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Abstract: Inspired by the mass amplification property of inerters, an inerter-based passive panel
flutter control procedure is developed and proposed. Formulations of aeroelastic equations of
motion are based on the use of a wide-beam (flat panel) element stiffness equation subjective to
supersonic flow using piston theory. The onset of flutter is analyzed using an eigenvector orientation
approach, which may provide the advantage of lead time while the angle between eigenvectors of
the first two coalescing modes reduces towards zero. The mass amplification effect of inerters is
described and incorporated into the aeroelastic equation of motion of the passive actuation system for
the investigation of flutter control. To demonstrate the potential applicability and usefulness of the
proposed formulation and procedure, two numerical examples with one and two inerters, respectively,
to optimally control the flutter of the panel modeled by wide-beam elements are presented. The
results of the numerical simulation of the present examples demonstrate that the present inerter-based
method can offset the onset of flutter to a higher level of aerodynamic pressure by optimizing the
effective mass ratios and locations of inerters. In addition, this paper demonstrates that fundamental
modes may be playing a role when identifying the optimal location of the inerters. It appears that the
placement of the inerters may be more effective in controlling flutter at the highest amplitude of the
mode shape along the wide beam. The procedure developed in this study may be of use for practical
application for passive panel flutter control.

Keywords: passive flutter control; eigenvector orientation; finite element; panel flutter; inerter
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1. Introduction

Panel flutter is the self-excited dynamic oscillation of an aeroelastic structure, which
is one of the most destructive causes of failure for various aircraft, including missiles,
airplanes, and rockets. Flutter arises when the speed of an aircraft reaches a critical velocity
under the coupling action of elastic force, inertia force, and aerodynamic pressure.

There have been various panel flutter modeling methods used to characterize and
solve the aeroelastic problem of flutter. Among these methods, the aeroelastic model
using the finite element method has gained widespread acceptance due to its flexibility in
handling the geometry and boundary conditions of aeroelastic structures [1]. The earliest
finite element model for flutter detection is the two-dimensional wide-beam element [2]
and three-dimensional rectangular plate element [3] by Olson. According to the paper,
flutter detection can be formulated as a set of eigenvalue equations in order to find the
flutter speeds and mode shapes. The onset of flutter occurs during the coalescence between
two eigenvalues. To track the response time depicted with a lead time, an alternative
eigenvector orientation method was developed by the current senior author to predict the
onset of flutter [4–6]. In this study, the eigenvector orientation-based method will be used
to detect panel flutter.
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In order to control panel flutter, an active controlling method using smart material is
widely adopted. Piezoelectric material is one of these smart materials due to its excellent
electromechanical characteristics [7]. In recent years, different types of models, controlling
strategies, and applications of piezoelectric actuators have been studied [8–10]. A common
strategy used to solve flutter problems involves offsetting the critical velocity corresponding
to panel flutter to a higher level. For example, Forster and Yang built a six-bay wing box
model using finite elements and examined the use of piezoelectric actuators to control
the supersonic flutter of the wing box aeroelastic models [11]. Subsequently, Wang and
Yang developed a panel flutter suppression strategy using piezoelectric actuators. The use
of the eigenvector orientation method has the potential to provide a lead time for flutter
control [4].

For passive flutter suppression, mass balancing is one method often used by air-
craft designers. Through the distribution of the structure mass, a higher critical velocity
can be obtained. Thus, the concept of using an inerter, which was first presented by
Smith et al. [12,13], could be attractive for passive flutter suppression. It can develop a
reaction force proportional to the relative acceleration and generate an effect of mass ampli-
fication. As a mass amplifier with a small physical mass, an inerter has been successfully
applied to the vibration control of various systems, including automobile suspension [14],
train suspension [15–18], motorcycle steering [19,20], buildings [21], and more. In a recent
paper by the current authors, Li, Yang, et al. used six earthquake data to show the effective-
ness of a bio-inspired passive base isolator with a tuned mass damper inerter for structural
control [22]. Meanwhile, a ball-screw inerter [23], hydraulic inerter [24], and other varieties
of inerters are introduced in addition to the original fly-wheel inerter. The applications
show that an inerter can improve the vibration performance of structures. In light of the
performance benefits of inerters, this study aims at exploring their effectiveness while being
used as a passive actuator for flutter suppression.

