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Abstract: Under-dispersed count data often appear in clinical trials, medical studies, demography,
actuarial science, ecology, biology, industry and engineering. Although the generalized Poisson (GP)
distribution possesses the twin properties of under- and over-dispersion, in the past 50 years, many
authors only treat the GP distribution as an alternative to the negative binomial distribution for
modeling over-dispersed count data. To our best knowledge, the issues of calculating maximum
likelihood estimates (MLEs) of parameters in GP model without covariates and with covariates for
the case of under-dispersion were not solved up to now. In this paper, we first develop a new
minimization–maximization (MM) algorithm to calculate the MLEs of parameters in the GP distribution
with under-dispersion, and then we develop another new MM algorithm to compute the MLEs of the
vector of regression coefficients for the GP mean regression model for the case of under-dispersion.
Three hypothesis tests (i.e., the likelihood ratio, Wald and score tests) are provided. Some simulations
are conducted. The Bangladesh demographic and health surveys dataset is analyzed to illustrate the
proposed methods and comparisons with the existing Conway–Maxwell–Poisson regression model
are also presented.

Keywords: generalized Poisson distribution; mean regression model; MM algorithms; over-dispersion;
under-dispersion

MSC: 62-08

1. Introduction

Under-dispersed count data often appear in clinical trials, medical studies, demogra-
phy, actuarial science, ecology, biology, industry and engineering. Examples include the
number of embryonic deaths in mice in a clinical experiment [1], the number of power
outages on each of 648 circuits in a power distribution system in the southeastern United
States [2], the number of automotive services purchased on each visit for a customer at a
US automotive services firm [3], the species richness that is the simplest measure of species
diversity [4], the number of births during a period for women who live in Bangladesh
(https://www.dhsprogram.com/data, accessed on 28 January 2022) and so on.

The Poisson distribution is suitable for modeling equally dispersed count data, while
the negative binomial distribution is often utilized to model over-dispersed count data.
To fit under-dispersed count data, theoretically speaking, researchers should employ the
generalized Poisson (GP) distribution because it possesses the twin properties of under- and
over-dispersion [5–13]. However, in the past 50 years, most authors just treat the GP distri-
bution as an alternative to the negative binomial distribution by eyeing the former’s over-
dispersion property, while seeming to ignore its under-dispersion characteristic [6,8–13],
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although Consul & Famoye [6] proved that there exist unique MLEs of parameters for
both over- and under-dispersion cases. The main reason for hindering researchers from
using the GP distribution with under-dispersion is that calculating the maximum likelihood
estimates (MLEs) of parameters in GP models without/with covariates by a stable algorithm
is not so easy. To our best knowledge, the issue of calculating MLEs of parameters in the
GP model without/with covariates for the case of under-dispersion was not solved up
to now; in other words, we may not obtain the correct MLEs of parameters by using the
existing algorithms, see Section 5.

A non-negative integer-valued random variable (r.v.) X is said to follow a generalized
Poisson (GP) distribution with parameters λ > 0 and ψ, denoted by X ∼ GP(λ, ψ), if its
probability mass function (pmf) is given by [5,14]

p(x|λ, ψ) =


λ(λ + ψx)x−1e−λ−ψx

x!
, x = 0, 1, . . . , ∞,

0, x > r, when ψ < 0,

where max(−1,−λ/r) < ψ < 1 and r (> 4) is the largest positive integer for which
λ + ψr > 0 when ψ < 0. The expectation and variance of X are given by [14]

E(X) =
λ

1− ψ
and Var(X) =

λ

(1− ψ)3 ,

respectively. The GP(λ, ψ) distribution reduces to the Poisson(λ) when ψ = 0, and it has
the twin properties of over-dispersion when ψ > 0 and under-dispersion when ψ < 0.

To formulate the mean regression of the GP distribution, Consul & Famoye [7] intro-
duced a so-called Type I generalized Poisson (GP(I)) distribution, denoted by Y ∼ GP(I)(µ, α),
through the following reparameterizations:

µ = λ(1− ψ)−1 > 0 and α = (1− ψ)−1. (1)

It is easy to show that the pmf of Y is

p(y|µ, α) =


µ[µ + (α− 1)y]y−1 exp{−[µ + (α− 1)y]/α}

αyy!
, y = 0, 1, . . . , ∞,

0, y > m, when α < 1,

(2)

where µ > 0, α > max(1/2, 1− µ/m) and m (> 4) is the largest positive integer for which
µ + (α− 1)m > 0 when α < 1. The mean and variance of Y are given by:

E(Y) = µ and Var(Y) = α2µ,

respectively, where α denotes the square root of the index of dispersion. The GP(I)(µ, α)
distribution reduces to the Poisson(µ) when α = 1, and it has the twin properties of over-
dispersion when α > 1 and under-dispersion when α < 1. Thus, the mean regression
model for the GP(I) distribution is [7]

{Yi}n
i=1

ind∼ GP(I)(µi, α) and log(µi) = w>i β, i = 1, . . . , n, (3)

where the notation “{Yi}n
i=1

ind∼ GP(I)(µi, α)” means that Y1, . . . , Yn follow the same GP(I) dis-
tribution family but with different mean parameters µ1, . . . , µn, and Y1, . . . , Yn are indepen-
dent; wi = (1, wi1, . . . , wi,q−1)

> is the covariate vector of subject i and β = (β0, β1, . . . , βq−1)
>

is the vector of regression coefficients.
This paper mainly focuses on developing two new MM algorithms to stably calculate

the MLEs of parameters in the GP(I)(µ, α) distribution with under-dispersion (i.e., α < 1)
and the MLEs of the vector β of regression coefficients and the parameter α for the mean
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regression model in (3). Besides, we want to compare the performance of goodness-of-fit
and computational efficiency between the GP(I) mean regression model and the Conway–
Maxwell–Poisson regression model in simulations and real data analysis.

2. MLEs of Parameters in Generalized Poisson with Under–Dispersion and Its Mean
Regression Model

Let {Yi}n
i=1

iid∼ GP(I)(µ, α) and Yobs = {yi}n
i=1 denote the observed counts. Define

I0 , {i: yi = 0, 1 6 i 6 n},

I1 , {i: yi = 1, 1 6 i 6 n} and

I2 , {i: yi > 2, 1 6 i 6 n}.

Let mk denote the number of elements in Ik for k = 0, 1, 2, then we have m0 + m1 + m2 = n.
Based on (2), the likelihood function of {µ, α} is

L(µ, α) =

(
∏
i∈I0

e−
µ
α

)(
∏
i∈I1

µ

α
e−

µ+α−1
α

)

× ∏
i∈I2

µ[µ + (α− 1)yi]
yi−1 exp{−[µ + (α− 1)yi]/α}

αyi yi!

