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Abstract: The allocation of pension funds has important theoretical value and practical significance,
which improves the level of pension investment income, achieves the maintenance and appreciation
of pension funds, and resolves the pension payment risk caused by population aging. The asset
allocation of pension funds is a long-term asset allocation problem. Thus, the long-term risk and
return of the assets need to be estimated. The covariance matrix is usually adopted to measure the
risk of the assets, while calculating the long-term covariance matrix is extremely difficult. Direct
calculations suffer from the insufficiency of historical data, and indirect calculations accumulate
short-term covariance, which suffers from the dynamic changes of the covariance matrix. Since
the returns of main assets are highly autocorrelated, the covariance matrix of main asset returns is
time-varying with dramatic dynamic changes, and the errors of indirect calculation cannot be ignored.
In this paper, we propose a novel Black–Litterman model with time-varying covariance (TVC-BL)
for the optimal asset allocation of pension funds to address the time-varying nature of asset returns
and risks. Firstly, the return on assets (ROA) and the covariance of ROA are modeled by VARMA
and GARCH, respectively. Secondly, the time-varying covariance estimation of ROA is obtained
by introducing an effective transformation of the covariance matrix from short-term to long-term.
Finally, the asset allocation decision of pension funds is achieved by the TVC-BL model. The results
indicate that the proposed TVC-BL pension asset allocation model outperforms the traditional BL
model. When the risk aversion coefficient is 1, 1.5, and 3, the Sharp ratio of pension asset allocation
through the TVC-BL pension asset allocation model is 13.0%, 10.5%, and 12.8% higher than that of
the traditional BL model. It helps to improve the long-term investment returns of pension funds,
realize the preservation and appreciation of pension funds, and resolve the pension payment risks
caused by the aging of the population.

Keywords: Black–Litterman model; time-varying covariance; pension funds; asset allocation; risk
estimation

MSC: 91B02

1. Introduction

Pensions, or pension insurance funds, are the most important component of the social
pension security system. Due to the severe population aging and social, economic, and
historical factors, the Chinese pension insurance system has been facing severe difficulties
in pension disbursement [1,2]. Pensions also have the characteristics of long saving times
and large capital scale. Therefore, it is urgent to make scientific and reasonable investment
decisions, effectively prevent investment risks, and improve the return level. Asset alloca-
tion is the core of pension investment management and is the decisive factor in long-term
pension returns and risks.

Asset allocation is an important part of the investment decision, where the investor
usually selects the proper assets to be first allocated, followed by a secondary allocation
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within each asset class. In the practice of investment allocation, investors classify asset allo-
cation according to different criteria. Strategic asset allocation and tactical asset allocation
are divided based on functional differences. Strategic asset allocation is a method set by an
investor with a long-term investment objective. It focuses on asset allocation for long-term
investments, which can span as long as 5–10 years or even longer. Tactic asset allocation is
a plan developed by an investor during strategic asset allocation. It focuses on the specific
state and trends of the economy and markets, consistently functioning around strategic
asset allocation [3–6]. The pension system in China is based on a pay-as-you-go method
with long funding terms and weak risk tolerance. There are two distinctive features of
pension investment management: one is the long-term investment method, with the funda-
mental goal of achieving stable and better long-term returns; the other is the diversified
investment method.

For long-term asset allocation, the long-term risk and return of the assets need to be
estimated. Since the returns of main assets are highly autocorrelated (especially those of
monetary assets and bonds), the covariance matrix of asset returns is time-varying with
dynamic changes [7–9]. In most existing studies, the multi-period covariance matrix is
calculated by directly modeling the monthly data to obtain the monthly covariance matrix.
Afterward, the covariance matrix of the other terms can be obtained by accumulating
the monthly covariance matrices. For example, the monthly covariance matrix can be
multiplied by 12 to obtain the annual covariance matrix [10,11]. However, this traditional
calculation method assumes that the monthly covariance matrix will be constant in the
future. For short-term asset allocation, this method has little impact on risk estimation.
For long-term asset allocation, the long-term covariance matrix obtained by accumulating
monthly covariance matrices causes inaccurate risk estimation due to the intrinsic link
between short-term and long-term risks being neglected. Therefore, how to transform the
short-term covariance matrix into a long-term covariance matrix by considering the asset
autocorrelation needs to be investigated.

The allocation of pension funds is a long-term asset allocation problem. As a result,
directly calculating the long-term covariance matrix suffers from problems such as insuffi-
cient historical data, and the intrinsic link between short-term and long-term risks might
be neglected. Therefore, the long-term covariance matrix usually needs to be obtained
by transforming the short-term covariance matrix. The traditional simple transforma-
tion approach ignores the autocorrelation of main asset returns, causing errors in the
long-term covariance.

In previous studies, the covariance matrix was considered constant in the long-term
asset allocation, which neglects the time-varying nature of the covariance matrix. In
this study, we develop an effective method to transform the short-term and long-term
covariance matrix to address the dynamically changing nature of asset returns and risks.
On this basis, we propose a novel Black–Litterman model with time-varying covariance
(TVC-BL) for the optimal asset allocation of pension funds. The innovations of this paper
are as follows:

1. An efficient method for transforming the short-term covariance matrix to the long-
term covariance matrix is given.

2. The risk estimation in the BL model is improved, and the TVC-BL model is constructed
and used in pension asset allocation decisions.

3. The validity of the TVC-BL pension asset allocation model is verified through ac-
tual data.

The remaining sections are organized as follows: Section 2 reviews the related lit-
erature. Section 3 introduces the detail of the proposed model. Section 4 contains the
experimental analysis. Section 5 presents the conclusions.

