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Abstract: The analysis of global epidemics, such as SARS, MERS, and COVID-19, suggests a hi-
erarchical structure of the epidemic process. The pandemic wave starts locally and accelerates
through human-to-human interactions, eventually spreading globally after achieving an efficient
and sustained transmission. In this paper, we propose a hierarchical model for the virus spread that
divides the spreading process into three levels: a city, a region, and a country. We define the virus
spread at each level using a modified susceptible–exposed–infected–recovery–dead (SEIRD) model,
which assumes migration between levels. Our proposed controlled hierarchical epidemic model
incorporates quarantine and vaccination as complementary optimal control strategies. We analyze the
balance between the cost of the active virus spread and the implementation of appropriate quarantine
measures. Furthermore, we differentiate the levels of the hierarchy by their contribution to the cost
of controlling the epidemic. Finally, we present a series of numerical experiments to support the
theoretical results obtained.

Keywords: epidemic process; compartment epidemic models; SEIRD model; optimal control; vaccination
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1. Introduction

Global epidemics provide a serious medical challenge worldwide. Millions of mortal-
ity cases each year are estimated to be directly related to infectious diseases [1]. Attempts
to suppress the spread of infections are usually divided into pharmaceutical and non-
pharmaceutical interventions: for example, several different vaccines against the novel
coronavirus were developed quickly and were available within months of the onset of
the epidemic; on the other hand, measures were taken to reduce the interregional and
urban mobility of citizens, and the so-called lockdowns [2]. The relationship between these
measures and the trade-off in choosing the appropriate response to an epidemic is the
subject of much research on epidemic prevention [3–5].

The main tool for studying the effectiveness of various intervention policies is the mathe-
matical modelling of the spreading processes [6–9]. Both types of interventions are reflected
in the work of researchers—both pharmaceutical [10,11] and non-pharmaceutical [3,12–14]
interventions. In our model, we combine these types of interventions, introducing the
treatment as a controlled parameter and vaccination as an exogenous one, while allowing
the population to enter a state of self-isolation or quarantine. Importantly, we divide the
population into several related levels, the size and configuration of the links between which
allow us to interpret them as hierarchical levels.

The idea of differentiating populations in epidemic models according to different
characteristics is not novel. In the COVID-19 period, many predictive models were based
on the classical SEIR, but were a tuple of such models, each relating to a different age group
(see, for example [15–19]. On the other hand, so-called spatial models of the epidemic
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spread, which also distinguish populations on a territorial basis, became widespread: this
gave rise first to the metapopulation or multi-group/multi-cluster epidemic models [20–22],
and later to network models (an overview of such models is provided, for example, in [23]).

In the current research, we were motivated by the unprecedented outbreak of COVID-
19 that began in one location in China and spread throughout the world [24]. We assumed
the epidemic process could be divided into several hierarchical levels or clusters: a city,
a region, and a country. Depending on the size of the population in each level/cluster,
the pathogen’s spread rate will differ. These assumptions lead to a hierarchical model
with three levels and the possibility of migration between levels. Epidemics are assumed
to originate from the first cluster, which is the smallest, and spread to the second and
third clusters based on infection and migration rates. In this paper, we formulate the
hierarchical epidemic model with controls, considering the quarantine and vaccination
as countermeasures against the spread of the virus. The model assumes that quarantine
measures can only be applied at the first level of the system, while vaccination and treatment
can be applied at any level. We focus on the first cluster in the proposed model, as it has the
potential to halt the spread of infection at the local level and prevent further transmission.
Our aim is to investigate the effectiveness of a combination of different control strategies
and compare their effectiveness.

In our previous work [25], we investigated the unidirectional spread of infection: from
the initial level to the subsequent ones. Such dynamics were interpreted as the migration of
individuals through land/air transport from the local level to the next. However, there is
also an inverse relationship: even under the threat of infection, individuals migrate between
levels and, among other things, can return to the source of infection due to compelling
individual reasons: be it economic reasons, such as a place of study or work, or personal
reasons, for example, the permanent residence of relatives and friends. Therefore, in this
model, we modified the mechanism for the transition of individuals between levels. At
the same time, the infection continues to initialize on the first layer and spreads in the
direct path—from the first level, through the second and to the third, and in the opposite
direction—from the third through the second back to the first. A difference from the
previous work is the addition of a dead subgroup and analysis of the basic reproductive
number R0 for our model. We also added the vaccination process, which is one of the
effective methods of preventing the spread of the epidemic.

We present the optimal control problem for the hierarchical epidemic model with a
intra-level migration and analyze the structure of the optimal protective measures. The
analysis of the model includes the construction of the basic reproduction number R0 to
estimate the impact of the different parameters on the propagation of the pathogen in the
different clusters. A series of numerical experiments are proposed to support the received
theoretical results.

This paper is organized as follows: Section 2 introduces the initial model, Section 3
analyzes the system and the basic reproduction number, Section 4 formulates the optimal
control problem and presents the structure of the optimal control strategies, Section 5
provides numerical simulations to validate the theoretical results, and Section 6 summarizes
the main findings and concludes the paper.