The purpose of this study is to focus on the passive control of panel flutter using the
concept of inerters to formulate the aeroelastic equations, while also using the eigenvector
orientation method to solve them in order to take advantage of tracking the response
time with a possible lead time before the occurrence of flutter. In order to illustrate this
concept, and to investigate its feasibility for applications, a simple illustrative example of
a two-dimensional panel (a wide beam) is chosen, similar to Olsen [2]. Furthermore, two
inerters are chosen as a specific example. For the specific examples chosen, the present
proposed procedure and numerical results have demonstrated that optimum effectiveness
in passive flutter control can be achieved by installing one or two inerters, respectively.

The formulation of an aeroelastic model for the wide-beam panel flutter is described
in Section 2. Based on the equation of motion with the inerter of the aeroelastic panel in
Section 3, the angle between two coalescing eigenvectors can be calculated. The angle will
gradually decrease to zero when flutter arises. Section 4 presents the design of the control
strategy. The location and effective mass ratio of the inerter are two crucial parameters that
influence the control effect. By optimizing the location and effective mass ratio, the optimal
results can be obtained for an aeroelastic structure installed with one and two inerters.
Numerical simulation with various examples of a simply supported wide-beam panel
for flutter control has been analyzed, with results evaluated numerically and interpreted
physically using the eigenvalue or eigenvector orientation method, in Section 5. It is of
interest to observe that the optimal locations of the inerter may be correlated with the
fundamental mode shape of a simply supported wide-beam panel.

2. Formulations of Panel Flutter
2.1. Identification of Flutter

Flutter is an instability encountered in aircraft and other aeroelastic structures sub-
jected to fluid flow. It is the result of interactions between aerodynamics, stiffness, and
inertial forces. When the flow speed of the fluid increases to a critical point, the structural
damping of an aircraft will be insufficient to dampen out the motion due to aerodynamic
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forces acting on the structure. At this point, the net damping, which is described as the
sum of the structure’s natural positive damping and negative damping of aerodynamic
forces, goes to zero, and the structure is in a simple harmonic motion. Flutter will then
occur if there is any other further decrease in net damping. Usually, the amplitude of flutter
increases exponentially with time for a linear system, although it is limited for nonlinear
structural systems [25,26].

The skin panel of a flying vehicle can simply be depicted as in Figure 1. It can be seen
that airflow only acts on one surface of the panel on a two-dimensional simply supported
wide beam. High-speed airflow may cause the skin panel of a flying vehicle to vibrate
transversely with high amplitudes, which can be characterized as in Figure 1. As the speed
of an aircraft increases, the frequencies of the two lowest modes may coalesce to create one
mode, and thus flutter is initiated. If the flutter-induced stress level exceeds the yield stress
of the structure, failure will occur. On the other hand, when subjected to a relatively low
stress level but for a long period, the structure can also experience fatigue problems [26].

Figure 1. Three-dimensional sketch of panel flutter.

The occurrence of panel flutter can be influenced by various factors, including the
mass, damping, and stiffness of the panel; local Mach number; dynamic pressure; density,
and boundary conditions [26]. To avoid flutter, an aircraft is designed with the capability
to predict the natural parameters and aerodynamic parameters, including flutter speed.

2.2. An Illustrative Example of an Aeroelastic Model of Panel Flutter

The panel is assumed to be a thin, stress-free plate with thickness h, length l, width s,
and mass density per unit volume ρ. Only two-dimensional deformation of the panel is
considered, which is described in Figure 1. A supersonic airstream flows over the upper
surface, and the lower surface of the panel is not exposed to any airflow. The effect of air
entrapped below the panel is also neglected. The aerodynamic pressure for Mach numbers
M∞ > 1.7 can be calculated with good accuracy through first-order piston theory [27].
Assuming a first-order, high Mach number approximation to the linear piston theory, the
aerodynamic pressure acting on one surface is given as follows [5,28]:

p =
2q f√

M2
∞ − 1

(
∂

∂x
+

1
U

M2
∞ − 2

M2
∞ − 1

∂

∂t

)
ω (1)

In Equation (1), q f is the free stream dynamic pressure, M∞ is the Mach number, and U
is the flow velocity. The dimensional aerodynamic pressure parameter A can be described
as follows according to the above equation:

A =
2q f√

M2
∞ − 1

(2)
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D is the bending rigidity of the aeroelastic structure and can be expressed using the
following equation [29]:

D =
Eh3

12(1− υ2)
(3)

where E is the modulus of elasticity and υ is the Poisson ratio.