2. Related Literature

The groundbreaking study of asset allocation began with Markowiz’s portfolio selec-
tion theory, which proposed a bivariate analysis approach considering return and risk and
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created the mean-variance model [12,13]. By introducing risk-free assets, Tobin derived the
combination of the capital market line and the cut point of the efficient frontier using the
mean-variance model [14]. Based on these studies, Sharp, Lintner, and Mossin established
the famous capital asset pricing model (CAPM) [15–17]. Black and Litterman developed the
Black–Litterman (BL) model by integrating the mean-variance model and the CAPM and
introducing the subjective view of investors [18,19]. The model adopted Bayesian analysis
to estimate the implied risk premiums of assets from an equilibrium market portfolio. Then,
a portfolio of investor views was added to derive the optimal allocation weights using an
inverse optimization approach.

Asset allocation is the core of pension investment management and the main determi-
nant of long-term benefits and risks of pension. Modern investment theory has laid a solid
theoretical foundation for pension asset allocation, accelerated the development of pension
asset allocation research, and accumulated many meaningful research results. Dutta et al.
used a simple mean-variance model to analyze the risk aversion and return level of pension
portfolios [20]. Parra et al. studied the optimal asset allocation of pensions by using a fuzzy
multi-objective programming method considering the objectives and constraints of return,
risk, and liquidity [21]. Booth and Yakoubov put multiple assets into the mean-variance
model of pension investment for analysis and research [22]. Blake studied the investment
strategy of enterprise annuity and pointed out that in the long-term investment income,
compared with other dynamic strategies, the static strategy with a higher proportion of
equity investment has more advantages [23]. Through the use of the VaR method, Steven
and Vigna evaluated the portfolio risk and deduced the optimal asset allocation formula of
pensions using a dynamic programming method [24]. Sherris outlined the framework and
techniques that can be used to determine portfolio selection or asset allocation strategies
appropriate for life insurance and pension funds in a multi-period framework [25]. Defau
and Moore introduced alternative assets to study the diversified investment trend of pen-
sions [26]. In recent years, many scholars have studied and discussed the problem of the
optimal management of pension funds [27–29].

The BL model has been widely used in practical allocations. Bevan and Winkelmann
applied the BL model to the asset allocation process of Goldman Sachs and presented
details such as model calibration [30]. To facilitate investors to express their views regard-
ing volatility and correlation coefficients, Qian and Gorman suggested using conditional
estimation methods to estimate the covariance matrix [31]. Many scholars used GARCH
models to form investor views [32–35]. Martellini and Zieman investigated how to apply
the BL model to the allocation of hedge funds [36]. Numerous studies have made extensions
to the BL model. Cheung combined the BL model with factor analysis and proposed an
augmented BL model [37]. O’Toole tried to explain the BL model using the risk budgeting
approach in active management [38]. In recent years, many scholars have used the BL
model to study pension investment. Mit’ková and Mlynarovič studied the performance and
risk analysis of private pension funds in the Slovak Republic based on the BL model [39].
Park et al. explored a method to construct an optimal alternative portfolio for Korean
NPF using the Markowitz mean-variance model and the BL model [40]. Platanakis and
Sutcliffe used robust optimization techniques to solve the asset liability management (ALM)
problem for pension plans [41]. A comparative analysis of asset allocation performance
with the BL model was also performed. Buriticá-Mejía developed an efficient portfolio
and frontier for the Colombian Mandatory Pension Funds using support-vector machines
and BL models [42]. The results showed that by improving the prior distribution matrix,
especially using support-vector regression, the model had a better-diversified portfolio
compared to the Markowitz model. In addition, scholars such as Stoilov, Simos, and Barua
also incorporated the new subjective view of investors into the BL model [43–45]. The
BL model was improved from different perspectives by considering the transaction cost
and the base constraint. The obtained portfolios exhibited considerable advantages over
all benchmark model portfolios. However, research on improving risk estimation was
still lacking.
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Asset allocation aims to combine an investor’s risk appetite to maximize returns within
certain risk constraints. Researchers revealed that risk estimation has a relatively large
impact on asset allocation. Most existing studies on risk estimation for major asset classes
are still based on sample covariance matrices [46]. However, as described by Ankrim,
Fox, and Hensel, the covariance matrix of the sample is valid only if the returns obey a
normal distribution with constant mean and constant variance [47]. Due to autocorrelation
in broad asset class returns [7], using a sample covariance matrix in short-term asset
allocation may ignore the time-varying nature of short-term volatility. If the matrix is
transformed to a long-term covariance matrix, the dynamic characteristics of the covariance
matrix with term could also be ignored, which further increases the error. In recent
years, scholars (e.g., Ding and Martin; Cong and Oosterlee) have applied GARCH models
to investigate investment management [48–52]. Although the GARCH model in short-
term asset allocation considers the time-varying nature of volatility, its direct and simple
transformation to long-term ignores the dynamic characteristics of the covariance matrix
over time, making this method questionable.

According to the above literature analysis, asset allocation has a solid theoretical foun-
dation in finance. It takes modern portfolio theory as the classical theoretical framework
and features rich research results of theoretical and methodological innovations. In the
practical asset allocation of pension funds, a wealth of results has been achieved in practice-
oriented research. However, there are fewer studies combining time-varying covariance
with BL models for pension asset allocation, and further research is needed.

3. Model

This section focuses on how a TVC-BL pension asset allocation model considering
time-varying covariance is constructed.

3.1. VARMA-GARCH Model

In this subsection, the VARMA-GARCH model is constructed by combining the
VARMA model and the GARCH model. First, the VARMA-GARCH model was obtained
by modeling the mean of return on assets (ROA) with the VARMA model and the variance
of ROA with the GARCH model.

To obtain the covariance matrix of the assets, the forecast model of ROA needs to
be first established. Considering the autocorrelation of ROA, the VARMA was used to
model ROA, which captured the data generation process of ROA based on the guaranteed
autocorrelation. For the covariance of ROA, the GARCH was used for modeling.