2. Deterministic Epidemic Model

In contrast to classical SIRS models, which divide populations into three groups, this
section presents a modified SQEIRD model (susceptible–quarantined–exposed–infected–
recovered–dead) with three levels. The model considers one virus circulating in a pop-
ulation of size N and enables us to capture epidemic processes occurring on different
levels. These levels can be defined as individual regions, villages, cities within a country, or
different countries.

We assume that if an epidemic is initiated in a small village (the first cluster), it can
extend to a city, region, or country (the second and third clusters). We formalize this
epidemic situation in a mathematical model. Virus propagation starts at the first level of the
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hierarchy and continues on the i-th levels, i = 2, 3, based on migration rates. The spreading
process is modeled using a susceptible–quarantined–exposed–infected–recovered–dead
(SQEIRD) model at the first level hierarchy. This model divides the population into six
subgroups: susceptible (S), quarantined (Q), exposed (E), infected (I), recovered (R), and
dead (D). The susceptible agents are at risk of contracting the virus, and the recovered
agents are immune. The quarantined agents are isolated and cannot come into contact with
potentially infected agents, making them immune to infection. In this model, vaccination is
used in the susceptible groups as a protection measure. WHO reports have demonstrated
that vaccination is the most effective way to protect the population from infectious diseases.
There is a risk of breaking quarantine rules and coming into contact with an exposed or
infected agent, which increases the probability of infection.

The pathogen comes from infected and exposed subgroups into contact with suscep-
tible and quarantine individuals that they have never before encountered. Members of
the recovered subgroup receive the immunity as a result of a disease or vaccination. We
assume that a subset of the exposed group in the population can transmit the virus without
developing symptoms. Unlike the first cluster, the second and third clusters consist of
the following subgroups: susceptible (S), exposed (E), infected (I), recovered (R), and dead
(D). The susceptible group in all clusters can transition to the exposed group at a rate
of βi, i = 1, 3. Exposed agents develop symptoms and become infected at the rate of ki,
i = 1, 3. The self-recovery rates are the same in all clusters, and are defined as σi, i = 1, 3.
The parameter δ indicates the rate at which susceptible agents choose isolation and become
quarantined. With probability p, residents from the Quarantine group can contact an agent
from the Exposed group and become exposed with a rate of pβ1. Vaccination is represented
by a parameter νi, which allows susceptible agents to become immune to the virus and
belong to the recovered subgroup. The death rate at level i is denoted by µi. Addition-
ally, we assume that migration occurs between clusters, and that migration rates are mij

x ,
x = S, E, R, and i, j = 1, 2, 3. The transition scheme is illustrated in Figure 1.

Figure 1. The scheme of transition between groups S, Q, E, I, R, D, and hierarchical levels.

We describe the epidemic process as a set of nonlinear differential equations, where
Ni(t) denotes the population size at level i at time t. Specifically, nSi (t) represents the
number of susceptible individuals, nQ1(t) represents the number of quarantined indi-
viduals, nEi (t) represents the number of exposed individuals, nIi (t) represents the num-
ber of infected individuals, nRi (t) represents the number of recovered individuals, and
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nDi (t) represents the number of dead individuals. The following conditions must be satis-
fied: nS1(t) + nQ1(t) + nE1(t) + nI1(t) + nR1(t) + nD1(t) = N1(t), nSj(t) + nEj(t) + nIj(t) +
nRj(t) + nDj(t) = Nj(t) for j = 2, 3, and N1(t) + N2(t) + N3(t) = N.

Based on the above definitions, the variables Si(t), Q1(t), Ei(t), Ii(t), Ri(t), and Di(t)
indicate the proportions of susceptible, quarantined, exposed, infected, recovered, and
dead individuals at time t ∈ [0, T], where

Si(t) =
nSi

(t)
N , Q1(t) =

nQ1
(t)

N , Ei(t) =
nEi

(t)
N ,

Ii(t) =
nIi

(t)
N , Ri(t) =

nRi
(t)

N , Di(t) =
nDi

(t)
N .

At the start of the epidemic (t = 0), the majority of individuals are in the susceptible
state, and only a small fraction are infected. The initial states for all levels are as follows:

1. S1(0) = S0
1 ∈ (0, 1), E1(0) = E0

1 ∈ (0, 1), I1(0) = I0
1 ∈ (0, 1), Q1(0) = R1(0) =

D1(0) = 0;
2. S2(0) = S0

2 ∈ (0, 1), E2(0) = I2(0) = R2(0) = D2(0) = 0;
3. S3(0) = S0

3 ∈ (0, 1), E3(0) = I3(0) = R3(0) = D3(0) = 0.

The set of nonlinear differential equations describes the spread of the virus in each
cluster/level of the population. On the first level:

Ṡ1 = −β1(E1 + I1)S1 − ν1S1 − δS1 −m12
S S1 + m21

S S2;
Q̇1 = δS1 − pβ1Q1(E1 + I1);
Ė1 = β1(E1 + I1)S1 + pβ1Q1(E1 + I1)− k1E1 −m12

E E1 + m21
E E2;

İ1 = k1E1 − (σ1 + u1)I1 − µ1 I1;
Ṙ1 = ν1S1 + (σ1 + u1)I1 −m12

R R1 + m21
R R2;

Ḋ1 = µ1 I1.