∝ exp
(
−m0µ

α

)
·
(µ

α

)m1
exp

[
−m1(µ + α− 1)

α

]

× µm2

α∑i∈I2 yi
exp

{
−
[m2µ + (α− 1)∑i∈I2

yi]

α

}
·∏

i∈I2

[µ + (α− 1)yi]
yi−1,

where ∑i∈I2
yi = nȳ − m1 and ȳ = (1/n)∑n

i=1 yi. Then, the log-likelihood function of
{µ, α} is given by

`(µ, α) = −m0µ

α
+ m1[log(µ)− log(α)]− m1(µ + α− 1)

α
+ m2 log(µ)

− (nȳ−m1) log(α)− m2µ + (α− 1)(nȳ−m1)

α

+ ∑
i∈I2

(yi − 1) log[yi(y−1
i µ + α− 1)]

= (m1 + m2) log(µ)− nȳ log(α)− n(µ− ȳ)
α

− nȳ + ∑
i∈I2

(yi − 1) log(yi)

+ ∑
i∈I2

(yi − 1) log(y−1
i µ + α− 1)

= (m1 + m2) log(µ)− nȳ log(α)− n(µ− ȳ)
α

+ ∑
i∈I2

(yi − 1) log(y−1
i µ + α− 1) + c1, (4)

where c1 is a constant free from {µ, α}.
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2.1. MLEs of {µ, α} via a New MM Algorithm

This subsection aims to find the MLEs of {µ, α} for the case of α < 1. Define ymax ,
maxi∈I2 yi. Because y−1

i µ + α − 1 > 0 for all i ∈ I2, we have y−1
maxµ + α − 1 > 0. Thus,

we obtain

log(y−1
i µ + α− 1) = log

[(
y−1

i − y−1
max
)
µ +

(
y−1

maxµ + α− 1
)]

(A2)
> v(t,t)i log(µ) +

(
1− v(t,t)i

)
log[µ + (α− 1)ymax] + c(t)2i , (5)

for all i ∈ I2, where

v(t,t)i , vi(µ
(t), α(t)) and vi(µ, α) ,

(y−1
i − y−1

max)µ

y−1
i µ + α− 1

, i ∈ I2,

and c(t)2i is a constant free from {µ, α}.
By combining (4) and (5), we have

`(µ, α) > a(t,t)1 log(µ)− nȳ log(α)− n(µ− ȳ)
α

+ a(t,t)2 log[µ + (α− 1)ymax] + c(t)3

, Q(µ, α|µ(t), α(t)),

which minorizes `(µ, α) at (µ, α)>= (µ(t), α(t))>, where

a(t,t)1 = m1 + m2 + ∑
i∈I2

(yi − 1)v(t,t)i , a(t,t)2 = ∑
i∈I2

(yi − 1)
(
1− v(t,t)i

)
,

and c(t)3 is a constant free from {µ, α}. Thus, by maximizing Q(µ, α|µ(t), α(t)), we have the
following MM iterates:

µ(t+1) =
a3(α

(t)) +

√
a2

3(α
(t)) + 4n(1− 1/α(t))ymaxa(t,t)1

2n
× α(t) and (6)

α(t+1) =
a4(µ

(t+1)) +
√

a2
4(µ

(t+1)) + 4
(
nȳ− a(t+1,t)

2
)
× a5(µ(t+1))

2
(
nȳ− a(t+1,t)

2
) , (7)

where

a3(α) = −n(1− α−1)ymax + nȳ,

a4(µ) = nµ(1− ȳy−1
max) and

a5(µ) = n(µ− ȳ)(µy−1
max − 1).

According to the one-to-one transformation (1), we can obtain the MLEs of {λ, ψ} as

ψ̂ = 1− α̂−1 and λ̂ = α̂−1µ̂,

where {µ̂, α̂} can be calculated through (6) and (7).
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2.2. MLEs of {β, α} in the Mean Regression Model

In this subsection, we consider the mean regression model (3) with α < 1. Similar to
(4), the log-likelihood function of {β, α} is given by

`(β, α) =
n

∑
i=1

{
bi1w>i β− µi − yi

α
− yi log(α) + bi2 log(y−1

i µi + α− 1)
}
+ c4, (8)

where bi1 , I(yi > 1), bi2 , (yi − 1)I(yi > 2), µi = exp(w>i β), and c4 is a constant free
from {β, α}. The goal is to calculate the MLEs of {β, α}.

2.2.1. MLE of β Given {β(t), α}
Since ∂µi/∂β = µiwi, we have

∂ log(y−1
i µi + α− 1)

∂β
=

y−1
i µi

y−1
i µi + α− 1

wi and

∂2 log(y−1
i µi + α− 1)

∂β∂β>
=

(α− 1)y−1
i µi

(y−1
i µi + α− 1)2

wiw>i . (9)

According to (8), we know that y−1
i µi + α− 1 > 0, thus 0 < 1− α < y−1

i µi. Given β(t)

and α, to calculate the (t + 1)-th approximation of β̂, we first restrict β in the following
convex set

C(t) =

{
β: y−1

i µi > T(t)
i (α) ,

1
2

[
1− α + y−1

i µ
(t)
i

]
, ∀ i ∈ I2

}
, (10)

where T(t)
i (α) is the midpoint of the two endpoints of the open interval (1− α, y−1

i µ
(t)
i )

and µ
(t)
i , exp(w>i β(t)). Then, for any i ∈ I2, since α− 1 < 0, we have

(α− 1)y−1
i

(y−1
i µi + α− 1)2

(10)
>

(α− 1)y−1
i

[T(t)
i (α) + α− 1]2

, b(t)i3 (α). (11)

On the other hand, we define

h(t)i (β|α) = log[µi + (α− 1)yi]− b(t)i3 (α)µi, ∀ i ∈ I2. (12)

By combining (9) with (11), we have

∂2h(t)i (β|α)
∂β∂β>

> 0;

i.e., ∂2h(t)i (β|α)/∂β∂β> is a positive semi-definite matrix. By applying the second-order

Taylor expansion of h(t)i (β|α) around β(t), we have

h(t)i (β|α) > h(t)i (β(t)|α) + b(t)i4 (α)× (β− β(t))>wi, (13)

where the equality holds iff β = β(t), and b(t)i4 (α) , {[µ(t)
i + (α− 1)yi]

−1 − b(t)i3 (α)}µ(t)
i . Let

`1(β|α) denote the conditional log-likelihood function of β given α, we have
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`1(β|α) (8)
= `(β, α)

(12) & (13)
>

n

∑
i=1

{[
bi1 + bi2b(t)i4 (α)

]
w>i β−

[
α−1 − bi2b(t)i3 (α)

]
exp(w>i β)

}
+ c(t)5

, Q1(β|β(t), α),

which minorizes `1(β|α) at β = β(t), where c(t)5 is a constant free from β.
Note that the Q1(β|β(t), α) is a weighted log-likelihood function of β for the Poisson

regression model with weight vector (α−1 − b12b(t)13 (α), . . . , α−1 − bn2b(t)n3 (α))
> and observa-

tions Y∗obs = {y
∗
i }n

i=1 with

y∗i =
bi1 + bi2b(t)i4 (α)

α−1 − bi2b(t)i3 (α)
, i = 1, . . . , n.