We make assumptions as follows:

1. We denote n assets in the market;
2. rt is considered as a column vector of asset returns (n× 1 dimension);
3. The mean of rt is assumed to obey the VARMA;
4. The residue of rt is assumed to obey a normal distribution and the GARCH;
5. The residue of the return of different assets is independent.

The VARMA model is expressed as Equation (1), and the GARCH model is expressed
as Equation (2):

rt = c +
p

∑
i=1

φirt−i + ut−
q

∑
j=1

θjut−j (1)

ut|It−1 ∼ N(0, Σt) (2)

where φi is the coefficient matrix (n × n dimension) of the historical data on ROA, i =
1, · · · , p; θj is the coefficient matrix (n× n dimension) of the historical data of ROA residuals,
j = 1, · · · , q; c is a vector of constant terms (n × 1 dimension); ut is white noise (n × 1
dimension) and ut satisfies Et−1(ut) = 0, when s 6= 0, Et−1(utut−s

T) = 0, indicating that ut
is a variable unaffected by past information; It−1 is the set of all information available at
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the end of the t− 1 term; Σt = Et−1(utut
T) is the error covariance matrix, and Σt may rely

on past information.

3.2. BL Model

Based on the VARMA-GARCH model established above, the BL model was introduced
to construct the BL asset allocation model based on VARMA-GARCH. The construction of
this model includes the following steps:

Step 1. Mean and variance modeling: constructing the VARMA-GARCH model based
on historical data.

Step 2. Long-term covariance calculation: the long-term covariance matrix is obtained
by accumulating the short-term covariance matrix.

Step 3. Equilibrium return calculation: performing inverse optimization based on the
mean and variance models to obtain market equilibrium returns.

Step 4. Investor view construction: constructing investor views based on the forecasted
asset returns.

Step 5. Posteriori estimate calculation: generating new estimates of return and covari-
ance matrix through the BL model based on market equilibrium returns and investor views.

Step 6. Asset allocation decisions: making asset allocation decisions based on the
mean and variance models.

The specific calculations for each step are as follows:
Step 1. Mean and variance modeling:
We considered three major asset classes, namely, stock, bond, and monetary assets.

Let rt be the column vector of ROA, and the mean and variance of rt were modeled using
the VARMA and GARCH models, see Equations (1) and (2), respectively.

The VARMA-GARCH model was employed to generate forecasts of the ROA, and the
results were used in later steps.

Step 2. Long-term covariance calculation:
We assumed that the covariance matrix for each term ahead was constant. The

covariance matrix for one term ahead was forecasted using the VARMA-GARCH model,
and the cumulative covariance matrix for m terms ahead was calculated as follows:

∑t(m) = m ∑t+1 (3)

where ∑t(m) is the cumulative return covariance matrix for the m terms ahead, and ∑t+1 is
the covariance matrix for one term ahead.

Step 3. Equilibrium return calculation:
We assumed that the utility function of the investor is:

U = wTΠ− δwTΣw (4)

Through inverse optimization, the equilibrium rate of return was calculated by back-
ward derivation based on the asset portfolio weights for the current equilibrium. We then
took the derivative on both sides of Equation (4) and made it equal to 0:

dU
dw

= Π−2δΣwmkt = 0 (5)

Further,
Π= 2δΣwmkt (6)

where Π is the equilibrium return of the asset; Σ = Σt(m) is the cumulative return covari-
ance matrix for the m terms ahead; wmkt is the equilibrium rate of return asset portfolio
weight vector; and δ is the risk aversion coefficient.

Step 4. Investor view construction:
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Based on the rolling forecast method, the returns of the 1, 2, · · · , m terms ahead were
forecasted using the VARMA-GARCH model, and the cumulative return of the m term
ahead was calculated using the following method:

r̂i
t(m) =

(
1 + r̂i

t+1

)(
1 + r̂i

t+2

)
· · ·
(

1 + r̂i
t+m

)
− 1 (7)

where r̂i
t(m) is the cumulative return of the asset i in the m terms ahead; r̂i

t+1, r̂i
t+2, · · · , r̂i

t+m
are the returns of the asset i in the 1, 2, · · · , m term ahead.

Based on the forecasted returns, the investor view matrix can be constructed as follows:

P = I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


Q = r̂t(m)
Ω = ∑t(m)

(8)

where P is the investor view matrix; Q is the investor view return vector; and Ω is the
covariance matrix of view errors.

Step 5. Posteriori estimate calculation:
After adding the investor views to the prior distribution of asset returns, the newly

synthesized return and covariance matrix can be derived by Bayesian methods as follows:

µBL = [(τΣ)−1 + PTΩ−1P]
−1

[(τΣ)−1Π + PTΩ−1Q] (9)

ΣBL = [(τΣ)−1 + PTΩ−1P]
−1

(10)

where µBL is the newly synthesized rate of return; ΣBL is the covariance matrix of n assets;
Π is the equilibrium return of assets; Σ = Σt(m) is the cumulative return covariance
matrix of the m terms ahead; τ denotes the proportion of the equilibrium rate of the return
covariance matrix to the actual covariance matrix; Q is the investor view return vector; P is
the investor view matrix; and Ω is the covariance matrix of view errors.

Step 6. Asset allocation decisions:
The newly synthesized rate of return µBL and covariance matrix ΣBL were brought back

into the Markowitz mean-variance model below to generate the asset portfolio decision:

max
w

wTΠ− δwTΣw (11)

where δ is the risk aversion coefficient.

3.3. Derivation of the Time-Varying Covariance Matrix

In this section, the time-varying covariance matrix is further derived based on the
VARMA-GARCH model to obtain the relationship between the covariance matrices at
different terms.