(1)

On the second level:

Ṡ2 = −β2(E2 + I2)S2 − ν2S2 + m12
S S1 −m21

S S2 + m32
S S3 −m23

S S2;
Ė2 = β2(E2 + I2)S2 − k2E2 + m12

E E1 −m21
E E2 + m32

E E3 −m23
E E2;

İ2 = k2E2 − (σ2 + u2)I2 − µ2 I2;
Ṙ2 = ν2S2 + (σ2 + u2)I2 + m12

R R1 −m21
R R2 + m32

R R3 −m23
R R2;

Ḋ2 = µ2 I2.

(2)

On the third level:

Ṡ3 = −β3(E3 + I3)S3 − ν3S3 −m32
S S3 + m23

S S2;
Ė3 = β3(E3 + I3)S3 − k3E3 −m32

E E3 + m23
E E2;

İ3 = k3E3 − (σ3 + u3)I3 − µ3 I3;
Ṙ3 = ν3S3 + (σ3 + u3)I3 −m32

R R3 + m23
R R2;

Ḋ3 = µ3 I3.

(3)

3. Basic Reproduction Number R0

This section employs the next generation method (NGM) [26,27] to estimate the basic
reproduction number R0 in the model (1)–(3), which represents the average number of
cases of an infectious disease that arise via transmission from a single infected individual
and approximates the asymptotic behavior of an epidemic process. The value of R0 is
crucial in evaluating the infection propagation in the entire population, as the number of
infected individuals will asymptotically decrease if R0 < 1, and increase otherwise.

The NGM method involves transforming the original system into dxi
dt = Fi −Vi, where

the matrices F and V are given by F = dFi
dxi

and V = dVi
dxi

, respectively. Here, i refers to the
indices of all infected state variables in the initial system of differential equations.

In the model (1)–(3), all states Si, Q1Ei, Ii, Ri, Di, i = 1, 3 can be divided into two
groups: infected and non-infected states. Specifically, the infected states are Ei, Ii, i = 1, 3,
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and therefore, the matrices F and V have a size of 6× 6, according to NGM. These matrices
are presented below.

F =



β1S1 + pβ1Q1 β1S1 + pβ1Q1 0 0 0 0
0 0 0 0 0 0
0 0 β2S2 β2S2 0 0
0 0 0 0 0 0
0 0 0 0 β3S3 β3S3
0 0 0 0 0 0

;

V =



k1 + m12
E 0 −m21

E 0 0 0
−k1 σ1 + u1 + µ1 0 0 0 0
−m12

E 0 k2 + m21
E + m23

E 0 −m32
E 0

0 0 −k2 σ2 + u2 + µ2 0 0
0 0 −m23

E 0 k3 + m32
E 0

0 0 0 0 −k3 σ3 + u3 + µ3

;

Disease-free equilibrium:

S∗1 =
m21

S m32
S

m12
S m32

S + m21
S m32

S + m23
S m12

S
, Q∗1 = E∗1 = I∗1 = R∗1 = D∗1 = 0,

S∗2 =
m12

S m32
S

m12
S m32

S + m21
S m32

S + m23
S m12

S
, E∗2 = I∗2 = R∗2 = D∗2 = 0,

S∗3 =
m23

S m12
S

m12
S m32

S + m21
S m32

S + m23
S m12

S
, E∗3 = I∗3 = R∗3 = D∗3 = 0.

(4)

According to the NGM, the maximum value of the absolute eigenvalues of FV−1

is equal to the reproduction number R0. Numerically estimating various parameter
combinations, we found that migration only has a significant impact when σi or βi dif-
fers across levels i = 1, 2, 3. The diagrams below depict how R0 varies with different
parameters. In the following numerical experiments, we used the following param-
eter values, unless otherwise specified: βi = 0.25, ki = 0.142, ui = 0, σi = 0.047,
m12

E = m23
E = m12

S = m23
S = 0.01, m21

E = m32
E = m21

S = m32
S = 0.005.

As shown in the left diagram of Figure 2, the reproduction number, R0, varies linearly
with the infection rate, β, and decreases as the control increases. On the other hand, the
right diagram of Figure 2 depicts R0 as a function of the migration rate, β, and control,
which takes the shape of an almost constant hyperbola when the migration rate exceeds
0.5. This diagram also demonstrates that the reproduction number decreases as the control
increases, and can fall below 1 even without the control if the migration rate exceeds 0.5.
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Figure 2. The diagram on the left illustrates how the reproduction number depends on the infection
rate, βi = β, for different constant controls, ui(t) = u(0) = u. Meanwhile, the diagram on the right
demonstrates how the reproduction number varies with the migration rate, m21

E = m32
E = m21

S =

m32
S = m, for different constant controls, u.

4. Optimal Control Problem

The focus of the present study is to formulate an optimal control problem aimed at
minimizing the damage caused by virus outbreaks and enhancing the protection of the
population. The model employed in this study assumes that quarantine and treatment
measures can shield the population from viral transmission. At each level of the hierarchical
structure, treatment is applied as a control strategy u1(t), u2(t), u3(t) for infected nodes
(I → R), if the epidemic extends across all levels due to migration rates. To estimate
the infection costs, the method proposed in [10–12] is adopted, which includes direct
losses suffered by an infected person, such as treatment expenses, loss of productivity,
and incapacity. The treatment costs, which indicate the value spent by the government
to facilitate the health care system’s ability to treat infected individuals and enhance the
probability of their recovery, are considered as external costs.