3. Flutter Controlling Model with Inerter
3.1. Equation of Motion of Inerter

The ideal inerter is a two-terminal mechanical device that has the property that
equal and opposite forces applied at two terminals are proportional to the relative accel-
eration between nodes [12,13]. Now, various physical models of an inerter have been
proposed by researchers. The most widely known model is one that incorporates a rack-
and-pinion to transform the translational kinetic energy associated with the relative motion
of the device terminals into rotational kinetic energy at a lightweight fast-spinning “fly-
wheel” [12,13]. The inertance of such a flywheel-based inerter depends primarily on the
number of gears and the gear ratio used to drive the flywheels, rather than on the mass of
the flywheels. A schematic representation of the inerter device is presented as a hatched
box in Figure 2 [13].

Figure 2. Schematic representation of the two-terminal inerter [13].

Assuming that the physical mass of the inerter is negligible compared to the mass of
the structure, the force F of an ideal linear inerter would be proportional to the relative
acceleration of its terminals, as described in the following equation [13].

F = b(z̈1 − z̈2) (4)

In Equation (4), the constant b is the inertance measured in mass units (kg), where z̈1
and z̈2 are accelerations between two terminals of the inerter.

3.2. Aeroelastic Equation of Motion of Structure with Inerter

The aeroelastic structure can be modeled using a simply supported wide beam, which
can be spatially discretized by wide-beam elements. The element has two nodes (joints)
and four degrees of freedom. For each node, there are two degrees of freedom (DOF),
including a transverse deflection υ and an angle of rotation θ. The transverse shear force
and bending moment corresponding to υ and θ of two nodal points of the element can be
expressed as [Y1 M1 Y2 M2].

For a one-element wide-beam model of an aeroelastic structure installed with one
inerter at each node, forces are applied in the inner surface of the structure that is not
exposed to the airstream. The physical mass of an inerter is negligible relative to the
structure mass, but the equivalent effect as the mass increases by b can be achieved by
installing an inerter with inertance b. Thus, flutter control can be realized by using an
inerter through modifying the structural mass matrix.
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Similar to the lumped mass at nodal points, there is no bending moment created by an
inerter. The transverse force of an inerter is proportional to the acceleration of the node,
which can be described as follows:

Yine = b · ϋ (5)

This study uses Uine = [Y1−ine M1−ine Y2−ine M2−ine]
T to represent the transverse

force and rotational force exerted by the inerters installed at the two nodal points of an
element for the simply supported wide beam. It can be expressed by the following equation:

Uine =


Y1−ine
M1−ine
Y2−ine
M2−ine

 =


b1 0 0 0
0 0 0 0
0 0 b2 0
0 0 0 0




ϋ1
θ̈1
ϋ2
θ̈2

 (6)

In Equation (6), b1 and b2 are the inertance of the inerters at two nodes of the element.
The simply supported wide beam can be modeled by n elements with the boundary

condition that there is no transverse deflection for the two end nodes. According to the
aeroelastic model of panel flutter and finite element theory [2], the equation of motion of
the ith element can be described as follows:

(K + Ae)Qi + MQ̈i + BQ̈i = U (7)

K and Ae are the stiffness matrix and aerodynamic matrix, respectively [2,29]; M is
the mass matrix [29] and B is the equivalent mass matrix exerted by the inerter, while Qi
represents the vector of joint displacements for two nodes of the element. U is the vector of
external controlling forces implemented on the element.