By taking the unconditional expectation for both sides of Equation (1), the following
equation can be obtained: (

I −
p

∑
i=1

φi

)
r = c (12)

where r is the unconditional expectation of rt; I is the unit matrix of n× n.
By substituting Equation (12) into Equation (1), the following equation can be obtained:

rt − r =
p

∑
i=1

φi(rt−i − r) + ut−
q

∑
j=1

θjut−j (13)



Mathematics 2023, 11, 1476 7 of 21

Equation (13) can be expressed by the lag operator as follows:

φ(L)(rt − r) = θ(L)ut (14)

where φ(L) = I − φ1L− · · · − φpLp, θ(L) = I − θ1L− · · · − θqLq, and L are the lag opera-
tors.

Based on Equation (14), the following equation can be further obtained:

rt − r = ψ(L)ut (15)

where ψ(L) = φ(L)−1θ(L).

According to the study of Dufour et al. [52], it can be obtained that ψ(L) = I−
∞
∑

j=1
ψjLj.

By substituting Equation (12) into Equation (1), the following equation can be obtained:

rt − r = (I −
∞

∑
j=1

ψjLj)ut = ut −
∞

∑
j=1

ψjLjut = ut −
∞

∑
j=1

ψjut−j (16)

Based on the above analysis, we obtained a new equation for rt.
Further, the unconditional self-covariance of rt can be calculated according to Equation (16):

Γr(h) = E
{
(rt − r)(rt−h − r)T)

}
= E

{
(ut −

∞
∑

j=1
ψjut−j)(ut−h −

∞
∑

j=1
ψjut−h−j)

T

}
= E

{
[ut][ψhut]

T
}
+ E

{
[ψ1ut−1][ψh+1ut−1]

T
}
+

+E
{
[ψ2ut−2][ψh+2ut−2]

T
}
+ · · ·

=
∞
∑

j=0
ψh+jΣψj

T

(17)

where Σ = E(utut
T) is the unconditional covariance matrix of the white noise ut.

In Equation (17), ψj is the parameter set to obtain the relationship between rt and ut.
The value of ψj is related to φi and θj, but the exact relationship is not given. The equation
for ψj is derived below.

Since ψ(L) = φ(L)−1θ(L) = I −
∞
∑

j=1
ψjLj, which means φ(L)ψ(L) = θ(L), the follow-

ing equation can be obtained:

(I −
p

∑
i=1

φiLi)(I −
∞

∑
j=1

ψjLj) = (I −
q

∑
j=1

θjLj) (18)

After expanding Equation (18), it can be obtained that:

I −
∞

∑
j=1

ψjLj −
p

∑
i=1

φiLi+
p

∑
i=1

φiLi·
∞

∑
j=1

ψjLj = I −
q

∑
j=1

θjLj (19)

By simplifying Equation (19), it can be obtained that:

q

∑
j=1

θjLj −
∞

∑
j=1

ψjLj −
p

∑
i=1

φiLi+
p

∑
i=1

φiLi·
∞

∑
j=1

ψjLj = 0 (20)
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Based on the above equations, the following equations can be obtained:

ψ1 = θ1 − φ1,

ψj = θj − φj +
j−1
∑

i=1
φiψj−i

(21)

where θj = 0 when j > q; φj = 0 when j > p.
In summary, ψj can be calculated using the following recursive equations:

ψ0 = I,
ψ1 = θ1 − φ1,

ψj = θj − φj +
j−1
∑

i=1
φiψj−i,

(22)

where θj = 0 when j > q; φj = 0 when j > p.
The asset allocation of pension funds usually requires a long decision time. Taking the

annual asset allocation decision as an example, the covariance matrix was first modeled
with monthly data to estimate the covariance matrix for the coming month. However, for
asset allocation, the covariance matrix for the next year (the cumulative covariance matrix
for the next 12 months) needs to be obtained. Therefore, the quantitative relationship
between the covariance matrix of a coming term and the cumulative covariance matrices
of multiple future terms needs to be obtained. We first derived the covariance matrix of
the hth term ahead. On this basis, the cumulative covariance matrix for m terms ahead
was derived.

The covariance matrix of the h th term ahead
Assuming that rt undergoes the VARMA process, the forecasted return of 1 term

ahead is

r̂t+1 =
p−1

∑
i=0

φi+1rt−i−
q−1

∑
j=0

θj+1ut−j (23)

The forecast error for the return of 1 term ahead is ut+1.
The covariance matrix for the return of 1 term ahead is ∑t+1.
By recursive calculation, we can obtain the forecasted return of the hth term ahead as

r̂t+h =
p−h

∑
i=1−h

φi+hE(rt−i)−
q−h

∑
j=1−h

θj+hE(ut−j) (24)

where E(rt−i) =

{
rt−i, i ≥ 0
r̂t−i, i < 0

, and E(ut−j) =

{
ut−j, j ≥ 0
ût−j, j < 0

.

When performing multi-step forecasting, the forecasted value of the previous step
needs to be brought into Equation (24) for the forecast of the next step. Therefore, the
forecast errors before the hth term are accumulated into the forecast error for the hth term.
That is, all forecast errors up to the hth term need to be considered when calculating the
covariance matrix for the returns of the hth term ahead.

Based on the previously derived Equation (16), the formula for rt+h can be obtained
as follows:

rt+h − E(rt+h) =


ut+h, h = 1

ut+h −
h−1
∑

j=1
ψjut−j+h, h ≥ 2 (25)

According to Equation (25), the formula for rt+h changes depending on h. Therefore,
we analyze the covariance matrix for the hth term ahead in two scenarios.
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When h = 1, the covariance matrix for the hth term ahead is calculated as follows:

∑t,h = E
{
[rt+h − E(rt+h)][rt+h − E(rt+h)]

T
}

= E
{
[ut+h][ut+h]

T
}

= Σt+h

(26)

When h ≥ 2, the covariance matrix for the hth term ahead is calculated as follows:

∑t,h = E
{
[rt+h − E(rt+h)][rt+h − E(rt+h)]

T
}

= E


[

ut+h −
h−1
∑

j=1
ψjut−j+h

][
ut+h −

h−1
∑

j=1
ψjut−j+h

]T


= E
{
[ut+h][ut+h]

T
}
+ E

{
[ψ1ut+h−1][ψ1ut+h−1]

T
}
+ . . .

