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Abstract: This paper describes a development that offers new opportunities for detecting faulty
bearings. Prioritization is based on the technique for order of preference by similarity to the ideal
solution (TOPSIS) for the most discriminative features in the faulty bearing dataset. The proposed
model is divided into three steps: feature extraction, feature selection, and classification. In feature
extraction, variational mode decomposition (VMD) and fast Fourier transform (FFT) are used to
extract features from the measured signal of the test motors and use the symmetrical uncertainty
(SU) value for calculation, reducing the redundancy of data. In terms of feature selection, the TOPSIS
method is used instead of the traditional filtering method, which is applied to analysis and decision
making, and important features are selected from seven filtering methods. Finally, in order to validate
the classification ability of the proposed model, k-nearest neighbors (KNN), support vector machine
(SVM), and artificial neural networks (ANN) are used as independent classifiers. The effectiveness
of the proposed model is evaluated by applying two bearing datasets, namely the current dataset
of motor vibration signals and the dataset of bearing motors provided by Case Western Reserve
University (CWRU). The results show that the comparison of the proposed model with other models
shows the feasibility of this study.

Keywords: bearing fault diagnosis; feature selection; TOPSIS; feature extraction
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1. Introduction

Rolling bearings are an important part of industrial machinery and equipment and
have been widely used in this field. Rolling bearings need to bear the weight of rotating
machines and ensure normal operation [1]. However, the bearing suffers vibration, wear,
corrosion, fatigue, etc., during operation. When the bearing fails, the vibration will increase
when it is fatigued, and its working efficiency will be reduced and even cause casualties.
Therefore, bearing fault detection can sense the subtle vibration of the bearing, and the
running state of the bearing can be judged through simple data, which can be seen at a
glance [2–4]. Fault vibration of rolling bearings is caused by two kinds of faults: local faults
and distributed faults. The ultimate goal of vibration monitoring is to know when the
bearing needs to be replaced by tracking the state of the bearing. According to statistics,
about 30% to 40% of mechanical failures in rotating equipment using rolling bearings are
caused by rolling bearings [5,6]. Therefore, early fault diagnosis is an important topic
in a wide range of applications to improve the safety and reliability of rotating electrical
machines [7]. The purpose of this study is to propose an efficient method for bearing fault
diagnosis based on machine learning. The bearing fault diagnosis model includes five
steps: raw data acquisition, data preprocessing, feature extraction, feature selection, and
fault mode recognition [8]. When the rolling bearing fails, it sends out vibration and impact
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signals, and the collection of vibration signals can directly reflect the operating status of
the faulty mechanical equipment. With the technical improvement of feature extraction
methods, the dimension or category of extracted feature vectors is increasing, and there are
more and more irrelevant and redundant feature vectors in high-dimensional feature sets,
which may affect the accuracy rate. Therefore, some dimensionality reduction strategies are
used in feature extraction to select sensitive features, which will also affect the diagnosis
results as computational efficiency. There are several feature extraction methods [9,10]:
the more famous ones are envelope analysis, such as principal component analysis [11,12],
distance estimation techniques, symmetric uncertainty (SU) methods [13], and empirical
mode decomposition (EMD) [14]; variational mode decomposition (VMD) [15]; and fast
Fourier transform (FFT) methods [16,17]. EMD technology has high precision in signal
extraction and fast convergence speed, which is very suitable for bearing fault diagnosis.
However, in extracting the signal, VMD can set the desired mode number and avoid the
endpoint effect similar to EMD decomposition through mirror extension [18]. After the
feature extraction step, the feature set has been preliminarily formed, but there are still many
redundant features in the extracted datasets, especially in high-dimensional datasets. These
redundant features lead to a decrease in the accuracy of the final classification. Therefore, a
feature selection step is required, which is an intermediate step between data extraction
and classification. What it does is preprocess the dataset to further select its features before
sending it to the classifier. Feature selection has flourished, and algorithms have gained
attention in solving dataset optimization problems. Regarding fault classification methods,
some artificial intelligence methods [19] include support vector machine (SVM) [20,21],
k-nearest neighbors (KNN) [22], fuzzy inference system [23], random forest (RF) [24], and
artificial neural network (ANN) [25–30]. Ultimately, bearing health depends on these
technologies.

Since a single feature selection method cannot provide excellent classification accuracy
in the case of different faulty bearings, to improve the performance of a new method for
bearing defect classification, the proposed method relies on an ideal solution with an order
preference similar to the ideal technical solution (TOPSIS) [31]. The information in the
original data can be fully utilized, and the results can accurately reflect the gap between
evaluation schemes. The basic process is to use the cosine method to find the optimal
solution and the worst solution in the finite solution based on the normalized original data
matrix and then calculate the distances between each evaluation object and the optimal
solution and the worst solution, respectively, and calculate the relative closeness of each
evaluation object to the optimal solution as the basis for evaluating the advantages and
disadvantages. Although TOPSIS avoids the subjectivity of data, has no strict requirements
on data components and samples, and is more flexible in describing the comprehensive
impact of multiple indicators, it needs the data of each indicator, and it is difficult to choose
the corresponding quantitative weight. It needs to be determined in order to accurately
describe the impact of weights. The purpose of this research is to try to apply the TOPSIS
method to the feature selection of filters and try to improve the lack of filter classification
accuracy. For the stability and accuracy of the final feature extraction, this study uses the SU
method to delete redundant features and combines six feature selection methods for weight
distribution. For specific research, six typical feature selection methods are considered,
which are important for TOPSIS. The construction of the method is challenging, because
not every filter method is suitable for different data, and these filter methods are combined
by the TOPSIS method, which will lower the recognition rate. The number of indicators
selected is appropriate, which can describe the influence of the indicators well and over-
come the blind spots of the TOPSIS method. This study utilizes multiple methods, namely,
RF [24], minimum redundancy maximum relevance (mRMR) [32], correlation-based fea-
ture selection (CFS) [33], F-score (FS) [34], Pearson correlation coefficient (PCC) [35], and
item variance (TV) [33]; in addition, we also utilize three well-known classifications, the
SVM [20,21], KNN [22], and ANN [26–30]. After extracting the original data by VMD-
FFT, the correlation coefficient is calculated by the SU method to reduce the uncertainty



Mathematics 2023, 11, 1442 3 of 21

characteristics. The selection filtering method is used as the selection weight because the
calculation speed of this method is very fast and can be applied to various machine learning
models.

In this paper, an optimal feature selection method in TOPSIS is proposed, which also
removes redundant features to make the method more refined. The optimization trade-off
between detection accuracy, processing speed, and flexibility is the main consideration of
this method. The results through the classifier show that the best features can be selected
quickly and provide stable and real-time performance.

The main contributions of this paper are summarized as follows:

(1) In the research of filtering methods, combining the advantages of different filtering
methods makes the accuracy rate more stable and effectively removes irrelevant and
redundant functions.

