
Citation: Sun, J.; Zhao, J.; Hu, X.;

Gao, H.; Yu, J. Autonomous

Navigation System of Indoor Mobile

Robots Using 2D Lidar. Mathematics

2023, 11, 1455. https://doi.org/

10.3390/math11061455

Academic Editor: Daniel-Ioan Curiac

Received: 19 February 2023

Revised: 10 March 2023

Accepted: 11 March 2023

Published: 17 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Autonomous Navigation System of Indoor Mobile Robots
Using 2D Lidar
Jian Sun 1, Jie Zhao 2, Xiaoyang Hu 3,*, Hongwei Gao 2,4,* and Jiahui Yu 5,*

1 School of Graduate, Shenyang Ligong University, Shenyang 110158, China
2 School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110158, China
3 School of Equipment Engineering, Shenyang Ligong University, Shenyang 110158, China
4 China State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,

Shenyang 110017, China
5 Department of Biomedical Engineering, Zhejiang University, Hangzhou 310058, China
* Correspondence: xiaoyang_hu@163.com (X.H.); ghw1978@sohu.com (H.G.); jiahui.yu@zju.edu.cn (J.Y.)

Abstract: Significant developments have been made in the navigation of autonomous mobile robots
within indoor environments; however, there still remain challenges in the face of poor map construc-
tion accuracy and suboptimal path planning, which limit the practical applications of such robots. To
solve these challenges, an enhanced Rao Blackwell Particle Filter (RBPF-SLAM) algorithm, called
Lidar-based RBPF-SLAM (LRBPF-SLAM), is proposed. In LRBPF, the adjacent bit poses difference
data from the 2D Lidar sensor which is used to replace the odometer data in the proposed distribution
function, overcoming the vulnerability of the proposed distribution function to environmental distur-
bances, and thus enabling more accurate pose estimation of the robot. Additionally, a probabilistic
guided search-based path planning algorithm, gravitation bidirectional rapidly exploring random
tree (GBI-RRT), is also proposed, which incorporates a target bias sampling to efficiently guide
nodes toward the goal and reduce ineffective searches. Finally, to further improve the efficiency of
navigation, a path reorganization strategy aiming at eliminating low-quality nodes and improving
the path curvature of the path is proposed. To validate the effectiveness of the proposed method,
the improved algorithm is integrated into a mobile robot based on a ROS system and evaluated
in simulations and field experiments. The results show that LRBPF-SLAM and GBI-RRT perform
superior to the existing algorithms in various indoor environments.

Keywords: mobile robots; path planning; RBPF-SLAM; Lidar sensor; ROS system

MSC: 70B15

1. Introduction

In recent years, the widespread use of mobile robots for a variety of applications, such
as rescue operations [1], household cleaning [2], and food service [3], has been facilitated
by their high stability and affordability. To meet the needs of these applications, mobile
robots require acquiring poses from Lidar sensors and building maps for environmental
awareness, and then using path planning algorithms to determine travel trajectories. Mobile
robots typically have three main functions: map building, positional estimation, and path
planning. The main task of SLAM (Simultaneous Localization and Mapping) is to obtain
real-time data from the robot’s sensors in an unknown environment and construct a map,
while also completing autonomous localization [4]. Moreover, after the localization and
map building is completed, it is not feasible to manually set the walking path, which
limits the robot’s autonomy. Thus, we use SLAM technology to provide environmental
information for path planning, helping mobile robots autonomously perform complex
navigation tasks.

Mathematics 2023, 11, 1455. https://doi.org/10.3390/math11061455 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061455
https://doi.org/10.3390/math11061455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11061455
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061455?type=check_update&version=1

Mathematics 2023, 11, 1455 2 of 21

SLAM plays a crucial role in the field of mobile robotics, serving as a key precondition
for the autonomous behavior and intelligence of mobile robots. The solution to SLAM can
be mainly divided into two categories: the graph optimization [5–7] and the probabilistic
estimation method [8]. The classical graph optimization algorithm is Karto SLAM [9],
which solves the optimization problem through graph representation. Karto consists of
three parts: front-end graph matching, back-end graph optimization, and loop closure
detection. The loop closure detection reduces the drift of the map and ensures global
consistency by recognizing loops and accordingly optimizing. Graph Optimization SLAM
has the advantage of slow error accumulation and high robustness, but its disadvantages
include a slow loop closure detection speed and the possibility of false loop closures. In
addition to graph optimization, probabilistic estimation methods are also utilized to solve
SLAM problems. Extended Kalman Filters (EKFs) are commonly applied by linearizing the
system through a first-order Taylor expansion to address weakly nonlinear conditions [10].
However, EKFs can result in an erroneous pose and map estimates, especially under
conditions of linearization error accumulation. On the other hand, Particle Filters (PF) can
effectively handle nonlinear non-Gaussian probability estimation [11], but their complexity
significantly increases as the spatial dimensionality increases. The RBPF SLAM [12] is
a particle filter-based solution to SLAM problems that improves runtime by utilizing
an accurate proposal distribution and selective resampling strategy [13], reducing the
number of required particles. GMapping [14] is a probabilistic estimation algorithm that
inputs odometry information and Lidar sensor measurements, producing the robot’s
pose and occupancy grid maps. The prediction of the proposed distribution function
in RBPF-SLAM is based on odometry data, making it difficult to incorporate additional
information in the Monte Carlo localization framework. Furthermore, the instability of
the proposed distribution function, based on odometry, makes it challenging to eliminate
motion uncertainty in large environments and long-term tasks. To address these challenges,
some studies have proposed FastSlam [15], a combination of RBPF and EKF, to improve
particle distribution.

Path planning is a critical component of mobile robot navigation [16], and its goal is
to determine a feasible and optimal path for the robot to travel from a starting position
to a goal position while avoiding obstacles in its environment. Path planning algorithms
are mainly divided into graph-based search algorithms and sampling-based algorithms.
Graph-based search algorithms use a graph representation of the search space to plan paths
for mobile robots. These algorithms perform a search of the graph to find the optimal
path from the starting position of the robot to the goal position while avoiding obstacles.
The most common graph-based search algorithms are A* [17], Dijkstra [18], and D* [19].
The A* algorithm is a heuristic search algorithm that finds the shortest path from the
starting position to the goal position by using a heuristic function to evaluate the next
state. However, the A* algorithm requires additional storage space to maintain a set of
open points, which can result in memory overhead. The Dijkstra algorithm is a classic
shortest-path algorithm that finds the shortest path between any two points in a graph.
The algorithm works by gradually relaxing the edge weights and updating the distance
estimates of vertices. However, the time complexity of the Dijkstra algorithm is O(n2),
where n is the number of vertices in the graph, and when the graph is large, the efficiency
of the algorithm can be severely affected. The D* algorithm combines the advantages of the
A* algorithm and the Dijkstra algorithm. The algorithm is capable of re-planning in real
time according to the changing environment, which makes it well suited for dynamic and
uncertain environments.

The sampling-based algorithm is an algorithm that finds the optimal path by random
sampling method. This algorithm finds the optimal path by randomly selecting a point
in space as the starting or ending point, and then continues expanding the nodes in space
when the expansion reaches the target point. The rapidly exploring random tree (RRT) [20]
algorithm is a popular and efficient algorithm in the field of sampling-based path planning.
The RRT algorithm uses a random sampling method to explore the search space, so it

Mathematics 2023, 11, 1455 3 of 21

can effectively avoid local optimum problems [21]. However, RRT requires sampling and
searching the entire graph, and many redundant random nodes are generated near each
node, increasing the corresponding search time and leading to slower convergence. One of
the main advantages of the bidirectional rapidly exploring random tree (Bi-RRT) [22,23]
algorithm is its efficiency compared to RRT algorithms. Since the trees are simultaneously
expanded in both directions, the search space can be reduced by half, which can significantly
reduce the search time. However, the Bi-RRT algorithm may not be able to find the optimal
solution in complex environments with high-dimensional state spaces. This is because
the algorithm relies on the random sampling method, which may not effectively cover all
parts of the state space and may not promptly find the optimal solution. Many scholars
have proposed improved methods based on the Bi-RRT algorithm; Xu et al. presented
a post-processing fusion algorithm [24], which combines PRM and P-Bi-RRT algorithms.
Compared to RRT, Bi-RRT, and P-Bi-RRT algorithms, this algorithm has shown improved
results in terms of planning time, path length, and the number of path nodes. Yi et al.
proposed the 1-0Bg-RRT algorithm [25], which uses a biased probability of 1 and 0 changes
to construct a tree, resulting in shorter computation time and paths compared to traditional
RRT algorithms. Jiankun Wang et al. presented a kino dynamically constrained Bi-RRT
with efficient branch pruning algorithm [26]. This algorithm extends the Bi-RRT method by
incorporating kino dynamic constraints, leading to improved performance. Grothe et al.
presented the Space-Time RRT (ST-RRT*) algorithm [27]; ST-RRT* can effectively handle
unbounded time-space and optimize arrival time in environments with moving obstacles
on known trajectories. Huanjie Zhao. et al. proposed an Improved Bi-RRT algorithm
based on Gaussian sampling [28]. This algorithm introduces heuristic search ideas based
on bidirectional search, sample points with a Gaussian distribution constrained with a
certain probability near the start, and goal points to reduce the blind search and improve
search efficiency. Guojun Ma et al. presented a new algorithm for path planning named
Probabilistic Smoothing Bi-RRT (PSBi-RRT) [29]. The proposed algorithm utilizes a θ-cut
mechanism to optimize the path toward the global optimal solution, reducing the possibility
of getting stuck in local optima. In comparison to the traditional Bi-RRT algorithm, PSBi-
RRT exhibits a significant reduction in runtime with improved performance.

Based on the above analysis, we propose improvements to the simultaneous SLAM
algorithm and the path planning algorithm. The distribution function in RBPF is susceptible
to external factors such as robot tire skidding, resulting in suboptimal map construction. In
contrast, Lidar navigation is highly stable because it is highly resistant to environmental
noise. For this reason, we propose the LRBPF-SLAM algorithm, where the odometer data
in the distribution function are replaced with the bit pose differences of adjacent moments
from the 2D Lidar to improve the stability and accuracy of map construction. In addition,
the Bi-RRT algorithm ignores the redundant computation due to the selection of random
nodes. We improve the Bi-RRT algorithm by using target bias sampling to reduce invalid
searches and combining the path reorganization strategy to minimize redundant path
points and generate smooth trajectories. In summary, the contributions of this paper are as
follows:

1. We embed the proposed algorithm into the ROS system [30] to verify the effectiveness
of the algorithm;

2. In order to improve the stability and accuracy of the SLAM system, an algorithm called
LRBPF-SLAM is proposed. In this algorithm, the odometer data in the distribution
function is replaced by the 2D Lidar adjacent moment bit pose difference;

3. The GBI-RRT algorithm is proposed, which employs target bias sampling to reduce
the negative impact of random sampling on path quality, and then optimizes the
initial paths through a path reorganization strategy to eliminate redundant paths;

4. Extensive simulations were conducted to evaluate the improved algorithms, and the
proposed algorithms were also ported to a mobile robot for real scenario experiments.
The results of these experiments demonstrate that the proposed method exhibits

Mathematics 2023, 11, 1455 4 of 21

excellent performance compared to other algorithms in both simulation and real
scenarios.

