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Abstract: This paper studies the intra/inter-layer synchronization and quasi-synchronization in
two-layer coupled networks via event-triggered control, in which different layers have mutually
independent topologies. First, based on Lyapunov stability theory and event-triggered thoughts,
hybrid controllers are designed, respectively, for intra-layer synchronization (ALS) and inter-layer
synchronization (RLS). Second, a novel event-triggered rule is proposed, under which intra-layer
quasi-synchronization (ALQS) and inter-layer quasi-synchronization (RLQS) can be respectively
realized, and the event-triggered frequency can be greatly reduced. Moreover, the upper bound of the
synchronization error can be flexibly adjusted by changing the parameters in event-triggered condi-
tions, and the Zeno phenomenon about event-triggered control is also discussed in this paper. Finally,
numerical examples are provided to confirm the correctness and validity of the proposed scheme.

Keywords: multi-layer networks; event-triggered control; intra-layer synchronization; inter-layer
synchronization; quasi-synchronization
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1. Introduction

Synchronization is a ubiquitous collective behavior in nature, which has been widely
studied. Recently, the synchronization of complex networks has become one of the most
popular topics, and plenty of related research results were introduced in [1–16]. It is noted
that most of these studies focus on single-layer networks. In the real world, however,
different networks also interact with each other, such as the Internet and railway network,
trunk and branch networks of urban public transport, etc. Multi-layer networks (MLNs)
can reflect the characteristics of these real networks more roundly in comparison with
traditional single-layer networks. Not only the internal topology and coupling strength of
each layer, but also the interaction between different layers of network are considered in
the multi-layer network model. At present, the research on MLNs has received extensive
attention. For example, in [17], Wu et al. studied the synchronization of MLNs with
different inner-coupling matrices. Furthermore, in [18,19], the authors considered the
synchronization problem of MLNs with continuous and impulsive couplings between
different nodes. Zhao et al. explored the synchronization of MLNs with delay, disturbance,
or noise in [20–22]. In addition, finite/fixed-time synchronization issues of MLNs were
discussed in [23,24]. Jiang et al. [25] studied the controllability of MLNs. MLNs have
progressively become a significant research direction in the field of complex networks.

The synchronization of MLNs can be classified into three categories: inter-layer syn-
chronization (RLS) [26–29], intra-layer synchronization (ALS) [30–33], and complete syn-
chronization [34]. Among them, RLS requires the corresponding nodes of different layers
to achieve synchronization, whereas ALS requires that nodes in the same layer can realize
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synchronization, and complete synchronization means that both RLS and ALS are satisfied
at the same time. Actually, RLS and ALS are independent and not necessarily related. Thus,
it is of great significance to study RLS and ALS problems. Rakshit et al. investigated RLS
and ALS about time-varying MLNs in [35]. Zhang et al. discussed ALS and RLS of MLNs
with fractional order in [36]. In the actual situation, not all MLNs can realize synchro-
nization naturally, so it is necessary to impose certain control means on the network to
achieve synchronization. In [17,30], the relationship between network coupling parameters
and synchronization was studied. This can be regarded as a control problem through
the adjustment of network parameters to reach network synchronization. However, to
control the synchronization of the network by coupling strength, the boundary of coupling
strength needs to be determined, which needs to be obtained by complicated calculation
for specific system equations. And in practical application, the adjustment of coupling
strength may not be easy to achieve. On the other hand, network synchronization through
the addition of external control input has also received a lot of attention. Impulsive control
and other methods were used to realize network synchronization in [21,32,37]. The external
control input can feedback the state information of the network. The form of control is
given, and the control parameters can be obtained through only simple calculation. It is
simple and effective to realize synchronization in this way. However, most of the current
synchronization control strategies for MLNs are actually time-based mechanisms. This will
likely cause the controller to update at some point when the system does not need it. For
example, when control signals are updated periodically, if system states are the same at
the adjacent signal transmission time, the generated feedback control signals will be also
the same, which means that the update of the controller is unnecessary, and some signal
transmissions are redundant in this process.

In order to utilize network bandwidth more effectively and reduce communication
pressure, researchers have proposed an event-triggered mechanism. According to event-
triggered conditions, this mechanism determines whether to send state information to
the controller for updating the control signal, so as to avoid unnecessary information
transmission and reduce the waste of resources. However, in the process of event-triggered
control, there may be an infinitesimal interval between two triggers, so that the event can
be triggered for an infinite number of times in a finite time, which is often called the Zeno
phenomenon. Therefore, it is necessary to exclude the Zeno phenomenon when discussing
event-triggered control. Event-triggered control strategy has been widely applied because
of its merits. For example, Tabuada studied a simple event-triggered strategy and showed
how to ensure system performance [38]. Event-triggered control strategy of multi-agent
systems and complex networks was studied in [39–49]. To the best of the authors’ knowl-
edge, nevertheless, the event-triggered mechanism has not received adequate attention in
the synchronization control problem for MLNs. However, quasi-synchronization means
that the synchronization error of each node has a non-zero bound. This concept provides
a new thought for the research of multi-layer network synchronization and has great ap-
plication value in actual engineering. For instance, quasi-synchronization is applied in
military communication networks to enhance the anti-dilapidated ability. Few research
studies have paid attention to intra-layer quasi-synchronization (ALQS) and inter-layer
quasi-synchronization (RLQS) of MLNs [37]. In particular, ALQS and RLQS of MLNs is
one of the problems discussed in this paper.