We can calculate the MLEs of β, denoted by β(t+1)
∗ , of the weighted Poisson regression

model directly through the built-in ‘glm’ function in the VGAM R package. Since β(t+1)
∗ is

restricted in the convex set C(t), we project β(t+1)
∗ on the convex set C(t), and calculate the

(t + 1)-th approximation of β̂ as

β(t+1) = β(t) + s(t)(β(t+1)
∗ − β(t)), (14)

where

s(t) , min
(

min
i∈I2

s(t)i , 1
)

and

s(t)i ,
log[T(t)

i (α)yi]−w>i β(t)

w>i (β(t+1)
∗ − β(t))

I(w>i (β(t+1)
∗ − β(t)) < 0)

+ I(w>i (β(t+1)
∗ − β(t)) > 0).

2.2.2. MLE of α Given {β, α(t)}
Define Tmin(β) , mini∈I2(y

−1
i µi). Given β, we have

log(y−1
i µi + α− 1) = log

{
[y−1

i µi − Tmin(β)] + [Tmin(β) + α− 1]
}

(A2)
> ui(β, α(t)) log[Tmin(β) + α− 1] + c(t)6 , ∀i ∈ I2, (15)

where c(t)6 is a constant free from α and

ui(β, α) ,
Tmin(β) + α− 1
y−1

i µi + α− 1
.

Let `2(α|β) denote the conditional log-likelihood function of α given β, we have

`2(α|β)
(8)
= `(β, α)

(15)
>

n

∑
i=1

{
yi − µi

α
− yi log(α) + bi2 · ui(β, α(t)) log[Tmin(β) + α− 1]

}
+ c(t)7

, Q2(α|β, α(t)),
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which minorizes `2(α|β) at α = α(t), where c(t)7 is a constant free from α. By setting
∂Q2(α|β, α(t))/∂α = 0, we have the following MM iterates:

α(t+1) = min(α(t+1)
∗ , 1), (16)

where

α
(t+1)
∗ , −

d2(β, α(t)) +
√

b2
2(β, α(t))− 4d1(β, α(t))d3(β)

2d1(β, α(t))
,

d1(β, α) ,
n

∑
i=1

bi2ui(β, α)− nȳ,

d2(β, α) , n[µ̄− ȳTmin(β)],

d3(β) , n[Tmin(β)− 1](µ̄− ȳ),

µ̄ =
1
n

n

∑
i=1

µi.

3. Hypothesis Testing

For the GP(I) mean regression model (3), suppose that we are interested in testing the
following general null hypothesis:

H0: Cθ = cr against H1: Cθ 6= cr, (17)

where C is a known r× (q + 1) matrix with rank (C) = r0 < (q + 1), θ = (β>, α)> is the
vector of parameters and cr is a known r× 1 vector.

3.1. The Likelihood Ratio Test

Let `(θ) , `(β, α) be given by (8). The likelihood ratio statistic is given by

TL = 2
[
`(θ̂)− `(θ̂H0)

]
, (18)

where θ̂ is the unconstrained MLEs of θ, which can be calculated by the MM algorithm (14)
and (16); while θ̂H0 is the constrained MLEs of θ under H0. TL asymptotically follows a
chi-squared distribution with r0 degrees of freedom. The corresponding p-value is

pL = Pr(TL > tL|H0) = Pr(χ2(r0) > tL),

where tL is the estimated likelihood ratio statistic.

3.2. The Wald Test

The Wald statistic is given by

TW = (Cθ̂− cr)
>
[
CI−1(θ̂)C>

]−1
(Cθ̂− cr), (19)

where θ̂ denotes the unconstrained MLEs of θ and I(θ̂) is the Fishier information matrix
(see Appendix B) evaluated at θ = θ̂. TW is asymptotically distributed as a chi-squared
distribution with r0 degrees of freedom. The corresponding p-value is

pW = Pr(TW > tW |H0) = Pr(χ2(r0) > tW),

where tW is the estimated Wald statistic.
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3.3. The Score Test

The score statistic is given by

TS = [s(θ̂H0)]
>I−1(θ̂H0)s(θ̂H0), (20)

where θ̂H0 denotes the constrained MLEs of θ under H0, and

s(θ) ,
∂`(θ)

∂θ
=

(
∂`(θ)

∂β0
,

∂`(θ)

∂β1
, . . . ,

∂`(θ)

∂βq−1
,

∂`(θ)

∂α

)>
,

with details being presented in Appendix B. TS is asymptotically distributed as a chi-
squared distribution with r0 degrees of freedom. The corresponding p-value is

pS = Pr(TS > tS|H0) = Pr(χ2(r0) > tS),

where tS is the estimated score statistic.

4. Simulations
4.1. Accuracy of MLEs of Parameters

To investigate the accuracy of MLEs of parameters, we consider dimensions: q = 2, 4.
The sample sizes are set to be n = 100, 200, 400; α = 0.6, 0.8, 0.95 and other parameters are
set as follows:

(A1) When q = 2, β = (1,−1)>; wi = (1, wi1)
>, {wi1}n

i=1
iid∼ N(0.3, σ2

0 ) with σ2
0 = 0.5;

(B1) When q = 4, β = (1,−1, 2,−2)>; wi = (1, wi1, wi2, wi3)
>, {wi1}n

i=1
iid∼ N(0.3, 0.5),

{wi2}n
i=1

iid∼ U(0, 1), {wi3}n
i=1

iid∼ Bernoulli(0.5).

For a given {q, n, β, α}, we first generate {wi}n
i=1, and then generate {Yi = yi}n

i=1
iid∼

GP(I)(w>i β, α) by the inversion method [15] based on the pmf given by (2). Then, we can
calculate the MLEs {β̂, α̂} via the MM algorithm (14) and (16) with the generated {yi}n

i=1
and corresponding covariate vectors {wi}n

i=1. Finally, we independently repeat this process
10,000 times.

The resultant average bias (denoted by Bias; i.e., average MLE minus the true value
of the parameter) and the mean square error (denoted by MSE; i.e., Bias2 + (standard
deviation)2, the standard deviation is estimated by the sample standard deviation of
10,000 MLEs) are reported in Tables 1 and 2.

