timeliness. A method under test now is splitting
the study and control processes, using computers of higher specifications to do the study
process and transmit to the scene of the site controller. Ways of reducing computational
complexity are also under discussion.



Mathematics 2023, 11, 1495 17 of 19

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 21 
 

 

proposed method, it reverts to standard in no time. THD is 3.16% and 3.60%, close to that 

of steady state (3.40%). It shows that the control system will change with the active change 

of load to maintain the control performance of the system, showing the robustness and 

control ability of the proposed method for complex and uncertain systems. 

As a result, the simulation and experiment show that the proposed method has high 

robustness, adaptive ability, and rapidity and has been proven practical in experiments. 

However, when it comes to practical uses, the computational complexity of the proposed 

method is too high for most site controllers. dSPACE here has enough calculation speed, 

but in most sites, the controller is inferior, so the calculation and approximation process 

will be slowed down, resulting in a decline in timeliness. A method under test now is 

splitting the study and control processes, using computers of higher specifications to do 

the study process and transmit to the scene of the site controller. Ways of reducing com-

putational complexity are also under discussion. 

 
(a) 

 
(b) 

Figure 13. Experiments when increasing loads: (a) Signal curve (b) Harmonic spectrum of source 

current. 

  

Figure 13. Experiments when increasing loads: (a) Signal curve (b) Harmonic spectrum of
source current.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 21 
 

 

 
(a) 

 
(b) 

Figure 14. Experiments when decreasing loads: (a) Signal curve (b) Harmonic spectrum of source 

current. 

7. Conclusions 
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7. Conclusions

This paper proposes a novel adaptive neural network method with a super-twisting
sliding mode compensator for an active power filter. The proposed neural network has the
advantage of tracking unknown parts of APF precisely and quickly. Furthermore, because
of its feature selection characteristics and feedback, it has the advantage of self-adaption
and processing capacity on fast-changing signals than traditional neural networks. STSMC
is used to compensate for the approximation error of MFSFNN with its high versatility
and suppress chatting in the system. Simulation and experimental results prove that the
proposed method can achieve satisfactory performance in harmonic compensation when
faced with system uncertainty and load changes.

In the future, authors will work on the proposed method’s experimental verification
on three-phase APF and in a high-voltage environment to prove the effectiveness of the
method. In addition, a study on reducing the computational complexity of the actual
system is in progress.
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