K =
D
L2


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 (8)

Ae = A · L


− 1

2
L
10

1
2 − L

10
− L

10 0 L
10 − L2

60
− 1

2 − L
10

1
2

L
10

L
10

L2

60 − L
10 0

 (9)

M =
ρAL
420


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (10)

B =


b1 0 0 0
0 0 0 0
0 0 b2 0
0 0 0 0

 (11)

Qi =
[
υ1 θ1 υ2 θ2

]T (12)

U =
[
Y1 M1 Y2 M2

]T (13)

The equation of motion of an element is based on the assumption that the damping of
the aeroelastic structure is not taken into account in order to calculate the angles between
eigenvectors [2]. It can be seen from the analysis and conclusions of Sun [30] that the
aerodynamic damping of aeroelastic structures has little effect on the boundary of panel
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flutter, even though it may affect the limit cycle deflection significantly. Moreover, the
equation of motion of the aeroelastic structure can be obtained by assembling the above
finite element matrices.

3.3. Eigenvector Orientation Approach for Flutter Detection

If there are no external controlling forces acting on the structure, U will become zero
and then flutter can be transformed to a free vibration problem, which can be decoupled
using the eigenvalue or eigenvector orientation method [30,31]. In flutter problems, the
eigenvalues of different modes are usually distinct, and the eigenvectors generally satisfy
the orthogonality condition if the structure is in stability, but, during flutter, two of the
modes will approach each other and coalesce at a critical point. Then, the eigenvalues
corresponding to the two modes become complex conjugate pairs, and the corresponding
eigenvectors also lose their orthogonality gradually. To predict and control the onset of
panel flutter, this study will adopt the eigenvector orientation approach by tracking the
angle between two eigenvectors corresponding to the coalescing eigenvalue [4].

The angle between two eigenvectors can be derived from their scalar product. For two
eigenvectors υ1 and υ1, it can be expressed by the arc-cosine. If the two eigenvectors are
real, the angle can be obtained using Equation (14) [30],

θ = cos−1(
υ1 · υ2

‖υ1‖ · ‖υ2‖
) (14)

If the two eigenvectors are complex, the angle can be obtained using Equation (15) by
replacing one of the vectors with its complex conjugate [30],

θ = cos−1(
υi · υj

‖υi‖ ·
∥∥υj
∥∥ ) (15)

where the overbar denotes complex conjugation.

4. Design and Optimization of Control Strategy for the Illustrative Example

In this section, two different types of control strategies including one and two inerters
are considered. The schematic diagram of the controlling model is shown in Figure 3. Given
the number of inerters used for flutter control, the location and effective mass ratio will be
optimized using a genetic algorithm [32].

Figure 3. Schematic diagram of finite element model installed with inerters for flutter control.

For simplicity, the wide-beam example is discretized into eight and thirty-two
4-degrees-of-freedom beam elements in order to perform the feasibility study of the various
numbers of inerters and various locations. One terminal of the inerter will be assumed to
be connected to the wide beam and the other terminal will be connected to a fixed structure
inside the wing.
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4.1. Controlling Strategy with One Inerter

The strategy with one inerter is used to explore its effect on flutter control. It can
be modeled as a nonlinear programming problem. The objective is to maximize the
critical aerodynamic pressure parameter A0 corresponding to the onset of flutter as seen in
Equation (16):

maxA0 = f (r1, p1) (16)

where the design parameters r1 and p1 are the effective mass ratio and location of the
inerter, respectively. The effective mass ratio of the inerter r1 represents the ratio between
the inertance of inerter b1 and the mass of the structure ms, which can be described using
Equation (17):

ri =
bi
ms

(17)

Usually, the effective mass ratio will have an upper limit r. The location of the inerter
can be described as p = i, which indicates that the inerter is placed at the ith joint for the
finite element model. The side constraints are{

0 < ri < r
0 < p1 = i < n

(18)

It is noticed that the constraints described by the above equations define a multi-
dimensional space of uncertain parameters. Through the application of the genetic algo-
rithm [32], the optimal effective mass ratio and location of the inerter can be obtained. For
the present flutter control model, the mass of the inerter is not taken into account because it
is usually negligible relative to the relatively large mass of the aeroelastic structure.

