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Abstract: At the turn of the 21st century, the wide availability of high-frequency data aroused an
increasing demand for better modeling and statistical inference. A challenging problem in statistics
and econometrics is the estimation problem of the integrated volatility matrix based on high-frequency
data. The existing estimators work well for diffusion processes with micro-structural noise and may
get worse when jumps are considered. This paper proposes a novel estimation in the presence of
jumps, micro-structural noise, and asynchronization. First, we adopt sub-sampling to synchronize
the high-frequency data. Then, we use a two-time scale to realize co-volatility to handle noise. Finally,
we employ the threshold parameters to remove the effect of jumps and sparsity in two steps. Both
the minimax bound and the convergence rate are discussed in the paper. The estimation procedures
of the heavy-tailed data will be solved in the future.

Keywords: high-frequency data; asymptotic theory; threshold; jumps; large integrated volatility
matrix

MSC: 60G51; 60G52; 62G05; 62G35

1. Introduction

At the turn of the 21st century, with the advance of technology in high-frequency
trading, high-frequency financial data were recorded at several seconds, even mill- and
microseconds. In the United States, tick-by-tick stock transactions can be obtained by the
Trade and Quote (TAQ2) database, which includes the New York Stock Exchange. On the
other hand, in China, we can obtain one-second records for all stocks from databases of
some fund management companies. Such data are widely used for volatility estimation in
finance, the environment, and other fields, providing guidance and prediction for financial
risk management, enviromental monitoring, and other aspects [1–5]. Therefore, the wide
availability of high-frequency data arouses increasing demand for better modeling and
statistical inference. In financial applications, it often involves dozens or even hundreds
of assets, and the corresponding integral volatility matrix is also a high-dimensional
problem. When the number of assets is larger than the sample size, the estimation of
the integral volatility matrix has been a focus and a challenging problem in finance and
statistics recently.

It has long been recognized that market micro-structure noise plays a significant role in
the estimation of volatility [6]. The market micro-structure noise is formed by the interaction
of transaction cost and transaction friction, which mainly include bid–ask spread, the
discreteness of price, etc. The Itô process is used to model the logarithmic price of assets in
high-frequency finance, and various non-parametric methods are developed to estimate the
integrated (co)volatility for multiple assets based on high-frequency data contaminated with
micro-structural noise over a period of time. Such methods include Hayashi and Yoshida
(HY) estimators based on overlap intervals [7], multi-scale realized co-volatility (MSRV)
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based on previous tick data synchronization [8], a quasi-maximum likelihood estimator
(QMLE) based on generalized sampling time [9], realized kernel volatility estimator based
on a refresh time scheme [10], and pre-averaging realized volatility [11]. In portfolio risk
and hedging of funds management, a large number of assets are often encountered, and one
key and challenging problem is estimating the integrated matrix based on high-frequency
data. Reference [12] proposed the ARVM estimator under the sparse integrated volatility
matrix based on contaminated high-frequency data. Reference [13] employed a large
volatility matrix estimator using high-frequency data and established that the convergence
rate of the estimator depends on sample size with 1/6-exponent under the general diffusion
setup with micro-structure noise in the data. Under sparse conditions, the convergence
rate of the kernel and the pre-averaging realized volatility is slower than that of the multi-
scale realized volatility, due to the trade-off between positive semi-definiteness and fast
convergence rate [14]. An adaptive thresholding estimator of a large volatility matrix
with varying entries is developed, and the optimal spectral norm convergence rate of the
estimator is shown under sparse conditions [15].

However, in [12–15], the estimations were carried out only under a continuous frame-
work. In fact, in an efficient market environment, the release of major “news” will trigger
significant changes in very short time frames, which are called jumps in the pricing process,
and the effect of jumps has generally been acknowledged in the high-frequency literature.
For a single asset, [16] proposed a non-parametric estimator for the integrated volatility in
the presence of jumps and micro-structural noise. Reference [17] developed a statistical
test against the necessity of a diffusion component. They used the stock price records of
Microsoft (MFST) in 1 November, 1 December, and 11 December 2000 to implement their
test, and rejected the existence of the diffusion component. A novel test was proposed
to check whether the underlying process of high-frequency data can be modeled using
a pure-jump process that was robust to jumps of infinite variation [18]. Reference [19]
estimated the integrated volatility in the presence of jumps and endogeneity. Reference [20]
developed multipower estimators in the presence of jumps, micro-structural noise, and
multiple records of observations. Reference [21] considered a new estimator of the inte-
grated volatility in the presence of jumps and micro-structural noise when the sampling
was endogenous. For multiple assets, [22] proposed a threshold estimator to estimate the
covariation of two asset prices in the simultaneous presence of jumps and micro-structural
noise, but the observed times wer synchronous.