(2) We introduce a new orientation-adaptive feature extraction method. This paper
proposes a fault diagnosis method based on TOPSIS. Compared with the traditional
signal method, this method takes advantage of the combination of multiple feature
extractions to fill in the order of the newly sorted features, thereby improving the
stability of feature recognition.

(3) In this paper, a hybrid model for rolling bearing fault identification is established, and
the model is tested using existing equipment and fault data under different conditions
to achieve accurate fault diagnosis and compare the currently available algorithms.
The proposed model has a lower computational cost.

The structure of this paper is as follows: Section 2 describes the basics and workflow
involved in the TOPSIS hybrid model. Section 3 introduces the method for measuring motor
signals in the bearing motor dataset and the Case Western Reserve University (CWRU)
dataset. In Section 4, the results of three classifiers in four different models of the two
faulty bearing datasets in Section 3 are discussed, and the information and performance
are analyzed and evaluated in detail. Finally, the optimal model is determined based on
these values.

2. Hybrid Models
2.1. Variational Mode Decomposition (VMD)

Variational pattern decomposition has previously been published (Dragomiretskiy,
2014). VMD is a novel adaptive nonrecursive signal decomposition methods for enhancing
sequence stability [15]. In addition to VMD, it can specify the number of modes desired for
the outcome. The IMF decomposed by its method has an independent center frequency and
shows the characteristics of sparsity in the frequency domain, which has the characteristics
of sparse research. In the process of solving the IMF, the endpoint effect similar to that in
the EMD decomposition is avoided by means of mirror extension. Selecting an appropriate
value of K can effectively avoid modal aliasing. This study used VMD to decompose the
ball bearing test data series for normal and faulty bearings. The VMD structure is as follows:
For VMD, the preset K value determines the number of IMF components. The sum of the
IMFs is the original signal. The constraints are expressed by (1) and (2):

min
K

∑
k=1
‖∂t

[(
δ(t) +

j
πt

)
× uk(t)

]
e−jwt‖2 (1)

s.t. ∑
k

uk= f (2)

where {uk} = {uIMF1, · · ·, uIMFK} contains local characteristic signals of different time scales
of the original signal; {wk } = {w1, · · wk} represents the center frequency of each IMF
component; ∑

k
uk represents the sum of all modal components; and f represents the time

series of ball bearing test data for decomposed normal and faulty bearings.
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VMD solution: a secondary penalty factor α and the introduction of a Lagrangian
penalty operator λ(t) to transform the constrained variational problem given by (1) and
(2) into an unconstrained variational problem where the extension of the Lagrangian
expression is given in (3) below:

L {uk}{wk}, λ(t)) = α ∑
k
‖∂t

[(
δ(t) +

j
πt

)
uk(t)

]
e−jwt‖2

2 (3)

The Alternating Direction Multiplier Algorithm [2] is used to solve the variational
problem given by (3), above which produces the alternately updated un+1

k (w) and wn+1
k

expressions given in (4) and (5):

un+1
k (w)=

f (w) − ∑i 6=k uk(w) + λ(w)/2

1 + 2α(w− wk)
2 (4)

wn+1
k =

∫ ∞
0 w|uk(w)|2dw∫ ∞

0 |uk(w)|2dw
(5)

where un+1
k (w) is the Wiener filter of f (w) − ∑ ul(w) that yields wn+1

k , the corresponding
power spectrum of the centroid modal function.

The VMD model is as follows:
Step 1: Initialize uk, wk, λ and n = 0.
Step 2: n = n + 1 (number of iterations).
Step 3: Update uk and wk according to the VMD algorithm formula.
Step 4: Update the Lagrange multiplier λ according to the relevant algorithm.
Step 5: Know until a certain condition is met (judged by the similarity coefficient),

stop the iteration; otherwise, go to Step 2.
Step 6: As k = k + 1, subtract the decomposed mode from the source signal and use it

as the source signal for the next cycle; go to Step 1.

2.2. Fast Fourier Transform (FFT)

FFT [16,17] is based on the mathematics of discrete Fourier transform (DFT), which
utilizes the symmetric properties of discrete Fourier transform complex multiplication on
the complex plane, and multiple multiplications with symmetric properties are combined
into one item, so it can effectively reduce the number of mathematical calculations and
obtain more efficient calculations without changing the original mathematical model struc-
ture. This calculation method was proposed by Cooly and Tukey in 1965. In the field of
digital signal processing, the data can be converted from the time domain waveform to the
frequency spectrum through the Fourier transform. The fast Fourier transform model is
defined as follows:

DFT is obtained by decomposing a series of values into components of different
frequencies. The definition of DFT is expressed as (6):

X(k) ≡ X(e
j2πk

N ) = ∑N−1
n=0 x(n)Wkn

N , k = 0, 1, . . . , N − 1 (6)

It is further expressed as the sum of the following odd-numbered terms plus the sum
of the even-numbered terms.

X(k) =
N/(2−1)

∑
r=0

x(2r)(W2
N)

rk
+

N/(2−1)

∑
r=0

X(2r + 1)(W2
N)

rk· = G(k) + Wk
N ·H(k) (7)
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In W2
N = e

− j2π
N
2 = WN/2, G(k) and H(k) are, respectively, the DFT of the following two

N/2 points:

G(k) =
N/(2−1)

∑
n=0

x(2n)Wkn
N/2 (8)

H(k) =

N
2−1

∑
n=0

x(2n + 1)Wkn
N
2

(9)

For each pair of X(k) and X(k + N/2), as long as the even part is known, another even
part is found. The odd part is the same.

2.3. Feature Extraction Process

VMD minimizes the sum of the estimated bandwidths of each mode, where each
mode is assumed to be a finite bandwidth with a different center frequency. To solve this
variational problem, an alternating direction multiplier method is used to continuously
update each mode, and its center frequency is gradually demodulated to the corresponding
baseband; finally, each mode, that is, the corresponding center frequency, is extracted
together. We extract the max, min, mse, rsm, and mean values from each of the eight
IMFs decomposed by VMD. The features extracted in VMD are F1~F40. The eight IMFs
decomposed by VMD extract the maximum value, minimum value, and average value
through FFT analysis. The features extracted in the FFT are F41~F80. Eighty features were
extracted in feature extraction. Its calculation method is shown in Figure 1.

2.4. Symmetric Uncertainty (SU) Value Feature Selection

Information entropy is the average amount of information contained in each received
message, proposed by Shannon in 1948 [36]. Messages represent events, samples, or features
from a distribution or data stream. Another characteristic of the source is the probability
distribution of the sample. The probability distribution of events and the amount of
information for each event constitute a random variable, and the mean (i.e., expectation) of
this random variable is the average (i.e., entropy) of the amount of information generated
by this distribution. The calculation formula of entropy is shown in (10), and its information
gain is shown in (11):

H(t) = −k
N

∑
i

P(Xi)I(Xi) (10)

I(X) =
N

∑
i

InP(xi) (11)

where P is the probability mass function of x, k is a proportional constant corresponding to
the chosen metric, and i is the information body of x.