4.2. Controlling Strategy with Multi-Inerter

It is of interest to investigate aeroelastic structures with multi-inerters in addition to
the case of using a single inerter. In the controlling strategy of multi-inerters, the inerters
are located at different locations and with different effective mass ratios. Given the number
of inerters m, the optimization becomes a more complicated problem with more design
parameters compared to the one-inerter strategy.

The objective function for assumed m inerters can be described as follows:

maxA0 = f ({r1, p1}, · · · , {rm, pm}) (19)

The side constraints are{
0 < ri < r
0 < p1 < p2 < · · · < pm−1 < n

(20)

5. Numerical Simulation

In order to illustrate the proposed concept, formulations, and numerical solution
methods as described in Sections 2 and 3, a simple illustrative example of a two-dimensional
panel is chosen. Furthermore, one and two inerters located in different sections of the panel
are chosen as specific examples. Although general conclusions may not be drawn, the
example may reveal the feasibility, applicability, and advantages of the proposed method
for the current examples chosen.
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Various examples of a simply supported wide beam for panel flutter control have
been analyzed, with results evaluated numerically and interpreted physically using the
eigenvalue or eigenvector orientation method. The results show that these methods are
effective in offsetting flutter to a higher level. To illustrate the formulation and computa-
tional procedures for flutter control, which have been discussed in the preceding sections,
two different examples of a simply supported wide-beam panel installed with an inerter
are considered. Two cases of flutter control with one and two inerters are presented, re-
spectively. In particular, the optimal effective mass ratios and locations of the inerters are
explored in order to obtain the best flutter control performance.

In this section, a Matlab program is developed to verify the present method as applied
to supersonic panel flutter analysis. For simulation, the simply supported isotropic panel
in the form of a wide beam is used. The panel’s width, length, and thickness are 1 inch,
10 inches, and 0.1 inches, respectively. Material parameters of the isotropic beam, such as
the modulus of elasticity, Poisson’s ratio, and mass density, are assumed as E = 30 Mpsi,
υ = 0.3, and ρ = 0.1 lb/in3, respectively. The aerodynamic pressure parameter defined in
Section 2 will be used to characterize the property of flutter. The eigenvector orientation
method is adopted to detect the critical aerodynamic pressure parameter and evaluate
the control effectiveness of inerters under different configurations of effective mass ratios
and locations.

5.1. Case 1—Flutter Control with One Inerter

For the aeroelastic structure without any controlling forces and bending moments, the
variations in its two lowest coalescing natural frequencies and the angles between their
corresponding eigenvectors are displayed in Figures 4 and 5, respectively. The figures
show that flutter occurs at a critical point where the curves of two eigenvalues first coalesce
and the angle between their corresponding eigenvectors approaches zero. At this point,
the aerodynamic pressure parameter reaches a critical value A0 = 314 psi. This paper will
use the dimensional modified dynamic pressure parameter as seen in Figures 4 and 5.
However, if Figures 4 and 5 are converted to the dimensionless modified dynamic pressure
parameter, then it will result in an identical graph as seen in Olsen [3] and Sebastijanovic [6].

Figure 4. The coalescing of the two lowest natural frequencies of the wide beam without control.
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Figure 5. The variation in angle between two eigenvectors of the wide beam without control.

In order to investigate the property of the wide-beam panel installed with one inerter,
the aerodynamic model with 8 elements is used. To demonstrate the effect of an inerter
installed on the beam, the schematic diagram of the finite element model with the inerter
installed at joint 3, 1/4 of the beam length, is shown in Figure 6. While holding the inerter at
joint 3 and varying its effective mass ratio, the resulting aerodynamic pressures, obtained as
the angles between the first two sets of eigenvectors become zero, are as shown in Figure 7.
It can be observed that the inerters installed at joint 3 with increasing effective mass ratios
can have different effectiveness for flutter control. Figure 8 shows the relationship between
the effective mass ratio of the inerter and the critical aerodynamic pressure parameter
corresponding to the onset of flutter. In Figure 8, the critical aerodynamic pressure parame-
ter rises until reaching a critical point; at this point, the first two lowest modes no longer
coalesce and coalescing occurs at higher modes. For the purpose of the present preliminary
basic conceptual study, the focus is on the first two modes.

