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Abstract: In this note, we will focus on the relationships between the growth rates of several functions
that describe the topological shape at infinity of discrete groups. In particular, we will consider, in
detail, the notion of the rate of vanishing of the simple connectivity at infinity for some geometric
classes of finitely presented groups.
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1. Introduction

The topology at infinity concerns those geometric and topological asymptotic notions
that are important both for non-compact manifolds and for discrete groups. For instance,
the question of whether a contractible manifold is simply connected at infinity is central
in the study of the topology and geometry at infinity of the manifold because it assures
that its “infinity” is as tame as possible, namely that of the Euclidean space (see [1]). Here
“simply connected at infinity” (abbreviated sci) roughly means that the infinity of the space
is simply connected or, more precisely, that any loop “at infinity” bounds a disk that is
close to infinity. This notion can be defined and studied for finitely presented groups, too
(see, e.g., [2]). To better understand the asymptotic topological behaviour of those finitely
presented groups that are simply connected at infinity, in [3], a function was defined that,
in some sense, measures how a group is sci, and the growth of this function, called the
sci-growth, is another example of a geometric property of discrete groups (i.e., a quasi-
isometry invariant for finitely presented groups, following Gromov’s viewpoint [4]). A very
similar function was defined and studied in [5,6]. This is homologous in dimension 0 of the
sci-growth for one-ended groups, and it measures the “depth” of the bounded components
of the complement of metric balls in the Cayley graph of the group. The growth of this
function is also a geometric invariant of finitely presented groups, called the end-depth
(see [5,6]).

In this paper, we will study these notions, together with similarly related ones, for
some specific geometric classes of discrete groups.

2. Definitions

Let (X, d) be a metric space and D, E two subsets of it. The distance between D and
E, denoted d(D, E), is defined as inf{d(x, y) | x ∈ D, y ∈ E}. For any point x ∈ X, we will
write S(x, r) and B(x, r) to denote the sphere and the ball in X of radius r, with centre x.

We now recall the all-important definition of the number of ends of a metric space. Let
(X, d) be a locally compact and connected metric space. For any compact subset K of X, we
can consider the number of unbounded connected components of the complement X− K
and write it as e(X, K). The number of ends e(X) of space X is the supremum of e(X, K) for
all compacts K ⊂ X.

If e(X) = 1, we say that X is a one-ended metric space. This roughly means that there
is only “one way to go to infinity” (at least outside large compacts).
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Now, consider a finitely generated group G = 〈S〉 (this simply means that G has a
finite generating set S). The Cayley graph associated with the pair (G, S), denoted by Γ(G, S),
can be defined as the directed graph with one vertex associated with each element of the
group and edges (g, h) from g to h, with g, h ∈ G, whenever gh−1 ∈ S. The Cayley graph
strictly depends on the choice of a generating set, and, for instance, it is connected if and
only if S generates the whole group G. If dS is the word metric in G (where the distance
between two elements g and h is the minimum possible length of a word using elements
from S ∪ S−1), the Cayley graph Γ(G, S) with the metric dS also becomes a locally compact
and connected metric space. In this way, one can define the number of ends of the Cayley
graph, e(Γ(G, S)), and it turns out that the number of ends is actually independent of the
finite generating set chosen [7].

Thus, the number of ends of the finitely generated group G, e(G), can be (well-)defined
as the number of ends of (one of) its Cayley graph Γ(G, S), for some finite generating set S.

A finitely generated group is one-ended whenever its Cayley graph, with respect to one
of its finite generating sets, is a one-ended metric space. Note also that, for finitely generated
groups, the number of ends is a quasi-isometry invariant [7]. Here we meet the viewpoint
of Gromov [4]: two metric spaces are quasi-isometric if they are undistinguishable when
looked at from far away. The interesting geometric conditions of groups are those properties
that are invariant under quasi-isometry. This is the right way in order to understand the
global, asymptotic, geometric behaviour of discrete groups.

One of the oldest results concerning the ends of groups is the well-known result of
Hopf [7,8], which says that a finitely generated group can have only 0, 1, 2, or infinitely
many ends (a Cantor set). Obviously, a finitely generated group is finite if and only if
e(G) = 0. On the other hand, Stallings’ Theorem on the ends of groups [9] states that G has
more than one end if and only if it admits a nontrivial decomposition as an amalgamated
free product or an HNN extension over a finite subgroup. Nowadays, this is considered the
first result in geometric group theory (for proof, see [7,10]). Finally, in 1983, M. Gromov
gave a very fast proof for this theorem using minimal surfaces [4].