For the decision-making system, the greater the probability of occurrence of each
piece of information, the smaller H(X) will be. This means that the greater the regularity
that appears in the information, the smaller the degree of uncertainty, which means that
the decision-making system has a high probability of presenting correct information;
on the contrary, if the amount of information is too large, it means that the amount of
information in the system is full of various information, so there will be a phenomenon of
information overload. This is the most direct and fastest way to judge. By calculating the
correlation coefficient, the correlation between them can be quickly obtained. However,
if the correlation is used to select features, it often leads to the tendency to select features
with larger values [4]. Therefore, this study uses the method of SU value to calculate the
degree of correlation between the feature and the target, where SU is expressed as (12):

SU(X, Y) =
I(X)

H(X)+H(Y)
(12)
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The above expression is interpreted as the form of normalized information gain by
definition, and the nonlinear related information variable defined by information entropy is
used to reconstruct the degree of correlation between nonlinear random variables. Among
them, the SU value is used to calculate the symmetric uncertainty. Its concept is similar to
information acquisition, but the value range is between 0 and 1 (0 means that X has nothing
to do with Y, and 1 means that knowing Y can accurately predict X).
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Figure 1. Feature extraction method flowchart.

2.5. Symmetric Uncertainty Method Feature Selection Process

Using the SU value of the fault type, the features (F1–F80) captured by VMD-FFT are
sorted in descending order from the highest to the lowest correlation. During the screening
process, the method compares the two features and retains the correlation with the target.
Higher features use the features with higher correlation to complete the screening. The
features with less influence are deleted by threshold setting, and the original 80 features
are paired down to 60 features to obtain a feature subset and then feature comparison.
This method will reduce the time complexity and realize the function of filtering while
calculating to achieve the effect of speeding up the operation and improving the accuracy
rate.
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2.6. Feature Selection Method Process

In the filter feature selection method (FFS) [37], seven feature selection methods are
used, as shown in Table 1 below. The FFS method is often used as a preprocessing step to
rank the importance of variables in regression or classification problems. It selects features
based on scores in various statistical tests and indicators of correlation. The algorithm of
the FFS method has strong versatility, saves the training steps of the classifier, and has low
algorithm complexity, so it is suitable for large-scale datasets and can quickly remove a
large number of irrelevant features. It is very suitable as a prefilter for features. However,
each type of method has a different calculation method to evaluate the weights of the
features. This makes it difficult to make a final decision. Therefore, the main idea of this
study is to apply TOPSIS to evaluate the priority order from the results of filter feature
selection methods. SU is a preprocessor to remove redundant features before the remaining
features are evaluated. In this study, a method with TOPSIS was proposed to improve the
stability of the results of the FFS method (Table 2). Using the TOPSIS method to evaluate
the current signals and select the best ranking of the signals for classification (Figure 2).
The TOPSIS method is described in detail in the next section.
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Table 1. Filter methods for feature selection.

Methods Advantages Disadvantages References

ReliefF (RF) The algorithm is relatively simple
High operating efficiency

The limitation of the algorithm is
that it cannot effectively remove

redundant features.
[24]

Minimum redundancy feature
selection (mRMR)

Maximize the correlation between
features and categorical variables
Minimize the correlation between

features and features

Does not take into account the
correlation between features [32]

Symmetrical uncertainty (SU) Select a subset of features that are
highly correlated with the category

A feature that has a high correlation
with the target variable but little
correlation with other features

[13]

Correlation-based feature
selection (CFS)

Contains a subset of features that are
highly correlated with the class but

not correlated with each other

No interaction with classifiers,
ignoring feature correlations [33]

F-score (FS) The accuracy rate can judge the total
correct rate

In the case of unbalanced samples,
it is not a good indicator to measure

the results.
[34]

Pearson correlation coefficient
(PCC)

The relationship of variables can be
measured numerically and is

directional

This method cannot be used to
refine and solidify the relationship
between variables to form a model.

[35]

Term variance (TV)
The method independently measures
the relationship between each feature

and the response variable.

The relationship between variables
is not considered, so there will be

redundant variables between
numbers.

[33]
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Table 2. Feature selection ranking collection.

Selected Type Selected Methods

A RF, mRMR, SU, CFS, FS, PCC, TV
B RF, mRMR, CFS, FS, PCC, TV
C RF, mRMR, CFS, FS, PCC
D RF, CFS, FS, PCC, TV

2.7. The Feature Selection in TOPSIS

The TOPSIS method is a sequence optimization technique for ideal target similarity,
and it is a very effective method in multiobjective decision analysis, proposed by Hwang
and Yoon in 1981 [31]. Calculate the distance between each evaluation target and the ideal
solution and anti-ideal solution, and use this as the basis for evaluating the target.

The workflow of the TOPSIS method consists of the following seven steps [38].
Step 1: Generating an m-by-n evaluation matrix contains m alternatives A1, A2; . . . ,

Am, with each evaluation matrix assessed by n local criteria C1, C2; . . . ; Cn.
Step 2: Normalizing the decision matrix:

uij =
Xij√

∑m
k=1 x2

kj

; i = 1, . . . , m; j = 1, . . . , n (13)

where xij is the score of alternative Ai concerning criterion Cj.
Step 3: Calculating the weighted normalized decision matrix, for which its values Vij

are computed as (14):

Vij = Wi × uij; j = 1, 2, . . . , m; i = 1, 2, . . . . , n (14)

Let Wi = [w1, w2, . . . , wn] be the vector of local criteria weights satisfying
n
∑

i=1
Wi = 1.

Step 4: Determining the positive ideal l (A+) and negative ideal (A−) solutions as
(15)–(18):

In the proposed method, all criteria are considered as benefits; therefore, J’ is empty,
and (15) and (16) can be reduced to (17) and (18):

A+ =
{

v+1 , . . . , v+n
}
=
{
(maxi Vij|j ∈ J) , (mini Vij

∣∣∣j ∈ J
′
)
}

(15)

A− =
{

v−1 , . . . , v−n
}
=
{
(mini Vij|j ∈ J) , (maxi Vij

∣∣∣j ∈ J
′
)
}

(16)

A+ =
{

v+1 , . . . , v+n
}
=
{
(maxi Vij|j ∈ J)

}
(17)

A− =
{

v−1 , . . . , v−n
}
=
{
(mini Vij|j ∈ J)

}
(18)

Step 5: Measuring the Euclidean distances between each alternative and both the
positive and negative ideal, which are calculated as (19) and (20):

P+
i =

√√√√ n

∑
j=1

(
vij − v+j

)2
; i = 1, 2, . . . , m (19)

P−i =

√√√√ n

∑
j=1

(
vij − v−j

)2
; i = 1, 2, . . . , m (20)

Step 6: Computing the relative closeness to the ideal solution as (21):

Hi =
P−i

P+
i + P−i

; i = 1, 2, . . . , m; 0 ≤ H1 ≤ 1 (21)
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Step 7: Ranking alternatives based on the H value of each parameter. Hi = 1 indicates
the highest rank, and Hi = 0 indicates the lowest rank. Its calculation method is shown in
Figure 3.
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2.8. Performance Measures

The k-fold cross-validation test, independent dataset test, subsampling test, and
jackknife cross-validation test are four schemes widely used in statistical classification to
check the performance of predictive models [39]. The jackknife method is widely used
to estimate the generalization ability of predictive models [40,41]. However, this is time-
consuming. To save computation time, ten-fold cross-validation was used in this study.