2. Robot Components and System Framework

The system we use is an advanced mobile robot navigation system equipped with
sensors for environmental perception and data measurement. The main hardware used
in this system is the NVIDIA Jetson Nano, which has sufficient processing capabilities to
perform task planning. Additionally, it is equipped with an OpenCRP controller based
on the STM32F4 core and an MPU6050 Inertial Measurement Unit (IMU) sensor that can
be updated through ISP serial and implements closed-loop control for four DC motors.
The robot is also equipped with the SICK A1 TK edition Lidar, with a range of 12 m and
a measurement frequency of 8000 times per second, as well as an encoder that converts
analog signals into electrical signals to obtain distance and angle data. The size of the
mobile robot for navigation is 28 cm × 12 cm × 12 cm and weighs 2.3 kg, rated power is
60 W, and the linear velocity and acceleration are 1.2 m/s and 0.5 m/s, respectively. The
physical structure of the robot is shown in Figure 1.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 22

4. Extensive simulations were conducted to evaluate the improved algorithms, and the
proposed algorithms were also ported to a mobile robot for real scenario experi-
ments. The results of these experiments demonstrate that the proposed method ex-
hibits excellent performance compared to other algorithms in both simulation and
real scenarios.

2. Robot Components and System Framework
The system we use is an advanced mobile robot navigation system equipped with

sensors for environmental perception and data measurement. The main hardware used in
this system is the NVIDIA Jetson Nano, which has sufficient processing capabilities to
perform task planning. Additionally, it is equipped with an OpenCRP controller based on
the STM32F4 core and an MPU6050 Inertial Measurement Unit (IMU) sensor that can be
updated through ISP serial and implements closed-loop control for four DC motors. The
robot is also equipped with the SICK A1 TK edition Lidar, with a range of 12 m and a
measurement frequency of 8000 times per second, as well as an encoder that converts an-
alog signals into electrical signals to obtain distance and angle data. The size of the mobile
robot for navigation is 28 cm × 12 cm × 12 cm and weighs 2.3 kg, rated power is 60 W, and
the linear velocity and acceleration are 1.2m/s and 0.5m/s, respectively. The physical struc-
ture of the robot is shown in Figure 1.

(5) Power supply

(3) Lidar

(2) NVIDIA JETSON NANO

(4) IMU

(6) Motor

(1) Antenna

Figure 1. The physical structure of the robot. (1) The “Antenna” is utilized for transmission of com-
munication protocols. (2) The “NVIDIA JETSON NANO” is utilized for receiving commands from
the PC and running algorithms. (3) The “Lidar” is utilized for sensing the surrounding environment.
(4) The “IMU” is utilized for acquiring the current attitude angles. (5) The “Power supply” sustains
the operation of the moving robot by providing electrical energy. (6) The “Motor” is utilized for
driving the movement of the robot.

The system control structure of the robot is shown in Figure 2.
1. The PC Module: The PC terminal uses a laptop and connects to the host computer on

the same LAN via SSH (Secure Shell). Commands can be directly sent from the PC to
the mobile robot host computer to achieve SLAM and navigation functions;

2. The Decision Module: The decision module is the host computer of the robot, namely
NVIDIA Jetson Nano, which has an SSH tool installed with the ROS system to receive
commands from the PC and run algorithms. It receives Lidar data through a USB
interface, communicates I/O with the lower computer, and acquires sensor data con-
nected to the lower computer;

3. The Execution Module: The execution module is a controller with STM32F4 as its
core, which receives commands from the decision-making module, acquires data
from the IMU and encoders, and controls motor drive operations;

4. The Sensor Module: The sensor module includes 2D Lidar for detecting the sur-
rounding environment, IMU for estimating the motion posture of the robot, and en-
coders for estimating the robot’s motion distance and rotation angle;

Figure 1. The physical structure of the robot. (1) The “Antenna” is utilized for transmission of
communication protocols. (2) The “NVIDIA JETSON NANO” is utilized for receiving commands from
the PC and running algorithms. (3) The “Lidar” is utilized for sensing the surrounding environment.
(4) The “IMU” is utilized for acquiring the current attitude angles. (5) The “Power supply” sustains
the operation of the moving robot by providing electrical energy. (6) The “Motor” is utilized for
driving the movement of the robot.

The system control structure of the robot is shown in Figure 2.

1. The PC Module: The PC terminal uses a laptop and connects to the host computer on
the same LAN via SSH (Secure Shell). Commands can be directly sent from the PC to
the mobile robot host computer to achieve SLAM and navigation functions;

2. The Decision Module: The decision module is the host computer of the robot, namely
NVIDIA Jetson Nano, which has an SSH tool installed with the ROS system to receive
commands from the PC and run algorithms. It receives Lidar data through a USB
interface, communicates I/O with the lower computer, and acquires sensor data
connected to the lower computer;

3. The Execution Module: The execution module is a controller with STM32F4 as its core,
which receives commands from the decision-making module, acquires data from the
IMU and encoders, and controls motor drive operations;

4. The Sensor Module: The sensor module includes 2D Lidar for detecting the surround-
ing environment, IMU for estimating the motion posture of the robot, and encoders
for estimating the robot’s motion distance and rotation angle;

5. The Power Module: The power voltage is 12 V with a total capacity of 1200 mAh. The
power expansion board can expand the 12 V power and 5 V output to facilitate the
expansion of robot functions;

6. The Motor Drive Module: The motor drive module is responsible for controlling
the movement of the robot, receiving control commands, and driving the motor

Mathematics 2023, 11, 1455 5 of 21

through current control. It includes the drive circuit, current sensor, and control
circuit, ensuring the precise and stable movement of the robot.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 22

5. The Power Module: The power voltage is 12 V with a total capacity of 1200mAh. The
power expansion board can expand the 12 V power and 5 V output to facilitate the
expansion of robot functions;

6. The Motor Drive Module: The motor drive module is responsible for controlling the
movement of the robot, receiving control commands, and driving the motor through
current control. It includes the drive circuit, current sensor, and control circuit, en-
suring the precise and stable movement of the robot.

Sensor module
（IMU）

Sensor module
（Encoder）

Execution module
（STM32 controller）

Sensor module
（Lidar）

Decision module
（Jetson Nano）

Motor driver

Power module

SSH

USB to
 serial port

I/0

USB

PC

I/0

Figure 2. The system control structure of robot.

In the design of a robot navigation system, multiple critical steps are covered, includ-
ing data conversion, SLAM mapping, and path planning. We designed a comprehensive
robot navigation system framework to realize the navigation capability. This framework
implements distributed communication through the ROS system, thereby enabling the
collaboration between SLAM mapping and navigation path planning, and allowing for
node publication and subscription, further improving the efficiency and reliability of the
system. The flow of the robot navigation system framework is illustrated in Figure 3. The
robot navigation can be divided into the following four steps:
1. Install the Ubuntu operating system and ROS system on the robot and PC side, use

the SSH remote control tool to realize the connection between the PC and the robot,
and control the robot through PC input commands;

2. After receiving the PC command, the robot locates and builds a map using the data
from the Lidar, and when the mapping is completed, the map is saved in the robot;

3. After starting the navigation command, the starting point and the end point are se-
lected on the Rviz (a 3D visualization tool) visualization tool of ROS, and the robot
autonomously plans the navigation path using the data from Lidar. The global path
planning realizes safe and reliable path planning, and local path planning realizes
real-time obstacle avoidance;

4. When the robot arrives at the destination, the navigation ends. If it does not reach the
destination, it continues to navigate using the data from Lidar until it reaches the
destination.

Figure 2. The system control structure of robot.

In the design of a robot navigation system, multiple critical steps are covered, including
data conversion, SLAM mapping, and path planning. We designed a comprehensive
robot navigation system framework to realize the navigation capability. This framework
implements distributed communication through the ROS system, thereby enabling the
collaboration between SLAM mapping and navigation path planning, and allowing for
node publication and subscription, further improving the efficiency and reliability of the
system. The flow of the robot navigation system framework is illustrated in Figure 3. The
robot navigation can be divided into the following four steps:

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 22

Start

SSH Remote control
command

Robot performs attitude
localization and builds

maps

Is the build
complete?

Select the start and end
positions on the ROS

system rviz tool

Navigate using both
global and local path

planning

Whether to
reach the end?

End

Acquisition of
environmental data by

LIDAR and IMU

No

Yes

No

Yes

Figure 3. Framework flow of robot navigation system.

3. Algorithm Improvement
3.1. LRBPF-SLAM Algorithm

To better understand the proposed LRBPF-SLAM, we briefly review the basic prin-
ciples of the RBPF. The RBPF-SLAM is an improved version of the particle filter. RBPF is
a technique for reducing computational costs by lowering the dimensionality of the state
space through the use of the chain rule. This is achieved by factoring the joint distribution
of the variables into conditional distributions, which can be separately updated, resulting
in improved computational efficiency. The problem of SLAM for RBPF involves the esti-
mation of the posterior probability and posterior probability as shown in Equation (1).

1: 1: 1: 1: 1: 1: 1 1: 1:(, | ,) (| ,) (| ,)−=t t t t t t t tp m x z u p x z u p m x z (1)

Where 𝑝(𝑚, 𝑥 : |𝑧 : , 𝑢 :) is the posterior probability, the estimated joint posterior
probability 𝑝(𝑥 : |𝑧 : , 𝑢 :) represents the distribution of the motion trajectory of a mobile
robot, 𝑝(𝑚|𝑥 : , 𝑧 :) is the posterior map generated by particles using the occupancy grid
mapping algorithm to create a two-dimensional planar map of the environment. m repre-
sents the grid map of the environment, 𝑥 : denotes the motion trajectory of the mobile
robot, 𝑧 : is the sensor observations from 1 to t moments, 𝑢 : is the odometry measure-
ments in the odometer. The estimation of the robot's true pose can be achieved using the 𝑧 : and 𝑢 : parameters. The specific steps of RBPF are shown below:
1. Sampling: The particle at the previous moment 𝑥 : is sampled from the distribu-

tion function to acquire new particles 𝑥 : . The distribution function obtained by the
sensor is often termed the proposed distribution:

1: 1 1: 1: 1(| , ,)i i
t t t tx x z uπ − − (2)

2. Importance weighting: Each particle 𝑥 is assigned a weight 𝜔 , which is computed
as the ratio of the posterior distribution to the proposal distribution (based on the
probabilistic odometry motion model). The higher the weight, the more the particle's
pose matches the true value. The importance weighting can be defined using formula
(3).

Figure 3. Framework flow of robot navigation system.

Mathematics 2023, 11, 1455 6 of 21

1. Install the Ubuntu operating system and ROS system on the robot and PC side, use
the SSH remote control tool to realize the connection between the PC and the robot,
and control the robot through PC input commands;

2. After receiving the PC command, the robot locates and builds a map using the data
from the Lidar, and when the mapping is completed, the map is saved in the robot;

3. After starting the navigation command, the starting point and the end point are
selected on the Rviz (a 3D visualization tool) visualization tool of ROS, and the robot
autonomously plans the navigation path using the data from Lidar. The global path
planning realizes safe and reliable path planning, and local path planning realizes
real-time obstacle avoidance;

4. When the robot arrives at the destination, the navigation ends. If it does not reach
the destination, it continues to navigate using the data from Lidar until it reaches the
destination.