Table 1. Parameter estimates based on 10,000 replications for Case (A1).

n Para
α = 0.6 α = 0.8 α = 0.95

Bias MSE Bias MSE Bias MSE

100
β0 −0.0017 0.0371 −0.0034 0.0494 −0.0044 0.0582
β1 −0.0011 0.0703 −0.0001 0.0966 −0.0003 0.1186
α −0.0085 0.0394 −0.0100 0.0535 −0.0187 0.0556

200
β0 −0.0007 0.0260 −0.0007 0.0350 −0.0020 0.0415
β1 0.0003 0.0543 −0.0001 0.0764 −0.0001 0.0916
α −0.0037 0.0280 −0.0051 0.0373 −0.0084 0.0417

400
β0 −0.0004 0.0183 −0.0003 0.0242 −0.0009 0.0292
β1 0.0004 0.0357 0.0000 0.0484 −0.0006 0.0589
α −0.0014 0.0202 −0.0028 0.0267 −0.0042 0.0314
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Table 2. Parameter estimates based on 10,000 replications for Case (B1).

n Para
α = 0.6 α = 0.8 α = 0.95

Bias MSE Bias MSE Bias MSE

100

β0 0.0011 0.0766 −0.0043 0.1050 −0.0075 0.1248
β1 0.0034 0.0612 0.0001 0.0815 −0.0010 0.0990
β2 −0.0063 0.1172 0.0026 0.1593 0.0057 0.1917
β3 0.0016 0.0622 0.0007 0.0848 0.0003 0.1021
α −0.0122 0.0421 −0.0189 0.0542 −0.0264 0.0580

200

β0 −0.0001 0.0547 −0.0018 0.0743 −0.0018 0.0897
β1 0.0004 0.0474 0.0002 0.0655 0.0000 0.0781
β2 −0.0018 0.0767 0.0014 0.1039 0.0001 0.1256
β3 0.0003 0.0436 −0.0019 0.0606 −0.0005 0.0722
α −0.0060 0.0291 −0.0100 0.0377 −0.0132 0.0429

400

β0 −0.0001 0.0363 −0.0006 0.0502 −0.0016 0.0610
β1 0.0015 0.0297 0.0004 0.0410 0.0001 0.0487
β2 −0.0004 0.0511 0.0000 0.0707 0.0004 0.0861
β3 0.0002 0.0297 0.0004 0.0417 −0.0001 0.0498
α −0.0029 0.0208 −0.0048 0.0269 −0.0063 0.0313

Tables 1 and 2 showed that the absolute values of Bias and MSE tend to zero with the
growth of data size for each parameter in Cases (A1) and (B1). For fixing else parameters,
the absolute values of Bias and MSE are small for a small α.

4.2. Hypothesis Testing

In this subsection, we explore the performances of the likelihood ratio, Wald and score
statistics presented in (18)–(20) for the hypothesis testing in (17) with various parameter
configurations. The sample sizes are set to be n = 50(50)400, where n1(s)n2 means from n1
to n2 with step size s, and other parameters are set as follows:

(A2) When q = 2, β = (β0, β1)
>, α is set to be 0.75, 0.85, 0.95, C = (0 1 0), cr = 0 and

θ = (β>, α)>, so that (17) becomes H0: β1 = 0. The true value of β in H0 is β = (1, 0)>,

while the value of β in H1 is β = (1, 0.5)>. We generate {wi1}n
i=1

iid∼ N(0.1, 0.2) and
set wi = (1, wi1)

>;

(B2) When q = 4, β = (β0, β1, β2, β3)
>, α is set to be 0.75, 0.85, 0.95,

C =

 0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 0

, cr = 003 and θ = (β>, α)>,

so that (17) becomes H0: β1 = β2 = β3 = 0. The true value of β in H0 is β =

(1, 0, 0, 0)> and the value of β in H1 is β = (1,−1, 1,−0.5)>. We generate {wi1}n
i=1

iid∼
N(0.1, 0.05), {wi2}n

i=1
iid∼ U(0, 0.1), {wi3}n

i=1
iid∼ 0.4× Bernoulli(0.5), and set wi =

(1, wi1, wi2, wi3)
>;

(A3) When q = 2, β = (1, 1)>, C = (0 0 1), cr = 1 and θ = (β>, α)>, so that (17) becomes
H0: α = 1. The alternative values of α in H1 are set as 0.9 and 0.95. We generate

{wi1}n
i=1

iid∼ N(1, 0.1) and set wi = (1, wi1)
>;

(B3) When q = 4, β = (1,−1, 1,−0.5)>, C = (0 0 0 0 1), cr = 1 and θ = (β>, α)>,
so that (17) becomes H0: α = 1. The alternative values of α in H1 are set as 0.9

and 0.95. We generate {wi1}n
i=1

iid∼ N(0.1, 0.05), {wi2}n
i=1

iid∼ U(0, 0.1), {wi3}n
i=1

iid∼
0.4× Bernoulli(0.5), and set wi = (1, wi1, wi2, wi3)

>.
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All hypothesis testings are conducted at a significant level of 0.05. To calculate the

empirical levels of the three tests, we first generate {Yi = yi}n
i=1

ind∼ GP(I)(w>i β, α) under H0.

Repeating this process for L (=10,000) times, we obtained Y(l)
obs = {y

(l)
1 , . . . , y(l)n }L

l=1. Since
our MM algorithm (14) & (16) is designed for α < 1, we apply two-stage method to obtain
the MLEs of θ for the GP(I) regression model. In the first stage, we calculate the MLEs
{β̂, α̂} via the MM algorithm (14) & (16) with the generated {yi}n

i=1 and corresponding
covariate vectors {wi}n

i=1. If the estimated α̂ < 1, implying that the dataset is under-
dispersed, we shall keep the estimation result and will not go to the second stage. If the
estimated α̂ = 1, implying that the dataset may be equal- or over-dispersion, we shall
go to the next stage; that is recalculating the MLEs {β̂, α̂} through the ‘vglm’ function
by choosing family as ‘genpoisson1’ in VGAM R package because this function can only
calculate the MLEs of the parameter when α > 1. Let {rj}3

j=1 denote the number of rejecting
the null hypothesis H0 by the likelihood ratio, Wald and score statistics, respectively. Hence,
the actual significance level can be estimated by rj/L under H0. Similarly, we generate

{Yi = yi}n
i=1

ind∼ GP(I)(w>i β, α) under H1. Repeating this process for L (=10,000) times, we

obtained Y(l)
obs = {y

(l)
1 , . . . , y(l)n }L

l=1. The empirical power can be estimated similarly to the
empirical level. All results are reported in Tables 3–8.