+E
{
[ψh−1ut+1][ψh−1ut+1]

T
}

= Σt+h + ψ1Σt+h−1ψ1
T + . . . + ψh−1Σt+1ψh−1

T

= ψ0Σt+hψ0
T + ψ1Σt+h−1ψ1

T + . . . + ψh−1Σt+1ψh−1
T

=
h−1
∑

j=0
ψjΣt+h−jψj

T

(27)

It is easy to verify that ∑t,h still satisfies Equation (27) when h = 1, i.e.:

∑t,h =
h−1
∑

j=0
ψjΣt+h−jψj

T

=
0
∑

j=0
ψjΣt+h−jψj

T

= ψ0Σt+hψ0
T

= Σt+h

In summary, the covariance matrix for the h term ahead is:

∑t,h =
h−1

∑
j=0

ψjΣt+h−jψj
T (28)

The covariance matrix for the cumulative return of m terms ahead
Assuming that rt,m is the cumulative return of m terms ahead, we have:

rt,m = rt+1 + rt+2 + . . . + rt+m (29)

According to Equation (16) derived in the previous section, the formula for rt,m can be
obtained as follows:

rt,m − E(rt,m) =


ut+1, m = 1

ut+1 +
m
∑

i=2
(ut+i −

i−1
∑

j=1
ψjut−j+i), m ≥ 2 (30)

where rt+h − E(rt+h) =


ut+h, h = 1

ut+h −
h−1
∑

j=1
ψjut−j+h, h ≥ 2 .

According to Equation (30), the formula for rt,m changes depending on m. There-
fore, we analyze the covariance matrix for the cumulative return of m terms ahead in
two scenarios.
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When m = 1, the covariance matrix for the cumulative return of m = 1 terms ahead
can be calculated directly according to Equation (28).

∑t(m) = E
{
[rt,m − E(rt,m)][rt,m − E(rt,m)]

T
}

= E
{
[ut+1][ut+1]

T
}

= Σt+1

(31)

When m ≥ 2, the covariance matrix for the cumulative return of m terms ahead is
calculated as follows:

∑t(m) = E
{
[rt,m − E(rt,m)][rt,m − E(rt,m)]

T
}
· · ·

= E


[

ut+1 +
m
∑

i=2

(
ut+i −

i−1
∑

j=1
ψjut−j+i

)][
ut+1 +

m
∑

i=2

(
ut+i −

i−1
∑

j=1
ψjut−j+i

)]T


= E

{[(
m
∑

j=1
ψj−1

)
ut+1 +

(
m
∑

j=1
ψj−2

)
ut+2 + · · ·+

(
m
∑

j=1
ψj−m

)
ut+m

]

·
[(

m
∑

j=1
ψj−1

)
ut+1 +

(
m
∑

j=1
ψj−2

)
ut+2 + · · ·+

(
m
∑

j=1
ψj−m

)
ut+m

]T


= E


[

m
∑

i=1

(
m
∑

j=1
ψj−i

)
ut+i

][
m
∑

i=1

(
m
∑

j=1
ψj−i

)
ut+i

]T


=
m
∑

i=1

[(
m
∑

j=1
ψj−i

)
E(ut+i)

][(
m
∑

j=1
ψj−i

)
E(ut+i)

]T

=
m
∑

i=1

( m
∑

j=1
ψj−i

)
∑t+i

(
m
∑

j=1
ψj−i

)T


(32)

We can derive that Equation (32) still holds when m = 1, i.e.,:

∑t(m) =
m
∑

i=1

( m
∑

j=1
ψj−i

)
∑t+i

(
m
∑

j=1
ψj−i

)T


=
1
∑

i=1

( 1
∑

j=1
ψj−i

)
∑t+i

(
1
∑

j=1
ψj−i

)T


= ψ0 ∑t+1(ψ0)
T

= ∑t+1

In summary, the covariance matrix for the cumulative return of m terms ahead is:

∑
t
(m) =

m

∑
i=1

( m

∑
j=1

ψj−i

)
∑
t+i

(
m

∑
j=1

ψj−i

)T
 (33)

3.4. The Proposed TVC-BL Model

In the previous subsections, we first constructed the VARMA-GARCH model to
capture the mean and variance of asset returns. Then, the VARMA-GARCH model and
BL model were combined to produce a BL asset allocation model based on the VARMA-
GARCH model. Finally, the calculation of time-varying covariance was provided based on
the VARMA-GARCH model. Based on the findings in the previous sections, this subsection
provides the modeling and solving steps of the TVC-BL pension asset allocation model.

The TVC-BL pension asset allocation model includes the following steps.
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Step 1. Mean and variance modeling: constructing the VARMA-GARCH model based
on historical data.

Step 2. Long-term covariance calculations: calculating the long-term covariance matrix
based on the time-varying covariance formula.

Step 3. Equilibrium return calculation: performing inverse optimization based on the
mean and variance models to obtain market equilibrium returns.

Step 4. Investor view construction: constructing investor views based on the forecasted
asset returns.

Step 5. Posteriori estimate calculation: generating new estimates of return and covari-
ance matrix through the BL model based on market equilibrium returns and investor views.

Step 6. Asset allocation decisions: making asset allocation decisions based on the
mean and variance models.

The specific calculations for each step are as follows.
Step 1. Mean and variance modeling:
We considered three major asset classes, namely, stock, bond, and monetary assets.

Let rt be the column vector of ROA; the mean and variance of rt were modeled using the
VARMA and GARCH models, see Equations (1) and (2), respectively.

The VARMA-GARCH model was employed to generate forecasts of the ROAs, and
the results were used in later steps.