3. Algorithm Improvement
3.1. LRBPF-SLAM Algorithm

To better understand the proposed LRBPF-SLAM, we briefly review the basic prin-
ciples of the RBPF. The RBPF-SLAM is an improved version of the particle filter. RBPF is
a technique for reducing computational costs by lowering the dimensionality of the state
space through the use of the chain rule. This is achieved by factoring the joint distribution
of the variables into conditional distributions, which can be separately updated, resulting in
improved computational efficiency. The problem of SLAM for RBPF involves the estimation
of the posterior probability and posterior probability as shown in Equation (1).

p(m, x1:t|z1:t, u1:t) = p(x1:t|z1:t, u1:t−1)p(m|x1:t, z1:t) (1)

Where p(m, x1:t|z1:t, u1:t) is the posterior probability, the estimated joint posterior prob-
ability p(x1:t|z1:t, u1:t) represents the distribution of the motion trajectory of a mobile robot,
p(m|x1:t, z1:t) is the posterior map generated by particles using the occupancy grid mapping
algorithm to create a two-dimensional planar map of the environment. m represents the
grid map of the environment, x1:t denotes the motion trajectory of the mobile robot, z1:t
is the sensor observations from 1 to t moments, u1:t is the odometry measurements in the
odometer. The estimation of the robot’s true pose can be achieved using the z1:t and u1:t
parameters. The specific steps of RBPF are shown below:

1. Sampling: The particle at the previous moment xi
1:t−1 is sampled from the distribution

function to acquire new particles xi
1:t. The distribution function obtained by the sensor

is often termed the proposed distribution:

π(xi
t

∣∣∣xi
1:t−1, z1:t, u1:t−1) (2)

2. Importance weighting: Each particle xi
t is assigned a weight ωi

t, which is computed as
the ratio of the posterior distribution to the proposal distribution (based on the proba-
bilistic odometry motion model). The higher the weight, the more the particle’s pose
matches the true value. The importance weighting can be defined using Formula (3).

ωi
t =

p(xi
1:t

∣∣z1:t, u1:t−1)

π(xi
1:t

∣∣z1:t, u1:t−1)
(3)

3. Resampling: Particles with smaller weights are discarded and replaced by resampled
particles, but the total number of particles remains constant.

4. Map updating: Each particle’s map is updated using the optimized pose represented
by the particle and the current observations.

RBPF can effectively reduce the dimensionality of the state space and improve the
particle quality. However, the proposed distribution based on odometry may suffer from

Mathematics 2023, 11, 1455 7 of 21

increasing errors over time. As the Lidar signal has a single-peak characteristic and a small
variance coefficient, it is more suitable to use it as the input to the proposed distribution
function. To improve the accuracy of the proposed distribution, we augment the original
odometry data by adding the position differences derived from the 2D Lidar data at adjacent
time steps. The RBPF algorithm usually uses odometer data as the proposed distribution
function:

π(xi
t

∣∣∣xi
1:t−1, z1:t, u1:t−1) = p(xi

t

∣∣∣xi
t−1, ut−1) (4)

IMU is a sensor used for attitude estimation. Typically consisting of an accelerometer,
gyroscope, and magnetometer, it measures the acceleration, angular velocity, and magnetic
field strength of an object in three axes. In attitude estimation, the IMU plays a key role by
providing real-time attitude information that allows us to track the position, orientation,
and motion of the object. However, the odometer data from the IMU can be affected by
robot vibration, drift, and sliding. Lidar can provide higher spatial resolution and accuracy
to ensure the accuracy of attitude estimation. LRBPF uses the Lidar positional difference as
a distribution function, as shown in Equations (5) and (6).

p(xi
t

∣∣∣xi
t−1, zt) = xi

t−1 + ht(zt, zt−1) (5)

ht = zt − zt−1 (6)

where ht is the Lidar attitude difference between adjacent moments.

3.2. GBI-RRT Algorithm

To gain a better understanding of the proposed algorithm, it is necessary to first review
the RRT and the Bi-RRT algorithms. Figure 4 shows the planning process of the RRT
algorithm, where qinit and qgoal represent the start and target nodes of the random tree,
qrand is the random node generated by each sampling point, and qnear is the closest node to
qrand on the tree, qnew is a new node obtained after collision detection, which is obtained
by growing from qnear to qrand with step size ε. The RRT principle diagram is shown in
Figure 4.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 22

1: 1: 1: 1

1: 1: 1: 1

(| ,)
(| ,)

i
i t t t
t i

t t t

p x z u
x z uπ

−

−

ω = (3)

3. Resampling: Particles with smaller weights are discarded and replaced by resampled
particles, but the total number of particles remains constant.

4. Map updating: Each particle’s map is updated using the optimized pose represented
by the particle and the current observations.
RBPF can effectively reduce the dimensionality of the state space and improve the

particle quality. However, the proposed distribution based on odometry may suffer from
increasing errors over time. As the Lidar signal has a single-peak characteristic and a small
variance coefficient, it is more suitable to use it as the input to the proposed distribution
function. To improve the accuracy of the proposed distribution, we augment the original
odometry data by adding the position differences derived from the 2D Lidar data at adja-
cent time steps. The RBPF algorithm usually uses odometer data as the proposed distri-
bution function:

1: 1 1: 1: 1 1 1(| , ,) (| ,)i i i i
t t t t t t tx x z u p x x uπ − − − −= (4)

IMU is a sensor used for attitude estimation. Typically consisting of an accelerometer,
gyroscope, and magnetometer, it measures the acceleration, angular velocity, and mag-
netic field strength of an object in three axes. In attitude estimation, the IMU plays a key
role by providing real-time attitude information that allows us to track the position, ori-
entation, and motion of the object. However, the odometer data from the IMU can be af-
fected by robot vibration, drift, and sliding. Lidar can provide higher spatial resolution
and accuracy to ensure the accuracy of attitude estimation. LRBPF uses the Lidar posi-
tional difference as a distribution function, as shown in Equations (5) and (6).

1 1 1(| ,) hi i i
t t t t t t tp x x z x z z− − −= + （ ， ） (5)

1h t t tz z −−= (6)

where ht is the Lidar attitude difference between adjacent moments.

3.2. GBI-RRT Algorithm
To gain a better understanding of the proposed algorithm, it is necessary to first re-

view the RRT and the Bi-RRT algorithms. Figure 4 shows the planning process of the RRT
algorithm, where 𝑞 and 𝑞 represent the start and target nodes of the random tree, 𝑞 is the random node generated by each sampling point, and 𝑞 is the closest node
to 𝑞 on the tree, 𝑞 is a new node obtained after collision detection, which is ob-
tained by growing from 𝑞 to 𝑞 with step size 𝜀 . The RRT principle diagram is
shown in Figure 4.

initq
nearq newq

randq
ε

Figure 4. RRT principle diagram. Figure 4. RRT principle diagram.

The RRT algorithm begins by selecting the qinit as the root node of the random tree
growth. Next, qrand is generated within the safe space. Then, the algorithm searches for
the node qnear that is closest to qrand, with qnear initially set to qinit. Starting from qnear, the
random tree moves ε steps in the direction of qrand to obtain a new node qnew. This process
is repeated until the Euclidean distance between qinit and qgoal is less than a predetermined
threshold, at which point the search is terminated. The resulting path is the extended tree
path from the initial node qinit to the target node qgoal . The expansion rule for the new node
in the RRT algorithm is expressed by Equation (7).

qnew = qnear + ε
qrand − qnear

‖qrand − qnear‖
(7)

Mathematics 2023, 11, 1455 8 of 21

where qrand − qnear represents the normalization of two vectors, and ‖qrand − qnear‖ repre-
sents the Euclidean distance between two points. When the target node qgoal is added to
the random tree or the number of iterations exceeds the specified threshold of iterations,
the path planning will end with the corresponding result.

Although the RRT algorithm is better than the traditional algorithm in complex envi-
ronments, its one-way search approach implies that it takes longer to reach the endpoint. To
address this issue, the Bi-RRT algorithm was developed, which enables a two-way search.
The Bi-RRT algorithm is shown in Figure 5:

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 22

The RRT algorithm begins by selecting the 𝑞 as the root node of the random tree
growth. Next, 𝑞 is generated within the safe space. Then, the algorithm searches for
the node 𝑞 that is closest to 𝑞 , with 𝑞 initially set to 𝑞 . Starting from 𝑞 ,
the random tree moves 𝜀 steps in the direction of 𝑞 to obtain a new node 𝑞 . This
process is repeated until the Euclidean distance between 𝑞 and 𝑞 is less than a pre-
determined threshold, at which point the search is terminated. The resulting path is the
extended tree path from the initial node 𝑞 to the target node 𝑞 . The expansion rule
for the new node in the RRT algorithm is expressed by Equation (7).

rand near
new near

rand near

q qq q
q q

ε −= +
−

(7)

where 𝑞 − 𝑞 represents the normalization of two vectors, and ‖𝑞 − 𝑞 ‖ rep-
resents the Euclidean distance between two points. When the target node 𝑞 is added
to the random tree or the number of iterations exceeds the specified threshold of iterations,
the path planning will end with the corresponding result.

Although the RRT algorithm is better than the traditional algorithm in complex en-
vironments, its one-way search approach implies that it takes longer to reach the end-
point. To address this issue, the Bi-RRT algorithm was developed, which enables a two-
way search. The Bi-RRT algorithm is shown in Figure 5:

initq

ε ε
goalq

1nearq
1newq

1randq 2randq

2newq
2nearq

Figure 5. Bi-RRT principle diagram.

The Bi-RRT algorithm constructs two random trees 𝑇 and 𝑇 in the environment
state space, using the same node generation method as the basic RRT algorithm. 𝑇 has
the root node as the initial node, while 𝑇 has the target point as the initial node. The Bi-
RRT algorithm process is shown in Algorithm 1.

Algorithm 1 presents the fundamental Bi-RRT algorithm. First, the algorithm initial-
izes the random tree 𝑇 using 𝑞 and then initializes the random tree 𝑇 using 𝑞 . To
extend the random tree outward, the 𝑆𝑎𝑚𝑝𝑙𝑒() function is designed to return a sample
point 𝑞 . Then, the 𝐸𝑥𝑡𝑒𝑛𝑑() function searches for the nearest node in the random tree
and grows toward node 𝑞 in steps 𝜀, generating a new node 𝑞 . Subsequently, if 𝑞 passes collision detection, it is added to the random tree 𝑇. If 𝑞 is the same for
both random trees, then the loop terminates.