Motivated by the above, we attempt to study the event-triggered control for
intra/inter-layer synchronization and quasi-synchronization in a class of two-layer coupled
networks. The main contributions and obtained results of this paper are stated as below:

(i) In this paper, two kinds of mesoscale synchronization behaviors, namely ALS
and RLS, are studied in two-layer coupled networks. For the non-synchronous two-layer
network, different from the previous time-based control strategy [28,30], appropriate event-
triggered controllers are designed to realize ALS and RLS, respectively.

(ii) In order to further reduce the event-triggered frequency and the burden of network
communication, a novel event-triggered condition is proposed to realize ALQS and RLQS
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in two-layer coupled networks. Control parameters b and C0 can be flexibly adjusted to
change the final synchronization error threshold and event-triggered frequency.

(iii) Based on the Lyapunov stability theory, in a class of two-layer coupled networks,
the sufficient conditions for realizing ALS, RLS, ALQS, and RLQS are strictly given. It
is proven from both theory and simulation that the above network control process can
exclude the Zeno phenomenon.

This paper is structured as follows. In Section 2, preliminaries such as system model
and some definitions are introduced. In Section 3, the main content on intra/inter-layer syn-
chronization and quasi-synchronization is presented. In Section 4, numerical simulations
are given to further verify the correctness and validity of the main results. The conclusions
are given in Section 5.

Notations: In this paper, (·)T denotes the transpose of a vector or a matrix; ‖·‖ stands
for the Euclidean norm; Rn and Rm×n represent the n-dimensional real vector and the m× n-
dimensional real matrix, respectively; tk is the event-triggered time of the corresponding
node, and Ki = diag(ki, ki, · · · , ki) ∈ Rn×n(i = 1, 2, 3) is the control gain matrix; the
Kronecker product is represented by ⊗; En is the n × n identity matrix; M ≤ 0 means
that M is negative semi-definite real matrix; (εh)min = min{εhi|i = 1, 2, · · · , Q}, (εh)max =
max{εhi| i = 1, 2, · · · , Q}; λmin(·) are the minimum eigenvalues of the corresponding
real matrix.

2. Model Formulation and Preliminaries

Consider a two-layer coupled network with one-to-one inter-layer connections. The
first layer and the second layer are represented as the x-layer and y-layer, respectively. Each
layer consists of Q nodes. The network can be described by

ẋi = f (xi)− c1

Q

∑
j=1

aijHxj + εH(yi − xi) + uxi,

ẏi = g(yi)− c2

Q

∑
j=1

bijHyj + εH(xi − yi) + uyi,

(1)

where xi = (xi1, xi2, · · · , xin)
T ∈ Rn indicates the state of the ith node in x-layer, and

yi = (yi1, yi2, · · · , yin)
T ∈ Rn indicates the state of the i-th node in y-layer, i = 1, 2, · · · , Q.

Function f and g are the self-dynamics of each node in the x-layer and y-layer, respec-
tively. Constant c1 and c2 are the intra-layer coupling strength of the x-layer and y-layer,
respectively. The inter-layer coupling strength is represented by constant ε. The Laplace
matrix of x-layer is represented by matrix A = (aij) ∈ RQ×Q. If there is a connection
between the ith node and the jth node (i 6= j), then aij = aji = −1, or aij = aji = 0.

Furthermore, let aii = −∑Q
j=1 aij. Similarly, the Laplace matrix of the y-layer is represented

by matrix B = (bij) ∈ RQ×Q; H = diag(h1, h2, · · · , hn) ∈ Rn×n is the inner coupling matrix,
which describes the coupling between state components of the nodes; uxi and uyi are the
controllers of the corresponding nodes.

Remark 1. In the system model (1), the presence of the third item, the inter-layer connection,
destroys the synchronization within each layer. Similarly, the second item, the intra-layer connection,
is not conducive to synchronization of the corresponding nodes between different layers. Therefore,
it is necessary to introduce external control input to reach ALS or RLS in MLNs better.

In this paper, ALS, RLS, ALQS, and RLQS of network system (1) are represented
as follows.