2.1. Growth Function of the End

We now need a digression on growth functions. Let f , g : R→ R be two real functions.
One says that the growth of the function f is at most the growth of the function g, and one
writes f ≺ g if there exist three constants a1 > 0, a2 > 0, a3, with ai ∈ R, such that, for any
x ∈ R+, the following holds: f (x) ≤ a1g(a2x) + a3. If f ≺ g and g ≺ f , then one says that
the functions f and g have the same growth, and one writes f ∼ g.

It is easy to see that f ∼ g is an equivalence relation. The growth rate of a function f is
then defined as the growth of the equivalence class of the function f . For instance, we will
say that f has linear growth whenever f (x) ∼ x.

With all these notions, we are able to properly define the end-depth of a group.

Definition 1. Let G = 〈S〉 be a finitely generated one-ended group and let X = Γ(G, S) be its
Cayley graph. For any real number r > 0, let N(r) be the set of all k ∈ R such that any two points
in X− B(k) can be joined by a path lying outside the ball B(r). The function VX

0 (r) = inf N(r) is
called the end-depth function of X.

Remark that the end-depth function itself depends on the generating set of the group,
but its growth rate does not, as shown in [6]. Actually, the end-depth growth is even linear
for any finitely presented group [5].

Here we want to present a more precise and clearer description for the understanding
of the end-depth function following [11]. If we consider a finitely generated group G = 〈S〉,
with a finite generating set S and its Cayley graph X = Γ(G, S) associated with S, then
for any positive real number r, the set of connected components of the complement of the
r-ball is finite, i.e., π0(X− B(e, r)) = m, for some integer number m. Whenever group G is
one-ended, then in the set X− B(r, e), there is only one unbounded connected component.



Mathematics 2023, 11, 1431 3 of 7

Let Ur be this unique unbounded connected component and denote by Br, the union of the
bounded components of X− B(e, r). We can make the following useful observations:

• The set Br is empty if and only if VX
0 (r) = r.

• Otherwise, whenever X− B(r) has at least one bounded connected component, then,
for any x ∈ Br, any path joining x to an element y ∈ Ur must go through the ball
B(e, r). Thus, for any x ∈ Br, one has: VX

0 ≥ d(e, x). This implies that VX
0 (r) ≥

max{d(e, x) | x ∈ Br}.
• On the other hand, for any y, z ∈ X with d(e, y), d(e, z) > max{d(e, x) | x ∈ Br}, we

have that y, z ∈ Ur. This implies that the two pints y and z can be joined by a path
lying outside the ball B(e, r), and so we find that y, z ∈ X − B(e, VX

0 (r)). Hence, we
can obtain an explicit formula for the function V0:

VX
0 (r) = max{d(e, x) | x ∈ Br}. (1)

This equation makes us understand in what sense the end-depth function gives a
measure of the depth of the bounded connected components of X− B(e, r).

• Furthermore, from Equation (1), we can also deduce that there exists a bounded
connected component P of X− B(e, r) and at least one of its elements p ∈ P such that
VX

0 (r) = d(e, p) = max{d(e, x) | x ∈ Br}.

2.2. Other End-Topological Notions

Before stating our results, we need to introduce some more topological tameness
conditions at infinity for manifolds and discrete groups.

Recall that a ray in a non-compact topological space X is just a proper map r : [0, ∞)→
X (where “proper” means that the inverse image of a compact subset is compact too). Two
rays r1 and r2 are said to converge to the same end of X if, for any compact subset C ⊂ X,
there exists a real number T such that r1([T, ∞)) and r2([T, ∞)) are contained in the same
component of X− C. (Note that the set of rays modulo this relation actually coincides with
is the set of ends of X, as defined above).

The next notion, called semistability at infinity, is an old topological property much
used in the study of the topological shape of ends of finitely presented groups (see [12]). If
a finitely presented group is semistable at infinity, then subtle invariants of the group can
be defined (such as the so-called fundamental group at infinity, see [13]).

An end of X is said to be semistable if any two rays of X converging to this end are
properly homotopic. This notion is equivalent to the following fact: for any ray r that
converges to the end and for any natural number n, there exists a N ≥ n such that any loop
at r with the image outside B(N) can be pushed (relative to r) to infinity by a homotopy
within X− B(n). Finally, a finitely presented group is semistable at infinity if all of its ends
are semistable.

Definition 2. Let X be a metric space, e an end of X and r a ray converging to e. The semistability
function Se(r) is defined as the smallest N such that, for any R ≥ N and any loop l based on r lying
in X− B(N) there exists a homotopy relative to r and supported within X− B(n), which pushes l
to a loop in X− B(R).

Remark 1. Notice that a semistable end has a well-defined semistability function.

Let G be a one-ended, finitely presented group. Denote by SG = SX̃ the semistability
function of the space X̃ with respect to its only end, where X is a compact space with
fundamental group G and X̃ its universal cover. It is easy to see that the growth of SG is
independent of the space X (i.e., if Y is another compact space with π1Y = G, then one has
SX̃ ∼ SỸ).
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Remark 2. The proof of the quasi-isometry invariance of the end-depth [6] (and that of the sci-
growth [3]) can be used to show that the semistability function SG for semistable infinity groups is
also a geometric property (i.e., invariant under quasi-isometries).