Table 3. The empirical levels of statistics (TL, TW , TS) for Case (A2).

n
α = 0.75 α = 0.85 α = 0.95

TL TW TS TL TW TS TL TW TS

50 0.0530 0.0599 0.0485 0.0521 0.0591 0.0486 0.0530 0.0602 0.0482
100 0.0512 0.0548 0.0487 0.0502 0.0531 0.0485 0.0490 0.0522 0.0468
150 0.0490 0.0508 0.0476 0.0525 0.0538 0.0510 0.0522 0.0544 0.0505
200 0.0514 0.0526 0.0505 0.0545 0.0561 0.0538 0.0515 0.0525 0.0505
250 0.0495 0.0504 0.0488 0.0494 0.0501 0.0481 0.0528 0.0538 0.0517
300 0.0504 0.0515 0.0502 0.0451 0.0468 0.0451 0.0499 0.0509 0.0485
350 0.0545 0.0558 0.0540 0.0510 0.0514 0.0504 0.0503 0.0507 0.0500
400 0.0542 0.0547 0.0532 0.0480 0.0491 0.0477 0.0504 0.0517 0.0498

Table 4. The empirical powers of statistics (TL, TW , TS) for Case (A2).

n
α = 0.75 α = 0.85 α = 0.95

TL TW TS TL TW TS TL TW TS

50 0.2042 0.2252 0.1902 0.1580 0.1768 0.1489 0.1364 0.1505 0.1273
100 0.5457 0.5607 0.5333 0.4236 0.4392 0.4160 0.3387 0.3526 0.3316
150 0.6750 0.6844 0.6669 0.5411 0.5511 0.5340 0.4437 0.4549 0.4368
200 0.7733 0.7805 0.7702 0.6413 0.6519 0.6376 0.5366 0.5438 0.5326
250 0.8995 0.9030 0.8976 0.7986 0.8022 0.7973 0.6789 0.6853 0.6762
300 0.9439 0.9459 0.9420 0.8549 0.8574 0.8523 0.7591 0.7633 0.7564
350 0.9712 0.9719 0.9708 0.9129 0.9147 0.9119 0.8349 0.8371 0.8329
400 0.9903 0.9907 0.9903 0.9557 0.9571 0.9545 0.8975 0.8987 0.8962

Table 3 shows that the significant levels in the three statistics are around 0.05 for
different sample sizes. Table 4 shows that the Wald statistic outperforms the likelihood ratio
statistic, and the likelihood ratio statistic outperforms the score statistic. At the same time,
the differences in the empirical powers among the three tests are very small. So, we can
use the likelihood ratio, Wald, and score statistics for the regression hypothesis testing for
various values of α when q = 2. The differences in performance among the three statistics
are presented in Figures 1 and 2.
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Figure 1. The empirical levels of three test statistics (TL, TW , TS) for testing H0: β1 = 0 in Case (A2)
for different α. (a) The empirical level with H0: β = (1, 0)> for α = 0.75; (b) The empirical level with
H0: β = (1, 0)> for α = 0.85; (c) The empirical level with H0: β = (1, 0)> for α = 0.95.
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Figure 2. The empirical powers of three test statistics (TL, TW , TS) for testing H0: β1 = 0 in Case (A2)
for different α’s. (a) The empirical power with H1: β = (1, 0.5)> for α = 0.75; (b) The empirical power
with H1: β = (1, 0.5)> for α = 0.85; (c) The empirical power with H1: β = (1, 0.5)> for α = 0.95.
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Table 5. The empirical levels of statistics (TL, TW , TS) for Case (B2).

n
α = 0.75 α = 0.85 α = 0.95

TL TW TS TL TW TS TL TW TS

50 0.0588 0.0794 0.0439 0.0594 0.0761 0.0449 0.0539 0.0669 0.0405
100 0.0546 0.0648 0.0475 0.0497 0.0568 0.0435 0.0524 0.0579 0.0459
150 0.0523 0.0588 0.0486 0.0505 0.0563 0.0470 0.0492 0.0522 0.0449
200 0.0470 0.0507 0.0421 0.0541 0.0564 0.0506 0.0535 0.0573 0.0501
250 0.0510 0.0545 0.0485 0.0528 0.0547 0.0502 0.0531 0.0556 0.0506
300 0.0525 0.0550 0.0506 0.0501 0.0526 0.0486 0.0498 0.0515 0.0479
350 0.0490 0.0522 0.0476 0.0518 0.0535 0.0502 0.0527 0.0544 0.0510
400 0.0510 0.0527 0.0487 0.0560 0.0571 0.0540 0.0458 0.0474 0.0453

Table 6. The empirical powers of statistics (TL, TW , TS) for Case (B2).

n
α = 0.75 α = 0.85 α = 0.95

TL TW TS TL TW TS TL TW TS

50 0.1629 0.2173 0.1193 0.1310 0.1700 0.0938 0.1124 0.1442 0.0850
100 0.3998 0.4409 0.3523 0.2918 0.3232 0.2576 0.2289 0.2502 0.2027
150 0.5320 0.5598 0.5042 0.3957 0.4186 0.3709 0.3089 0.3280 0.2912
200 0.7670 0.7824 0.7409 0.6148 0.6298 0.5879 0.4893 0.4988 0.4669
250 0.8241 0.8379 0.8096 0.6747 0.6867 0.6605 0.5487 0.5588 0.5337
300 0.8814 0.8887 0.8759 0.7551 0.7654 0.7442 0.6292 0.6381 0.6193
350 0.9657 0.9675 0.9621 0.8895 0.8934 0.8823 0.7897 0.7942 0.7792
400 0.9786 0.9800 0.9775 0.9215 0.9249 0.9199 0.8367 0.8409 0.8310

Table 5 shows that the significant level in the likelihood ratio and the score statistics
are around 0.05 for different sample sizes, while the significant levels in Wald statistic are
around 0.07 for different α when n = 50 and quickly decrease to 0.05 with the growth of
sample size. Table 6 shows that the Wald statistic outperforms the likelihood ratio statistic,
and the likelihood ratio statistic outperforms the score statistic. Unlike the differences in
the empirical power among the three tests are small in Case (A2), Table 5 shows that the
differences are more considerable in Case (B2). So, we can use the likelihood ratio and
score statistics for the regression hypothesis testing for various values of α and different
samples size when q = 4. Furthermore, we can use the Wald statistic when the sample size
is more than 100. The differences in performance among the three statistics are presented
in Figures 3 and 4.

According to Tables 7 and 8, we can see that the Wald statistic outperforms the other
two statistics in Cases (A3)–(B3), and the likelihood ratio statistic outperforms the score
statistic. Figures 5 and 6 show a significant difference in empirical power among the three
statistics. Furthermore, we can see that the empirical significant levels for the likelihood
ratio and score statistics are satisfactorily controlled. In contrast, the significant level for
the Wald statistic is over 0.08 when n = 50 and gradually decreases to 0.05 with the growth
of the sample size. So, we suggest using the likelihood ratio statistic for the dispersion
hypothesis testing when the sample size is less than 200; and using the Wald statistic when
the sample size is more than 200.
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Figure 3. The empirical levels of three test statistics (TL, TW , TS) for testing H0: β1 = β2 = β3 = 0
in Case (B2) for different α. (a) The empirical level with H1: β = (1, 0, 0, 0)> for α = 0.75; (b) The
empirical level with H1: β = (1, 0, 0, 0)> for α = 0.85; (c) The empirical level with H1: β = (1, 0, 0, 0)>

for α = 0.95.
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Figure 4. The empirical powers of three test statistics (TL, TW , TS) for testing H0: β1 = β2 = β3 = 0
in Case (B2) for different α. (a) The empirical power with H1: β = (1,−1, 1,−0.5)> for α = 0.75;
(b) The empirical power with H1: β = (1,−1, 1,−0.5)> for α = 0.85; (c) The empirical power with
H1: β = (1,−1, 1,−0.5)> for α = 0.95.
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Figure 5. The empirical powers/level of three test statistics (TL, TW , TS) for testing H0: β1 = 0 in
Case (A3) for different α. (a) The empirical power with H1: β = (1, 1)> for α = 0.9; (b) The empirical
power with H1: β = (1, 1)> for α = 0.95; (c) The empirical significant level with H1: β = (1, 1)> for
α = 1.
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Figure 6. The empirical powers/level of three test statistics (TL, TW , TS) for testing H0: β1 = β2 =