Compared with the RRT algorithm, the Bi-RRT algorithm reduces the search time
while retaining the advantages of the RRT algorithm. However, both algorithms have a
common drawback: both randomly generate expansion points, resulting in poor search
path quality [31]. Based on this, we propose an improved Bi-RRT algorithm to reduce the
algorithm's blindness in the node expansion phase by introducing target bias sampling,
generating random points with a higher probability towards the target point. Addition-
ally, we propose a path reorganization strategy to address the low-quality generated paths
by removing redundant nodes and optimizing the path state.

Figure 5. Bi-RRT principle diagram.

The Bi-RRT algorithm constructs two random trees T1 and T2 in the environment state
space, using the same node generation method as the basic RRT algorithm. T1 has the
root node as the initial node, while T2 has the target point as the initial node. The Bi-RRT
algorithm process is shown in Algorithm 1.

Algorithm 1 presents the fundamental Bi-RRT algorithm. First, the algorithm initializes
the random tree T1 using qinit and then initializes the random tree T2 using qgoal . To extend
the random tree outward, the Sample() function is designed to return a sample point qrand.
Then, the Extend() function searches for the nearest node in the random tree and grows
toward node qrand in steps ε, generating a new node qnew. Subsequently, if qnew passes
collision detection, it is added to the random tree T. If qnew is the same for both random
trees, then the loop terminates.

Compared with the RRT algorithm, the Bi-RRT algorithm reduces the search time
while retaining the advantages of the RRT algorithm. However, both algorithms have a
common drawback: both randomly generate expansion points, resulting in poor search
path quality [31]. Based on this, we propose an improved Bi-RRT algorithm to reduce the
algorithm’s blindness in the node expansion phase by introducing target bias sampling,
generating random points with a higher probability towards the target point. Additionally,
we propose a path reorganization strategy to address the low-quality generated paths by
removing redundant nodes and optimizing the path state.

Algorithm 1: BI- RRT(qinit, qgoal)

1 T1.add(qinit); T2.add(qgoal); i = 0;
2 while(i < N)
3 qrand1 = Sample();
4 qrand2 = Sample(); i ++;
5 qnew1 = Extend(T1, qrand1)
6 qnew2 = Extend(T2, qrand2)
7 if qnew1 = qnew2 then
8 return Path(T1, T2)
9 Swap(T1, T2)

1. Target bias sampling

The random sampling process of the Bi-RRT algorithm employs a global random
search strategy, which generates a significant number of redundant random points and

Mathematics 2023, 11, 1455 9 of 21

increases the length of the robot movement path. The path planning process can only be
accelerated when the random tree grows toward the target point, so the target point can
be considered as the sampling point. However, if the target point is selected as the only
sampling point, the generated random tree may become trapped in a dead loop around the
obstacles. To address this issue, we propose a target bias sampling that combines random
search and target-oriented search. This strategy effectively guides the random tree to grow
towards the target with a higher probability while avoiding interference from obstacles.

Figure 6 illustrates the GBI-RRT algorithm, which begins by selecting an initial point
qinit. During each iteration, the system generates a random number prand. If prand is less
than the given threshold pbias, the algorithm generates a random point within the safe
space SampleFree(). Otherwise, the random point is set to the target point coordinates. To
implement the target bias sampling, we use Equation (8), which effectively guides the
random tree to grow towards the target with a higher probability while avoiding obstacles.

qrand =

{
qgoal , i f prand > pbias
qSampleFree() , else (8)

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 22

Algorithm 1: BI- RRT(,)init goalq q

1 1 2. (); . (); 0;init goalT add q T add q i =

2 while()i N<

3 1 Sample();randq =

4 2 Sample(); ;randq i= + +

5 1 1 1(,)new randq Extend T q=

6 2 2 2(,)new randq Extend T q=

7 1 2if thennew newq q=

8 1 2return Path(,)T T

9 1 2Swap(,)T T

1. Target bias sampling
The random sampling process of the Bi-RRT algorithm employs a global random

search strategy, which generates a significant number of redundant random points and
increases the length of the robot movement path. The path planning process can only be
accelerated when the random tree grows toward the target point, so the target point can
be considered as the sampling point. However, if the target point is selected as the only
sampling point, the generated random tree may become trapped in a dead loop around
the obstacles. To address this issue, we propose a target bias sampling that combines ran-
dom search and target-oriented search. This strategy effectively guides the random tree
to grow towards the target with a higher probability while avoiding interference from
obstacles.

Figure 6 illustrates the GBI-RRT algorithm, which begins by selecting an initial point 𝑞 . During each iteration, the system generates a random number 𝑝 . If 𝑝 is less
than the given threshold 𝑝 , the algorithm generates a random point within the safe
space 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒(). Otherwise, the random point is set to the target point coordinates.
To implement the target bias sampling, we use Equation (8), which effectively guides the
random tree to grow towards the target with a higher probability while avoiding obsta-
cles.

()

,

,

 else

 rand biasgoal

rand
SampleFreeq

if p pqq
>

=

(8)

In the above Equation (8), 𝑃 represents the target bias threshold, 𝑃 represents
that the random sampling probability range is (0, 1), and 𝑞 () represents the ran-
dom point generated by the safe space.

Obstacle
initq

nearq newq
ε

goalq

newq

randq

Figure 6. Bi-RRT random tree constructed by adding target bias sampling. The direction of the
dashed line represents the random tree growth direction.

In the above Equation (8), Pbias represents the target bias threshold, Prand represents
that the random sampling probability range is (0, 1), and qSampleFree() represents the random
point generated by the safe space.

Once the random node qrand is obtained, we use a target bias sampling to guide the
extension of the random tree towards the target point with a growth step of ε. This strategy
promotes an explicit expansion direction for the random tree, which preserves the global
expansion property of the RRT algorithm and allows the node expansions to spread across
the state space. Moreover, the target bias sampling enables the preservation of local node
properties on top of the global expansion properties, increasing the likelihood that the
random tree will expand towards the target point. However, choosing an appropriate
value for the threshold Pbias is crucial. A value that is too large can result in an expansion
probability towards the target point that is too small to have a significant effect on the
expansion speed, while a value that is too small can result in an overly large expansion
probability towards the target point that is prone to local minima in environments with
many obstacles. After experimental analysis, we set Pbias to 0.5.

The random growth function for the random tree to expand towards the target direc-
tion is shown in Equation (9).

X(n) = ε
qnear − qgoal

‖qnear − qgoal‖
(9)

where ε denotes the step size when expanding towards the target point and
∥∥∥qnear − qgoal

∥∥∥
denotes the Euclidean distance between qnear and qgoal .

Mathematics 2023, 11, 1455 10 of 21

In addition, the random growth function Y(n) for the random tree to randomly expand
and avoid obstacles in the safe space is given by:

Y(n) = ε
qSampleFree() − qnear

‖qSampleFree() − qnear‖
(10)

Therefore, by combining Equations (8)–(10), we can obtain the equation for generating
a new node using the target bias sampling as follows:

qnew =

{
qnear + X(n), i f prand > pbias
qnear + Y(n), else

(11)

At this point, the calculation of the new node qnew not only takes into account the
influence of the random sampling node qrand, but also the gravitation of the target point
qgoal . The threshold value Pbias plays a crucial role in determining the expansion direction.
When the generated random sampling point is close to an obstacle, it may cause the newly
generated node to collide with the obstacle, leading to expansion failure and getting stuck
in a dead loop. If Prand is larger than Pbias, the selected random point Prand satisfies the
requirement of expanding towards the target point and enables the system to approach the
target point more quickly. On the other hand, when Prand is smaller than Pbias, the selected
random point qrand no longer satisfies the requirement of expanding directly towards the
target point, and random sampling points will be generated for expansion. By doing so,
the expanded tree can bypass obstacles and reach the end point more efficiently.

2. Path reorganization strategy

In the Bi-RRT algorithm, the nearest tree node is determined by calculating the Eu-
clidean distance from a random point to a tree node. However, this approach may result
in zigzag node paths for the concatenated tree nodes, and such unsmooth paths are not
optimal for mobile robot travel because they increase unnecessary steering time [32]. Even
with a target bias sampling incorporated, the paths generated by the Bi-RRT algorithm may
still contain many redundant nodes. Therefore, path reorganization strategies are needed
to optimize the generated paths and obtain higher quality paths.

As shown in Figure 7, in path planning with multiple nodes, the distance through path
qinit → b is less than the distance through qinit → a→ b ; the distance through b→ d is
less than the distance through b→ c→ d ; and the distance through d→ qgoal is less than
the distance through d→ e→ f → qgoal . Therefore, in the final path planning process, the
redundant nodes a, c, e, and f can be removed. The node qinit → b→ d→ qgoal forms the
optimal path, which only has a few key points, and thus improves the smoothness of the
path and shortens the travel time of the mobile robot.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 22

may still contain many redundant nodes. Therefore, path reorganization strategies are
needed to optimize the generated paths and obtain higher quality paths.

As shown in Figure 7, in path planning with multiple nodes, the distance through
path 𝑞 → 𝑏 is less than the distance through 𝑞 → 𝑎 → 𝑏; the distance through 𝑏 → 𝑑
is less than the distance through 𝑏 → 𝑐 → 𝑑; and the distance through 𝑑 → 𝑞 is less than
the distance through 𝑑 → 𝑒 → 𝑓 → 𝑞 . Therefore, in the final path planning process, the
redundant nodes 𝑎, 𝑐, 𝑒, and 𝑓 can be removed. The node 𝑞 → 𝑏 → 𝑑 → 𝑞 forms the
optimal path, which only has a few key points, and thus improves the smoothness of the
path and shortens the travel time of the mobile robot.

initq
b

c

d

e f

a

goalq

Figure 7. Path reorganization strategy.

The process of the path reorganization strategy is shown in Algorithm 2, where 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 represents the set of key points. Starting from the initial node 𝑞 , we traverse
its children nodes for collision detection. Only the node 𝑞 closest to the end point 𝑞
is kept and added to the 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠. Then, 𝑞 is used as the initial node for the next
traversal.

Algorithm 2: ()GetKeyPoints path
1 ;inittemp qq =

3 ()!temp goalwhile q q=

4 (; ! ;).temp init tempfor x q q q x q child= = =

5 (,)tempf CheckLine x qi

6 ;tempq x=

7 . ();tempkeypoints add q

4. Simulation Experiments of Robots
In this section, we compare and analyze two common SLAM algorithms and two

path planning algorithms in a simulated environment. To visualize the performance of
the algorithms, we construct maps using Rviz.

4.1. Simulation Platform
To evaluate the effectiveness of the LRBPF-SLAM algorithm in terms of mapping

accuracy, we conducted simulation experiments on the Gazebo platform [33] using Ub-
untu 18.04 and ROS systems. The study focused on three simulated indoor environments
and used the TurtleBot3 Burger virtual robot model. The simulated sensor data included
Lidar, odometer, and IMU data. The simulation was carried out on a laptop computer
equipped with an Intel i7-11800H processor and 16GB DDR4 3200MHz memory. The sim-
ulation environment was designed to replicate realistic physical characteristics, making it

Figure 7. Path reorganization strategy.

The process of the path reorganization strategy is shown in Algorithm 2, where
keypoints represents the set of key points. Starting from the initial node qinit, we traverse

Mathematics 2023, 11, 1455 11 of 21

its children nodes for collision detection. Only the node qtemp closest to the end point qgoal
is kept and added to the keypoints. Then, qtemp is used as the initial node for the next
traversal.