Lemma 1. For a one-ended, semistable infinity group G, the end-depth V0 is bounded by the
semistability function SG.

Proof. Let x be a point in X̃ − B(SG(n)). The semistability condition implies that the
constant loop x is a homotope of loop out of B(N) for any large enough N, with a homotopy
in X̃− B(n). Thus x can be joined to a point x1 of X̃− B(N) by a path in X̃− B(n). Since
G is one-ended, there exists N(n) such that any two points out of B(N(n)) can be joined
out of B(n). Hence any x, y ∈ X̃− B(n) is joined by the path [x, x1][x1, y1][y1, y], which sits
outside B(n). This means that V0(G) ≤ SG.

Another all-important topological notion at infinity, possibly the most powerful one
(see, e.g., [1,14]), is the simple connectivity at infinity.

Definition 3. A connected, locally compact, topological space X with π1X = 0 is simply connected
at infinity (abbreviated sci, or π∞

1 X = 0) if for each compact k ⊆ X there exists a larger compact
k ⊆ K ⊆ X such that any closed loop in X− K is null homotopic in X− k.

This notion can be extended to a group-theoretical framework as follows (for more
details, see [2]):

Definition 4. A finitely generated group G is simply connected at infinity if, for some (equivalently
for any) finite complex X such that π1X = G, one has that π∞

1 X̃ = 0 (where X̃ is the universal
covering space of X).

In order to measure the growth of the simple connectivity at infinity, the following
function was introduced in [3]:

Definition 5. Let X be a simply connected metric space. The rate of vanishing of π∞
1 , denoted

by VX(r), is the smallest N(r) such that any loop lying outside the ball B(N(r)) of radius N(r)
bounds a 2-disk out of B(r).

It was proven in [3] that the growth rate (namely the equivalence class) of VX(r) is a
geometric invariant of discrete groups. More precisely, if G is a finitely presented group,
X̃G is the universal covering space of a compact simplicial complex XG, with π1(XG) = G,
the function VG = VX̃G

is a quasi-isometry invariant of G.
If VG is well-defined and linear, one says that group G has linear sci-growth.

Proposition 1. If a finitely presented group G is simply connected at infinity, then VG ∼ SG.

Proof. This is proven in [5] (Proposition 2.5).

Remark 3.

• For topological spaces that are k-connected at infinity, we can define the function
Vk(X) = inf(N(r)) such that any k-sphere outside B(N(r)) bounds a (k + 1)-sphere out
of B(r).

• For general metric spaces that are not Cayley complexes, these functions can have arbi-
trary large growth. In fact, let f : N → R+ be a real function and let Ck(n) be the set
[0, f (n)]× Sk/R where R is the equivalence relation (0, x) ∼ (0, y) (here Ck(n) is the
cone of the k-dimensional sphere Sk ⊂ Rk of height f (n)). Now, consider the real half-line
[0, ∞) and attach to any n the cone Ck(n). Obviously, the resulting space Xk is one-ended,
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k-connected at infinity, and whose function Vk(Xk)(n) is equal to n + f (n). Hence the space
Xk has the same growth as any arbitrarily chosen function f .

3. Results

In this section, we will study the growth of the simple connectivity at infinity for some
classes of groups, and we will enlarge the set of sci groups with a linear sci-growth.

3.1. Coxeter Groups

Coxeter groups were introduced long ago as generalisations of reflection groups
(see [7,14,15]). A Coxeter group is an abstract group that admits a formal description in terms
of reflections; more precisely, it is a finitely presented group W with particular presentations
of the following form: 〈s1, s2, . . . , sn | s2

i = 1 for i ∈ {1, 2, . . . , n}, (sisj)
mij = 1 where i < j

ranges over some subset of {1, 2, . . . , n}× {1, 2, . . . , n} and mij ≥ 2〉. Not all Coxeter groups
are finite, and not all can be described in terms of Euclidean symmetries and reflections.

Here we will provide direct proof, using the semistability condition, of the fact that
simply connected at infinity (infinite) Coxeter groups have a linear sci-growth.

Lemma 2. Let W be a Coxeter group and ΓW be its Cayley graph. If [v, w] is an edge of ΓW , then
d(e, v) 6= d(e, w).

Proof. Consider the homomorphism f : W → {+1,−1} defined by f (si) = −1 for all
i. Let p be an edge path joining the origin e with the point v. Then f (v) = (−1)n(p),
where n(p) is the number of edges in p. If [v, w] is an edge in ΓW from v to w, then
d(e, w) = f (w) = (−1)n(p)+1 6= d(e, v).