We next investigated the performance of predictive models. In k-fold cross-validation,
the data are divided into k subsets, each using one of the k subsets and k − 1 subsets as test
and training data, respectively.

2.9. Classification

In this study, we used three classification models, including the SVM, KNN, and ANN
classifiers, to compare the bearing motor dataset and the CWRU dataset differences in the
various fault types and normal motors and obtain accurate results through the analysis
software MATLAB.

Support vector machine (SVM) [20,21]—An SVM is a supervised learning model and
a machine learning model of related learning algorithms. It has relative advantages for
problems such as small samples, nonlinearity, high dimensionality, and local minimum
points. This is the method to use for classification or regression. Given a group of classified
data, the SVM can obtain a set of models through training. Then, if there is unclassified data,
the support vector machine can use the previously trained model to predict the category of
this data, making it a nonprobabilistic binary linear classifier. Classification decisions are
made through linear combinations of features. The characteristics of objects are usually
described as eigenvalues, and in vectors, as eigenvectors. Since the support vector machine
must first have classified data for training when building a model, the support vector
machine is one of the methods of supervised learning.
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Tuning the SVM classifier:
Using the parameter value that minimizes the cross-validation loss for the SVM and

using the parameters that optimize the two-class learning, the eligible parameters are
‘BoxConstraint’, ‘KernelFunction’, ‘KernelScale’, ‘PolynomialOrder’, and ‘Standardize’.

Manually adjust the parameters of the classifier according to this scheme:
Step 1: Pass the data to the SVM and set the name–value pair parameters to ‘Ker-

nelScale’ and ‘auto’. Assume that the trained SVM model is called the SVM model. The
heuristic process uses subsampling. Therefore, to reproduce the results, use rng to set the
random number seed before training the classifier.

Step 2: Cross-validate a classifier by passing it to crossover. By default, the software
performs 10-fold cross-validation.

Step 3: Pass the cross-validated SVM model to k-fold Loss to estimate and retain the
classification error.

Step 4: Retrain the SVM classifier but adjust the ‘KernelScale’ and ‘BoxConstraint’
name–value pair arguments. As shown in Table 3.

Table 3. Support vector machine parameter setting.

Parameter Parameter Value

BoxConstraint 1
KernelFunction polynomial

KernelScale auto
PolynomialOrder 2

k-Nearest Neighbor algorithm (KNN) [22]—The KNN is a nonparametric method for
classification and regression prediction problems. It is one of the simplest of all machine
learning algorithms. The sorting criteria are determined by a ‘majority vote’ of neighbors.
The output of a regression model is a continuous value that is predicted to be the average
of the outputs of the k-nearest neighbors. On the classification problem, the KNN adopts
the majority principle and uses k-nearest neighbors to judge which group the new data
belong to. The algorithm flow is very simple. The disadvantage of the KNN is that it is
very sensitive to the local structure of the data, so it is extremely important to adjust the
appropriate k value. First, determine the size of k. Then calculate the distance between the
current new data and the adjacent data. In the third step, find out the k-nearest neighbors
and see which group has the most neighbors, and then classify it into that group.

Artificial Neural Network (ANN) [26–30]—Artificial neural networks are used for
supervised learning. More specifically, the ANN structure, training process, risk of over-
fitting, and data normalization for regression problems are analyzed. Calculations are
routed through a large number of artificial neuron connections. In most cases, the artificial
neural network can change its internal structure according to external information and is
an adaptive system. Modern neural networks are nonlinear statistical data modeling tools,
and neural networks are usually optimized by learning methods based on mathematical
statistics. Artificial neural networks can have simple decision-making abilities and judg-
ment abilities similar to human beings, and this method has more advantages than formal
logical reasoning.

The different steps are described below:
Step 1: The collected input and output samples are divided into a test set and a training

set. The splitting is performed randomly; usually, 80% of the samples are used for training
and 20% for testing.

Step 2: The training set is subdivided into training and validation subsets. Splitting is
random. Generally, 80% of the samples are used for the training subset and 20% for the
validation subset.

Step 3: Set the weights and biases of the artificial neural network. In the first iteration,
these values are chosen randomly. For the next iteration, a previous value of the error
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metric is chosen relative to the error metric obtained in the previous iteration of the training
subset.

Step 4: The error metric between the ANN output and dataset output is used to
evaluate training and validation subsets. Widely used metrics for a regression ANN are
mean squared error, and binary cross-entropy are used for a categorical ANN.

Step 5: Compare the error metrics for the training and validation subsets to stop
training when overfitting occurs. The training error metric monitors a subset to detect
training improvement when the completion metric converges and stops.

Step 6: If convergence is not achieved, the error metric is used to improve the weights
and biases for the next iteration.

Step 7: After training is complete, evaluate the training and test sets and compare the
resulting output with the dataset output. The training set comparison is biased because
the same data are already used for training. Therefore, the test set exists and provides an
unbiased validity check.

Step 8: If the performance of the artificial neural network cannot meet expectations,
the ANN structure, number of hidden layers, number of neurons, or training algorithm
should be reset.

ANN training is not a deterministic process due to the random splitting of datasets
and random initialization bias of weights. The training subset is divided into batches for
training iterations. The results of each iteration are used to improve the ANN parameters.
The training process is complete when all batches are complete and all samples from the
training subset have been used. The training process of an artificial neural network consists
of many epochs. The number of samples per batch is a parameter that can affect the training
process’s quality, stability, and computational cost.

2.10. Proposed Method Process

In this study, the faulty bearing detection model is based on VMD-FFT to establish the
feature extraction process and the used equations. This part of feature selection is divided
into four cases of individual tests, as shown in Figure 4. The specific steps are as follows:
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Model 1: Using the VMD-FFT feature extraction process and presenting the result
with a classifier.

Model 2: Using the VMD-FFT feature extraction process and SU method to remove
redundant features and using the classifier to present the results.

Model 3: Using the VMD-FFT feature extraction process. In the feature selection part,
the TOPSIS method (Figure 3) is used to obtain the ideal ranking, and the classifier is used
to present the results.

Model 4: Using the VMD-FFT feature extraction process and using the SU method to
remove redundant features. In the feature selection part, the TOPSIS method (Figure 3) is
used to obtain the ideal ranking, and the classifier is used to present the results.

These four models are independent of each other. To test whether the SU method can
effectively reduce redundant features and the combination of four different filtering meth-
ods selected in the TOPSIS method, the four training models of bearing faults constructed
were compared. The next section introduces the bearing dataset and the CWRU dataset.
We used these two datasets to test the results of the four models in the KNN, SVM, and
ANN classifiers.