β3 = 0 in Case (B3) for different α. (a) The empirical power with H1: β = (1,−1, 1,−0.5)> for α = 0.9;
(b) The empirical power with H1: β = (1,−1, 1,−0.5)> for α = 0.95; (c) The empirical significant
level with H1: β = (1,−1, 1,−0.5)> for α = 1.
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Table 7. The empirical levels/powers of statistics (TL, TW , TS) for Case (A3).

n
α = 0.9 α = 0.95 α = 1

TL TW TS TL TW TS TL TW TS

50 0.1652 0.2764 0.0737 0.0881 0.1542 0.0445 0.0603 0.0884 0.0494
100 0.2553 0.3641 0.1616 0.0999 0.1548 0.0608 0.0555 0.0672 0.0479
150 0.3562 0.4563 0.2642 0.1203 0.1725 0.0834 0.0525 0.0614 0.0475
200 0.4738 0.5604 0.3814 0.1426 0.1929 0.0993 0.0533 0.0601 0.0498
250 0.5652 0.6446 0.4870 0.1689 0.2152 0.1286 0.0523 0.0587 0.0505
300 0.6560 0.7207 0.5876 0.1901 0.2423 0.1500 0.0516 0.0543 0.0500
350 0.7272 0.7779 0.6710 0.1996 0.2503 0.1623 0.0546 0.0583 0.0520
400 0.7891 0.8332 0.7418 0.2286 0.2765 0.1886 0.0516 0.0573 0.0496

Table 8. The empirical levels/powers of statistics (TL, TW , TS) for Case (B3).

n
α = 0.9 α = 0.95 α = 1

TL TW TS TL TW TS TL TW TS

50 0.2247 0.3832 0.0878 0.1184 0.2194 0.0486 0.0671 0.1288 0.0417
100 0.3124 0.4417 0.1916 0.1238 0.2025 0.0731 0.0581 0.0846 0.0464
150 0.4119 0.5349 0.2957 0.1479 0.2185 0.0968 0.0553 0.0716 0.0487
200 0.5155 0.6211 0.4160 0.1672 0.2349 0.1165 0.0543 0.0679 0.0485
250 0.6117 0.6991 0.5210 0.1857 0.2510 0.1343 0.0541 0.0648 0.0492
300 0.6962 0.7740 0.6167 0.2040 0.2678 0.1595 0.0527 0.0602 0.0488
350 0.7668 0.8228 0.7022 0.2269 0.2918 0.1772 0.0532 0.0602 0.0502
400 0.8152 0.8606 0.7614 0.2558 0.3197 0.2076 0.0464 0.0545 0.0448

4.3. Comparisons of the GP(I) Regression Model with the Conway–Maxwell–Poisson
Regression Model

To compare the performance of the goodness-of-fit tests and computational complexity
in the GP(I) regression model (3) and the Conway–Maxwell–Poisson (CMP) regression model,
we consider using both models to fit a dataset, which is generated from one of the two
models. A discrete r.v. Y is said to follow the CMP distribution with parameters λ > 0 and
ν > 0, denoted by Y ∼ CMP(λ, ν), if its pmf is [16]:

Pr(Y = y) =
λy

(y!)νZ(λ, ν)
, y = 0, 1, 2, . . . , ∞,

where Z(λ, ν) = ∑∞
s=0 λs/(s!)ν is a normalizing constant and ν is the dispersion parameter.

The CMP(λ, ν) distribution reduces to the Poisson(λ) when ν = 1, and it has the twin
properties of over-dispersion when ν < 1 and under-dispersion when ν > 1. The CMP
regression model [3,17] is:

{Yi}n
i=1

ind∼ CMP(λi, ν) and log(λi) = w>i β, i = 1, . . . , n.

The sample size is set to be n = 1000, q = 4, β = (1,−0.5, 1, 0.5)>, wi = (1, wi1, wi2, wi3)
>,

{wi1}n
i=1

iid∼ N(0.1, 0.5), {wi2}n
i=1

iid∼ U(0, 1), {wi3}n
i=1

iid∼ Bernoulli(0.5) and other parameter
configurations are set as follows:

(A4) For a fixed β, set α = 0.9 and generate Xi = xi
ind∼ GP(I)(µi, α) with µi = exp(w>i β)

for i = 1, . . . , n.

(B4) For a fixed β, set ν = 1.2 and generate Xi = xi
ind∼ CMP(λi, ν) with λi = exp(w>i β)

for i = 1, . . . , n.
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To assess the performance of the two models, we use the following three criteria: The
average Akaike information criterion (AIC), the average Bayesian information criterion (BIC)
and the average Pearson chi-squared statistic χ2

n−q−1 [18]:

χ2
n−q−1 =

n

∑
i=1

(xi − µ̂i)
2

σ̂2
i

,

where µ̂i and σ̂2
i are the estimated mean and variance of Xi and (n− q− 1) = 995 is the

degree of the Pearson chi-squared statistic because we use the MLEs {β̂, α̂} or {β̂, ν̂} to
calculate {µ̂i, σ̂2

i }n
i=1. To show the differences in performance in the two models with the

same data set, we first generate a data set from (A4) and estimate parameters with the
GP(I) and CMP regression models 1000 times. Specifically, we can calculate the MLEs
of parameters for the GP(I) regression model with the MM Algorithm (14) & (16). The
MLEs of parameters of the CMP regression model can be calculated directly through the
built-in ‘glm.cmp’ function in the COMPoissonReg R package. Next, we generate another
data set from (B4) and estimate these parameters with the two models. By averaging the
obtained results, the log-likelihood, AIC, BIC, χ2

n−p and the time cost of the system when
the algorithm converged (denoted by Sys. Time) are reported in Table 9.

Table 9. Model comparisons based on 1000 replications for Cases (A4) & (B4).