Cost functions: The costs associated with infections and treatments are represented
by functions fi(Ii(t)) and hi(ui(t)), respectively, at any given time t. These functions must
satisfy certain conditions. The functions fi(Ii) are non-decreasing, twice-differentiable, and
convex, with fi(0) = 0 and fi(Ii) > 0 for Ii > 0, where i = 1, 3. Similarly, the functions
hi(ui(t)) = hiu2

i (t) are twice-differentiable and increasing in ui(t), with hi(0) = 0 and
hi(ui(t)) > 0 for i = 1, 3 when ui(t) > 0.

The functional for the aggregated system costs on the time interval [0, T] is defined
as follows:

J = J1 + J2 + J3,

where

J1 =
∫ T

0

(
f1(I1(t)) + h1(u1(t))

)
dt,

J2 =
∫ T

0

(
f2(I2(t)) + h2(u2(t))

)
dt,

J3 =
∫ T

0

(
f3(I3(t)) + h3(u3(t))

)
dt.

(5)

The goal of the optimal control problem is to minimize the costs given by the func-
tional J:

min
u1,u2,u3

J.
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By applying Pontryagin’s maximum principle [28,29], we can construct the Hamilto-
nian and adjoint functions. The generalized Hamiltonian of the system is given as follows:
H = H1 + H2 + H3. Hamiltonian H1 of the first level:

H1 = − f1(I1)− h1(u1) + (λE1 − λS1)β1(E1 + I1)S1 + (λR1 − λS1)ν1S1+
(λQ1 − λS1)δS1 + (λE1 − λQ1)pβ1Q1(E1 + I1) + (λI1 − λE1)k1E1+
(λR1 − λI1)(σ1 + u1)I1 + (λS2 − λS1)m

12
S S1 + (λE2 − λE1)m

12
E E1+

(λR2 − λR1)m
12
R R1 + (λD1 − λI1)µ1 I1.

(6)

Hamiltonian H2 of the second level:

H2 = − f2(I2)− h2(u2) + (λE2 − λS2)β2(E2 + I2)S2 + (λR2 − λS2)ν2S2+
(λI2 − λE2)k2E2 + (λR2 − λI2)(σ2 + u2)I2 + (λS3 − λS2)m

23
S S2+

(λE3 − λE2)m
23
E E2 + (λR3 − λR2)m

23
R R2 + (λD2 − λI2)µ2 I2+

(λS1 − λS2)m
21
S S2 + (λE1 − λE2)m

21
E E2 + (λR1 − λR2)m

21
R R2.

(7)

Hamiltonian H3 of the third level:

H3 = − f3(I3)− h3(u3) + (λE3 − λS3)β3(E3 + I3)S3 + (λR3 − λS3)ν3S3+
(λI3 − λE3)k3E3 + (λR3 − λI3)(σ3 + u3)I3 + (λD3 − λI3)µ3 I3+
(λS2 − λS3)m

32
S S3 + (λE2 − λE3)m

32
E E3 + (λR2 − λR3)m

32
R R3.

(8)

The adjoint functions of the first level are defined as follows: λS1(t), λQ1(t), λE1(t),
λI1(t), and λR1(t).

λ̇S1(t) = (λS1 − λE1)β1(E1 + I1) + (λS1 − λR1)ν1 + (λS1 − λQ1)δ+
(λS1 − λS2)m

12
S ;

λ̇Q1(t) = (λQ1 − λE1)pβ1(E1 + I1);
λ̇E1(t) = (λS1 − λE1)β1S1 + (λQ1 − λE1)pβ1Q1 + (λE1 − λI1)k1 + (λE1 − λE2)m

12
E ;

λ̇I1(t) = f ′1(I1) + (λS1 − λE1)β1S1 + (λQ1 − λE1)pβ1Q1 + (λI1 − λR1)(σ1 + u1)+
(λI1 − λD1)µ1;

λ̇R1(t) = (λR1 − λR2)m
12
R ;

λ̇D1(t) = 0,

(9)

The transversality conditions are given by:

λS1(T) = λQ1(T) = λE1(T) = λI1(T) = λR1(T) = λD1(T) = 0. (10)

Analogously, adjoint functions λS2(t), λE2(t), λI2(t), and λR2(t) of the second level are:

λ̇S2(t) = (λS2 − λE2)β2(E2 + I2) + (λS2 − λR2)ν2 + (λS2 − λS1)m
21
S +

(λS2 − λS3)m
23
S ;

λ̇E2(t) = (λS2 − λE2)β2S2 + (λE2 − λI2)k2 + (λE2 − λE1)m
21
E + (λE2 − λE3)m

23
E ;

λ̇I2(t) = f ′2(I2) + (λS2 − λE2)β2S2 + (λI2 − λR2)(σ2 + u2) + (λI2 − λD2)µ2;
λ̇R2(t) = (λR2 − λR1)m

21
R + (λR2 − λR3)m

23
R ;

λ̇D2(t) = 0,

(11)

with the transversality conditions given by

λS2(T) = λE2(T) = λI2(T) = λR2(T) = λD2(T) = 0. (12)
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Adjoint functions λS3(t), λE3(t), λI3(t), and λR3(t) of the third level:

λ̇S3(t) = (λS3 − λE3)β3(E3 + I3) + (λS3 − λR3)ν3 + (λS3 − λS2)m
32
S ;

λ̇E3(t) = (λS3 − λE3)β3S3 + (λE3 − λI3)k3 + (λE3 − λE2)m
32
E ;

λ̇I3(t) = f ′3(I3) + (λS3 − λE3)β3S3 + (λI3 − λR3)(σ3 + u3) + (λI3 − λD3)µ3;
λ̇R3(t) = (λR3 − λR2)m

32
R ;

λ̇D3(t) = 0,

(13)

with the transversality conditions given by

λS3(T) = λE3(T) = λI3(T) = λR3(T) = λD3(T) = 0. (14)

The existence of continuous and piece-wise continuously differentiable co-state functions

λr(t), r ∈ S1, Q1, E1, . . . , R3, D3,

which satisfy (9)–(14) at every time t ∈ [0, T], together with continuous functions u∗1(t),
u∗2(t), and u∗3(t), is guaranteed by Pontryagin’s maximum principle:

(u∗1 , u∗2 , u∗3) ∈ arg max
u1,u2,u3∈[0,umax ]

H(λ, S1, Q1, . . . , R3, D3, u1, u2, u3). (15)

Following the Pontryagin’s maximum principle [11,28–31], we should analyze the
behaviour of the derivative dHi/dui. We obtain that

∂Hi
∂ui

= −ḣi(ui) + (λRi − λIi )Ii, i = 1, 3. (16)

We denote the last terms in (16) as switching functions ϕi(t), i = 1, 3:

ϕ1(t) = (λR1(t)− λI1(t))I1(t),
ϕ2(t) = (λR2(t)− λI2(t))I2(t),
ϕ3(t) = (λR3(t)− λI3(t))I3(t).

(17)

Proposition 1. Assuming that hi(·) functions are concave, the optimal control structure is ex-
pressed as follows for i = 1, 2, 3:

u∗i (t) =
{

0, for ϕi(t) < hi(umax);
umax, for ϕi(t) ≥ hi(umax).

(18)

Proposition 2. If hi(·) are strictly convex functions, the optimal control structure is as follows for
any i = 1, 3

u∗i (t) =


0, for ϕi(t) ≤ h′i(0);
h′−1(ϕi), for h′i(0) < ϕi(t) ≤ h′i(umax);
umax, for h′i(umax) < ϕi(t).

(19)

where umax ∈ [0, 1].
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To prove these propositions, we can rewrite the Hamiltonian in terms of the function
ϕi(t). After that, we obtain:

H = (ϕ1u1 − h1(u1)) + (ϕ2u2 − h2(u2)) + (ϕ3u3 − h3(u3))− f1(I1)− f2(I2)−
f3(I3) + (λE1 − λS1)β1(E1 + I1)S1 + (λQ1 − λS1)δS1 + (λR1 − λS1)ν1S1+
(λE1 − λQ1)pβ1Q1(E1 + I1) + (λI1 − λE1)k1E1 + (λR1 − λI1)σ1 I1+
(λS2 − λS1)m

12
S S1 + (λE2 − λE1)m

12
E E1 + (λR2 − λR1)m

12
R R1+

(λD1 − λI1)µ1 I1 + (λE2 − λS2)β2(E2 + I2)S2 + (λR2 − λS2)ν2S2+
(λI2 − λE2)k2E2 + (λR2 − λI2)σ2 I2 + (λS3 − λS2)m

23
S S2+

(λS1 − λS2)m
21
S S2 + (λE1 − λE2)m

21
E E2 + (λR1 − λR2)m

21
R R2+

(λE3 − λE2)m
23
E E2 + (λR3 − λR2)m

23
R R2 + (λD2 − λI2)µ2 I2+

(λR3 − λS3)ν3S3 + (λE3 − λS3)β3(E3 + I3)S3 + (λI3 − λE3)k3E3+
(λD3 − λI3)µ3 I3 + (λS2 − λS3)m

32
S S3 + (λE2 − λE3)m

32
E E3+

(λR2 − λR3)m
32
R R3 + (λR3 − λI3)σ3 I3.

(20)

The optimization problem can be decomposed into three subproblems, where we
consider the optimal controls u∗1(t), u∗2(t), and u∗3(t) separately. This can be achieved
by solving:

max u1[−h1(u1) + ϕ1u1] + max u2[−h2(u2) + ϕ2u2] + max
u3

[−h3(u3) + ϕ3u3]. (21)

For any admissible control ui, and for all t ∈ [0, T] according to (20), we have:

−hi(ui) + ui ϕi ≥ −hi(ui) + ui ϕi. (22)

As ui = 0 is an admissible control, we obtain:

−hi(ui) + ui ϕi ≥ −hi(0) + 0 · ϕi = 0. (23)

To determine the optimal control structure using Pontryagin’s maximum principle,
we consider the following derivatives:

∂Hi
∂ui

= −ḣi(ui) + ϕi = 0, i = 1, 3. (24)

Given that hi(·) are increasing functions and Ii(·) ≥ 0, we can maximize the Hamil-
tonian by ensuring that ϕi(t) = ḣi(ui(t)) ≥ 0 for i = 1, 2, 3, as stated in the proposition.
Using Equation (17) and the fact that Ii(t) ≥ 0 for all t ∈ [0, T], we can rewrite this condition
as λRi (t)− λIi (t) ≥ 0 for i = 1, 3.