3. Hybrid Models
3.1. Bearing Dataset of Current Signal Measured from an Induction Motors

This section describes the specifications of the motor used in the study and measures
the motor for normal and damaged bearings, broken rotor bars, and shorted stator windings.
Four current signals are used for analysis. Secondly, the equipment and methods used in
the experiment and the overall process of this study are introduced, and the differences
between various fault types and normal motors are preliminarily compared. Finally, the
accuracy results are given by MATLAB analysis software.

The equipment used in this study is a four-pole AC induction motor, as shown in
Figure 5; its specifications are shown in Table 4, and the fault types are shown in Figure 6a–c.
A signal acquisition device (NI PXI-1033), electricity meter, and computer were used for
analysis, and the measurement data were then recorded. Raw current signals are obtained
from experiments with common and three-faulted induction motors. Figure 7 shows the
test bench hardware, a three-phase squirrel-cage induction motor of four types: normal,
bearing failure, rotor drilled, and stator coil windings shorted. The three-phase squirrel-
cage induction motor with bearing damage (aperture 1.96 mm × 0.53 mm) is shown in
Figure 6a. The three-phase squirrel-cage induction motor with the rotor hole (two holes

∮
8 mm and 10 mm deep) is shown in Figure 6b. A three-phase squirrel-cage induction motor
with short-circuited stator coil windings (2 coils short-circuited) is shown in Figure 6c.
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Table 4. AC induction motor specifications.

Three-Phase Four-Pole Induction Motor Specifications

Voltage Frequency Power Factor
220 V/380 V 60 Hz 0.8

Output Current Rated speed
2 Hp 1.5 kW 5.58 A/3.23 A 1764 rpm

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 22 
 

 

obtained from experiments with common and three-faulted induction motors. Figure 7 
shows the test bench hardware, a three-phase squirrel-cage induction motor of four types: 
normal, bearing failure, rotor drilled, and stator coil windings shorted. The three-phase 
squirrel-cage induction motor with bearing damage (aperture 1.96 mm × 0.53 mm) is 
shown in Figure 6a. The three-phase squirrel-cage induction motor with the rotor hole 
(two holes ∮ 8 mm and 10 mm deep) is shown in Figure 6b. A three-phase squirrel-cage 
induction motor with short-circuited stator coil windings (2 coils short-circuited) is shown 
in Figure 6c. 

Table 4. AC induction motor specifications. 

Three-Phase Four-Pole Induction Motor Specifications 
Voltage Frequency Power Factor 

220 V/380 V 60 Hz 0.8 
Output Current Rated speed 

2 Hp 1.5 kW 5.58 A/3.23 A 1764 rpm 

Torque sensor

Servo motor

Computer

Data miner
(NI PXI-1033)

Oscilloscope

 
Figure 5. Torque sensor, servo motor, computer, oscilloscope, and data miner (NI PXI-1033). 

 
(a) 

 
(b) 

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 22 
 

 

 
(c) 

Figure 6. (a) Bearing damage processing (aperture 1.96 mm × 0.53 mm). (b) Rotor drilling failure 
(two holes ∮ 8 mm depth 10 mm). (c) Short circuit between stator layers (two coils short circuit). 

AC servo motor Induction motor Acquisition of equipment PC

Current dataCurrent signalConnect

AC servo motor

Input power

 
Figure 7. Signal measurement process. 

3.2. Measurement Process in AC Induction Motor 
First of all, this study measures the current signals of an AC induction motor in four 

conditions (normal, bearing, rotor, and stator) and obtains arbitrary phase data for the 
motor U, V, and W through the NI signal extractor. The data sampling time for each meas-
urement is 100 s, and the collection frequency is 1000 Hz. Each signal measurement is 
evaluated 100 times to complete the premeasurement operation. 

3.3. CWRU Benchmark Dataset 
The CWRU benchmark dataset provides validation of the ball bearing test data for 

normal and faulty bearings [42]. The test bench hardware consists of a 2 hp induction 
motor, load motor, and torque encoder. The CWRU benchmark dataset is unique in that 
each experiment carefully records the actual test conditions of the motor as well as the 
bearing fault states, including four different load levels (0 hp, 1 hp, 2 hp, 3 hp), three dif-
ferent fault locations (inner ring, outer ring, ball), three different defect diameters (0.007″, 
0.014″, 0.021″ inches), and a sampling rate of 12 kHz. The main purpose is to determine 
the severity and location of bearing failures. Normally, the signal is cut into 2000 data 
points at each level, so there are 660 samples in total except the normal signal, the signal 
at each level is sliced into 780 samples. The length samples for the three different defect 
diameters each have 2000 data points. 

4. Measurement Method of the Motor Signal 
In this study, the bearing dataset of the current signal measured from an induction 

motor and the CWRU bearing dataset are used as experimental samples for simulation. 
After VMF-FFT feature extraction, the comprehensive optimal SU feature removal method 
and TOPSIS method are used, and finally, the SVM, KNN, and ANN classifiers are used 
to compare the accuracy rate. 

4.1. CASE STUDY 1: Bearing Motor Dataset 
In order to demonstrate the performance of the proposed TOPSIS method, the bear-

ing motor dataset was used in this case to test the results. Table 5 shows the effect of ap-
plying different feature selection techniques on various classifier architectures. On the 

Figure 6. (a) Bearing damage processing (aperture 1.96 mm × 0.53 mm). (b) Rotor drilling failure
(two holes

∮
8 mm depth 10 mm). (c) Short circuit between stator layers (two coils short circuit).

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 22 
 

 

 
(c) 

Figure 6. (a) Bearing damage processing (aperture 1.96 mm × 0.53 mm). (b) Rotor drilling failure 
(two holes ∮ 8 mm depth 10 mm). (c) Short circuit between stator layers (two coils short circuit). 

AC servo motor Induction motor Acquisition of equipment PC

Current dataCurrent signalConnect

AC servo motor

Input power

 
Figure 7. Signal measurement process. 

3.2. Measurement Process in AC Induction Motor 
First of all, this study measures the current signals of an AC induction motor in four 

conditions (normal, bearing, rotor, and stator) and obtains arbitrary phase data for the 
motor U, V, and W through the NI signal extractor. The data sampling time for each meas-
urement is 100 s, and the collection frequency is 1000 Hz. Each signal measurement is 
evaluated 100 times to complete the premeasurement operation. 

3.3. CWRU Benchmark Dataset 
The CWRU benchmark dataset provides validation of the ball bearing test data for 

normal and faulty bearings [42]. The test bench hardware consists of a 2 hp induction 
motor, load motor, and torque encoder. The CWRU benchmark dataset is unique in that 
each experiment carefully records the actual test conditions of the motor as well as the 
bearing fault states, including four different load levels (0 hp, 1 hp, 2 hp, 3 hp), three dif-
ferent fault locations (inner ring, outer ring, ball), three different defect diameters (0.007″, 
0.014″, 0.021″ inches), and a sampling rate of 12 kHz. The main purpose is to determine 
the severity and location of bearing failures. Normally, the signal is cut into 2000 data 
points at each level, so there are 660 samples in total except the normal signal, the signal 
at each level is sliced into 780 samples. The length samples for the three different defect 
diameters each have 2000 data points. 