These works all concluded that the effect of jumps cannot be appropriately character-
ized by a continuous model; hence, the estimators proposed in these papers may perform
poorly, even if the number of assets is small. When the number of assets becomes larger,
the existing studies did not consider the estimation of the integrated volatility matrix in the
presence of jumps, micro-structural noise, and nonsynchronous observations.

This paper proposes a thresholding estimator for the integrated volatility matrix which
is constructed as follows. First, we synchronize observation time points based on previous
tick data. Second, we adopt the threshold method to remove the effect of jumps, such
that those increments smaller than the threshold level are included for the calculation
of estimator, and those increments larger than the threshold level will be excluded as
n→ ∞. Finally, we use another threshold to overcome the effect of the sparsity condition.
We show that the thresholding estimator is robust to the simultaneous presence of non-
synchronous, jumps, and microstructural noise and establish an asymptotic theory for
the proposed estimator when both the assets size and the sample size approach infinity.
In this paper, we restrict our study to financial high-frequency data. In addition, our
results can be extended to engineering, biomedical, imaging science, and photographic
technology [23–29].

The remainder of the paper proceeds as follows. The price model, observed data, and
the estimation problem are described in Section 2. Section 3 presents the advised estimator
in three steps and the sparse condition. Asymptotic theories are displayed in Section 4, and
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proofs are put forward in Section 5. Some conclusions and future research are proposed in
Section 6.

2. Methodology
2.1. Price Model

Let X(t) = (X1(t), . . . , Xp(t))T be the vector of true log prices of p assets at time t. It
is well known that X(t) is a semimartingale process [30]; thus

X(t) = Xc(t) + Xd(t), (1)

where
dXc(t) = b(t)dt + σ(t)TdBt, t ∈ [0, 1], (2)

dXd(t) =
∫
|x|≤1

x(µ− ν)(dt, dx) +
∫
|x|>1

xµ(dt, dx), (3)

where b(t) = (b1(t), . . . , bp(t))T is a drift vector, Bt = (B1t, . . . , Bpt)T is standard p-
dimensional Brownian motion, and σ(t) is a càdlàg and locally bounded p-by-p matrix,
µ is the jump measure compensated by ν, and ν has the form dtdFt(x), where Ft(dx) is a
transition measure form Ω×R+ endowed with the predictable σ-field into R/0. The jump
activity index is defined as β =: {inf s :

∫
|x|≤1 |x|

sFt(dx) < ∞, and if 0 ≤ β < 1, we say

that Xd(t) has finite variation.

Remark 1. Equation (1) is a rather canonical model in finance theory when the continuous part
and discontinuous or jumps part are considered in the model. All powers of σ are locally integrated
with respect to the Lebesgue measure, since σ is càdlàg and locally bounded.

2.2. Observed Data

Because different assets are traded at distinct times in high-frequency finance, the data
for multiple assets often encounter non-synchronization problems, and the true log prices
X(t) are observed with contamination by the micro-structural noise. On this basis, it is
assumed that the observed high-frequency financial data Yi(ti,r) obey the model

Yi(ti,r) = Xc
i (ti,r) + Xd

i (ti,r) + εi(ti,r), i = 1, . . . , p; r = 0, . . . , ni, (4)

where ti,r denotes the r-th observation time point for the i-th asset.

Assumption 1. Let εi(ti,r), i = 1, . . . , p, r = 0, . . . , ni, be independent noises with mean zero, for
each fixed i. εi(ti,r), r = 0, . . . , ni are i.i.d. random variables with variance ηii, and εi(·), Xc

i (·),
and Xd

i (·) are independent.

Define the quadratic variation of X(t) as

[Xc, Xc]1 = (
∫ 1

0
Σp

k=1σik(s)σkj(s)ds)1≤i,j≤p, (5)

and denote the quadratic variation of X(t) as the large volatility matrix Γ, i.e.,

Γ = (Γij)1≤i,j≤p = [Xc, Xc]1, (6)

where Γij is the ij-th element of matrix Γ.
The focus of the current paper is to construct a new estimator for the large volatility

matrix Γ, and to investigate some asymptotic properties of the proposed estimator in the
presence of non-synchronization, micro-structural noise, and jumps.