Definition 1 ([32]). For network (1), assume that the synchronization target of the x-layer and
y-layer are τx and τy, respectively. If ‖xi − τx‖ → 0 and ‖yi − τy‖ → 0 as t → +∞, (i =
1, 2, · · · , Q), then network (1) realizes ALS.
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Definition 2. For network (1), assume that the synchronization target of the x-layer and y-layer
are τx and τy, respectively. If there exists η > 0, δ > 0 such that ‖xi− τx‖ ≤ η and ‖yi− τy‖ ≤ η,
when t ≥ δ, (i = 1, 2, · · · , Q), then network (1) achieves ALQS.

Definition 3. Network (1) is said to achieve RLS if ‖xi − yi‖ → 0 as t → +∞, for
i = 1, 2, · · · , Q.

Definition 4. Network (1) is said to achieve RLQS if there exists η > 0, δ > 0 such that
‖xi − yi‖ ≤ η, when t ≥ δ, for i = 1, 2, · · · , Q.

Definition 5 ([50]). If lim
k→∞

tk =
∞
∑

i=0
(tk+1 − tk) converges, then network (1) is said to have the

Zeno phenomenon.

Assumption 1 ([51]). For the functions f (x), g(x), and any two vectors ν1, ν2 ∈ Rn, there exist
positive constants ρ1, ρ2 such that

(ν1 − ν2)
T[ f (ν1)− f (ν2)] ≤ ρ1(ν1 − ν2)

T(ν1 − ν2),

(ν1 − ν2)
T[g(ν1)− g(ν2)] ≤ ρ2(ν1 − ν2)

T(ν1 − ν2).

3. Main Results

In this section, intra/inter-layer synchronization and quasi-synchronization of the
two-layer coupled network (1) will be investigated based on Lyapunov stability theory and
event-triggered control.

3.1. Intra-Layer Synchronization and Quasi-Synchronization

Denote z = [xT
1 , xT

2 , · · · , xT
Q, yT

1 , yT
2 , · · · , yT

Q]
T and L =

[
c1 A + εEQ −εEQ
−εEQ c2B + εEQ

]
. Then

network system (1) can be rewritten as
ẋi = f (xi)−

2Q

∑
j=1
LijHzj + uxi,

ẏi = g(yi)−
2Q

∑
j=1
L(i+Q,j)Hzj + uyi.

(2)

Define the synchronization target τx and τy to satisfy{
τ̇x = f (τx) + εH(τy − τx), τx(0) = τx0,

τ̇y = g(τy) + εH(τx − τy), τy(0) = τy0.

The following event-triggered mechanism is proposed:{
txi
k+1 =sup{t > txi

k : ‖Exi(t)‖ ≤ ζx1},

tyi
k+1 =sup{t > tyi

k : ‖Eyi(t)‖ ≤ ζy1},
(3)

where ζx1 = [k1 + λmin(D) − ρ1 − 1]‖exi(t)‖ + exp(−t), ζy1 = [k2 + λmin(D) − ρ2 −
1]‖eyi(t)‖+ exp(−t), D = [(L⊗ H)T + (L⊗ H)]/2, and{

Exi(t) =K1[exi(t)− exi(txi
k )], t ∈ [txi

k , txi
k+1],

Eyi(t) =K2[eyi(t)− eyi(t
yi
k )], t ∈ [tyi

k , tyi
k+1],

with k1 ≥ ρ1 − λmin(D) + 1, k2 ≥ ρ2 − λmin(D) + 1, exi(t) = xi(t)− τx(t), eyi(t) = yi(t)−
τy(t).
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Theorem 1. Under Assumption 1, for the two-layer coupled network (2), if uxi and uyi are
designed as {

uxi =− K1exi(txi
k ), t ∈ [txi

k , txi
k+1],

uyi =− K2eyi(t
yi
k ), t ∈ [tyi

k , tyi
k+1],

(4)

together with the event-triggered mechanism (3), then the network (2) achieves ALS and there is no
Zeno phenomenon.

Proof. (i). Synchronization analysis of closed-loop system
Let e(t) = [eT

x1, eT
x2, · · · , eT

xQ, eT
y1, eT

y2, · · · , eT
yQ]

T, the ALS error system is given
ėxi = f (xi)− f (τx)−

2Q

∑
j=1
LijHej + uxi,

ėyi =g(yi)− g(τy)−
2Q

∑
j=1
L(i+Q,j)Hej + uyi.

How to obtain the error system is discussed in the appendix in [32]. Construct the
Lyapunov function as

V(e(t)) =
1
2

e(t)Te(t) =
1
2

Q

∑
i=1

exi(t)Texi(t) +
1
2

Q

∑
i=1

eyi(t)Teyi(t).

Differentiating V(e(t)) with respect to t can be calculated as follows:

V̇(e(t)) =
Q

∑
i=1

exi(t)T ėxi(t) +
Q

∑
i=1

eyi(t)T ėyi(t)

=
Q

∑
i=1

exi(t)T[ f (xi)− f (τx)−
2Q

∑
j=1
LijHej + uxi] +

Q

∑
i=1

eyi(t)T[g(yi)− g(τy)

−
2Q

∑
j=1
L(i+Q,j)Hej + uyi].