4. Measurement Method of the Motor Signal 
In this study, the bearing dataset of the current signal measured from an induction 

motor and the CWRU bearing dataset are used as experimental samples for simulation. 
After VMF-FFT feature extraction, the comprehensive optimal SU feature removal method 
and TOPSIS method are used, and finally, the SVM, KNN, and ANN classifiers are used 
to compare the accuracy rate. 

4.1. CASE STUDY 1: Bearing Motor Dataset 
In order to demonstrate the performance of the proposed TOPSIS method, the bear-

ing motor dataset was used in this case to test the results. Table 5 shows the effect of ap-
plying different feature selection techniques on various classifier architectures. On the 

Figure 7. Signal measurement process.

3.2. Measurement Process in AC Induction Motor

First of all, this study measures the current signals of an AC induction motor in four
conditions (normal, bearing, rotor, and stator) and obtains arbitrary phase data for the
motor U, V, and W through the NI signal extractor. The data sampling time for each
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measurement is 100 s, and the collection frequency is 1000 Hz. Each signal measurement is
evaluated 100 times to complete the premeasurement operation.

3.3. CWRU Benchmark Dataset

The CWRU benchmark dataset provides validation of the ball bearing test data for
normal and faulty bearings [42]. The test bench hardware consists of a 2 hp induction
motor, load motor, and torque encoder. The CWRU benchmark dataset is unique in that
each experiment carefully records the actual test conditions of the motor as well as the
bearing fault states, including four different load levels (0 hp, 1 hp, 2 hp, 3 hp), three
different fault locations (inner ring, outer ring, ball), three different defect diameters (0.007′′,
0.014′′, 0.021′′ inches), and a sampling rate of 12 kHz. The main purpose is to determine the
severity and location of bearing failures. Normally, the signal is cut into 2000 data points
at each level, so there are 660 samples in total except the normal signal, the signal at each
level is sliced into 780 samples. The length samples for the three different defect diameters
each have 2000 data points.

4. Measurement Method of the Motor Signal

In this study, the bearing dataset of the current signal measured from an induction
motor and the CWRU bearing dataset are used as experimental samples for simulation.
After VMF-FFT feature extraction, the comprehensive optimal SU feature removal method
and TOPSIS method are used, and finally, the SVM, KNN, and ANN classifiers are used to
compare the accuracy rate.

4.1. CASE STUDY 1: Bearing Motor Dataset

In order to demonstrate the performance of the proposed TOPSIS method, the bearing
motor dataset was used in this case to test the results. Table 5 shows the effect of applying
different feature selection techniques on various classifier architectures. On the classifier
side, it was used as an evaluation measure during a 10-fold cross-validation process with
30 repetitions. For a fair performance evaluation, consider different constraints that affect
classification performance, such as training dataset, classifier model, and several selected
features. In this regard, we should evaluate different possible combinations of the four
states applied to the three classifiers. In the case of using SVM machine learning, the
average accuracy rate of the VMD-FFT signal analysis method is 87.98%, and the highest
accuracy rate is 98.5%, as shown in Figure 8a. After using the VMD-FFT signal analysis
method combined with the SU feature selection method, the 80 features can be reduced
to 60, respectively, and the average accuracy rate is 88.09%. Compared with model 1, the
average accuracy rate curve is relatively stable, as shown in Figure 8b. Using the VMD-FFT
signal analysis method combined with the TOPSIS feature selection method, in Feature
Number 4 and Feature Number 16, the accuracy rates are 80.50% and 93.50%. It can be seen
that the six-select method is better than other selection methods, as shown in Figure 8c. It
is clear that using the VMD-FFT signal analysis method combined with the TOPSIS feature
selection method combined with the SU feature selection method can reduce the 80 features
to 60, respectively. In Feature Number 3, Feature Number 18, and Feature Number 24, the
accuracy rates are 78.70%, 98.0%, and 99.0%. Compared with the results of model 3, the
curve of the six-select method in model 4 tends to stabilize faster, as shown in Figure 8d.
Therefore, it can be judged that this method can delete redundant and unimportant features,
obtain a better feature subset, and effectively improve accuracy.

In this case study, the proposed bearing fault diagnosis model is compared with state-
of-the-art models. Since the results in Table 5 show that the six-select method achieves
better results in model 3 and model 4, the six-select method is the main method in model 3
and model 4 in the three classifiers in Table 5. The accuracy of the bearing motor current
signal dataset in model 4 is 78.72% for the KNN classifier, 91.82% for the SVM classifier,
and 99.48% for the ANN classifier. The proposed model with the ANN classifier achieves
the highest accuracy in the bearing motor current signal dataset
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Figure 8. (a) Model 1: Bearing motor dataset of the VMD-FFT method in an SVM. (b) Model 2:
Bearing motor dataset of the VMD-FFT method with redundant features removed by the SU method
in an SVM. (c) Model 3: Bearing motor dataset of the TOPSIS method not removing features in an
SVM. (d) Model 4: Bearing motor dataset of the TOPSIS method with redundant features removed by
the SU method in an SVM.

Table 5. Result in bearing motor current signal dataset.

Bearing Motor
Current

Signal Dataset

KNN SVM ANN

Best
Accuracy

(%)
Avg (%) Time (s)

Best
Accuracy

(%)
Avg (%) Time (s)

Best
Accuracy

(%)
Avg (%) Time (s)

model 1 90.50 76.75 8.47 98.50 87.98 123.95 100 99.38 1.16
model 2 90.00 77.03 6.25 98.50 88.09 124.21 100 99.41 1.04

model 3 (B) 90.50 78.63 5.77 99.00 91.68 76.83 100 99.43 1.01
model 4 (B) 91.50 78.72 4.22 99.00 91.82 69.18 100 99.48 0.93

In the case of using SVM learning, the average recognition rate of the VMD-FFT signal
analysis method is 87.98%, and the highest accuracy rate is 98.5%, as shown in Figure 8a.
After using the VMD-FFT signal analysis method combined with the SU feature selection
method, the 80 features can be reduced to 60, respectively, and the average accuracy rate is
88.09%. Compared with model 1, the average recognition rate curve is relatively stable, as
shown in Figure 8b. Using the VMD-FFT signal analysis method combined with the TOPSIS
feature selection method, in Feature Number 4 and Feature Number 16, the accuracy rates
are 80.50% and 93.50%. It can be seen that the six-select method is better than other selection
methods, as shown in Figure 8c. Using the VMD-FFT signal analysis method combined
with the TOPSIS feature selection method combined with the SU feature selection method
can reduce the 80 features to 60, respectively. In Feature Number 3, Feature Number 18,
and Feature Number 24, the accuracy rates are 78.70%, 98.0%, and 99.0%. Compared with
the results of model 3, the curve of the six-select method in model 4 tends to stabilize faster,
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as shown in Figure 8d. Therefore, it can be judged that this method can delete redundant
and unimportant features, obtain a better feature subset, and effectively improve accuracy.