Step 2. Long-term covariance calculations:
We assumed that the covariance matrix for each term ahead was time-varying. The co-

variance matrix for the 1, 2, · · · , m terms ahead was forecasted using the VARMA-GARCH
model, and the cumulative return covariance matrix for the m terms ahead was further
calculated as follows:

∑
t
(m) =

m

∑
i=1

( m

∑
j=1

ψj−i

)
∑
t+i

(
m

∑
j=1

ψj−i

)T
 (34)

where ∑t(m) is the cumulative return covariance matrix for the m terms ahead, and
Σt+1, Σt+2, · · · , Σt+m is the covariance matrix for the 1, 2, · · · , m term ahead.

Step 3. Equilibrium return calculation:
Assuming that the utility function of the investor is as Equation (4).
Through inverse optimization, the equilibrium rate of return was calculated by back-

ward derivation based on the asset portfolio weights for the current equilibrium. See
Equation (6).

Step 4. Investor view construction:
Based on the rolling forecast method, the returns of the 1, 2, · · · , m terms ahead were

forecasted using the VARMA-GARCH model, and the cumulative return of the m term
ahead was calculated using the following method:

r̂i
t(m) =

(
1 + r̂i

t+1

)(
1 + r̂i

t+2

)
· · ·
(

1 + r̂i
t+m

)
− 1 (35)

where r̂i
t(m) is the cumulative return of asset i in the m terms ahead, and r̂i

t+1, r̂i
t+2, · · · , r̂i

t+m
are the returns of asset i in the 1, 2, · · · , m term ahead.

Based on the forecasted returns, the investor view matrix can be constructed as follows:

P = I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


Q = r̂t(m)

(36)

Ω = ∑t(m) (37)
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where Q is the investor view return vector; P is the investor view matrix; and Ω is the
covariance matrix of view errors.

Step 5. Posteriori estimate calculation:
After adding the investor views to the a priori distribution of asset returns, the

newly synthesized return and covariance matrix can be derived by Bayesian methods
as Equations (9) and (10).

Step 6. Asset allocation decisions:
The newly synthesized rate of return µBL and covariance matrix ΣBL were brought back

into the Markowitz mean-variance model below to generate the asset portfolio decision.
See Equation (11).

4. Experimental analysis
4.1. Data Selection and Description

The investment of pension funds is essentially a long-term asset allocation decision.
Meanwhile, it is diversified. In addition to complying with national regulations, it follows
the principle of safety first. Although China’s regulations on the investment management
of pension funds have expanded the investment scope, the main investment categories of
pension funds are currently dominated by stocks, equity, bonds, and cash. Despite their
high risks, stocks can increase the level of long-term returns, making the stock market a
very important investment channel for pension funds. Bonds, on the other hand, have
relatively low returns and risks, thus satisfying the capital preservation, value preservation,
and appreciation requirements of pension investments through stable returns. Cash has
good liquidity. In addition, China’s relevant regulatory policies allow the conversion of a
portion of assets into cash during pension investments without changing the total amount
of pension assets. Thus, cash was considered as well [20].

We selected three major asset classes: stocks, bonds, and monetary assets. The CSI All
Share Index, CSI All Bond Index, and CSI Monetary Fund Index were selected as the subject
matter indexes for the three assets. The indexes were obtained from the Choice financial
terminal, and the sample interval was monthly data from February 2005 to February 2021.
The original data selected were the monthly closing prices of stocks, bonds, and monetary
assets, which required preparatory processing.

The selection of basic data involved the monthly closing price of stocks, bonds, and
monetary assets, so it was necessary to prepare the data. The monthly returns of each asset
were calculated according to the price data of each asset. After obtaining the time series
data of three types of asset returns, we carried out descriptive statistical analysis on the
historical return data of three types of assets. The statistical analysis results are shown in
Table 1.

Table 1. The descriptive statistical results of historical returns data of three types of assets.

Stocks Bonds Cash

Index CSI All Share Index CSI All Bond Index CSI Monetary Fund
Index

Date sources Choice Choice Choice

Sample interval February
2005–February 2021

February
2005–February 2021

February
2005–February 2021

Sample size 194 194 194
Mean 1.295 0.373 0.251
Min −25.910 −2.040 0.091
Max 29.535 4.124 0.538
Median 1.268 0.383 0.236
Variance 73.060 0.662 0.008
Skewness 1.133 3.563 −0.490
Kurtosis −0.185 0.750 0.368
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4.2. Time-Varying Properties of the Covariance Matrix

We calculated the covariance matrices for 1, 2, 3, 6, and 12 months from the historical
data and transformed the sample covariance matrices for 1, 2, 3, and 6 months into a
12-month covariance matrix (annualized covariance matrix) by cumulative addition. The
sample covariance matrices and annualized covariance matrices for stocks, bonds, and
monetary assets at different terms are shown in Table 2. The annualized covariance matrices
for stock, bond, and monetary assets are shown under different terms. Since the values in
the covariance matrices were small, the data in Tables 2 and 3 were the results of expanding
the original data by a factor of 10,000.

Table 2. The sample covariance matrices of stock, bond, and monetary assets under different terms.

Covariance
Matrix Entries

Investment Terms

1 Month 2 Months 3 Months 6 Months 12 Months

Stock asset
variance 73.439 178.483 318.448 908.031 2340.420

Bond asset
variance 0.665 1.810 3.144 9.203 22.656

Monetary asset
variance 0.008 0.028 0.062 0.242 0.866

Stock-bond asset
covariance −1.459 −5.486 −12.362 −41.173 −106.991

Stock-monetary
asset covariance −0.080 −0.401 −0.762 −3.940 −14.060

Bond-monetary
asset covariance 0.011 0.035 0.056 0.270 0.711

Table 3. The annualized covariance matrices for stock, bond, and monetary assets under differ-
ent terms.