To complete the proof of the proposition, we need to establish Lemma 1:

Lemma 1. For all t ∈ [0, T], we have λRi (t)− λIi (t) ≥ 0, i = 1, 3.

The proof of Lemma 1 consists of two parts. First, we consider the case when t = T
and show that the derivatives of the functions λRi (t)− λIi (t), i = 1, 3, are non-positive.
Second, we prove by contradiction the negativity of these functions on the whole interval
[0, T]. The complete proofs of Lemma 1 follow the same technique as that in [11,30].

Note that since hi(·) are increasing functions, the Hamiltonian is convex in ui(·), if
hi(·) are also concave, i.e., h′′i(·) ≤ 0, according to Equations (6)–(8). As a result, there are
two different options for ui ∈ [0, umax] that maximize the Hamiltonian, where umax ∈ [0, 1].

If −hi(0) + ϕi(t) · 0 > −hi(umax) + ϕi(t) · umax or hi(umax) > ϕi(t)umax, then the
optimal control is ui = 0 (see Figure 3(left)). Otherwise, the optimal control is ui = umax
(see Figure 3(right)).



Mathematics 2023, 11, 1450 10 of 17

4.1. Functions hi(·) Are Concave

Assuming hi(·) is a concave function with h′′i(·) ≤ 0, it follows from (6)–(8) that the
Hamiltonian is a convex function of ui(·) for i = 1, 3. There exist two possible values of
ui ∈ [0, umax] that maximize the Hamiltonian, where umax ∈ [0, 1].

If −hi(0) + ϕi(t) · 0 > −hi(umax) + ϕi(t) · umax or hi(umax) > ϕi(t)umax, then the
optimal control is ui = 0 (see Figure 3(left)); otherwise, ui = umax (see Figure 3(right)).

For i = 1, 3 the optimal control parameters ui(t) are defined as follows:

u∗i (t) =
{

0, for ϕi(t)umax < hi(umax),
umax, for ϕi(t)umax ≥ hi(umax).

(25)

Figure 3. Hamiltonian function in a case in which functions hi(·) are concave.

4.2. Functions hi(·) Are Strictly Convex

Assuming hi(·) is a strictly convex function (h′′i (·) > 0), the Hamiltonian is a concave
function. We consider the derivative:

∂

∂x
(−hi(x) + ϕi(t)x) |x=xi= 0, (26)

where x ∈ [0, umax], ui(t) = xi, and umax ∈ [0, 1]. There exist three different types of
points at which the Hamiltonian reaches its maximum (Figure 4). To find them, we need to
consider the derivatives of the Hamiltonian at ui = 0 and ui = umax. If the derivatives (26)
at ui = 0 are non-increasing (−h′i(0) + ϕi(t) ≤ 0), then the value of the control that
maximizes the Hamiltonian is less than 0, and according to our restrictions (ui ∈ [0, umax]),
the optimal control will be equal to 0 (Figure 4 (left)). If the derivatives at ui = umax are
increasing (−h′i(umax) + ϕi(t) > 0), this implies that the value of the control that maximizes
the Hamiltonian is greater than umax. Hence, the optimal control will be 1 (Figure 4 (right)).
Otherwise, we can find the value of ui ∈ (0, umax) (see Figure 4 (middle)):

u∗i (t) =


0, for ϕi(t) ≤ h′i(0),
h′−1(ϕi(t)), for h′i(0) < ϕi(t) ≤ h′i(umax),
umax, for h′i(umax) < ϕi(t), i = 1, 2, 3.

(27)

Figure 4. Hamiltonian function in a case in which functions hi(·) are convex.
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5. Numerical Simulation

In this section, we conduct a series of numerical experiments to validate our findings.
We consider a country with a population of 10,000,000, where the first level has 1,500,000 res-
idents, the second level has 3,000,000 residents, and the third level has 5,500,000 residents.
The time interval is one year (T = 365 days).

We start with the following initial distribution among susceptible, exposed, and
infected groups: S0

1 = 0.1489, E1(0) = 0.001, and I0
1 = 0.0001, which correspond to 10,000

exposed and 1000 infected residents at t0 = 0. The transmission rate is βi = 0.25, and
the self-recovery rate is σi = 0.047, which takes approximately 21 days for a resident to
recover from the virus without any treatment [32]. The incubation period is ki = 0.142
for i = 1, 3. We assume that symptoms appear after about 6 days, and exposed residents
become infected. The cost functions for the infected group are fi(Ii(t)) = f i Ii(t), and the
treatment cost functions are defined as hi(ui(t)) = hiu2

i (t) for i = 1, 3. In this model, we
assume that the maximum value of the control is umax = 0.02. More details about the
parameters and initial data used in the experiments can be found in Table 1.

Table 1. Parameters used for simulations in experiments.