In this case study, the proposed bearing fault diagnosis model is compared with state-
of-the-art models. Since the results in Table 5 show that the six-select method achieves
better results in model 3 and model 4, the six-select method is the main method in model 3
and model 4 in the three classifiers in Table 5. The accuracy of the bearing motor current
signal dataset in model 4 is 78.72% for the KNN classifier, 91.82% for the SVM classifier,
and 99.48% for the ANN classifier. The proposed model with the ANN classifier achieves
the highest accuracy in the bearing motor current signal dataset. Therefore, the proposed
bearing fault diagnosis model has better capability and can be applied to the practical task
of fault diagnosis.

In this case study, the average running time of each method under different classifiers
is shown in Table 5. The proposed method performs the best under each classifier. Model
4 had the shortest average running time of 4.22 s. for the KNN, 69.18 s. for the SVM,
and 0.93 s. for the ANN. The SVM still has the longest average operation time and is
significantly longer than the proposed method. In this case study, the proposed bearing
fault diagnosis model is validated. Therefore, ANN classifiers are more suitable than those
of the KNN and the SVM.

Based on the above results, in addition to showing the accuracy of each model, the
performance of the three classifiers is shown, and type B of model 3 and model 4 are
determined at the same time, which is an ideal solution for the feature selection method in
TOPSIS.

4.2. CASE STUDY 2: CWRU Benchmark Dataset

In this case study, the proposed bearing fault diagnosis models are compared. Table 6
shows the classification of the four models of the CWRU 0 Hp benchmark dataset. The
proposed model among the six-selected feature selection methods in model 4 achieves
97.52% accuracy in the KNN classifier. The accuracy of the SVM classifier is 98.60%, and the
accuracy of the ANN classifier is 99.62%. In this case study, the proposed model with the
ANN classifier achieves the highest accuracy, which is also higher than that of the proposed
model with KNN and SVM classifiers.

Table 6. Result in CWRU bearing load 0 Hp dataset.

CWRU Bearing
Load 0 Hp

Dataset Data 2: 2000
× 660

KNN SVM ANN

Best
Accuracy

(%)
Avg (%) Time (s)

Best
Accuracy

(%)
Avg (%) Time (s)

Best
Accuracy

(%)
Avg (%) Time (s)

Model 1 99.09 96.73 9.89 99.69 97.34 287.2 100 99.54 1.33
Model 2 99.09 97.03 6.71 99.84 97.35 276.3 100 99.61 1.17
Model 3 99.39 97.19 9.05 99.84 98.45 177.6 100 99.62 1.26
Model 4 99.39 97.52 8.61 99.84 98.60 176.7 100 99.62 1.21

In this case study, Table 7 shows the classification of the four models of the CWRU
1 Hp benchmark dataset. The proposed model among the six-selected feature selection
methods in model 4 achieves 98.41% accuracy in the KNN classifier. The accuracy of the
SVM classifier is 98.45%, and the accuracy of the ANN classifier is 99.54%. In this case
study, the proposed model with the ANN classifier achieves the highest accuracy, which is
also higher than the proposed model with KNN and SVM classifiers.

In this case study, Table 8 shows the classification of the four models of the CWRU
2 Hp benchmark dataset. The proposed model among the six-selected feature selection
methods in model 4 achieves 98.66% accuracy in the KNN classifier. The accuracy of the
SVM classifier is 98.67%, and the accuracy of the ANN classifier is 99.55%. In this case
study, the proposed model with the ANN classifier achieves the highest accuracy, which is
also higher than the proposed model with KNN and SVM classifiers. In this case study,
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Table 9 shows the classification of the four models of the CWRU 3 Hp benchmark dataset.
Among the six feature selection methods selected in model 4, the proposed model achieved
99.73% accuracy in the ANN classifier. In this case study, the proposed model with the
ANN classifier achieves the highest accuracy. To confirm the credibility of the results,
this study compares the results of ANN classifiers in other papers in the CWRU data. In
Zhiqiang Zhang, Funa Zhou, and Sijie Li’s paper [43], there are a total of six classifiers used
for comparison, DNN, MDNN, MCNN, MRFNN, CMRFNN, G-CMRFNN, respectively.
The method with the highest accuracy is G-CMRFNN, and the average accuracy of the
classifiers is 98.20%. The average accuracy of the ANN classifier in this study is 99.62% for
the CWRU 0 Hp model 4, 99.54% for the CWRU 1 Hp model 4, 99.55% for the CWRU 2
Hp model 4, and 99.73% for the CWRU 3 Hp model 4, as shown in Table 10. It can be seen
from this that the model 4 method is superior in performance.

Table 7. Result in CWRU bearing load 1 Hp dataset.

CWRU Bearing
Load 1 Hp

Dataset Data 2: 2000
× 780

KNN SVM ANN

Best
Accuracy

(%)
Avg (%) Time (s)

Best
Accuracy

(%)
Avg (%) Time (s)

Best
Accuracy

(%)
Avg (%) Time (s)

Model 1 98.33 95.44 12.09 99.35 97.34 287.4 99.49 98.92 1.55
Model 2 98.46 95.93 7.91 99.35 97.47 277.5 99.87 99.33 1.26
Model 3 99.61 98.22 11.60 99.84 97.38 270.3 100 99.45 1.29
Model 4 99.74 98.41 7.73 99.84 98.45 260.4 100 99.54 1.24

Table 8. Result in CWRU bearing load 2 Hp dataset.

CWRU Bearing
Load 2 Hp Dataset
Data 3: 2000 × 780

KNN SVM ANN

Best
Accuracy

(%)
Avg (%) Time (s)

Best
Accuracy

(%)
Avg (%) Time (s)

Best
Accuracy

(%)
Avg (%) Time (s)

Model 1 99.23 96.31 11.58 99.74 97.21 324.3 100 99.22 1.53
Model 2 99.74 96.54 7.59 99.23 97.75 333.2 100 99.34 1.43
Model 3 99.35 98.57 11.78 99.87 98.13 176.3 100 99.50 1.35
Model 4 99.35 98.66 8.03 99.94 98.67 166.3 100 99.55 1.37

Table 9. Result in CWRU bearing load 3 Hp dataset.