Algorithm 2: GetKeyPoints(path)

1 qtemp = qinit;
2 while(qtemp! = qgoal)

3 f or(x = qtemp; q! = qinit; x = qtemp.child)
4 i f CheckLine(x, qtemp)
5 qtemp = x;
6 keypoints.add(qtemp);

4. Simulation Experiments of Robots

In this section, we compare and analyze two common SLAM algorithms and two
path planning algorithms in a simulated environment. To visualize the performance of the
algorithms, we construct maps using Rviz.

4.1. Simulation Platform

To evaluate the effectiveness of the LRBPF-SLAM algorithm in terms of mapping
accuracy, we conducted simulation experiments on the Gazebo platform [33] using Ubuntu
18.04 and ROS systems. The study focused on three simulated indoor environments and
used the TurtleBot3 Burger virtual robot model. The simulated sensor data included Lidar,
odometer, and IMU data. The simulation was carried out on a laptop computer equipped
with an Intel i7-11800H processor and 16 GB DDR4 3200 MHz memory. The simulation
environment was designed to replicate realistic physical characteristics, making it a reliable
reference for real-world application environments. Environment modeling of the Gazebo
simulation platform is shown in Figure 8.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 22

a reliable reference for real-world application environments. Environment modeling of
the Gazebo simulation platform is shown in Figure 8.

Figure 8. Environment modeling of Gazebo simulation platform.

4.2. Simulation Experiment of SLAM Algorithm
The simulation experiments of SLAM were constructed on Gazebo with three envi-

ronments of different complexity for map building simulation. The different environment
experiments could more accurately reflect the building effect and generalization ability of
the proposed algorithm. Simulation environment 1 had a length and width of 11.25 m ×
6.75 m, with regular surroundings and geometrical wall obstacles inside, to test the algo-
rithm’s building effect on geometrically shaped objects. Simulation environment 2 was
13.5 m × 8.5 m in length and width, and there were right-angle wall obstacles inside, which
were used to test the algorithm’s effect on building the details of corner-shaped objects.
The overall simulation environment 3 was 11.85 m × 9.75 m, surrounded by irregular
walls, and the internal obstacle objects were also irregular, testing the algorithm for the
irregular walls and the building effect of the objects that account for the object. We com-
pared the proposed algorithm with the Gmapping and Karto algorithms and visualized
the map building results using the Rviz tool. The results of the SLAM simulation experi-
ments for building maps are shown in Figure 9.

(a)GmappingSimulation environment

Simulation 3

Simulation 2

Simulation 1

(b)Karto (c)LRBPF-SLAM
Figure 9. SLAM simulation results of three algorithms.

It can be seen from the three groups of simulation experiments that (a) the Gmapping
algorithm distorts and makes a lot of noise in the wall and vertical obstacle construction,

Figure 8. Environment modeling of Gazebo simulation platform.

4.2. Simulation Experiment of SLAM Algorithm

The simulation experiments of SLAM were constructed on Gazebo with three envi-
ronments of different complexity for map building simulation. The different environment
experiments could more accurately reflect the building effect and generalization ability
of the proposed algorithm. Simulation environment 1 had a length and width of 11.25
m × 6.75 m, with regular surroundings and geometrical wall obstacles inside, to test the
algorithm’s building effect on geometrically shaped objects. Simulation environment 2 was
13.5 m × 8.5 m in length and width, and there were right-angle wall obstacles inside, which
were used to test the algorithm’s effect on building the details of corner-shaped objects. The

Mathematics 2023, 11, 1455 12 of 21

overall simulation environment 3 was 11.85 m × 9.75 m, surrounded by irregular walls,
and the internal obstacle objects were also irregular, testing the algorithm for the irregular
walls and the building effect of the objects that account for the object. We compared the
proposed algorithm with the Gmapping and Karto algorithms and visualized the map
building results using the Rviz tool. The results of the SLAM simulation experiments for
building maps are shown in Figure 9.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 22

a reliable reference for real-world application environments. Environment modeling of
the Gazebo simulation platform is shown in Figure 8.

Figure 8. Environment modeling of Gazebo simulation platform.

4.2. Simulation Experiment of SLAM Algorithm
The simulation experiments of SLAM were constructed on Gazebo with three envi-

ronments of different complexity for map building simulation. The different environment
experiments could more accurately reflect the building effect and generalization ability of
the proposed algorithm. Simulation environment 1 had a length and width of 11.25 m ×
6.75 m, with regular surroundings and geometrical wall obstacles inside, to test the algo-
rithm’s building effect on geometrically shaped objects. Simulation environment 2 was
13.5 m × 8.5 m in length and width, and there were right-angle wall obstacles inside, which
were used to test the algorithm’s effect on building the details of corner-shaped objects.
The overall simulation environment 3 was 11.85 m × 9.75 m, surrounded by irregular
walls, and the internal obstacle objects were also irregular, testing the algorithm for the
irregular walls and the building effect of the objects that account for the object. We com-
pared the proposed algorithm with the Gmapping and Karto algorithms and visualized
the map building results using the Rviz tool. The results of the SLAM simulation experi-
ments for building maps are shown in Figure 9.

(a)GmappingSimulation environment

Simulation 3

Simulation 2

Simulation 1

(b)Karto (c)LRBPF-SLAM
Figure 9. SLAM simulation results of three algorithms.

It can be seen from the three groups of simulation experiments that (a) the Gmapping
algorithm distorts and makes a lot of noise in the wall and vertical obstacle construction,

Figure 9. SLAM simulation results of three algorithms.

It can be seen from the three groups of simulation experiments that (a) the Gmapping
algorithm distorts and makes a lot of noise in the wall and vertical obstacle construction,
which is mainly caused by using single odometer data as the input of the distribution
function. The (b) Karto algorithm is relatively good in the overall drawing effect, but in
some details, the problem of wall overlap will appear. This is because the Karto algorithm
is a graph optimization algorithm, which requires multiple loopback detection to optimize
the result of graph construction. The (c) LRBPF-SLAM algorithm achieves satisfactory
performance in the overall mapping effect and details, which benefits from using the
Lidar data bit pose difference as the input of the distribution function, thus improving the
mapping accuracy.

In addition to the subjective evaluation, we selected several feature points of the
simulation environment for dimensional measurements and then compared the errors. The
error results of the SLAM simulation experiments are analyzed in Table 1.

Based on the comparison of the feature locations between the actual and measured
values by the three algorithms, we obtained the error of each feature location, as shown in
Table 1. From the table, we can see that the average errors of simulation 1, simulation 2,
and simulation 3 of the Gmapping algorithm are 10.4 cm, 6.4 cm, and 17.59 cm, respectively,
which are relatively large and become larger as the length of the measured object increases.
Simulation 1, simulation 2, and simulation 3 of the Karto algorithm have average errors of
9.34 cm, 7.64 cm, and 19.45 cm, respectively, the error of the Karto algorithm in measuring
the feature size is larger. The average errors of simulation 1, simulation 2, and simulation 3
of the improved algorithm are 6.9 cm, 2.85 cm, and 11.27 cm, respectively. It can be seen
that the improved algorithm always maintains smaller errors in terms of error control and
has higher accuracy than the other algorithms.

Mathematics 2023, 11, 1455 13 of 21

Table 1. SLAM simulation experiment error results analysis.

Simulation
Gmapping Karto LRBPF-SLAM

Feature
Point

Actual
Value/cm

Measured
Value/cm

Absolute
Error/cm

Measured
Value/cm

Absolute
Error/cm

Measured
Value/cm

Absolute
Error/cm

1

1 100.00 97.99 2.01 98.48 1.52 100.86 0.86
2 175.00 188.15 13.15 185.60 10.60 182.33 7.33
3

Mean
325.00

-
341.03

-
16.03
10.40

340.91
-

15.91
9.34

337.50
-

12.50
6.90

2

1 200.00 208.29 8.29 208.57 8.57 201.72 1.72
2 225.00 216.00 9.00 231.32 6.32 228.88 3.88
3 200.00 196.71 3.29 204.78 4.78 197.84 2.16
4 125.00 131.14 6.14 136.52 11.52 128.02 3.02
5

Mean
175.00

-
169.71

-
5.29
6.40

182.02
-

7.02
7.64

178.45
-

3.45
2.85

3

1 300.00 316.00 16.00 315.74 15.74 312.05 12.05
2 225.00 252.80 27.80 249.47 24.47 2370 12.00
3 350.00 367.35 17.35 378.11 28.11 363.40 13.40
4 300.00 316.00 16.00 319.64 19.64 308.10 8.10
5

Mean
400.00

-
410.8

-
10.80
17.59

409.29
-

9.29
19.45

410.80
-

10.80
11.27

4.3. Simulation Experiment of GBI-RRT Algorithm

In order to verify the effectiveness and search efficiency of the proposed GBI-RRT
algorithm, we conducted simulations in three different environments using MATLAB2019.
The simulated maps are represented with black for obstacles and white for safe space. We
compared the performance of the RRT algorithm, the Bi-RRT algorithm, and the GBI-RRT
algorithm by simulating each algorithm 30 times with the same parameters, including a
fixed step size of 14 and identical start and end point locations. The simulated map had a
horizontal coordinate range of (0, 500) and a vertical coordinate range of (0, 500).

Figure 10 presents the path planning results obtained from the (a) RRT, (b) Bi-RRT,
and (c) GBI-RRT algorithms in the three simulated environments. Figure 10 indicates that
the RRT and Bi-RRT algorithms produce a large number of unnecessary nodes scattered
throughout the simulated map, resulting in discontinuous path curvature. However, the
GBI-RRT algorithm generates a smoother planning path with fewer turning points.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 22

simulated map had a horizontal coordinate range of (0, 500) and a vertical coordinate
range of (0, 500).

Figure 10 presents the path planning results obtained from the (a) RRT, (b) Bi-RRT,
and (c) GBI-RRT algorithms in the three simulated environments. Figure 10 indicates that
the RRT and Bi-RRT algorithms produce a large number of unnecessary nodes scattered
throughout the simulated map, resulting in discontinuous path curvature. However, the
GBI-RRT algorithm generates a smoother planning path with fewer turning points.

Obstacle

Safe space

Simulation 1

Simulation 2

(a)RRT (b)BI-RRT (c)GBI-RRT

Simulation 3

Figure 10. Results of path planning simulation experiment.

Table 2 shows the path planning times and lengths obtained using the RRT, Bi-RRT,
and GBI-RRT algorithms. The results indicate that the RRT algorithm requires a much
longer time to plan the path in all three simulation environments than the other two meth-
ods, especially in the complex obstacle simulated environment 3 where the longest plan-
ning time reaches 110.5s. This is mainly due to the blindness of the expansion of the RRT
algorithm. In contrast, Bi-RRT uses bi-directional search for speed optimization, which
reduces the planning time to some extent. However, using the same random expansion
strategy as RRT does not significantly improve the final path length, with only about a 6
m improvement in simulated environment 1.

Table 2. Comparison of the results of 30 experiments averaged over three path planning algorithms.
The bold font indicates the optimal value.