With Assumption 1, one obtains

V̇(e(t)) ≤(ρ1 − k1)
Q

∑
i=1

exi(t)Texi(t) +
Q

∑
i=1

exi(t)TExi(t) + (ρ2 − k2)
Q

∑
i=1

eyi(t)Teyi(t)

+
Q

∑
i=1

eyi(t)TEyi(t)− e(t)T(L⊗ H)e(t).

Therefore, one has

V̇(e(t)) ≤(ρ1 − k1 − λmin(D))
Q

∑
i=1

exi(t)Texi(t) +
Q

∑
i=1

exi(t)TExi(t) + (ρ2 − k2 − λmin(D))

Q

∑
i=1

eyi(t)Teyi(t) +
Q

∑
i=1

eyi(t)TEyi(t)

≤
Q

∑
i=1
‖exi(t)‖{[ρ1 − k1 − λmin(D)]‖exi(t)‖+ ‖Exi(t)‖}+

Q

∑
i=1
‖eyi(t)‖{[ρ2 − k2−

λmin(D)]‖eyi(t)‖+ ‖Eyi(t)‖}.
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Under the even-triggered condition (3), it holds

V̇(e(t)) ≤
Q

∑
i=1
‖exi(t)‖(exp(−t)− ‖exi(t)‖) +

Q

∑
i=1
‖eyi(t)‖(exp(−t)− ‖eyi(t)‖).

If exp(−t) ≥ ‖exi(t)‖, it means that ‖exi(t)‖ will asymptotically converge to 0. The
same is true for ‖eyi(t)‖. Therefore, network (2) can realize ALS under the event-triggered
controller (4). Otherwise, one has V̇(e(t)) ≤ 0. It is easy to know that the largest invariant
set of {V̇(e(t)) = 0} is {‖e(t)‖ = 0}. Therefore, according to LaSalle’s principle [52], the
synchronization errors asymptotically converge to 0, that is, ALS can be realized.

(ii). Analysis of the inter-execution times
Assume that there is a Zeno phenomenon in system (2). Therefore, there must be xi

satisfying lim
k→∞

txi
k = T in this network, where T is a constant and txi

k < T. The derivative of

‖Exi(t)‖ on the interval (txi
k , txi

k+1) is obtained:

d‖Exi(t)‖
dt

=
Exi(t)

TExi(t)
‖Exi(t)‖

≤ ‖Ėxi(t)‖‖Exi(t)‖
‖Exi(t)‖

= ‖ėxi(t)‖ ≤ ωxi, (5)

where ωxi = sup
0≤t<T

{‖ẋi − τ̇x‖}. Suppose ξ(t) is a nonnegative function and satisfies

ξ̇(t) = ωxi, ξ(0) = ‖Exi(txi
k )‖ = 0.

By (5) and using the comparison principle of differential equations, one has ‖Exi(t)‖ ≤
ωxi(t − txi

k ). One can get that if ‖Exi(t)‖ ≤ [k1 + λmin(D)− ρ1 − 1]‖exi(t)‖ + 1
2 exp(−t),

then the event-triggered condition (3) will not be reached at time t. As a consequence, the
evolution time of ωxi(t− txi

k ) from 0 to [k1 + λmin(D)− ρ1 − 1]‖exi(t)‖+ 1
2 exp(−t) can be

denoted as τxi. Therefore, the triggering interval txi
k+1 − txi

k is greater than or equal to τxi.
That is, τxi can be found from the following equation:

ωxiτxi = [k1 + λmin(D)− ρ1 − 1]‖exi(t)‖+
1
2

exp(−t). (6)

Since τxi ≤ txi
k+1 − txi

k and lim
k→∞

txi
k = T, a contradiction that 0 = [k1 + λmin(D)− ρ1 −

1]‖exi(T)‖+ 1
2 exp(−T) can be obtained from (6) as m→ ∞. Therefore, all nodes in system

(2) will not have a Zeno phenomenon.

Remark 2. The controller in this paper is the feedback of state information to the network. By
introducing the event-triggered mechanism, the control signal u remains unchanged in [tk, tk+1],
and the corresponding update will be carried out only when the event-triggered condition is reached
(see, for instance, Figure 1). For example, in (3), if ‖Exi(tr)‖ > ζx1(tr), and ‖Exi(t)‖ ≤ ζx1(t)
for t < tr, the control signal uxi will be updated with the state information at tr. The controller
will make the solutions of the partial node systems approximately become the same function after a
certain time T to achieve the purpose of synchronization (if T is large enough, it will become exactly
the same function).