Covariance
Matrix Entries

Investment Terms

1 Month 2 Months 3 Months 6 Months 12 Months

Stock asset
variance 881.266 1070.898 1273.792 1816.062 2340.420

Bond asset
variance 7.982 10.857 12.574 18.406 22.656

Monetary asset
variance 0.094 0.170 0.247 0.484 0.866

Stock-bond asset
covariance −17.509 −32.918 −49.446 −82.347 −106.991

Stock-monetary
asset covariance −0.960 −2.407 −3.047 −7.880 −14.060

Bond-monetary
asset covariance 0.137 0.211 0.225 0.539 0.711

According to Table 3, a comparison between the annualized covariance matrices
obtained from the sample covariance matrices of different terms reveals that the sample
variances of stocks, bonds, and monetary assets all gradually increase with the increase in
investment term. Taken together, long-term covariance matrices based on the accumulation
of short-term covariance matrices are underestimated due to the autocorrelation of the
assets. That is, the risk calculated by direct accrual increases progressively as the investment
term increases.

Considering the strong autocorrelation of major asset classes, the dynamic nature of the
covariance matrix cannot be ignored in asset allocations. The traditional direct accumulation
method ignores the dynamic nature of the covariance matrix, making the estimate of
the covariance matrix lower than the actual value. Effectively transforming short-term
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covariance matrices into long-term covariance matrices has important implications for
asset allocation.

4.3. Time-Varying Properties of the Covariance Matrix

Based on historical data on asset returns, the VARMA model was first constructed as
Equation (1).

To identify the best VARMA (p, q) model, we based the model selection on the Akaike
information criterion (AIC) and Bayesian information criterion (BIC).

By setting the range of p and q as {1, 2, 3, 4}, different VARMA (p, q) models were ob-
tained.

The AIC and BIC of the VARMA models with different parameters were calculated,
and the VARMA (1, 1) model was selected for the final VARMA model parameters based
on the AIC and BIC minimization principles and the model fitting parameters.

Furthermore, the parameters obtained from the model are as follows.
The parameters of the VARMA (1, 1) model are as follows: r1t

r2t
r3t

 =

 4.011
0.115
0.071

+

 0.143 −1.047 −9.841
−0.033 0.512 0.441
−0.010 −0.061 0.857

 r1t−1
r2t−1
r3t−1


+

 −0.024 −0.637 4.686
0.024 −0.186 −1.461
0.010 0.061 −0.330

 u1t−1
u2t−1
u3t−1

+

 u1t
u2t
u3t

 (38)

Based on the forecasts of the VARMA (1, 1) model, we obtained the time series of the
residual for the three asset classes. The residual series of the three asset classes are shown
in Figure 1A.
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Further, we constructed multivariate GARCH models for stocks, bonds, and mone-
tary assets. The Constant Conditional Correlation GARCH (CCC-GARCH) model was
adopted for modeling, which first estimated the variance of each asset before generating
the multivariate GARCH model based on the correlation coefficients between each asset.

To determine the best GARCH model, the model selection was based on AIC and
BIC. By setting the range of p and q as {1, 2, 3, 4}, different GARCH (p, q) models were
obtained. By calculating the AIC and BIC of the GARCH model for each asset with different
parameters, the optimal GARCH model for the stock residual series was selected as GARCH
(1, 1). Similarly, we obtained the optimal GARCH model for the bond residual series as
GARCH (1, 1) and the optimal GARCH model for the monetary asset residual series as
GARCH (1, 1).

The estimated parameters of the GARCH (1, 1) model for the stock residual series are
as follows:

hs,t = 3.678 + 0.188ε2
s,t−1 + 0.767hs,t−1 (39)

where hs,t is the variance of stock assets in the term t, ε2
s,t−1 is the square of the residuals of

stock assets returns in the term t− 1 (ARCH term), and hs,t−1 is the variance of stock assets
in the term t− 1 (GARCH term).

The estimated parameters of the GARCH (1, 1) model for the bond residual series are
as follows:

hb,t = 0.228 + 0.149ε2
b,t−1 + 0.419hb,t−1 (40)

where hb,t is the variance of bond assets in term t, ε2
b,t−1 is the square of the residuals of

bond assets returns in term t− 1 (ARCH term), and hb,t−1 is the variance of bond assets in
term t− 1 (GARCH term).

The estimated parameters of the GARCH (1, 1) model for the monetary assets residual
series are as follows:

hm,t = 0.001 + 0.452ε2
m,t−1 + 0.314hm,t−1 (41)

where hm,t is the variance of monetary assets in term t, ε2
m,t−1 is the square of the residuals of

monetary assets returns in term t− 1 (ARCH term), and hm,t−1 is the variance of monetary
assets in term t− 1 (GARCH term).

After obtaining the parameter estimates of the GARCH model for the different assets,
we can calculate the covariance of the assets based on the correlation coefficients among
them. The covariances among the different assets are calculated as follows:

hsb,t = ρsb,t
√

hs,t
√

hb,t
hsm,t = ρsm,t

√
hs,t
√

hm,t
hbm,t = ρbm,t

√
hb,t
√

hm,t

(42)

where hsb,t is the covariance between stocks and bonds for the term t, hsm,t is the covariance
between stocks and monetary assets for the term t, hbm,t is the covariance between bonds
and monetary assets for the term t, ρsb is the correlation coefficient between stocks and
bonds, ρsm is the covariance between stocks and monetary assets, and hbm is the covariance
between bonds and monetary assets.

Based on the above calculations, we can obtain the final covariance matrix as follows:

Σt =

 hs,t hsb,t hsm,t
hsb,t hb,t hbm,t
hsm,t hbm,t hm,t

 (43)

The correlation coefficient changes for the returns of the three asset classes, stocks,
bonds, and monetary assets, are presented in Figure 2.
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4.4. Effectiveness Analysis for the TVC-BL Pension Asset Allocation Model

In this subsection, the proposed TVC-BL model considering the time-varying covari-
ance was applied to pension asset allocation to further analyze its effectiveness in pension
asset allocation.