Simulation Algorithm Time/s Length/m

1
RRT 58.79 860.24

Bi-RRT 16.18 854.30
GBI-RRT 5.08 674.45

2
RRT 98.88 880.39

Bi-RRT 13.19 859.37
GBI-RRT 5.46 679.21

3
RRT 110.50 803.90

Bi-RRT 5.28 777.35
GBI-RRT 4.84 594.14

It is worth noting that the GBI-RRT algorithm probabilistically grows towards the
target point with the help of the proposed target bias sampling, resulting in a significant

Figure 10. Results of path planning simulation experiment.

Mathematics 2023, 11, 1455 14 of 21

Table 2 shows the path planning times and lengths obtained using the RRT, Bi-RRT,
and GBI-RRT algorithms. The results indicate that the RRT algorithm requires a much
longer time to plan the path in all three simulation environments than the other two
methods, especially in the complex obstacle simulated environment 3 where the longest
planning time reaches 110.5 s. This is mainly due to the blindness of the expansion of the
RRT algorithm. In contrast, Bi-RRT uses bi-directional search for speed optimization, which
reduces the planning time to some extent. However, using the same random expansion
strategy as RRT does not significantly improve the final path length, with only about a 6 m
improvement in simulated environment 1.

Table 2. Comparison of the results of 30 experiments averaged over three path planning algorithms.
The bold font indicates the optimal value.

Simulation Algorithm Time/s Length/m

1
RRT 58.79 860.24

Bi-RRT 16.18 854.30
GBI-RRT 5.08 674.45

2
RRT 98.88 880.39

Bi-RRT 13.19 859.37
GBI-RRT 5.46 679.21

3
RRT 110.50 803.90

Bi-RRT 5.28 777.35
GBI-RRT 4.84 594.14

It is worth noting that the GBI-RRT algorithm probabilistically grows towards the
target point with the help of the proposed target bias sampling, resulting in a significant
reduction in planning time compared to the previous two. It performs well in all three
environments with an average planning time of about 5 s. The path length is further
optimized by using a path reorganization strategy for the already planned paths, with an
average reduction of about 181 m compared to the previous two.

Figures 11 and 12 show the line graphs depicting the planning time and planning
paths obtained by the GBI-RRT algorithm in 30 experiments across three environments.
From the plots, it can be observed that the planning time is generally stable within a certain
range, while the planning path length fluctuates within a certain range, indicating good
performance.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 22

reduction in planning time compared to the previous two. It performs well in all three
environments with an average planning time of about 5 s. The path length is further opti-
mized by using a path reorganization strategy for the already planned paths, with an av-
erage reduction of about 181 m compared to the previous two.

Figures 11 and 12 show the line graphs depicting the planning time and planning
paths obtained by the GBI-RRT algorithm in 30 experiments across three environments.
From the plots, it can be observed that the planning time is generally stable within a cer-
tain range, while the planning path length fluctuates within a certain range, indicating
good performance.

Figure 11. Planning time of 30 times GBI-RRT algorithm in three environments.

Figure 12. Planning path length of 30 times GBI-RRT algorithm in three environments.

5. Real Scenario Experiments for Robots
5.1. Real Scenario Experiment Setup

We use the distributed framework of the ROS platform to perform robotic tasks. The
framework enables communication between nodes through a loosely coupled approach
and is able to run on different computers. The robot and the computer must be on the
same LAN to enable remote control of the robot via SSH commands. In addition, we pro-
vide a visual interface to make the control of the robot more intuitive by operating it from
the computer terminal. This configuration greatly improves the flexibility and operability
of the robot tasks.

Our specific configuration is as follows:
1. Host controller Jetson Nano and laptop are connected to the same network. A hotspot

network on the phone is used to cover the robot’s movement area.
2. The “ifconfig” command is used to check the IP addresses of the Jetson Nano and the

laptop.

Figure 11. Planning time of 30 times GBI-RRT algorithm in three environments.

Mathematics 2023, 11, 1455 15 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 22

reduction in planning time compared to the previous two. It performs well in all three
environments with an average planning time of about 5 s. The path length is further opti-
mized by using a path reorganization strategy for the already planned paths, with an av-
erage reduction of about 181 m compared to the previous two.

Figures 11 and 12 show the line graphs depicting the planning time and planning
paths obtained by the GBI-RRT algorithm in 30 experiments across three environments.
From the plots, it can be observed that the planning time is generally stable within a cer-
tain range, while the planning path length fluctuates within a certain range, indicating
good performance.

Figure 11. Planning time of 30 times GBI-RRT algorithm in three environments.

Figure 12. Planning path length of 30 times GBI-RRT algorithm in three environments.

5. Real Scenario Experiments for Robots
5.1. Real Scenario Experiment Setup

We use the distributed framework of the ROS platform to perform robotic tasks. The
framework enables communication between nodes through a loosely coupled approach
and is able to run on different computers. The robot and the computer must be on the
same LAN to enable remote control of the robot via SSH commands. In addition, we pro-
vide a visual interface to make the control of the robot more intuitive by operating it from
the computer terminal. This configuration greatly improves the flexibility and operability
of the robot tasks.

Our specific configuration is as follows:
1. Host controller Jetson Nano and laptop are connected to the same network. A hotspot

network on the phone is used to cover the robot’s movement area.
2. The “ifconfig” command is used to check the IP addresses of the Jetson Nano and the

laptop.

Figure 12. Planning path length of 30 times GBI-RRT algorithm in three environments.

5. Real Scenario Experiments for Robots
5.1. Real Scenario Experiment Setup

We use the distributed framework of the ROS platform to perform robotic tasks. The
framework enables communication between nodes through a loosely coupled approach
and is able to run on different computers. The robot and the computer must be on the same
LAN to enable remote control of the robot via SSH commands. In addition, we provide
a visual interface to make the control of the robot more intuitive by operating it from the
computer terminal. This configuration greatly improves the flexibility and operability of
the robot tasks.

Our specific configuration is as follows:

1. Host controller Jetson Nano and laptop are connected to the same network. A hotspot
network on the phone is used to cover the robot’s movement area.

2. The “ifconfig” command is used to check the IP addresses of the Jetson Nano and
the laptop.

3. In the Ubuntu system of the laptop, the environment variables “ROS_MASTER_URI”
and “ROS_HOSTNAME_URI” are added to the “bashrc” file. “ROS_MASTER_URI”
points to the IP address of the Jetson Nano, while “ROS_HOSTNAME_URI” points to
the IP address of the Ubuntu system on the laptop.

4. Finally, the robot is remotely accessed using SSH commands in the Ubuntu system
terminal for visual remote control. This remote access method makes the robot more
visible and makes it easier for the operator to control. These configuration measures
greatly improved the efficiency and flexibility of the robot’s tasks.

5.2. Experiment of SLAM Algorithm

In our practical experimental study, we conducted SLAM experiments in three real
scenarios. Environment 1 is an indoor bedroom measuring 4.5 × 4.5 m, featuring obstacles
such as cabinets, refrigerators, and tables. Environment 2 is a corner corridor with a
total length of 15 m and a width of 2.5 m, containing obstacles such as regular wooden
doors and irregular walls. Environment 3 is a conference room with a space of 4.5 × 6 m,
featuring obstacles such as tables, chairs, uneven walls, and monitor stands. This scene is
characterized by a high obstacle density. By performing experiments in these diverse real
scenarios, we can more effectively evaluate the proposed method’s effectiveness.

According to the experimental results in Figure 13, it can be seen that the (a) Gmapping
algorithm underperforms in all three scenes with low building accuracy, blurred obstacle
contours, the ghosting phenomenon in local details, incomplete wall building, and an
inability to identify support legs of many chairs. In comparison, the (b) Karto algorithm
can build complete maps in all three scenes, but with average reconstruction of local
details. However, the (c) LRBPF-SLAM algorithm outperforms both algorithms with the

Mathematics 2023, 11, 1455 16 of 21

best overall map-building effect in all three scenes without the ghosting phenomenon. In
the complex conference room environment, the algorithm can fully scan wall contours,
recognize chair support legs with high accuracy, and build highly precise detailed maps.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 22

3. In the Ubuntu system of the laptop, the environment variables “ROS_MASTER_URI”
and “ROS_HOSTNAME_URI” are added to the “bashrc” file. “ROS_MASTER_URI”
points to the IP address of the Jetson Nano, while “ROS_HOSTNAME_URI” points
to the IP address of the Ubuntu system on the laptop.

4. Finally, the robot is remotely accessed using SSH commands in the Ubuntu system
terminal for visual remote control. This remote access method makes the robot more
visible and makes it easier for the operator to control. These configuration measures
greatly improved the efficiency and flexibility of the robot’s tasks.

5.2. Experiment of SLAM Algorithm
In our practical experimental study, we conducted SLAM experiments in three real

scenarios. Environment 1 is an indoor bedroom measuring 4.5 × 4.5 m, featuring obstacles
such as cabinets, refrigerators, and tables. Environment 2 is a corner corridor with a total
length of 15 m and a width of 2.5 m, containing obstacles such as regular wooden doors
and irregular walls. Environment 3 is a conference room with a space of 4.5 × 6 m, featur-
ing obstacles such as tables, chairs, uneven walls, and monitor stands. This scene is char-
acterized by a high obstacle density. By performing experiments in these diverse real sce-
narios, we can more effectively evaluate the proposed method’s effectiveness.

According to the experimental results in Figure 13, it can be seen that the (a) Gmap-
ping algorithm underperforms in all three scenes with low building accuracy, blurred ob-
stacle contours, the ghosting phenomenon in local details, incomplete wall building, and
an inability to identify support legs of many chairs. In comparison, the (b) Karto algorithm
can build complete maps in all three scenes, but with average reconstruction of local de-
tails. However, the (c) LRBPF-SLAM algorithm outperforms both algorithms with the best
overall map-building effect in all three scenes without the ghosting phenomenon. In the
complex conference room environment, the algorithm can fully scan wall contours, rec-
ognize chair support legs with high accuracy, and build highly precise detailed maps.

1

2

3

(a)Gmapping (b)Karto (c)LRBPF-SLAMreal scenario
Figure 13. SLAM results of three algorithms in real scenarios.

Furthermore, we selected several typical feature locations in the real scenarios and
compared their real values with the measured values, producing error results analysis
tables.

Figure 13. SLAM results of three algorithms in real scenarios.

Furthermore, we selected several typical feature locations in the real scenarios and
compared their real values with the measured values, producing error results analysis ta-
bles.

According to the data in Table 3, it can be found that the average error of the Gmapping
algorithm in the three different environments is 3.44 cm, 8.95 cm, and 6.74 cm, respectively.
It is worth noting that the maximum error of the algorithm in feature location 3 of experi-
ment 3 reaches 12.9 cm; in comparison, the average error of the Karto algorithm in these
three environments is 3.83 cm, 6.04 cm, and 5.86 cm. The LRBPF-SLAM algorithm, on the
other hand, exhibits the best accuracy, with average errors of 2.63 cm, 4.33 cm, and 2.74 cm
in the three environments, and the maximum error is only 7.5 cm in feature 1 of experiment
2. The algorithm is also able to accurately reconstruct the details of the environment. The
experimental results show that the proposed LRBPF-SLAM algorithm has a small overall
error and high accuracy in map building, and can effectively reconstruct the overall state of
the environment. From these data, it can be concluded that the LRBPF-SLAM algorithm has
significant advantages, especially in complex environments that show better performance.