Mathematics 2023, 11, 1425 4 of 11

3. The Estimator of the Large-Volatility Matrix

In quantitative finance, capital asset price or return volatility is an important index to
measure investment risk. A large number of authors have conducted in-depth studies on
financial volatility. Based on the literature, this paper considers the estimation problem of
the integral volatility matrix when the asset price process has a jump in a high-dimensional
case. It provides a theoretical basis for later statistical inference, asset allocation, risk
management, and optimization.

To estimate the large volatility matrix Γ, we need to give a new estimator
Γ̂ = (Γ̂T

ij(v))1≤i,j≤p in this section, and the main results, i.e., the asymptotic properties, will
be provided in next section. Now, let us describe the estimator in detail.

For a fixed integer m, we partition the interval [0, 1] into m equal sub-intervals, and
let K = bn/mc. Take τk

l = l
m + k−1

n , where k = 1, · · · , K; l = 0, 1, · · · , m− 1, and n is the
average sample size of p assets and

n =
1
p

p

∑
i=1

ni, (7)

is the pre-determined sampling frequency.
For a given k, k = 1, · · · , K and asset i, we define the previous-tick times as

τk
i,l = max{ti,r ≤ τk

l ; r = 1, · · · , ni}, l = 0, 1, · · · , m− 1. (8)

Meanwhile, let

∆l = τk
l − τk

l−1 =
1
m

, (9)

and define ∆k
l Yi = Yi(τ

k
i,l)−Yi(τ

k
i,l−1).

Thus, under the model (1)–(3), wedenote

Γ̂T
ij =

1
K

K

∑
k=1

m−1

∑
l=1

[∆k
l Yi∆k

l Yj]1{|∆k
l Yi≤ul ,|∆lYj |≤ul |}, (10)

where ul satisfies ul/∆v1
l → 0, ul/∆v2

l → ∞, for some 0 ≤ v1 < v2 < 1/6.
Since the noise of Γ̂T

ii cannot be easily ignored, we need to redefine Γ̂T
ii as

Γ̂T
ii =

1
K

K

∑
k=1

m−1

∑
l=1

[∆k
l Yi]

21{|∆k
l Yi≤ul} − 2mη̂ii, (11)

where

η̂ii =
1

2ni

ni

∑
r=1

[Yi(ti,r)−Yi(ti,r−1)]
2, (12)

is the estimator of ηii [31].
Then, we can redefine Γ̃T

ij by Γ̂T
ij , for which

Γ̃T
ij =

{
Γ̂T

ij , if i 6= j,
Γ̂T

ii − 2mη̂ii, if i = j.
(13)

Remark 2. First, we use ∆l to sub-sample high-frequency data, and the purpose of sub-sampling
is to delete noise. Second, we use the threshold to discard the data larger than ul , and the purpose
of the threshold is to remove the effect of jumps. Finally, we take their average, and the purpose of
averaging is to yield a better convergence rate.

Remark 3. After the noise is deleted, the increments from the jump part are equal to or larger
than ∆1/2

l , while the increments from the diffusion part are still smaller than ∆1/2
l . The threshold
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level ul is provided such that those increments (|∆k
l Yi|) smaller than ul will be included in the

calculation of the integrated volatility matrix, while those increments equal to or larger than ul will be
gradually excluded.

We denote Γ̃ = (Γ̃T
ij)1≤i,j≤p; for small p, Γ̃ provides a good estimator for Γ. However,

when p is large, even going to infinity as n → ∞, Γ̃ performs poorly. To estimate a large
integrated volatility matrix, one of the key assumptions is that the target matrix of interest
is sparse, which is a regularization condition in many studies [12–14,32–35].

Assumption 2. Sparsity condition: M is a positive random variable, π(p) is a deterministic
function of p that grows very slowly in p, and 0 ≤ δ < 1. Assume that Γ satisfies

p

∑
j=1
|Γij|δ ≤ Mπ(p), i = 1, · · · , p; E[M] ≤ C. (14)

Under the sparsity condition (14), we regularize Γ̃T
ij as follows,

Γ̂T
ij(v) = Γ̃T

ij1(|Γ̃T
ij | ≥ v), for i, j = 1, · · · , p, (15)

where v is a threshold parameter. Denote Γ̂ = (Γ̂T
ij(v))i,j=1,··· ,p, then the (i, j)-th element

Γ̂T
ij(v) of Γ̂ is equal to Γ̃T

ij if its absolute value equals or exceeds v and is zero otherwise, as
well as Γ = (Γij(v))1≤i,j≤p.