Figure 1. Schematic diagram of event-triggered control.
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Remark 3. In practical applications, the system may not have such high requirements for syn-
chronization performance. In order to further reduce the burden of signal transmission, a new
event-triggered rule is proposed.

Theorem 2. Under Assumption 1, for the two-layer coupled network (2), if uxi and uyi are designed
as (4), together with the event-triggered mechanism

txi
k+1 =

{
sup{t > txi

k : ‖Exi(t)‖ ≤ ζx2}, ‖exi‖ ≥ b,
sup{t > txi

k : ‖Exi(t)‖ ≤ ηx2}, ‖exi‖ < b,

tyi
k+1 =

{
sup{t > tyi

k : ‖Eyi(t)‖ ≤ ζy2}, ‖eyi‖ ≥ b,

sup{t > tyi
k : ‖Eyi(t)‖ ≤ ηy2}, ‖eyi‖ < b,

(7)

{
Exi(t) =K1[exi(t)− exi(txi

k )], t ∈ [txi
k , txi

k+1]

Eyi(t) =K2[eyi(t)− eyi(t
yi
k )], t ∈ [tyi

k , tyi
k+1]

where ζx2 = [k1 +λmin(D)− ρ1− 1]‖exi(t)‖+ exp(−t), ηx2 = [k1 +λmin(D)− ρ1− 1]‖exi(t)
‖+ exp(−t) +C0, ζy2 = [k2 + λmin(D)− ρ2− 1]‖eyi(t)‖+ exp(−t), ηy2 = [k2 + λmin(D)−
ρ2 − 1]‖eyi(t)‖+ exp(−t) + C0, k1 ≥ ρ1 − λmin(D) + 1, k2 ≥ ρ2 − λmin(D) + 1, exi(t) =
xi(t)− τx(t), eyi(t) = yi(t)− τy(t), (i = 1, 2, · · · , Q) and C0 is a positive constant, then the
system (2) realizes ALQS and the synchronization error is bounded by a positive constant b. There
is no Zeno phenomenon.

Proof. When ‖exi‖ ≥ b or ‖eyi‖ ≥ b, the proof of Theorem 1 shows that ‖exi‖ and ‖eyi‖ can
decay below b. When ‖exi‖ < b or ‖eyi‖ < b, the analysis process is as follows.

(i). Synchronization analysis of closed-loop system
There are probably some intervals where V̇ > 0 in the case of Theorem 2. In detail, it

needs to be discussed in two cases.
When ‖exi‖ < b, there is tc ∈ [txi

k , txi
k+1]. When t > tc, V̇ may be greater than 0.

Therefore, the value of ‖exi‖may increase.
(a). ‖Exi(t)‖ = [k1 + λmin(D)− ρ1 − 1]‖exi‖+ exp(−t) + C0 occurs before ‖exi‖ = b.
Event (sup{t > txi

k : ‖Exi(t)‖ ≤ ζx2}, ‖exi‖ ≥ b) will be triggered. Then we have
V̇ ≤ 0, so the value of ‖exi‖ will not continue to increase. Therefore, ‖exi‖ will not be
greater than b.

(b). ‖exi‖ = b occurs before ‖Exi(t)‖ = [k1 + λmin(D)− ρ1 − 1]‖exi‖+ exp(−t) + C0.
Event (sup{t > txi

k : ‖Exi(t)‖ ≤ ηx2}, ‖exi‖ < b) will be triggered. Then we have
V̇ ≤ 0, so the value of ‖exi‖ will not continue to increase. Therefore, ‖exi‖ will not be
greater than b.

When ‖eyi‖ < b, analysis process is the same as the above.
(ii). Analysis of the inter-execution times
It is easy to know that event-triggered mechanism (7) fires fewer times than mecha-

nism (3). Combined with the proof of Theorem 1, no matter what the value of ‖exi‖ or ‖eyi‖
is, the Zeno phenomenon will not appear under triggering mechanism (7).

3.2. Inter-Layer Synchronization and Quasi-Synchronization

In this section, RLS and RLQS of the two-layer coupled network (1) will be discussed
when g(x) = f (x). The nodes in the y-layer can unidirectionally receive information from
the corresponding nodes in the x-layer through the control input u. Then network system
(1) can be rewritten as

ẋi = f (xi)− c1

Q

∑
j=1

aijHxj + εH(yi − xi),

ẏi = f (yi)− c2

Q

∑
j=1

bijHyj + εH(xi − yi) + u.

(8)
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The following event-triggered mechanism is proposed:

ti
k+1 = sup

{
t > tk : ‖Ei(t)‖ ≤ ζy3

}
, (9)

where ζy3 = [k3 + 2(εh)min − ρ1 − 1]‖ei(t)‖+ exp(−t), and

Ei(t) =− K3[ei(ti
k)− ei(t)] +

Q

∑
j=1

c1aijH[xj(ti
k)− xj(t)]−

Q

∑
j=1

c2bijH[yj(ti
k)− yj(t)],

with k3 ≥ ρ1 − 2(εh)min + 1, ei(t) = xi(t)− yi(t) for t ∈ [ti
k, ti

k+1].