Mathematics 2023, 11, 1455 17 of 21

Table 3. SLAM experimental error results analysis in real scenes. The bold font indicates the
optimal value.

Experiment
Gmapping Karto LRBPF-SLAM

Feature
Point

Actual
Value/cm

Measured
Value/cm

Absolute
Error/cm

Measured
Value/cm

Absolute
Error/cm

Measured
Value/cm

Absolute
Error/cm

1

1 42.00 45.30 3.30 45.48 3.48 46.92 4.92
2 41.00 47.11 6.11 50.94 9.94 46.92 4.92
3 50.00 48.92 1.08 49.12 0.88 50.55 0.55
4

Mean
112.00

-
108.72

-
3.28
3.44

110.98
-

1.02
3.83

111.89
-

0.11
2.63

2

1 139.00 151.00 12.00 149.60 8.30 146.50 7.50
2 115.00 126.40 11.40 124.35 7.35 121.00 6.00
3 84.00 92.60 5.60 93.00 3.20 89.40 2.40
4 104.00 114.80 10.80 112.90 5.70 111.20 5.10
5 115.00 131.30 7.80 127.70 8.50 118.60 3.60
6

Mean
57.00

-
63.10

-
6.10
8.95

60.20
-

3.20
6.04

58.40
-

1.40
4.33

3

1 57.00 64.30 5.30 53.60 3.40 59.10 2.10
2 41.00 47.80 6.80 45.60 7.60 42.50 1.50
3 370.00 382.90 12.90 379.80 9.80 378.70 5.20
4 43.00 46.50 3.50 39.90 3.10 44.80 1.80
5

Mean
39.00

-
42.20

-
5.20
6.74

43.50
-

4.50
5.68

42.10
-

3.10
2.74

5.3. Experiment of Path Planning Algorithm

We compare the path planning results of the RRT, Bi-RRT and GBI-RRT algorithms in
three different real scenarios.

As Figure 14 shows, the map of the three experimental sites obtained from the experi-
ments in the previous section, the starting and ending points of the mobile robot are set.
Table 4 shows the experimental data of path planning for the three algorithms RRT, Bi-RRT,
and GBI-RRT. To minimize the error, the experimental data represent the average value of
20 experiments.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 22

(a) Environment 1 (b) Environment 2 (c) Environment 3

Figure 14. Three experimental maps.

As shown in Table 4, the 20 experiments were conducted for three real scenarios, and
then their averages were taken for path planning quality analysis.

Table 4. Quality analysis of three algorithms for path planning in three different environments.
The bold font indicates the optimal value.

Environment Algorithm Time/s Length/m No. of turns

1
RRT 6.95 5.97 2.65

Bi-RRT 6.90 5.96 2.50
GBI-RRT 4.55 5.24 0.45

2
RRT 31.25 18.14 7.55

Bi-RRT 29.90 17.31 7.20
GBI-RRT 26.15 16.42 4.75

3
RRT 17.95 11.29 4.85

Bi-RRT 17.70 11.05 4.70
GBI-RRT 14.55 8.70 2.50

In the simple Environment 1, the RRT and Bi-RRT algorithms require an average of

2.65 and 2.5 turns, respectively, while GBI-RRT requires only 0.45 turns on average, and
the other two metrics (time and length) differ less among the three algorithms. In Envi-
ronment 2, the number of turns increases for all three algorithms. Nevertheless, GBI-RRT
outperforms the other two algorithms in terms of path planning time and length, with 5.1
and 3.75 s less time than RRT and Bi-RRT, respectively, and less difference in planning
length between the three algorithms. In Environment 3, compared with Bi-RRT, the path
planning time of GBI-RRT is reduced by 3.15 s, the path planning length is reduced by
2.35 m, and the number of turns is reduced by 2.2 turns. These results show that the GBI-
RRT algorithm can quickly generate a smooth and optimal path from the origin to the
destination.

5.4. Robot Navigation Process
Figure 15 depicts the autonomous navigation process of the robot, which is con-

ducted within a known map constructed by SLAM. Connect to the computer through the
ssh command to control the robot, run the navigation command and select the map path,
and then start the visualization tool Rviz.

As shown in Figure 15, the lower left corner depicts the pose of the robot in the real
environment. The red circle located on the top menu bar is the 2D Pose Estimate that is
utilized to determine the robot’s initial pose, with the red circle marked on the map rep-
resenting the determined initial pose. The shaded square surrounding the robot denotes
the local cost map, which represents the area for local path planning. By selecting the nav-
igation endpoint in the upper right corner of the map, the robot can execute autonomous
navigation operations.

Figure 14. Three experimental maps.

As shown in Table 4, the 20 experiments were conducted for three real scenarios, and
then their averages were taken for path planning quality analysis.

In the simple Environment 1, the RRT and Bi-RRT algorithms require an average of 2.65
and 2.5 turns, respectively, while GBI-RRT requires only 0.45 turns on average, and the other
two metrics (time and length) differ less among the three algorithms. In Environment 2,
the number of turns increases for all three algorithms. Nevertheless, GBI-RRT outperforms
the other two algorithms in terms of path planning time and length, with 5.1 and 3.75 s less
time than RRT and Bi-RRT, respectively, and less difference in planning length between
the three algorithms. In Environment 3, compared with Bi-RRT, the path planning time
of GBI-RRT is reduced by 3.15 s, the path planning length is reduced by 2.35 m, and the

Mathematics 2023, 11, 1455 18 of 21

number of turns is reduced by 2.2 turns. These results show that the GBI-RRT algorithm
can quickly generate a smooth and optimal path from the origin to the destination.

Table 4. Quality analysis of three algorithms for path planning in three different environments. The
bold font indicates the optimal value.

Environment Algorithm Time/s Length/m No. of Turns

1
RRT 6.95 5.97 2.65

Bi-RRT 6.90 5.96 2.50
GBI-RRT 4.55 5.24 0.45

2
RRT 31.25 18.14 7.55

Bi-RRT 29.90 17.31 7.20
GBI-RRT 26.15 16.42 4.75

3
RRT 17.95 11.29 4.85

Bi-RRT 17.70 11.05 4.70
GBI-RRT 14.55 8.70 2.50

5.4. Robot Navigation Process

Figure 15 depicts the autonomous navigation process of the robot, which is conducted
within a known map constructed by SLAM. Connect to the computer through the ssh
command to control the robot, run the navigation command and select the map path, and
then start the visualization tool Rviz.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22

Figure 15. Initial position and pose of navigation robot.

Figure 16 is the robot’s initial pose and planning information during the movement
process. The yellow line segment situated in front of the robot represents the local path
planning Dynamic Window Approach (DWA) algorithm [34]. Whenever the robot ap-
proaches an obstacle, the DWA algorithm executes obstacle avoidance processing by se-
lecting a safe path around the obstacle. Meanwhile, the long red line segment indicates
the path planned by the global path planning GBI-RRT. Finally, in Figure 17, the robot
arrives at its destination, concluding the navigation.

(a) Initial planning information. (b) Motion process planning information.

Figure 16. Mobile Robot Status Information.

Figure 15. Initial position and pose of navigation robot.

As shown in Figure 15, the lower left corner depicts the pose of the robot in the real
environment. The red circle located on the top menu bar is the 2D Pose Estimate that
is utilized to determine the robot’s initial pose, with the red circle marked on the map
representing the determined initial pose. The shaded square surrounding the robot denotes
the local cost map, which represents the area for local path planning. By selecting the
navigation endpoint in the upper right corner of the map, the robot can execute autonomous
navigation operations.

Figure 16 is the robot’s initial pose and planning information during the movement
process. The yellow line segment situated in front of the robot represents the local path plan-
ning Dynamic Window Approach (DWA) algorithm [34]. Whenever the robot approaches
an obstacle, the DWA algorithm executes obstacle avoidance processing by selecting a
safe path around the obstacle. Meanwhile, the long red line segment indicates the path
planned by the global path planning GBI-RRT. Finally, in Figure 17, the robot arrives at its
destination, concluding the navigation.

Mathematics 2023, 11, 1455 19 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22

Figure 15. Initial position and pose of navigation robot.

Figure 16 is the robot’s initial pose and planning information during the movement
process. The yellow line segment situated in front of the robot represents the local path
planning Dynamic Window Approach (DWA) algorithm [34]. Whenever the robot ap-
proaches an obstacle, the DWA algorithm executes obstacle avoidance processing by se-
lecting a safe path around the obstacle. Meanwhile, the long red line segment indicates
the path planned by the global path planning GBI-RRT. Finally, in Figure 17, the robot
arrives at its destination, concluding the navigation.

(a) Initial planning information. (b) Motion process planning information.

Figure 16. Mobile Robot Status Information.

Figure 16. Mobile Robot Status Information.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22

Figure 15. Initial position and pose of navigation robot.

Figure 16 is the robot’s initial pose and planning information during the movement
process. The yellow line segment situated in front of the robot represents the local path
planning Dynamic Window Approach (DWA) algorithm [34]. Whenever the robot ap-
proaches an obstacle, the DWA algorithm executes obstacle avoidance processing by se-
lecting a safe path around the obstacle. Meanwhile, the long red line segment indicates
the path planned by the global path planning GBI-RRT. Finally, in Figure 17, the robot
arrives at its destination, concluding the navigation.

(a) Initial planning information. (b) Motion process planning information.

Figure 16. Mobile Robot Status Information.

Figure 17. End point posture.

6. Conclusions

This study proposes an enhanced LRBPF-SLAM and GBI-RRT path planning algorithm
to improve the navigation of autonomous mobile robots in indoor environments. LRBPF-
SLAM overcomes the limitations of traditional distribution functions by utilizing Lidar
data, resulting in more accurate pose estimation of the robot. GBI-RRT incorporates target
bias sampling to efficiently guide nodes towards the goal, reducing ineffective searches.
The path reorganization strategy further improves navigation efficiency by eliminating
low-quality nodes and improving path curvature. The proposed method is evaluated
in simulations and field experiments, and the results demonstrate superior performance
compared to existing algorithms. Future research could focus on applying the currently
proposed methods to more complex environments to better address the challenges of the
real world. Researchers can also consider how to improve model speed and accuracy more
effectively, and apply these algorithms to other fields.

Author Contributions: Conceptualization, J.S., J.Y. and X.H.; methodology, J.S. and J.Z.; software, J.Z.;
validation, J.Z.; formal analysis, J.S.; investigation, H.G.; resources, H.G.; data curation, J.Z.; writing—
original draft preparation, J.S.; writing—review and editing, X.H.; visualization, J.S.; supervision,
J.Y.; project administration, X.H.; funding acquisition, X.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the [Liaoning Province Higher Education Innovative Talents
Program #1] under Grant [number LR2019058] and [Liaoning Province Joint Open Fund for Key
Scientific and Technological Innovation Bases #2] under Grant [number 2021-KF-12-05].