In order to analyze the effectiveness of the proposed TVC-BL pension asset allocation
model considering the time-varying covariance, we compared it with the traditional BL
asset allocation model without considering the time-varying covariances (i.e., producing
long-term covariances by accumulating short-term covariances) in terms of their advantages
and disadvantages in asset allocation. Specifically, the performance of the two models in
pension asset allocation was evaluated.

To ensure the safety of pension funds, China’s policy on pension investment and
operation is relatively cautious. Currently, the restrictions on pension investments are
as follows:

1. No more than 30% of assets may be invested in stocks;
2. No more than 135% of assets may be invested in bonds;
3. The investments in monetary assets should account for 5% at least.

Based on the above conditions, the following constraints were added when solving
the final mean and variance models.

0 ≤ w1 ≤ 0.3;
0 ≤ w2 ≤ 1;

0.05 ≤ w3 ≤ 1;
(44)

The final equilibrium returns were obtained through the market values of the three
asset classes as follows, see Figures 3 and 4.
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Figure 4. Equilibrium return changes of the three types of assets.

We selected the annualized rate of return, annualized volatility, and Sharpe ratio as
the indexes for comparative analysis.

The actual data from February 2016 to February 2021 were used as the backtesting
interval for asset allocation. The annualized rate of return of the final portfolio decision
was derived based on different risk aversion coefficients for pension asset allocation. The
annualized volatility and Sharpe ratio are listed in Table 4.

According to Table 4, the TVC-BL pension asset allocation model with time-varying
covariance as the risk estimate outperforms the traditional BL pension asset allocation
model in terms of asset allocation effectiveness. In terms of the annualized rate of return, the
difference between the two models is not significant, but in terms of annualized volatility,
the TVC-BL model achieves a significantly lower value than the traditional BL model. In
terms of the Sharpe ratio, the TVC-BL model achieves a significantly higher value than
that of the traditional BL model. The results indicate that the proposed TVC-BL pension
asset allocation model outperforms the traditional BL model. When the risk aversion
coefficient is 1, 1.5, and 2.5, the Sharp ratio of pension asset allocation through the TVC-BL
pension asset allocation model is 13.0%, 10.5%, and 12.8% higher than that of the traditional
BL model.
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Table 4. The annualized rate of return and annualized volatility of the proposed model and the
models for comparison.

Risk Aversion
Coefficient Models Annualized Rate of Return (%) Annualized Volatility (%) Sharpe Ratio

1 Traditional BL model 4.77 5.05 0.69
TVC-BL 4.78 4.45 0.78

1.5 Traditional BL model 4.76 4.56 0.76
TVC-BL 4.70 4.03 0.84

2.5 Traditional BL model 4.68 4.32 0.78
TVC-BL 4.66 3.83 0.88

4.5. Discussion

In this subsection, we further analyze the effectiveness of the proposed TVC-BL model.
Ma et.al. proposed a mean-variance with forecasting (MVF) model for portfolio

optimization, and the mean-variance with random forests (RF-MV) model outperformed
the benchmark models [53].

We extended the RF-MV model to the RF-BL model by replacing the MV method with
the BL method. Furthermore, we added TVC into the RF-MV model and obtained the
RF-BL-TVC model. The annualized volatility and Sharpe ratio of the RF-BL model and
RF-BL-TVC model are listed in Table 5.

Table 5. The annualized rate of return and annualized volatility of RF-BL model and RF-BL-
TVC model.

Risk Aversion
Coefficient Model Annualized Rate of Return (%) Annualized Volatility (%) Sharpe Ratio

1 RF-BL 4.90 5.07 0.71
RF-BL-TVC 4.91 4.52 0.80

1.5 RF-BL 4.82 4.62 0.76
RF-BL-TVC 4.83 4.13 0.85

2.5 RF-BL 4.75 4.42 0.78
RF-BL-TVC 4.78 3.91 0.89

According to Table 5, the RF-BL-TVC model with time-varying covariance as the risk
estimate outperforms the RF-BL model in terms of asset allocation effectiveness. In terms
of the Sharpe ratio, the RF-BL-TVC model achieves a significantly higher value than the
RF-BL model. The results indicate that the RF-BL-TVC model outperforms the RF-BL
model. When the risk aversion coefficient is 1, 1.5, and 2.5, the Sharp ratio of pension asset
allocation through the RF-BL-TVC pension asset allocation model is 12.7%, 11.8%, and
14.1% higher than that of the RF-BL model.

Based on the analysis of the results in Tables 4 and 5, we found that the models with
TVC outperform consistently for optimal pension asset allocation.

5. Conclusions

Due to the long term of pension asset allocation decisions and the insufficiency of
asset history data, calculating the long-term covariance matrix directly from historical data
faces the problem of insufficient sample data, leading to the failure of covariance matrix
estimations. The commonly used solution is directly modeling the monthly ROA data to
obtain the monthly covariance matrices and accumulating them to produce the covariance
matrices of other terms. However, the covariance matrix of asset returns tends to exhibit
dynamic changes due to the relatively strong autocorrelation of major asset class returns.
Therefore, the long-term covariance matrix obtained directly by accumulating monthly
covariance matrices tends to be somewhat problematic.
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In this paper, we first modeled ROA and the covariance of ROA by VARMA and
GARCH and studied the effective conversion method from a short-term covariance matrix
to a long-term covariance matrix. On that basis, a TVC-BL pension asset allocation model
with time-varying covariance as the risk estimate was constructed and applied to pension
asset allocation to produce the asset allocation decisions. A performance comparison
revealed that the proposed TVC-BL pension asset allocation model outperformed the
traditional BL pension asset allocation model in terms of asset allocation effectiveness after
considering the time-varying covariance.
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