Theorem 3. Under Assumption 1, for the two-layer coupled network system (8), if u is designed as

u =K3[xi(ti
k)− yi(ti

k)]−
Q

∑
j=1

c1aijHxj(ti
k) +

Q

∑
j=1

c2bijHyj(ti
k), t ∈ [ti

k, ti
k+1], (10)

together with the event-triggered mechanism (9), then the network (8) achieves RLS and there is no
Zeno phenomenon.

Proof. (i). Synchronization analysis of closed-loop system
From ei(t) = xi(t)− yi(t), the RLS error systems are given

ėi(t) = ẋi(t)− ẏi(t)

= f (xi)− f (yi) + εH(yi − xi)− εH(xi − yi)− K3[xi(ti
k)− yi(ti

k)] +
Q

∑
j=1

c1aijH[xj(ti
k)

− xj(t)]−
Q

∑
j=1

c2bijH[yj(ti
k)− yj(t)]

= f (xi)− f (yi)− 2εHei(t)− K3[ei(ti
k)− ei(t) + ei(t)] +

Q

∑
j=1

c1aijH[xj(ti
k)− xj(t)]

−
Q

∑
j=1

c2bij H[yj(ti
k)− yj(t)]

= f (xi)− f (yi)− (2εH + K3)ei(t) + Ei(t).

Denote e(t) = [eT
1 , eT

2 , · · · , eT
Q]

T, and construct the Lyapunov function as

V(e(t)) =
1
2

e(t)Te(t) =
1
2

Q

∑
i=1

ei(t)Tei(t).

Differentiation of V(e(t)) with respect to t can be calculated as follows:

V̇(e(t)) =
Q

∑
i=1

ei(t)T ėi(t) =
Q

∑
i=1

ei(t)T[ f (xi)− f (yi)− (2εH + K3)ei(t) + Ei(t)]

≤ρ1

Q

∑
i=1

ei(t)Tei(t)−
Q

∑
i=1

ei(t)T


2εh1 + k3 0 · · · 0

0 2εh2 + k3 · · · 0
...

...
. . .

...
0 0 · · · 2εhn + k3

ei(t)

+
Q

∑
i=1

ei(t)TEi(t)
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≤
Q

∑
i=1
‖ei(t)‖[ρ1 − 2(εh)min − k3]‖ei(t)‖+ ‖Ei(t)‖.

Under the even-triggered condition (9), it holds

V̇(e(t)) ≤
Q

∑
i=1
‖ei(t)‖(exp(−t)− ‖ei(t)‖)).

If exp(−t) ≥ ‖ei(t)‖, it means that ‖ei(t)‖will asymptotically converge to 0. Therefore,
network (8) can realize RLS under the event-triggered controller (10). Otherwise, one has
V̇(e(t)) ≤ 0. It is easy to know that the largest invariant set of {V̇(e(t)) = 0} is {‖e(t)‖ = 0}.
Therefore, according to LaSalle’s principle [52], the synchronization errors asymptotically
converges to 0, that is, RLS can be realized.

(ii). Analysis of the inter-execution times
The following proof is similar to Theorem 1.

Remark 4. In order to further reduce the event-triggered frequency and communication burden,
similarly, the following content is proposed.

Theorem 4. Under Assumption 1, for the two-layer coupled network system (8), if u is designed
as (9), together with the event-triggered mechanism

ti
k+1 =

{
sup{t > ti

k : ‖Ei(t)‖ ≤ ζy4}, ‖ei‖ ≥ b,
sup{t > ti

k : ‖Ei(t)‖ ≤ ηy4}, ‖ei‖ < b,
(11)

Ei(t) =− K3[ei(ti
k)− ei(t)] +

Q

∑
j=1

c1aijH[xj(ti
k)− xj(t)]−

Q

∑
j=1

c2bijH[yj(ti
k)− yj(t)],

where ζy4 = [k3 + 2(εh)min− ρ1− 1]‖ei(t)‖+ exp(−t), ηy4 = [k3 + 2(εh)min− ρ1− 1]‖ei(t)‖
+exp(−t) + C0, k3 ≥ ρ1 − 2(εh)min + 1, ei(t) = xi(t)− yi(t), and C0 is a positive constant,
then network (8) achieves RLQS and the synchronization error is bounded by a positive constant b.
There is no Zeno phenomenon.

Proof. Because it is similar to the proof process of Theorem 2, it is omitted here.

Remark 5. The control mechanism proposed in this paper realizes mesoscale synchronization
behavior in MLNs by feedback of state information. Using event-triggered strategy, the control
signal does not need to be updated at all times, but only when the event-triggered condition is
satisfied, which can greatly reduce the communication pressure in network systems. In addition,
according to the specific properties of MLNs, such as coupling strength, topology structure, etc.,
the appropriate parameters can be obtained through simple calculation, so that the controller can be
adjusted flexibly.