Parameter Name Exp. 1 Exp. 2 Exp. 3a Exp. 3b

Fraction of 0.1489 0.1489 0.1489 0.1489

susceptible agents 0.3 0.3 0.3 0.3

at time t = 0 (S0
i ) 0.55 0.55 0.55 0.55

Fraction of 0.001 0.001 0.001 0.001

exposed agents 0 0 0 0

at time t = 0 (E0
i ) 0 0 0 0

Fraction of 0.0001 0.0001 0.0001 0.0001

infected agents 0 0 0 0

at time t = 0 (I0
i ) 0 0 0 0

Infection rate 0.25 0.25 0.25 0.25

from Si to Ei (βi)

Recovery rate (σi) 0.047 0.047 0.047 0.047

Asymptomatic to 0.142 0.142 0.142 0.142

Infected (ki)

Voluntary self-isolation (δ) 0 0.001 0.1 0.00001

Return from self-isolation (p) 0 0.1 0 0.3

Vaccination rate (νi) 0 0.005 0.005 0.005

Death rate (µi) 0.005 0.005 0.005 0.005

Migration rates 0.01 0.01 0.01 0.01

(mii+1
x , x = {S, E, R})

Migration rates (m21
x ) 0.001 0.001 0.001 0.001

Migration rates (m32
x ) 0.005 0.005 0.005 0.005

Infection costs f i 100 100 100 100

Treatment costs hi 20 20 20 20

Maximum values 0.02 0.02 0.02 0.02

of control (umax)

Aggregated costs J 1.6866 ×1010 5.1959× 109 3.8543× 109 5.2672× 109

Uncontrolled case

Aggregated costs J 1.1305× 1010 2.5804× 109 1.7372× 109 2.6239× 109

Controlled case
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Experiment 1. In the current experiment, we present the SQEIRD model under the
assumption that the quarantine and vaccination are not possible for susceptible individuals
(δ = 0, p = 0, and ν = 0). Using the specially developed procedure and taking into
consideration the cluster structure of the population, we obtain the result that the epidemic
starts and reaches its maximum faster on the first level than on levels 2 and 3 in the
uncontrolled case. At the second and the third clusters, the epidemic starts with delays.
Figures 5 and 6 demonstrate this fact.

Figure 5. Experiment 1. Spread of the virus in three different clusters in an uncontrolled case.

Figure 6. Experiment 1. Number of Exposed, Infected, and Dead in uncontrolled case.

The behaviour of the system in the controlled case is shown in Figure 7. We can notice
a significant decrease in the number of the infected at all levels, which leads to a reduction
in costs (see Figure 8c).

Figure 7. Experiment 1. Spread of the virus in three different clusters in a controlled case.

(a) (b) (c)

Figure 8. Experiment 1. (a ) Sum of the fractions of all levels in controlled case; (b) the structure of the
optimal treatment policies ui(t), i = 1, 2, 3; (c) aggregation costs in uncontrolled and controlled cases.

Figure 9 shows the change in the fractions of the exposed, infected, and dead popula-
tion at all three levels. Since we do not apply any quarantine measures, the fraction Q1 is
equal to zero on all considered intervals [0, T].
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Figure 9. Experiment 1. Number of exposed, infected, and dead in controlled case.

Figures 8 summarize the changes in all fractions of the population (Figure 8a), the
optimal treatment policies structure ui(t) (Figure 8b), and the aggregate system costs. In
the uncontrolled case, the costs are equal to 1.6866× 1010 monetary units (m.u.), while in
the controlled case, they are 1.1305× 1010 m.u. (Figure 8c).

Experiment 2. In the current experiment, we consider the SQEIRD model with quar-
antine and vaccination. We assume that the government has an access to a vaccine that
forms an acquired immunity to the virus and also has imposed quarantine measures.

This experiment shows the effects of vaccination and quarantine measures on the
development of an epidemic situation. The behavior of the system in the controlled case is
shown in Figure 10.

Figure 10. Experiment 2. Spread of the virus in three different clusters in the controlled case.

Figure 11 shows the change in the fractions of the quarantined, exposed, infected, and
dead population at all three levels. According to the quarantine measures, the citizens
should stay at home, but there is a small fraction of residents that do not comply with these
measures, which leads to their infection.

Figure 11. Experiment 2. Number of Exposed, Infected, and Dead in controlled case.

Figure 12a shows the aggregate changes in all fractions of the population, while
Figure 12b represents the structure of the optimal treatment policies ui(t), i = 1, 2, 3. The
controlled case results in a significantly lower aggregated system cost of 2.5804 × 109 m.u.
compared to the uncontrolled case’s cost of 5.1959× 109 m.u. (Figure 12c).
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(a) (b) (c)

Figure 12. Experiment 2. (a) Sum of the fractions of all levels in controlled case; (b) the structure of the
optimal treatment policies ui(t), i = 1, 2, 3; (c) aggregation costs in uncontrolled and controlled cases.

The implementation of quarantine measures and vaccination in the optimal control
strategy leads to a reduction in the overall epidemic spread, with a maximum number of
infected individuals of 2.24× 105 on the third level, which is much lower than the 1.57× 106

peak observed in Experiment 1. Additionally, the peak of infected residents on the third
level occurs later, on the 168th day, as opposed to Experiment 1, where it occurred on the
126th day. These results suggest that optimal controllers can effectively conserve the health
system’s resources, including medical staff and equipment, and prevent its collapse.

Experiment 3. In this experiment, we examine the impact of agent responsibility on
the system’s behavior.