Case Model Log-Likelihood AIC BIC χ2
n−p−1 Sys. Time

(A4) GP(I) −2009.89 4029.77 4054.31 997.07 0.7783 s
CMP −2011.14 4032.28 4056.81 999.75 1.2971 s

(B4) GP(I) −2157.29 4324.58 4349.12 999.96 1.0038 s
CMP −2160.11 4330.21 4354.75 990.26 1.9550 s

Sys. Time represents the averaged time cost of the system when the algorithm converged for each repetition.

According to Table 9, in Case (A4), we can see that the log-likelihood of the GP(I)

regression model is larger than that of the CMP regression model, and the AIC and BIC of
the GP(I) regression model are smaller than that of the CMP regression model. However,
the values of the log-likelihood, AIC and BIC show an inverse numerical relationship
between GP(I) and CMP regression models in Case (B4). So, the GP(I)/CMP regression
model performs better log-likelihood, AIC, and BIC when the data is generated from
GP(I)/CMP. For the Pearson chi-squared statistic, the GP(I) regression model outperforms
the CMP regression model in Case (A4) because the value of GP(I) is closer to the degree of
the Pearson chi-squared statistic, 995. In Case (B4), the χ2

n−p−1 of the GP(I) regression model
is greater than 995 by around 5, and the χ2

n−p−1 of the CMP regression model is less than 995
by around 5, implying they have similar performances. For the cost of time, our proposed
GP(I) regression model converges faster than the CMP model in simulation, in which the
time cost of the GP(I) regression model is nearly half of the CMP regression model.

5. Births in Last Five Years for Women in Bangladesh

The dataset is obtained from the Bangladesh demographic and health surveys (DHS)
program (https://www.dhsprogram.com/data, accessed on 28 January 2022), record-
ing several variables, e.g., Age, Education (educational level), Religion and Division, from
9067 women who are aged between 30 and 35. Our goal is to understand better the rela-
tionship between Births (births in the last five years) and its relevant explanatory variables.
In this section, we construct a GP(I) regression model to link the mean of Births with the

https://www.dhsprogram.com/data
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values of Age, Education, Religion and Division and the mean regression model is presented
as follows:

Birthsi
ind∼ GP(I)(µi, α), i = 1, . . . , n, and

log(µi) = β0 + Agei × β1 + Primaryi × β2 + Secondaryi × β3 +Higheri × β4

+ Islami × β5 +Hinduismi × β6 + Chittagongi × β7 +Dhakai × β8

+ Khulnai × β9 +Mymensinghi × β10 + Rajshahii × β11

+ + Rangpuri × β12 + Sylheti × β13. (21)

Meanwhile, for comparisons, we also use the CMP regression model to fit the Bangladesh
DHS data

Birthsi
ind∼ CMP(λi, ν), i = 1, . . . , n, and

log(λi) = β0 + Agei × β1 + Primaryi × β2 + Secondaryi × β3 +Higheri × β4

+ Islami × β5 +Hinduismi × β6 + Chittagongi × β7 +Dhakai × β8

+ +Khulnai × β9 +Mymensinghi × β10 + Rajshahii × β11

+ Rangpuri × β12 + Sylheti × β13. (22)

The MLEs of parameters for the GP(I) regression model in (21) can be calculated through
the proposed MM algorithm (14) and (16) and the MLEs of parameters for the CMP
regression model in (22) can be calculated through the built-in ‘glm.cmp’ function in the
COMPoissonReg R package. For a fixed j (j = 1, . . . , 13), the Std of β̂ j calculated by the Wald

statistic for testing H0: β j = 0 is
√

e>j I−1(θ̂)ej, where ej denotes the 15-dimensional vector

with 1 for the (j + 1)-th element and 0’s elsewhere and I(θ̂) is the Fisher information matrix
in Appendix B. Thus, the z-values (i.e., MLE/Std) and p-values can be calculated by the
MLEs and their Stds and the estimation results of the GP(I) and the CMP regression models
are presented in Table 10.

Table 10 indicates that the Age coefficient is −0.147 implying that the Age affects the
number of births in the past five years negatively; that is, the willingness to give birth
decreases as the growth of ages. The coefficients of Education shows that women with
Higher education levels have more births than those with Primary and Secondary education
levels. For the religious factor, we realize that there is no significant difference between
women, whether Islam, Hinduism, or Christianity. Finally, we can see that the number of
births varies widely depending on the Division where they live. More specifically, women
who live in Chittagong, Mymensingh and Sylhet are willing to birth more kids, while those
who live in Dhaka, Khulna, Rajshahi and Rangpur choose fewer births.

Table 10 shows that there exists minor difference of the coefficients between the GP(I)

and CMP regression models. The coefficients of Education shows that the Primary and
Secondary, respectively, fails to pass the null hypotheses H0: β2 = 0 and H0: β3 = 0 in the
CMP regression model under the significant level 5% because their corresponding p-values
are both larger than 0.05. However, the two explanatory factors are significant in the GP(I)

regression model under the above conditions. It deserves to note that the GP(I) regression
links the mean with the covariate vector directly, so the model is of statistical meaning.
However, the CMP regression lacks such statistical meanings because the regression model
only constructs a connection between the parameter λ with the subject’s personalities.

Furthermore, to have a better understanding of the advantages of the proposed MM
algorithm (14) and (16), we apply the existing ‘vglm’ function in VGAM R package to
calculate the MLEs {β̂, α̂} of the GP(I) regression model in (3). Further, we choose two
functions ‘genpoisson0’ and ‘genpoisson’ in ‘vglm’ to calculate the MLEs of the parameters,
in which the ‘genpoisson0’ function restricts α > 1 while the ‘genpoisson’ function allows
α > max(1/2, 1− µ/m). The criteria for the goodness-of-fit, like AIC, BIC and the Pearson
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chi-squared statistic, can be calculated by the obtained MLEs, the number of parameters,
sample size, and log-likelihoods. The results are presented in Table 11.

Table 10. MLEs and CIs of parameters for the GP(I) regression model in (21) and CMP regres-
sion model.

GP(I)GP(I)GP(I) CMP

Parameter MLE Std z-Value p-Value MLE Std z-Value p-Value

Intercept 4.455 0.3685 12.09 <0.0001 4.843 0.4700 1.31 <0.0001
α 0.913 0.0052 −16.71 <0.0001 – – – –
ν – – – – 1.828 0.0666 27.44 <0.0001
Age −0.147 0.0097 −15.05 <0.0001 −0.157 0.0121 −12.98 <0.0001
Education

Primary −0.083 0.0401 −2.06 0.0391 −0.032 0.0508 −0.63 0.5271
Secondary −0.085 0.0405 −2.10 0.0361 0.002 0.0512 0.04 0.9685
Higher 0.223 0.0534 4.18 <0.0001 0.403 0.0671 6.01 <0.0001
No education 0.000 0.000

Religion
Islam −0.342 0.1797 −1.90 0.0573 −0.247 0.2387 −1.04 0.3002
Hinduism −0.638 0.1868 −3.42 0.0006 −0.684 0.2478 −2.76 0.0057
Christianity 0.000 0.000