4. Numerical Simulations

In this section, the validity of the proposed control scheme is further confirmed by
simulation experiment. We consider a multi-layer network consisting of two layers. The
network has one-to-one connections between layers, and the number of nodes is Q = 5 in
each layer. The Laplacian matrices of the x-layer and y-layer, respectively, are

A =


2 −1 −1 0 0
−1 3 −1 −1 0
−1 −1 4 −1 −1
0 −1 −1 3 −1
0 0 −1 −1 2

, B =


2 0 −1 0 −1
0 3 −1 −1 −1
−1 −1 2 0 0
0 −1 0 2 −1
−1 −1 0 −1 3

.



Mathematics 2023, 11, 1458 10 of 15

The definition of the Laplacian matrices here are the same as in Section 2. The inner
coupling matrix is H = E3. In addition, the coupling strength inside each layer is assumed
to be c1 = c2 = 0.1, and the coupling strength between the different layers is assumed to
be ε = 0.1. Under such coupling strength, the network cannot realize ALS or RLS without
controllers, which can be clearly seen from Figures 2a and 3a.

(a) (b)

Figure 2. Intra-layer synchronization (ALS) errors. (a) The two−layered network without control.
(b) The two−layered network under event−triggered control (4).

(a) (b)

Figure 3. Inter-layer synchronization (RLS) errors. (a) The two−layered network without control.
(b) The two−layered network under event−triggered control (10).

Remark 6. In this paper, the coupling strength is regarded as the parameters of the network itself,
and it is not taken as the control means of network synchronization. Therefore, c1, c2, and ε are
arbitrarily assumed. Moreover, in order to prove the effectiveness of the control strategy proposed in
this paper, the network required by simulation experiment should not be able to realize ALS or RLS
without controllers.

We take the unified chaotic system as network nodal self-dynamics.
θ̇i1 =(25λ + 10)(θi2 − θi1)

θ̇i2 =(28− 35λ)θi1 − θi1θi3 + (29λ− 1)θi2

θ̇i3 =θi1θi2 −
1
3
(λ + 8)θi3

(12)

When λ = 0 (resp., λ = 1), the system (12) is a Lorenz system (resp., Chen system) [32].
The functions corresponding to a Lorenz system and a Chen system are represented by
f (x) and g(x), respectively. Therefore, the functions f (x) and g(x) satisfy the following
conditions [22,32].

For a Lorenz system,

(α1 − α2)
T[ f (ν1)− f (ν2)] ≤ 39(ν1 − ν2)

T(ν1 − ν2).

For a Chen system,

(ν1 − ν2)
T[g(ν1)− g(ν2)] ≤ 53(ν1 − ν2)

T(ν1 − ν2).

where ν1, ν2 are any two vectors in Rn.
Under the one-to-one inter-layer connections and the intra-layer connections as shown

in A and B, the network structure is shown in Figure 4. Nodes of the same color indicate
that they can eventually reach the same state, that is, achieve synchronization.
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Figure 4. The topological diagram of the two−layer coupled network for ALS (left) and RLS (right).

Due to the limitations of numerical simulation, we can only judge whether the event
will be triggered at some sampling points. In order to more truly simulate the system state,
the sampling interval is taken as 0.001. The event-triggered instants of nodes are shown in
Figures 5, 6b, 7, and 8b. In these diagrams, black dots represent the sampling instants, and
other marks represent the event-triggered instants of the corresponding node. In addition,
the triggering rates and average triggering rate (ATR) of all nodes are given in Tables 1–4.

Figure 5. Event−triggered instants on nodes xi and yi under condition (3).

(a) (b)

Figure 6. (a) ALS errors in the two−layered network. (b) Event−triggered instants on nodes xi and
yi under condition (7).

Figure 7. Event−triggered instants on node yi under condition (9).

(a) (b)

Figure 8. (a) RLS errors in the two−layered network. (b) Event−triggered instants on node yi under
condition (11).
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Table 1. ALS: Triggering rates for nodes under condition (3).

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 ATR

17.5% 15.5% 15.5% 15.5% 16.5% 21% 19.5% 22% 21.5% 17% 18.15%

Table 2. Intra-layer quasi-synchronization (ALQS): Triggering rates for nodes under condition (7).

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 ATR

10.5% 9% 9.5% 9% 10% 11.5% 10% 12% 12% 8% 10.15%

Table 3. RLS: Triggering rates for nodes under condition (9).

y1 y2 y3 y4 y5 ATR

28% 20.5% 49.5% 31.5% 26% 37.7%

Table 4. Inter-layer quasi-synchronization (RLQS): Triggering rates for nodes under condition (11).

y1 y2 y3 y4 y5 ATR

8% 11.5% 9.5% 9% 10.5% 9.7%

4.1. Intra-Layer Synchronization and Quasi-Synchronization

A Lorenz system and a Chen system are selected as the node self-dynamics of the
x-layer and y-layer, respectively.