Theorem 1. Coxeter groups have linear semistability.

Proof. We will show that SW is linear for any Coxeter group W. Let W = 〈s1, . . . , sn | s2
i =

1, (sisj)
mij = 1〉 be the standard presentation of a Coxeter group, where mij ∈ {2, 3, . . . , ∞}.

Lemma 3. Assume that mij 6= ∞ for all i, j. Then SW is linear.

Proof. Let X be the standard two-complex associated with the presentation of above. In
what follows, all metric balls are centred at the origin of the Cayley complex X̃.

Consider a loop l in X̃ − B(r + 1). Let v be a vertex of l that realizes the minimum
distance from the origin. If it is not unique, Lemma 2 implies that two such vertices cannot
be adjacent.

Assume that the edges of l adjacent to v are [wv], labelled si, and [v, u], labelled sj.
Consider the null homotopic loop (sisj)

mij , which starts at v. This loop is made of wvu and
its complementary part wy1 . . . yNu.

First, we have to note that all points yj are at a distance of at least r + 2 from the
identity element e. Then, since loop (sisj)

mij = uvwy1 . . . yNu, in order to replace wvu by
wy1 . . . yNu, it is a sufficient homotope supported in X̃− B(r).

Continuing this procedure, we can move loop l as far as we wish.

Lemma 4. Assume that A, B are two finitely presented semistable at infinity groups with a common
finitely generated subgroup C. If SA and SB are linear, then SA∗C B is linear too.

Proof. This is proven in [12] (one can find another proof in [5] for the sci-growth case).

Now, let W be a Coxeter group. If in its presentation there exist i, j such that mij = ∞,
then one can split W into an amalgamated free product W = A ∗C B where C is finitely
generated, and A and B are presented with mij 6= ∞ (see [12]). Continued reduction of this
kind, and the application of the above two lemmas, yield the proof of Theorem 1.
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From Theorem 1 and Proposition 1 we obtain a new proof of [5] (Proposition 5.1):

Corollary 1. Simply connected at infinity, Coxeter groups have a linear sci-growth.

3.2. Buildings

A building, first defined by J. Tits, is a special geometrical and combinatorial structure
on which (semi-simple) groups act (for more details on this interesting subject, see [14]).
Later, the definition evolved, and buildings are nowadays defined as particular metric
spaces with a special collection of subspaces satisfying several conditions. Associated with
any building B there is a corresponding Coxeter group WB. For classical buildings, the
associated group WB can be finite (and, in such a case, the building is called “spherical”)
or a Euclidean reflection group (and, in such a case, the building is said to be “affine”).
There is also a geometric realisation of spherical or affine buildings, and it is defined as a
particular simplicial complex in which any simplex of the highest dimension is called a
chamber. In such a geometric realisation there are many embedded copies of the Coxeter
complex of WB, which are called apartments, and, in fact, the whole building can be defined
and constructed as the union of all the apartments. When the building is spherical, any
apartment is just a sphere (hence the name), whereas, for (irreducible) affine buildings,
each apartment is a copy of the Euclidean space.

As shown in [15] (where the authors study the end-topology of Coxeter groups and
buildings in depth), for a better understanding of the shape at infinity of them, it is more
convenient to slightly change the viewpoint and to define the geometric realisation of a
building B in such a way that each apartment is isomorphic to the so-called “Davis complex”
of WB (for its construction see [1]).

Theorem 2. Buildings that are simply connected at infinity have a linear sci-growth.

Proof. Davis and Meyer have shown that the geometric realisation of a building B con-
structed out of Davis complexes is simply connected at infinity if and only if the associated
Coxeter group WB is sci [15]. This result, together with Corollary 1, leads to the proof.

3.3. An Open Question

It is a standard fact that a lattice in a solvable Lie group is uniform and finitely
presented. Furthermore, one can prove that such a lattice is polycyclic and also a virtually
strongly polycyclic group [14]. Hence, the problem of the linearity of the sci-growth for all
solvable Lie groups can be reduced to the linearity of the sci-growth of strongly polycyclic
sci groups, which is still not proven.

This is a concrete and interesting problem to work on in the next future.

4. Conclusions

In this paper, we continued the investigations on the metric refinements of some
known topological tameness conditions at infinity of discrete groups, a subject that is not
very well-developed and studied. There are several interesting open questions waiting
to be considered. Our work on this topic leads to the conclusion that for most geometric
classes of groups, the sci-growth is just linear. On the other hand, the question of whether
(or not) there are finitely presented groups with a super-linear sci-growth that act freely
and co-compactly on the Euclidean space Rn is the main open problem in this research line.
The existence of such a strangely behaved group should have a strong impact on the fields
of geometric group theory, topology at infinity and shape theory.
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