Division
Chittagong 0.064 0.0551 1.16 0.2461 0.103 0.0685 1.50 0.1331
Dhaka −0.060 0.0572 −1.05 0.2946 −0.067 0.0711 −0.94 0.3492
Khulna −0.320 0.0640 −5.00 <0.0001 −0.351 0.0794 −4.42 <0.0001
Mymensingh 0.052 0.0584 0.89 0.3759 0.072 0.0727 0.99 0.3210
Rajshahi −0.319 0.0630 −5.06 <0.0001 −0.359 0.0781 −4.59 <0.0001
Rangpur −0.093 0.0597 −1.56 0.1198 −0.116 0.0745 −1.55 0.1208
Sylhet 0.433 0.0540 8.03 <0.0001 0.576 0.0682 8.45 <0.0001
Barisal 0.000 0.000

Table 11. Comparisons of goodness-of-fit among the GP(I) regression model, CMP regression model,
log-lambda based GP regression model with constraint λ > 0 and the log-lambda based GP regression
model without constraint on λ.

Model Log-Likelihood AIC BIC χ2
n−p−1 Sys. Time

GP(I) −7624.63 15,279.26 15,385.94 8974.17 11.0384 s
CMP −7623.66 15,277.32 15,384.01 9017.33 52.4071 s
genpoisson0 −7645.95 15,321.90 15,428.58 7675.93 3.0545 s
genpoisson −7706.93 15,443.87 15,550.55 7526.34 3.7786 s

genpoisson0 means using the function ‘genpoisson0’ in ‘vglm’; genpoisson means using the function ‘genpoisson’
in ‘vglm’; Sys. Time represents the time cost of the system when the algorithm converged.

Table 11 shows that the GP(I) regression model estimated by the proposed MM al-
gorithm and the CMP regression model share similar performance of the goodness-of-fit
statistics, like AIC, BIC and Person Chi-square statistic, implying that both models fit the
data set well. However, our MM algorithm converges to the {β̂, α̂} as nearly five times
faster than the ‘glm.cmp’ function for calculating the CMP regression model. We can also see
that the log-likelihood, AIC, BIC and χ2

n−p−1 obtained through genpoisson0 and genpoisson

functions perform much worse than GP(I) and CMP regression models, even though they
have a relatively less time for computation.

To test the dispersion, we use the likelihood ratio, Wald and score statistics, which
have been proved efficiently for large sample sizes in Cases (A3)–(B3) in Section 4.2. The
results in Table 12 show that the p-values of the three tests are zeros, implying that the null
hypothesis H0: α = 1 should be rejected.
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Table 12. Dispersion test for testing H0: α = 1.

Tests Value p-Value

Likelihood ratio 164.61 <0.0001
Wald 279.27 <0.0001
Score 128.22 <0.0001

6. Discussion

In the present paper, given {β(t), α}, to avoid directly calculating β(t+1) in the max-
imization of the original log-likelihood function `(β, α), we successfully constructed a
surrogate function Q1(β|β(t), α), which is equivalent to the log-likelihood function in a
weighted Poisson regression, so that we can compute β(t+1)

∗ directly by using the VGAM R
package. By projecting β(t+1)

∗ on the convex set C(t), we calculated β(t+1) as shown in (14).
Besides, given {β, α(t)}, we obtained an explicit expression for α(t+1) by maximizing a
surrogate function Q2(α|β, α(t)). The simulation and real data analysis results showed
that the proposed MM algorithms could stably obtain the MLEs of parameters for the
GP(I) distribution without/with covariates for various parameter configurations, while the
built-in ‘genpoisson1’ function in the VGAM R package may converge to a wrong estimate
of parameters. Besides, the results of the comparison between the proposed model and the
existing CMP regression model reflected that the two models possess similar performance
from the aspect of the goodness-of-fit. However, the proposed model outperforms the CMP
regression model regarding computational efficiency and statistical meanings.
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Appendix A. Discrete Version of Jensen’s Inequality

Let f (z) is a concave function defined on a convex set C, i.e., f ′′(z) 6 0 for all z ∈ C.
The discrete version of Jensen’s inequality is

f

(
K

∑
k=1

qkzk

)
>

K

∑
k=1

qk f (zk), (A1)

https://www.dhsprogram.com/data
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which is true for any probability weights {qk}K
k=1 satisfying: qk > 0 and ∑K

k=1 qk = 1.
Especially, in (A1) set K = 2, f (·) = log(·), and suppose that u1(φ) > 0 and u2(φ) > 0,
then we obtain

log[u1(φ) + u2(φ)] > v(φ(t)) log

[
u1(φ)

v(φ(t))

]
+ [1− v(φ(t))] log

[
u2(φ)

1− v(φ(t))

]

= v(φ(t)) log[u1(φ)] + [1− v(φ(t))] log[u2(φ)] + c(t)0 , (A2)

where the equality holds iff φ = φ(t), c(t)0 is a constant free from φ, and

v(φ(t)) ,
u1(φ

(t))

u1(φ
(t)) + u2(φ(t))

.

Appendix B. The Gradient Vector and Fisher Information Matrix

The gradient vector of `(β, α) with respect to β and α are given by

∂`(θ)

∂β
=

n

∑
i=1

[
1 +

µi(yi − 1)
µi + (α− 1)yi

− µi
α

]
wi,

∂`(θ)

∂α
=

n

∑
i=1

[
(yi − 1)yi

µi + (α− 1)yi
− yi

α
+

µi − yi
α2

]
.

The Hessian matrix is

H(θ) =


∂2`(θ)

∂β∂β>
∂2`(θ)

∂β∂α

∗ ∂2`(θ)

∂α2

,

where

∂2`(θ)

∂β∂β>
=

n

∑
i=1

{
(α− 1)µi(yi − 1)yi
[µi + (α− 1)yi]2

− µi
α

}
wiw>i ,

∂2`(θ)

∂α2 =
n

∑
i=1

{
−

(yi − 1)y2
i

[µi + (α− 1)yi]2
+

yi
α2 −

2(µi − yi)

α3

}
,

∂2`(θ)

∂β∂α
=

n

∑
i=1

{
− (yi − 1)yiµi
[µi + (α− 1)yi]2

+
µi
α2

}
wi.

The Fisher information matrix is given by

I(θ) = −E
[
H(θ)

]
,

where

E

[
∂2`(θ)

∂β∂β>

]
= −

n

∑
i=1

{
µ2

i + 2α(α− 1)µi

[µi + 2(α− 1)]α2

}
wiw>i ,

E
[

∂2`(θ)

∂α2

]
= −

n

∑
i=1

{
2µi

α2[µi + 2(α− 1)]

}
,

E
[

∂2`(θ)

∂β∂α

]
=

n

∑
i=1

{
2(α− 1)µi

α2[µi + 2(α− 1)]

}
wi.
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