The initial values of each node in the x-layer are chosen as x10 = (29.2,−21.9, 7)T,
x20 = (14, 2, 0.9)T, x30 = (−24, 8,−5)T, x40 = (−10, 16, 9)T, x50 = (24, 4,−3.2)T, respec-
tively. The initial values of each node in the y-layer are chosen as y10 = (0.1, 18, 23.5)T,
y20 = (9,−6, 8.2)T, y30 = (−6,−12, 2)T, y40 = (26,−9.8, 1)T, y50 = (6, 13, 9.5)T, respec-
tively. These initial values are arbitrarily chosen. In order to meet the synchronization
requirement in Theorem 1, we take K1 = 50E3, K2 = 64E3. Obviously, these values are
not unique.

The ALS errors of the x-layer and y-layer are defined as

ex =
1
5

5

∑
i=1
‖exi(t)‖, ey =

1
5

5

∑
i=1
‖eyi(t)‖.

Under the event-triggered controller given by Theorem 1, the numerical simulation
results are shown in Figures 2 and 5 and Table 1. And under the event-triggered controller
given by Theorem 2, b and C0 are taken as 1 and 100, respectively. The numerical simulation
results are shown in Figure 6 and Table 2.

Figures 2 and 6a show the evolution of ALS errors. The comparison between
Figure 2a,b shows that the control strategy given by Theorem 1 can make the two-layer cou-
pled network realize ALS. The red horizontal line in Figure 6a indicates the synchronization
error bound b = 1. Figure 6a shows that the control strategy in Theorem 2 can achieve
ALQS of this network. Figures 5 and 6b record the event-triggered time of each node.
Obviously, there is no Zeno phenomenon. It can be intuitively seen from the comparison
that the new event-triggered rule (7) can significantly reduce triggering frequency. The
comparison of the data in Tables 1 and 2 reflects this more rigorously.

4.2. Inter-Layer Synchronization and Quasi-Synchronization

A Lorenz system is selected as the node self-dynamics of the x-layer and y-layer.
The initial values of each node in the x-layer are chosen as x10 = (−1, 12.8, 0)T, x20 =

(23, 19,−9.7)T, x30 = (17.6, −13,−19.4)T, x40 = (5,−4.7,−6)T, x50 = (27,−26, 14.4 )T, re-
spectively. The initial values of each node in the y-layer are chosen as y10 = (6.3,−6.3, 21)T,
y20 = (−9, 3.7, 4)T, y30 = (1.3,−5,−16.3)T, y40 = (24.8,−10, 1)T, y50 = (21, 16.6,−23)T,
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respectively. In order to meet the synchronization requirement in Theorem 3, we take
K3 = 60E3. Obviously, this value is not unique. Under the event-triggered controller given
by Theorem 3, the numerical simulation results are shown in Figures 3 and 7 and Table 3.
And under the event-triggered controller given by Theorem 4, b and C0 are taken as 2 and
100, respectively. The numerical simulation results are shown in Figure 8 and Table 4.

Figures 3 and 8a show the evolution of RLS errors. The comparison between Figure 3a,b
shows that the control strategy given by Theorem 3 can make the two-layer coupled net-
work realize RLS. The red horizontal line in Figure 8a indicates the synchronization error
bound b = 2. Figure 8a shows that the control strategy in Theorem 4 can achieve RLQS of
this network. Figures 7 and 8b record the event-triggered time of each node. Apparently,
there is no Zeno phenomenon. It can be intuitively seen from the comparison that the new
event-triggered rule (11) can significantly reduce the trigger frequency. The comparison of
the data in Tables 3 and 4 reflects this more rigorously.

The above numerical simulations further confirm our theoretical results. According to
the requirements of the final synchronization error threshold and event-triggered frequency,
the control parameters can be flexibly changed. For example, if only a larger synchroniza-
tion error threshold and a lower event-triggered frequency are required, b and C0 can be
adjusted to larger values.

5. Conclusions

In this paper, the synchronization of two-layer coupled networks under event-triggered
control is studied. Appropriate event-triggered controllers are designed to realize ALS and
RLS. Moreover, a novel event-triggered rule is proposed, which can realize ALQS and RLQS.
Under this rule, event-triggered times can be greatly reduced, and the synchronization
error threshold can be adjusted flexibly. Finally, a simulation experiment is given to further
verify the effectiveness of the proposed control scheme. Of course, the control scheme in
this paper has some limitations. This scheme needs to exert control over all nodes, and it
is impossible to predict when the network system will reach synchronization. That is a
problem we want to explore in the future.
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