Mathematics 2023, 11, 1455 20 of 21

Data Availability Statement: Data sharing not applicable, No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Acknowledgments: The authors would like to acknowledge support from the following projects: Liaon-
ing Province Higher Education Innovative Talents Program Support Project (Grant No. LR2019058),
Liaoning Province Joint Open Fund for Key Scientific and Technological Innovation Bases (Grant
No.2021-KF-12-05) and Zhejiang Provincial Natural Science Foundation of China (LQ23F030001).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Py, F.; Robbiani, G.; Marafioti, G.; Ozawa, Y.; Watanabe, M.; Takahashi, K.; Tadokoro, S. SMURF software architecture for low

power mobile robots: Experience in search and rescue operations. In Proceedings of the 2022 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), Sevilla, Spain, 8–10 November 2022; pp. 264–269. [CrossRef]

2. Sui, L.; Lin, L. Design of Household Cleaning Robot Based on Low-cost 2D LIDAR SLAM. In Proceedings of the 2020 International
Symposium on Autonomous Systems (ISAS), Guangzhou, China, 6–8 December 2020; pp. 223–227. [CrossRef]

3. Farooq, M.U.; Eizad, A.; Bae, H.-K. Power solutions for autonomous mobile robots: A survey. Robot. Auton. Syst. 2023, 159,
104285. [CrossRef]

4. Ismail, H.; Roy, R.; Sheu, L.-J.; Chieng, W.-H.; Tang, L.-C. Exploration-Based SLAM (e-SLAM) for the Indoor Mobile Robot Using
Lidar. Sensors 2022, 22, 1689. [CrossRef]

5. Gao, L.; Dong, C.; Liu, X.; Ye, Q.; Zhang, K.; Chen, X. Improved 2D laser slam graph optimization based on Cholesky de-
composition. In Proceedings of the 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT),
Istanbul, Turkey, 17–20 May 2022; Volume 1, pp. 659–662.

6. Hampton, B.; Al-Hourani, A.; Ristic, B.; Moran, B. RFS-SLAM robot: An experimental platform for RFS based occupancy-grid
SLAM. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017.

7. Juric, A.; Kendes, F.; Markovic, I.; Petrovic, I. A Comparison of Graph Optimization Approaches for Pose Estimation in SLAM. In
Proceedings of the 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO),
Opatija, Croatia, 27 September–1 October 2021; pp. 1113–1118. [CrossRef]

8. Dhaoui, R.; Rahmouni, A. Mobile Robot Navigation in Indoor Environments: Comparison of Lidar-Based 2D SLAM Algorithms.
In Design Tools and Methods in Industrial Engineering II: Proceedings of the Second International Conference on Design Tools and Methods
in Industrial Engineering, ADM 2021, Rome, Italy, 9–10 September 2021; Springer International Publishing: Berlin/Heidelberg,
Germany, 2021; pp. 569–580.

9. Konolige, K.; Grisetti, G.; Kümmerle, R.; Burgard, W.; Limketkai, B.; Vincent, R. Efficient sparse pose adjustment for 2D map-ping.
In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October
2010; pp. 22–29.

10. Ribeiro, M.I. Kalman and extended kalman filters: Concept, derivation and properties. Inst. Syst. Robot. 2004, 43, 3736–3741.
11. Talwar, D.; Jung, S. Particle filter-based Localization of a mobile robot by using a single Lidar sensor under SLAM in ROS

environment. In Proceedings of the 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju,
Republic of Korea, 15–18 October 2019; Volume 43, pp. 3736–3741. [CrossRef]

12. Cai, Y.; Qin, T. Design of Multisensor Mobile Robot Vision Based on the RBPF-SLAM Algorithm. Math. Probl. Eng. 2022, 2022,
1518968. [CrossRef]

13. Dai, Y.; Zhao, M. Grey Wolf Resampling-Based Rao-Blackwellized Particle Filter for Mobile Robot Simultaneous Localization and
Mapping. J. Robot. 2021, 2021, 4978984. [CrossRef]

14. Tee, Y.K.; Han, Y.C. Lidar-based 2D SLAM for mobile robot in an indoor environment: A review. In Proceedings of the 2021
International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri, Malaysia, 7–9 July 2021; pp.
1–7. [CrossRef]

15. Maziarz, B.; Domański, P.D. Customized fastSLAM algorithm: Analysis and assessment on real mobile platform. Nonlinear Dyn.
2022, 110, 669–691. [CrossRef]

16. Muhammad, A.; Ali Mohammed, A.H.; Turaev, S.; Abdulghafor, R.; Shanono, I.H.; Alzaid, Z.; Alruban, A.; Alabdan, R.; Dutta,
A.K.; Almotairi, S. A Generalized Laser Simulator Algorithm for Mobile Robot Path Planning with Obstacle Avoidance. Sensors
2022, 22, 8177. [CrossRef]

17. LaValle, S.M. Rapidly-exploring random trees: A new tool for path planning. Annu. Res. Rep. 1998.
18. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy; ACM: New

York, NY, USA, 2022; pp. 287–290. [CrossRef]
19. Jin, J.; Zhang, Y.; Zhou, Z.; Jin, M.; Yang, X.; Hu, F. Conflict-based search with D* lite algorithm for robot path planning in

unknown dynamic environments. Comput. Electr. Eng. 2023, 105, 108473. [CrossRef]
20. Liu, B.; Liu, C. Path planning of mobile robots based on improved RRT algorithm. J. Phys. Conf. Ser. 2022, 2216, 012020. [CrossRef]
21. Pohl, I. BI-Directional and Heuristic Search in Path Problems; Stanford Linear Accelerator Center: Menlo Park, CA, USA, 1969.
22. Li, Z.; Li, L.; Zhang, W.; Wu, W.; Zhu, Z. Research on Unmanned Ship Path Planning based on RRT Algorithm. J. Phys. Conf. Ser.

2022, 2281, 012004. [CrossRef]

http://doi.org/10.1109/ssrr56537.2022.10018809
http://doi.org/10.1109/isas49493.2020.9378863
http://doi.org/10.1016/j.robot.2022.104285
http://doi.org/10.3390/s22041689
http://doi.org/10.23919/mipro52101.2021.9596721
http://doi.org/10.23919/iccas47443.2019.8971555
http://doi.org/10.1155/2022/1518968
http://doi.org/10.1155/2021/4978984
http://doi.org/10.1109/gecost52368.2021.9538731
http://doi.org/10.1007/s11071-022-07633-x
http://doi.org/10.3390/s22218177
http://doi.org/10.1145/3544585.3544600
http://doi.org/10.1016/j.compeleceng.2022.108473
http://doi.org/10.1088/1742-6596/2216/1/012020
http://doi.org/10.1088/1742-6596/2281/1/012004

Mathematics 2023, 11, 1455 21 of 21

23. Zhang, X.; Zhu, T.; Du, L.; Hu, Y.; Liu, H. Local Path Planning of Autonomous Vehicle Based on an Improved Heuristic Bi-RRT
Algorithm in Dynamic Obstacle Avoidance Environment. Sensors 2022, 22, 7968. [CrossRef] [PubMed]

24. Xu, J.; Tian, Z.; He, W.; Huang, Y. A fast path planning algorithm fusing PRM and P-BI-RRT. In Proceedings of the 2020 11th
International Conference on Prognostics and System Health Management (PHM-2020 Jinan), Jinan, China, 23–25 October; pp.
503–508.

25. Gan, Y.; Zhang, B.; Ke, C.; Zhu, X.F.; He, W.M.; Ihara, T. Research on Robot Motion Planning Based on RRT Algorithm with
Nonholonomic Constraints. Neural Process. Lett. 2021, 53, 3011–3029. [CrossRef]

26. Wang, J.; Li, B.; Meng, M.Q.-H. Kinematic Constrained Bi-directional RRT with Efficient Branch Pruning for robot path planning.
Expert Syst. Appl. 2020, 170, 114541. [CrossRef]

27. Grothe, F.; Hartmann, V.N.; Orthey, A.; Toussaint, M. ST-RRT*: Asymptotically-Optimal Bidirectional Motion Planning through
Space-Time. arXiv 2022, arXiv:2203.02176.

28. Zhao, H. Path Planning of Mobile Robots Based on Improved Bi-RRT Algorithm. In Proceedings of the 2022 IEEE 5th International
Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 18–20 November 2022; pp.
1043–1050. [CrossRef]

29. Ma, G.; Duan, Y.; Li, M.; Xie, Z.; Zhu, J. A probability smoothing Bi-RRT path planning algorithm for indoor robot. Future Gener.
Comput. Syst. 2023, 143, 349–360. [CrossRef]

30. Choi, J.; Jeong, B.; Theotokatos, G.; Tezdogan, T. Approach an autonomous vessel as a single robot with Robot Operating System
in virtual environment. J. Int. Marit. Saf. Environ. Aff. Shipp. 2022, 6, 50–66. [CrossRef]

31. Kang, J.-G.; Lim, D.-W.; Choi, Y.-S.; Jang, W.-J.; Jung, J.-W. Improved RRT-Connect Algorithm Based on Triangular Inequality for
Robot Path Planning. Sensors 2021, 21, 333. [CrossRef] [PubMed]

32. Zhang, Y.; Wang, H.; Yin, M.; Wang, J.; Hua, C. Bi-AM-RRT*: A Fast and Efficient Sampling-Based Motion Planning Algorithm in
Dynamic Environments. arXiv 2023, arXiv:2301.11816.

33. Platt, J.; Ricks, K. Comparative Analysis of ROS-Unity3D and ROS-Gazebo for Mobile Ground Robot Simulation. J. Intell. Robot.
Syst. 2022, 106, 80. [CrossRef]

34. Li, Y.; Li, J.; Zhou, W.; Yao, Q.; Nie, J.; Qi, X. Robot Path Planning Navigation for Dense Planting Red Jujube Orchards Based on
the Joint Improved A* and DWA Algorithms under Laser SLAM. Agriculture 2022, 12, 1445. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s22207968
http://www.ncbi.nlm.nih.gov/pubmed/36298319
http://doi.org/10.1007/s11063-021-10536-4
http://doi.org/10.1016/j.eswa.2020.114541
http://doi.org/10.1109/auteee56487.2022.9994543
http://doi.org/10.1016/j.future.2023.02.004
http://doi.org/10.1080/25725084.2021.2014244
http://doi.org/10.3390/s21020333
http://www.ncbi.nlm.nih.gov/pubmed/33419005
http://doi.org/10.1007/s10846-022-01766-2
http://doi.org/10.3390/agriculture12091445

	Introduction
	Robot Components and System Framework
	Algorithm Improvement
	LRBPF-SLAM Algorithm
	GBI-RRT Algorithm

	Simulation Experiments of Robots
	Simulation Platform
	Simulation Experiment of SLAM Algorithm
	Simulation Experiment of GBI-RRT Algorithm

	Real Scenario Experiments for Robots
	Real Scenario Experiment Setup
	Experiment of SLAM Algorithm
	Experiment of Path Planning Algorithm
	Robot Navigation Process

	Conclusions
	References