Figure 6. Schematic diagram of flutter control with one inerter installed at joint 3, out of 9 joints, for
an 8-finite-element model.
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Figure 7. Angles between eigenvectors of the first two coalescing modes with different effective mass
ratios of inerter applied at joint 3.

Figure 8. Critical aerodynamic pressure parameter corresponding to the onset of flutter with variable
effective mass ratio.

To demonstrate the effectiveness of varying the location on an inerter for flutter control,
an inerter is set to a constant of r1 = 0.39. This value was chosen as a starting point for
the iterative optimization process. After testing a range of starting points from 0 to 2, the
optimization always converged to the same results; therefore, r1 = 0.39 is used as a best
guess starting point. The results for r1 = 0.39 are shown in Figures 9 and 10.

These results suggest that there may be some optimal effective mass ratio and location
of the inerter for flutter control. For inerters installed at different joints, the relationship
between the critical aerodynamic pressure parameter and the effective mass ratio is pre-
sented in Figure 11. It is seen that the best control effectiveness can be obtained when the
inerter is applied at the midspan location joint 5, 1/2 of the beam length.
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Figure 9. Angles between eigenvectors of two coalescing models with inerter placed at different joints.

Figure 10. Critical aerodynamic pressure parameter corresponding to the onset of flutter with variable
locations of inerter for effective mass ratio = 0.39.

Figure 11. Critical aerodynamic pressure parameter for inerters applied at different joints of the
8-element model.
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With variable effective mass ratios, the optimal critical aerodynamic parameter can
be achieved for different locations of inerters. The optimized results are illustrated in
Figure 12 with data given in Table 1. It can be noted that the peak critical aerodynamic
pressure parameter 1231 can be achieved by using an inerter with an effective mass ratio of
1.53 located at the midspan joint 5. For this wide-beam panel model with both ends simply
supported, it is seen that the effectiveness of flutter control can best be obtained when an
inerter is installed in the midspan of the wide beam. It is interesting to observe that the
critical aerodynamic pressure is shifted to the highest value of 1231 when the inerter is
placed at the midspan of the beam panel, and the preferred joint locations are ranked as 5,
4 and 6, 3 and 7, and 2 and 8. Further increasing the effective mass ratio will cause the two
lowest modes to no longer coalesce, and coalescing may occur at higher modes. However,
for this study, only coalescing of the first two modes will be analyzed. From a practical
viewpoint of engineering design, investigating coalescing above the first two lowest modes
may be beyond the scope of the present basic conceptual study. It is of interest to note that
while summarizing the results as shown in Figures 10 and 12, there seems to be a correlation
between the first natural mode shape of a simply supported wide-beam panel and the
optimal placement of inerters. Thus, the mode shape of the lowest natural frequency may
serve as a reference basis for the placement of the inerter.

Figure 12. The peak critical aerodynamic pressure parameter for inerters installed at different joints
of the 8-element model.

Table 1. Optimal design parameter configuration of inerters installed at different locations.

Location of Inerter
(Joint Number)

Without
Control 2 3 4 5 6 7 8

Optimal Effective Mass Ratio / 1.69 0.88 0.98 1.53 0.98 0.88 1.69

Critical Aerodynamic
Pressure Parameter

315 380 460 765 1231 765 490 380

The peak critical aerodynamic pressure parameter for inerters installed at different
locations can be observed in Figure 13. It is observed that the effectiveness of flutter control
can best be obtained when the inerter is installed at joint 16, 1/2 of the beam length, which
is the midspan.
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Figure 13. The peak critical aerodynamic pressure parameter for inerters installed at different
locations (32-element model).

5.2. Case 2—Flutter Control with Two Inerters

To further explore the flutter control effectiveness, examples of flutter control with
two inerters are considered.