Remark 4. In this part, when both the number of assets and the sample size approach infinity,
we provide a new estimator in order to estimate the large dimensional integral volatility matrix,
in the presence of jumps, micro-structural noise, and non-synchronization. First, we adopt the
sub-sampling to synchronize the high-frequency data. Second, we use the two-time scale realized
co-volatility on the off-diagonal elements of Γ but correcting bias on the diagonal elements of Γ, to
handle noise. Finally, we employ the threshold parameters to remove the effect of jumps and sparsity
in two steps.

4. Asymptotic Properties

In this section, the k-moment convergence rate and the minimax bound of the sug-
gested estimator are provided, which are the main results of this paper. To provide some
theory, some notations are given. Let x = (x1, · · · , xp)T denote a vector, and U = (Uij)p×p
denote a matrix; we can define their ld-norms as follows:

‖ x ‖d= (
p

∑
i=1
|xi|d)1/d, ‖ U ‖d= sup{‖ Ux ‖d, ‖ x ‖d= 1}, d = 1, 2, ∞. (16)

then,

‖ U ‖1= max
1≤j≤p

p

∑
i=1
|Uij|, ‖ U ‖∞= max

1≤i≤p

p

∑
j=1
|Uij|, (17)

and
‖ U ‖2

2≤‖ U ‖1‖ U ‖∞ . (18)

Furthermore, we need the following assumptions for models (1)–(3).

Assumption 3. For some α ≥ 2,

max
1≤i≤p

max
0≤t≤1

E[|σii(t)|α] < ∞, max
1≤i≤p

max
0≤t≤1

E[|bi(t)|α] < ∞, max
i≤i≤p

E[|εi(tir)|2α] < ∞. (19)
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Assumption 4. We assume that each of the p assets has at least one observation between τk
l−1 and

τk
l , and

C1 ≤ min
1≤i≤p

ni
n
≤ max

1≤i≤p

ni
n
≤ C2, max

1≤i≤p
max

1≤l≤ni
|ti,r − ti,r−1| = O(n−1), m = o(n). (20)

Theorem 1. Under models (1)–(3) and Assumptions 1–4, we have, for all 1 ≤ i, j ≤ p,

E(|Γ̂T
ij(v)− Γij|α) ≤ Cα

n, (21)

where Cα
n = C((Kn−1/2)−α + K−α/2 + (n/K)−α/2 + K−α + n−α/2) and C is a generic constant.

When K = bn/mc ∼ n2/3, the convergence rate Cn of the estimator is n−1/6.

Theorem 2. Under models (1)–(3) and Assumptions 1–4, if hn,p is any sequence converging to
infinity arbitrarily slow, we have

‖Γ̂− Γ‖2 ≤ ‖Γ̂− Γ‖∞ = OP(π(p)[Cn p2/αhn,p]
1−δ), (22)

where Cn ∼ n−1/6 is given in Theorem 1, and v = Cn p2/αhn,p.

Remark 5. In order to make Cn p2/α go to zero, p needs to grow more slowly than nα/12. The
convergence rate in Theorem 2 is nearly equal to π(p)[Cn p2/α]1−δ, since Cn ∼ n−

1
6 .

5. Proofs

Proof of Theorem 1. Under the above assumptions, Xd
i , i = 1, · · · , p are of finite variation,

i.e., βi < 1, we use X′ as the continuous part of X and X′′ as the discontinuous martingale
or jumps part, i.e.,

X′it = X0 +
∫ t

0
b′isds +

∫ t

0
σsdWs, X′′it = Xit − X′it, (23)

where b′it = bit −
∫
|x|>1 Ft(dx) and X

′′
i = ∑s≤t ∆Xi(s). We also define Y′it = X′it + εit, and

hence Yit = Y′it + X′′it.
We can decompose Γ̃T

ij − Γij as the following: if i 6= j,

Γ̃T
ij − Γij =

1
K

K

∑
k=1

m−1

∑
l=1

(∆k
l Yi∆k

l Yj)1{|∆k
l Yi |≤ul ,|∆k

l Yj |≤ul}
− Γij

=
1
K

K

∑
k=1

m−1

∑
l=1

(∆k
l Yi∆k

l Yj)1{|∆k
l Yi |≤ul ,|∆k

l Yj |≤ul}
− 1

K

K

∑
k=1

m−1

∑
l=1

(∆k
l Y′i ∆k

l Y′j )