First, we consider a scenario in which all individuals are responsible for their actions
(Experiment 3a). It is assumed that taking responsibility for their actions has a positive
effect on the overall epidemic spread and minimizes the overall costs. Residents voluntarily
remain in quarantine throughout the time interval T = [0;365]. The transition from the
susceptible subgroup to quarantine (voluntary self-isolation) occurs at a rate of δ = 0.1,
which is higher than in Experiment 2 (δ = 0.001). However, in contrast to the previous
case, the transition rate from quarantine to the exposed subgroup is equal to p = 0, which
is lower than in the previous experiment. All other system parameters remain the same.
In this section of the experiment, we investigate the impact of agent responsibility on the
behavior of the system. In Experiment 3a, we assume that all individuals are responsible
for their actions, and residents voluntarily remain in quarantine until the end of the interval
T = 365. The transition rate from the susceptible subgroup to the quarantine subgroup
(voluntary self-isolation) is δ = 0.1, which is higher than in Experiment 2 (δ = 0.001).
However, unlike the previous case, the transition rate from the quarantine to exposed is
p = 0, which is lower than in Experiment 2. The other parameters of the system remain
the same.

Our results demonstrate that the peak number of infected agents is lower in Experi-
ment 3a (1.5× 105) than in the case where residents leave quarantine independently without
the government’s consent (2.4× 105). The total system costs in the uncontrolled case are
3.8543× 109 m.u., while in the controlled case, they are 1.7372× 109 m.u. Comparing
these costs with those of the previous experiment confirms the hypothesis that the general
responsibility of residents in the population leads to lower overall epidemic costs.

In Experiment 3b, we assume that all individuals in the population are irresponsible
and prefer to violate the quarantine isolation rules. Under this assumption, the transition
rate from susceptible to quarantined subgroups is δ = 0.00001, which is lower than in
Experiments 2 and 3a. At the same time, quarantined individuals become exposed at a
higher rate of p = 0.3 compared to the case of responsible residents. All other parameters
remain the same. The peak number of infected agents is equal to 2.7× 105. It can be noted
that the irresponsibility of residents leads to the rapid spread of the virus and a larger
number of infected individuals even in the controlled case. Aggregate system costs in the
uncontrolled case are equal to 5.2672× 109 m.u., compared to 2.6239× 109 m.u. in the
controlled case. Comparing the costs with the previous experiment, the hypothesis of the
general responsibility of residents in the population is also confirmed. The irresponsible
residents increase the aggregated cost of the epidemic.
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Experiment 4. In this experiment, we conduct a series of experiments, in each of which,
we switch the control on and off at different levels. After that, we compare the resulting
costs at each individual level. All parameters are taken the same as in Experiment 2. In this
case, we run a series of experiments, in which we turn the control on and off at different
levels. We then compare the resulting costs at each level. Costs at level i are Ji, i = 1, 3. We
decided to look at five different cases:

• Switching on optimal control at all three levels;
• Switching on optimal control at levels 1 and 2;
• Switching on optimal control at level 1 only;
• Switching on optimal control at levels 2 and 3;
• Without any control (uncontrolled case).

We decided to investigate the effect of control at different levels on the total cost of the
epidemic. Table 2 shows the relative costs at each level Ji and the total costs J. We took the
uncontrolled case as the baseline and compared all the other costs to it, by dividing our
costs by the costs in the uncontrolled case.

Table 2. Costs on each level relative to the costs in uncontrolled case.

Control
on All
Three
Levels

Control
on Levels

1 and 2

Control
Only on
Level 1

Control
on Levels

2 and 3

Control
Only on
Level 3

Without
Any

Control

Costs J1 0.72 0.74 0.76 0.97 0.99 1.00

Costs J2 0.45 0.56 0.98 0.45 0.84 1.00

Costs J3 0.5 1.00 1.00 0.5 0.51 1.00

Total costs J 0.5 0.95 0.99 0.5 0.55 1.00

As a result, two theses can be identified. The first thesis is the more obvious one.
Switching on the optimal control at a level results in a reduction in cost at that level
compared to the cost in the case without the control. The second thesis is a little less
obvious. If we take into account the total costs in each of the experiments, the following
trend can be observed. Switching on the optimal control on the third level leads to a
reduction in overall costs. This effect is due to the fact that the migration rate is greater
from level 1 to level 2 and from level 2 to level 3 than in the opposite direction. Many
agents migrate to level 3 to avoid the epidemic, but at the same time, asymptomatic agents
in the exposed subgroup migrate and bring the epidemic to this level.

6. Conclusions

In this study, a multilevel modification of the susceptible–quarantine–exposed–infected
–recovered–dead (SQEIRD) model has been proposed to describe the spread of a virus across
three population clusters with quarantine measures and vaccination. The optimal control
structure and feasible controls have been determined for a specific class of cost functions.
The numerical simulations have demonstrated that compliance with quarantine require-
ments at the first level and vaccination at all levels can reduce the overall epidemic spread
and system costs. The impact of different parameters on the basic reproduction number
R0 in the modified system has been analyzed. In the future, specific cases of the epidemic
spread in different countries using appropriate statistical datasets will be investigated.
Additionally, the hierarchical SQEIRD model will be explored in complex networks with
different topologies and using vaccination as a control strategy. Overall, this study provides
insights for designing effective control strategies to mitigate the impact of epidemics.
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