5.2.1. Two Inerters Installed at Joints 3 and 5 with Varying Effective Mass Ratios

By changing the locations and the effective mass ratios of inerters, different control
effects can be obtained. The first case of two inerters is shown in Figure 14, where two
inerters are installed at joints 3, 1/4 of the beam length, and 5, 1/2 of the beam length. If
the effective mass ratios of the inerters range from 0 to 2.0, it can be seen that the peak
critical aerodynamic pressure parameter with a value of 1236 can be obtained, while the
effective mass ratios of inerter 1 and inerter 2 are 0.09 and 1.89, respectively. For some of the
configurations of the effective mass ratio, critical aerodynamic parameters corresponding
to the onset of flutter are as listed in Table 2.

Table 2. Critical aerodynamic pressure parameter for some effective mass ratio configurations of
2 inerters installed at joints 3 and 5.

1 2 3 4

Effective Mass Ratio of Inerter Installed at Joint 3 0.09 0.09 0.09 0.09

Effective Mass Ratio of Inerter Installed at Joint 5 0.50 1.00 1.50 1.89

Critical Aerodynamic Pressure Parameter 446 596 796 1236

Figure 14. Schematic diagram of flutter control with 2 inerters installed at joints 3 and 5, out of
9 joints, for an 8-finite-element model.

It is observed that the best flutter control effect for the specific parameters considered
can be obtained with the configuration of the effective mass ratio of inerter 1 at 0.09 and
the effective mass ratio of inerter 2 at 1.89, as seen in Figure 15. Compared to the method
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with one inerter, a two-inerter controlling strategy provides similar results when only
considering the coalescence of flutter modes 1 and 2; however, the combined effective mass
ratio of using two inerters is higher.

5.2.2. Two Inerters with Similar Effective Mass Ratio While Varying Location Joint

Two inerters, both with the same effective mass ratio, are installed in all possible
joint combinations to determine which combination of joint locations provides the highest
critical aerodynamic pressure. The simulation is repeated with different effective mass
ratios while keeping both inerters at the same effective mass ratio. Table 3 shows a few
examples with different effective mass ratios at different joint locations. The table shows
that the most optimal location is to place the inerters at joints 4, 3/8 of the beam length,
and 5, 1/2 of the beam length.

Increasing the effective mass ratio to the highest value in this study of 2.00 for both
inerters at joints 4, 3/8 of the beam length, and 5, 1/2 of the beam length, yielded a
maximum critical aerodynamic pressure parameter of 1016. Compared to the results with
one inerter, this result utilizes a higher effective mass ratio of 4.00 compared to 1.53 and
yields a lower critical aerodynamic pressure parameter of 1016 compared to 1271.

Figure 15. Angles between eigenvector for different aerodynamic pressure parameters of 2 inerters
installed at joints 3 and 5.

Table 3. Inerters with the same effective mass ratio installed at different joints.

Joints 2 and 3 Joints 3 and 4 Joints 3 and 5 Joints 4 and 5
Inerter 1 and 2

Effective Mass Ratio 0.10
299 326 333 361

Inerter 1 and 2
Effective Mass Ratio 0.20

300 355 350 405

Inerter 1 and 2
Effective Mass Ratio 0.20

300 355 350 405

Inerter 1 and 2
Effective Mass Ratio 0.30

311 394 364 446

Inerter 1 and 2
Effective Mass Ratio 0.40

331 446 376 485
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5.2.3. Optimizing the Effective Mass Ratio at Joint Locations

One inerter was placed at joint 4, 3/8 of the beam length, and the second inerter was
placed at joint 5, 1/2 of the beam length, since these locations are indicated to be the most
optimal locations when using the same effective mass ratio for both inerters. The effective
mass ratio in the simulations is varied independently from 0.1 to 2 in 0.1 increments to
determine the highest possible aerodynamic pressure parameter that can be achieved when
analyzing the coalescence of modes 1 and 2.

Figure 16 is a schematic diagram of the case with inerters installed at joints 4 and 5.
The simulation results are illustrated in Figure 17, which depicts the coalescence of modes 1
and 2. Figure 18 shows the relationship between the critical aerodynamic pressure pa-
rameters and the angle between the eigenvectors of modes 1 and 2. The optimal critical
aerodynamic pressure parameter value is 1271, while the respective effective mass ratios of
inerter 1 and inerter 2 are 0.31 and 1.93, which can be found in Table 4. When compared
to the results with one inerter, this method increases the critical aerodynamic parameter
by 40. However, the sum of the effective mass ratio has a total value of 1.98, compared to
1.53 with one inerter.