+
1
K

K

∑
k=1

m−1

∑
l=1

(∆k
l Y′i ∆k

l Y′j )− Γij

=
1
K

K

∑
k=1

m−1

∑
l=1

[∆k
l Y′i ∆k

l Y′j 1{|∆k
l Yi |≤ul ,|∆k

l Yj |≤ul}
− ∆k

l Y′i ∆k
l Y′j ]

+
1
K

K

∑
k=1

m−1

∑
l=1

∆k
l Y′i ∆k

l X′′j 1{|∆k
l Yi |≤ul ,|∆k

l Yj |≤ul}

+
1
K

K

∑
k=1

m−1

∑
l=1

∆k
l X′′i ∆k

l Y′j 1{|∆k
l Yi |≤ul ,|∆k

l Yj |≤ul}

+
1
K

K

∑
k=1

m−1

∑
l=1

∆k
l X′′i ∆k

l X′′j 1{|∆k
l Yi |≤ul ,|∆k

l Yj |≤ul}

+
1
K

K

∑
k=1

m−1

∑
l=1

(∆k
l Y′i ∆k

l Y′j )− Γij

=:
1
K

K

∑
k=1

m−1

∑
l=1

[A1
ij + A2

ij + A3
ij + A4

ij + A5
ij]. (24)
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From [6], we have E|A5
ij|

α ≤ C(nα/2K−α + n−α/2Kα/2), and for As
ij, s = 1, 2, 3, 4, we

can consider the following disjoint cases of |∆k
l Yi| and |∆k

l Yj|. Here, we use C, l1, l2, r1 ,and
r2 to denote any positive real numbers that may vary from place to place.

• If |∆k
l Y′i | ≥ ul/2 and |∆k

l Y′j | ≥ ul/2, we have that

|A1
ij| ≤

C|∆k
l Y′i |1+l1 |∆k

l Y′j |1+l2

ul1
l ul2

l

, |A2
ij| ≤

C|∆k
l Y′i |1+l1 |∆k

l Y′j |l2 |∆k
l X′′j |

ul1
l ul2

l

,

|A3
ij| ≤

C|∆k
l Y′i |l1 |∆k

l X′′i ||∆k
l Y′j |1+l2

ul1
l ul2

l

, |A4
ij| ≤

C|∆k
l Y′i |l1 |∆k

l X′′i ||∆k
l Y′j |l2 |∆k

l X′′j |

ul1
l ul2

l

. (25)

• If |∆k
l Y′i | ≤ ul/2 and |∆k

l Y′j | ≤ ul/2, we obtain
•

|A1
ij| ≤

C|∆k
l Y′i ||∆k

l Y′j ||∆k
l X′′i |r1 |∆k

l X′′j |r2

ur1
l ur2

l
, |A2

ij| ≤
C|∆k

l Y′i ||∆k
l X′′i |r1 |∆k

l X′′j |1+r2

ur1
l ur2

l
,

|A3
ij| ≤

C|∆k
l X′′i |1+r1 |∆k

l Y′j ||∆k
l X′′j |r2

ur1
l ur2

l
, |A4

ij| ≤
C|∆k

l X′′i |1+r1 |∆k
l X′′j |1+r2

ur1
l ur2

l
. (26)

• If |∆k
l Y′i | ≥ ul/2 and |∆k

l X′′j | ≤ ul/2, we obtain

|A1
ij| ≤

C|∆k
l Y′i |1+l1 |∆k

l Y′j ||∆k
l X′′j |r2

ul1
l ur2

l

, |A2
ij| ≤

C|∆k
l Y′i |1+l1 |∆k

l X′′j |

ul1
l

,

|A3
ij| ≤

C|∆k
l X′′i ||∆k

l Y′i |l1 |∆k
l Y′j |

ul1
l

, |A4
ij| ≤

C|∆k
l X′′i ||∆k

l X′′j ||∆k
l Y′i |l1

ul1
l

. (27)

The case of |∆k
l Y′i | ≤ ul/2 and |∆k

l X′′j | ≥ ul/2 is similar to the above.