CWRU Bearing
load 3 Hp Dataset
Data 4: 2000 × 780

KNN SVM ANN

Best
Accuracy

(%)
Avg (%) Time (s)

Best
Accuracy

(%)
Avg (%) Time (s)

Best
Accuracy

(%)
Avg (%) Time (s)

Model 1 99.74 97.74 11.76 99.74 97.95 286.3 100 99.66 1.58
Model 2 99.74 97.38 7.53 99.87 98.07 279.2 100 99.69 1.33
Model 3 99.48 98.31 11.31 99.87 98.89 106.8 100 99.70 1.31
Model 4 99.53 98.13 7.71 99.87 98.91 100.9 100 99.73 1.27

In the paper written by Laohu Yuan, Dongshan Lian, Xue Kang, Yuanqiang Chen,
and Kejia Zhai [44], there are a total of six classifiers are used for comparison, namely
PNN-SFAM, BPNN, CNN-HMM, DAFD, DGNN, and CNN-SVM. The best one is the
CNN-SVM model with an average accuracy of 98.75%. In addition to the accuracy results
of the ANN, this study also compares the accuracy results of the SVM. The average accuracy
of CWRU 0 Hp model 4 of the SVM classifier is 98.60%, and the average accuracy of CWRU
1 Hp model 4 is 98.45%. The average accuracy of the CWRU 2 Hp model 4 is 98.67%, and
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the average accuracy of the CWRU 3 Hp model 4 is 98.91%, as shown in Table 11. The
performance of this study in SVM classification is not the best, but it is evenly matched.

Table 10. Comparison of neural network.

CWRU Dataset Model Average Accuracy (%)

Compare model G-CMRFNN [43] 98.20

Proposed model

CNN-SVM [44]
PDC-LR-HCNN [22] 98.7593.70

0 Hp model 4 99.62
1 Hp model 4 99.54
2 Hp model 4 99.55
3 Hp model 4 99.73

Table 11. Comparison of neural support vector machine.

CWRU Dataset Model Average Accuracy (%)

Compare model CNN-SVM [44] 98.75

Proposed model

0 Hp model 4 98.60
1 Hp model 4 98.45
2 Hp model 4 98.67
3 Hp model 4 98.91

The average accuracy of CWRU 3 Hp model 4 is 0.16% higher than that of the proposed
CNN-SVM method. In this study, the average accuracy of the ANN classifier is 99.62%,
the CWRU 0 Hp model 4, CWRU 1 Hp model 4 is 99.54%, the CWRU 2 Hp model 4 is
99.55%, CWRU 3 Hp model 4 is 99.73%, as shown in Table 10. By comparing the results
with other methods, it is not difficult to see that the method in this study has achieved a
high diagnostic accuracy, which further proves the effectiveness of the method.

In the paper written by Shaohui Ning and Kangning Du [22], there are a total of
four classifiers to compare in this paper, namely, traditional CNN, PDC-CNN, LR-CNN,
PDC-LR-CNN, and the best of the four methods is the PDC-LR-HCNN method, with an
average accuracy of 93.70%. The average accuracy of the ANN classifiers in this study
are as follows: the CWRU 0 Hp model 4 is 99.62%, the CWRU 1 Hp model 4 is 99.54%,
the CWRU 2 Hp model 4 is 99.55%, and the CWRU 3 Hp model 4 is 99.73%, as shown
in Table 10. The method research proposed in this paper can not only diagnose bearing
faults quickly but also maintain the accuracy of the diagnosis, which is obviously of great
significance to the actual fault diagnosis.

5. Discussion

The following two points can be summarized based on the above data results:
Improve the combination of TOPSIS selection methods: Sort by detecting the distance

between the evaluation object and the optimal solution and the worst solution; if the
evaluation object is the closest to the optimal solution and at the same time farthest from
the most cracked, it is the best; otherwise, it is the worst. According to the assumption,
the ideal solution is the optimal solution, and its various attributes have reached the best
value among the alternative solutions. If the distance between the optimal solution and
the most cracked solution is too large, it leads to judgment errors in the model, such
as the line segment selected type A and the line segment selected type B in Figure 8d,
which show that it is not choosing more reference weights to increase the accuracy rate but
choosing reference weights suitable for the data that can reduce the interval between the
ideal solution and the optimal solution, thereby improving the accuracy rate.

Improve the application of TOPSIS in multiobjective decision-making problems: Re-
duce redundant features through VMD-FFT and SU methods, as shown in Table 5. Com-
pared with model 3, model 4 reduces 25% of the features, but in the recognition rate and
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running time, it is much better than model 3. Model 4 overcomes the shortcomings of poor
objectivity and many assumptions and provides a more effective method for the selection
of the optimal sequence

Apart from advantages, the proposed model still has flaws that need to be noted.
Model multiplicity: As mentioned in the feature selection method process, this study

uses the filter method. This method does not consider which model to use in the future for
learning. When selecting, it only evaluates the correlation between variables and predicted
values and excludes the most irrelevant variables. Due to the relationship between variables
not being considered, this study uses the TOPSIS method for aggregation. Compared to
the wrapper and embedded methods, filter methods are simpler. Furthermore, when there
are large datasets, testing tends to amplify into significant small differences in distributions
that are not important.

Combination of filter methods in TOPSIS: This study proposes a combination of four
different filter methods, as shown in Table 2. Due to the wide variety of filter methods,
after excluding unsuitable types, six common filter methods were selected in this study,
and only six combination methods have certain limitations on the weight of the optimal
ranking, using other types of feature selection. The type of model needs further study.

6. Conclusions

Early detection of potential motor failures remains an important issue in operations
and maintenance procedures. Therefore, this study proposes a motor bearing fault detection
model. The symmetric uncertainty method and interpretability contained in the bearing
vibration signal can effectively remove redundant features, remove irrelevant data, improve
the accuracy of the learning model, reduce computational complexity, and improve the
understandability of the model results. In order to overcome the shortcomings of the
TOPSIS model in the multi-index decision-making process, the matrix between the original
data sample and the ideal plan is used as a new decision matrix, and the ideal solution
method is used to sort the plans. It overcomes the shortcomings of the traditional ideal
solution, which is only based on the original data and is difficult to mine the inherent
laws of the data, and provides a new idea for the decision-making problem under the
condition of limited samples. At the same time, the method of combination weighting
is proposed, which overcomes the shortcomings of traditional subjective and objective
weighting methods. Results from measured bearing vibration data show that the proposed
model 4 method outperforms traditional frequency-domain methods, feature selection
methods, and other state-of-the-art filtering methods. Different FFS methods combined
with different datasets in the TOPSIS method may result in different feature sets with
different discriminants, so when given the wrong weights, the discrimination results may
not be as expected. The results show that the proposed model 4 method helps researchers
select more stable features from feature selection by integrating FFS methods. The proposed
method has the advantages of stability and classification performance. However, it suffers
from computational complexity issues compared to the FFS method. Still, the model 4
method has lower computational complexity compared to the filter selection method. Using
the evaluation model established in this paper, through the application in the bearing fault
evaluation, it shows that the result is reasonable, the calculation is simple, and it has a good
application prospect.

The motor bearing fault diagnosis model proposed in this study has a high recognition
rate in different datasets, but the feature selection method still needs to rely on a large
amount of manual data processing in the adjustment of the TOPSIS method, which can
be optimized in the future so that it can be more weighted and efficient. Future research
should try to combine wrapping and embedded methods to apply the model more widely.
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