Although not demonstrated, all possible combinations of mass ratios and joint loca-
tions were tested to verify that the stated combination increased the critical aerodynamic
pressure to its maximum value when considering the coalescence of the two lowest modes.

Figure 16. Schematic diagram of flutter control with 2 inerters installed at joints 4 and 5, out of
9 joints, for an 8-finite-element model.

Figure 17. Critical aerodynamic pressure parameter for 2 inerters installed at joints 4 and 5 resulting
from the two lowest natural frequencies coalescing.
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Figure 18. Angles between eigenvectors for different aerodynamic pressure parameters of 2 inerters
installed at joints 4 and 5.

Table 4. Optimal critical aerodynamic pressure parameters of 2 inerters with different effective mass
ratios installed at joints 4 and 5.

Effective Mass Ratio of
Inerter at Joint 4

Effective Mass Ratio of
Inerter at Joint 5

Critical Aerodynamic
Parameter

0.31 1.93 1271

6. Concluding Remarks

An eigenvector orientation method for the flutter control of panels using an inerter
is introduced in this study. To illustrate the formulation and procedure, the aeroelastic
equation of motion for a panel equipped with inerters is developed using two nodes and
four-degrees-of-freedom wide-beam elements to simulate panels. An effective eigenvector
orientation approach is presented to detect the onset of flutter. This method can provide a
lead time for flutter control, which is important and could be established by tracking the
angle between the coalescing eigenvectors as it gradually approaches zero. To illustrate the
concept and explore the feasibility of the application of the proposed procedure, a simple
illustrative example using a two-dimensional panel (a wide beam) is chosen. For the
specific examples chosen, the calculation may reveal the feasibility of application and the
advantages of the current proposed method.

Two cases are simulated in order to validate the basic theory of flutter control using
inerters. Results of the two cases show that the critical aerodynamic pressure parameter of
flutter occurrence can be offset to a higher level through the use of inerters. The effectiveness
depends on the effective mass ratio and location of the inerters. In the example of the
eight-element model using only one inerter, it is seen that the optimal effectiveness can
be achieved by installing the inerter at the midspan, joint 5, with an effective mass ratio
of 1.53. For the two-inerter examples, there are also peak critical aerodynamic pressure
parameters, which can be reached by optimizing the locations and effective mass ratios of
the inerters. The optimal flutter control effectiveness can be obtained when two inerters are
installed at joints 4, 3/8 of the beam length, and 5, 1/2 of the beam length, with effective
mass ratios of 0.31 and 1.93, respectively.

In light of the simulation results of the present cases studied, it can be seen that the use
of inerters may be promising for flutter control. Inerters can achieve a mass amplification
effect without increasing the total physical mass of the aeroelastic system. Thus, the use of
an inerter may be beneficial for an aeroelastic structure to achieve the design objective of
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mass optimization. For a further study, it may be of interest to compare the proposed design
to other design changes, such as local mass thickening. However, the next logical research
step would be to design and conduct experiments on a wide beam with the proposed inerter.
This next step would include considering the mass of a single inerter as an industrial and
practical example, while also utilizing a range of inertance values of the inerter b, including
the case where b is larger than the mass of the structure.

It is interesting to note that when using inerters, it seems that the highest possible
aerodynamic parameter is 1271. Further increasing the effective mass ratio would no longer
cause coalescence between the lowest modes but would cause coalescence at higher modes.
In addition, the optimal location of the inerters seems to correlate with the first mode shape
of a simply supported beam panel. Thus, the fundamental mode shapes may play a role
when identifying where to locate the inerters, i.e., the placement of the inerters may be
more effective in controlling flutter at the highest amplitude of the mode shape along the
wide beam.

Although the present study has dealt with the flutter control of simply supported
wide-beam panels using inerters, the method can be extended to the flutter control of more
general cases with flat or curved panels using triangular and quadrilateral plate finite
elements in bending. Moreover, it seems a logical next step to develop a semi-active flutter
control strategy based on the inerter-based passive controlling method.
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