Next, by Hölder’s and Burkholder’s inequalities, we can estimate |∆k
l Y′i | and |∆k

l X′′i |
as follows,

E(|∆k
l X′′i |2) ≤ C∆l , and E(|∆k

l Y′i |s) ≤ Cs(∆l)
s/6. (28)

Without loss of generality, we let ul = ∆ε+v1
l , where 0 < ε < v2 −v1. Then, we have

E[| 1
K

K

∑
k=1

m−1

∑
l=1

(A1
ij + A2

ij + A3
ij + A4

ij + A5
ij)|

α]

≤ CK−α(Km)α/2−1
K

∑
k=1

m−1

∑
l=1

[E|A1
ij|α + E|A2

ij|α + E|A3
ij|

α + E|A4
ij|α + E|A5

ij|
α]

≤ C(K−
α
2 m

α
2 ∆

α[ 1
2+l1( 1

6−ε−v1)]
r + n

α
2 K−α + n−

α
2 K

α
2 )

≤ C(K−
α
2 m−l1α[ 1

6−(ε+v1)] + n
α
2 K−α + n−

α
2 K

α
2 ). (29)

We have l1α[ 1
6 − (ε + v1)] > 0, because v1 < ε + v1 < v2 < 1

4 . Thus,

E|Γ̃T
ij − Γij|α ≤ C(n

α
2 K−α + n−

α
2 K

α
2 ). (30)
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If i = j, we have

Γ̃T
ii − 2mη̂ii − Γii =

1
K

K

∑
k=1

m−1

∑
l=1

(∆k
l Yi)

21{|∆k
l Yi |≤ul} − 2mη̂ii − Γii

=
1
K

K

∑
k=1

m−1

∑
l=1

((∆k
l X′i)

21{|∆k
l Yi |≤ul} − (∆k

l X′i)
2)

+
2
K

K

∑
k=1

m−1

∑
l=1

(∆k
l X′i)(∆

k
l εi)1{|∆k

l Yi |≤ul}

+(
1
K

K

∑
k=1

m−1

∑
l=1

(∆k
l εi)

21{|∆k
l Yi |≤ul} − 2mη̂ii)

+
1
K

K

∑
k=1

m−1

∑
l=1

(∆k
l X′′i )

21{|∆k
l Yi |≤ul}

+
2
K

K

∑
k=1

m−1

∑
l=1

(∆k
l Y′i )(∆

k
l X′′i )1{|∆k

l Yi |≤ul}

+
1
K

K

∑
k=1

m−1

∑
l=1

(∆k
l X′i)

2 − Γii. (31)

Through a long tedious process, we also have

E|Γ̃T
ii − 2mη̂ii − Γii|α ≤ C(n

α
2 K−α + n−

α
2 K

α
2 ). (32)

Now, let K2

n = O( n
K ), then K = bn/mc ∼ n2/3, and the convergence rate Cn of the

estimator is n−1/6. This completes the proof of Theorem 1.

Proof of Theorem 2. From the triangle inequality, we have

‖Γ̂(v)− Γ‖ ≤ ‖Γ̂(v)− Γ(v)‖2 + ‖Γ(v)− Γ‖2

≤ ‖Γ̂(v)− Γ(v)‖∞ + ‖Γ(v)− Γ‖∞. (33)

Next, Lemma 2 implies

‖Γ̂(v)− Γ‖∞ = max
1≤i≤p

p

∑
j=1
|Γij|1(|Γij| ≤ v) = OP(π(p)v1−δ). (34)

By Lemmas 1 and 2,

‖Γ̂(v)− Γ(v)‖∞

≤ max
1≤i≤p

p

∑
j=1
|Γ̃T

ij − Γij|1{|Γ̃T
ij | ≥ v, |Γij| ≥ v}+ max

1≤i≤p

p

∑
j=1
|Γ̃T

ij |1{|Γ̃T
ij | ≥ v, |Γij| < v}

+ max
1≤i≤p

p

∑
j=1
|Γij|1{|Γ̃T

ij | < v, |Γij| ≥ v}

≤ max
1≤i,j≤p

|Γ̃T
ij − Γij| max

1≤i≤p

p

∑
j=1

1{|Γij| ≥ v}+ max
1≤i≤p

p

∑
j=1
|Γij|1{|Γij| < v}

+ max
1≤i,j≤p

|Γ̃T
ij − Γij| max

1≤i≤p

p

∑
j=1

1{|Γ̃T
ij | ≥ v, |Γij| < v}+ v max

1≤i≤p

p

∑
j=1

1{|Γij| ≥ v}

= oP(v)OP(π(p)v−δ) + OP(π(p)v1−δ) + oP(v)OP(π(p)v−δ) + vOP(π(p)v−δ)

= OP(π(p)v1−δ), (35)
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which immediately shows that ‖Γ(v)− Γ(v)‖∞ is of order v1−δπ(p).

Lemma 1. Under models (1)–(3) and Assumptions 1–4,

max
1≤i,j≤p

|Γ̃T
ij − Γij| = OP(Cn p2/α) = oP(v), (36)

P( max
1≤i≤p

p

∑
j=1

1{|Γ̃T
ij − Γij| ≥ v/2} > 0) = o(1), (37)

max
1≤i≤p

p

∑
j=1

1(|Γ̃T
ij | ≥ v, |Γij| < v) ≤ 2δMπ(p)v−δ + oP(1) = OP(π(p)v−δ), (38)

where v is chosen as in Theorem 2.

Proof of Lemma 1. Applying the Markov inequality, Theorem 1 and letting d = d1 p2/αen,
we obtain that, as n, p→ ∞,

P( max
1≤i,j≤p

|Γ̃T
ij − Γ| > d) ≤

p

∑
i,j=1

P(|Γ̃T
ij − Γij| > d) ≤ Cp2Cα

n
dα

=
C
dα

1
→ 0, (39)

and then d1 → ∞. This proves (36).
Since hn,p → ∞ as n, p→ ∞, using the above inequality,

P( max
1≤i≤p

p

∑
j=1

1{|Γ̃T
ij − Γij| ≥ v/2} > 0) ≤ P( max

1≤i,j≤p
|Γ̃T

ij − Γij| ≥ v/2) ≤ 2αCp2Cα
n

vα
=

2αC
hα

n,p
→ 0, (40)

which proves (37).
Similarly, the inequality (38) can be obtained by

max1≤i≤p ∑
p
j=1 1(|Γ̃T

ij | ≥ v, |Γij| < v)

≤ max1≤i≤p ∑
p
j=1 1(|Γ̃T

ij | ≥ v, |Γij| ≤ v/2) + max1≤i≤p ∑
p
j=1 1(|Γ̃T

ij | ≥ v, v/2 < |Γij| < v)

≤ max1≤i≤p ∑
p
j=1 1(|Γ̃T

ij − Γij| ≥ v/2) + max1≤i≤p ∑
p
j=1 1(|Γij| > v/2)

≤ oP(1) + 2δ Mπ(p)v−δ = OP(π(p)v−δ).

(41)

Lemma 2 ([12]). Under models (1)–(3) and Assumptions 1–4, and v is chosen as in Theorem 2.
Then, for any fixed a > 0,

max
1≤i≤p

p

∑
j=1
|Γij|1(|Γij| ≤ av) ≤ a1−δ Mπ(p)v1−δ = OP(π(p)v1−δ), (42)

max
1≤i≤p

p

∑
j=1

1(|Γij| ≥ av) ≤ a−δ Mπ(p)v−δ = OP(π(p)v−δ). (43)

6. Conclusions

In this work, for cases when both the number of assets and the sample size approach
infinity, we provide a new estimator for the large integrated volatility matrix, in the
presence of jumps, micro-structural noise, and non-synchronization. First, we adopt the
sub-sampling to synchronize the high-frequency data. Second, we use the two-time-scale
realized co-volatility on the off-diagonal elements of Γ but correcting the bias on the
diagonal elements of Γ, to handle noise. Finally, we employed the threshold parameters
to remove the effect of jumps and sparsity in two steps. Both the minimax bound and the
convergence rate were investigated. There are still some problems that we are eager to
solve in the future research. First, we assume that entries of the integrated volatility matrix
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are homogeneous under the sparse condition; however, the volatility of financial assets
usually has entries with a very wide range of variability, which motivates us to extend
the current work to a general frame. Second, heavy-tailed data are often encountered
in financial engineering, which motivates us to develop estimation procedures to solve
these issues.
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