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Abstract: The estimation of construction costs for shield tunneling projects is typically based on a
standard quota, which fails to consider the variation of geological parameters and often results in
significant differences in unit cost. To address this issue, we propose a novel model based on a random
forest machine learning procedure for analyzing the construction cost of shield tunnelling in complex
geological conditions. We focus specifically on the unit consumption of grease, grouting, labor, water,
and electricity. Using a dataset of geotechnical parameters and consumption quantities from a shield
tunneling project, we employ KNN and correlation analysis to reduce the input dataset dimension
from 17 to 6 for improved model accuracy and efficiency. Our proposed approach is applied to
a shield tunneling project, with results showing that the compressive strength of geomaterial is
the most influential parameter for grease, labor, water, and electricity, while it is the second most
influential for grouting quantity. Based on these findings, we calculate the unit consumption and
cost of the tunnelling project, which we classify into three geological categories: soil, soft rock, and
hard rock. Comparing our results to the standard quota value, it is found that the unit cost of shield
tunneling in soil is slightly lower (6%), while that in soft rock is very close to the standard value.
However, the cost in the hard rock region is significantly greater (38%), which cannot be ignored in
project budgeting. Ultimately, our results support the use of compressive strength as a classification
index for shield tunneling in complex geological conditions, representing a valuable contribution to
the field of tunneling cost prediction.

Keywords: random forest; shield tunneling; budget; complex geological conditions; construction cost

MSC: 68T09

1. Introduction

Project budgets during the bidding stage and project final accounts after completion
are the two important steps of construction project management [1,2] of shield tunneling
projects. The core of construction project management is the investment estimation of
the construction cost for shield tunneling engineering [3,4]. The investment estimation of
the construction cost governs project profitability. Since it is a crucial component of the
economic analysis of a subway line or underground tunnel, the cost of a shield tunneling
project has a substantial impact on the overall economic benefit. The accurate cost prediction
of tunneling projects is critical, as it can provide a powerful source of help for reducing
the project costs and optimizing construction management. Therefore, it is essential to
thoroughly examine the cost prediction in order to increase its speed and accuracy and
make correct investment decisions [5].
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In practice, the shield tunneling project cost is normally estimated by the use of
an official budget standard, which defines the quota of main construction consumption
containing the unit quantities of grease, grouting, labor, and so forth. Theoretically, the total
construction cost can be calculated as the standard consumption multiplied by the unit
price. However, concerning the tunneling, quantities of consumption exhibit an obvious
relationship with the geological condition of the construction site [6,7]. Consequently, the
usual computation procedure of shield tunneling without considering different geological
conditions will lead to great errors in the construction cost. Especially in underground
tunneling projects, the excavation site usually has composite geological layers. This implies
proposing a new computation method with the consideration of influences of geotechnical
parameters on the total cost [8–10].

Numerous studies have been devoted to the factors that affect tunneling costs by re-
searchers in recent years. Aiming at avoiding unexpected variations of time and cost during
the construction process, different studies have been published concerning the influences
of composite geological conditions [11–13]. By the use of mathematical models [14,15],
the random process and time it takes for the excavation process have been fully discussed
by considering the geological conditions around the tunnel route. Besides, in order to
gather information on the geological conditions in the complex tunneling region, in situ
equipment was applied by Carrière et al. [16] for pilot-drilling, subsurface-boring, and
advanced geophysical prospecting. Daraei et al. [17] proposed the application of value engi-
neering principles to decrease construction costs and increase safety in tunnel construction
projects in Iraqi Kurdistan, demonstrated through the optimization of the Heybat Sultan
twin tunnels project. Particularly, Mahmoodzadeh et al. [18] has proposed a novel model
to estimate the construction time and cost in tunneling projects. The influences of uncertain
geological conditions in tunneling construction on the time and cost were analyzed by
applying the Markov chain and considering opinions of experts.

In addition, with the development of artificial intelligence [19,20], various machine
learning algorithms have been successfully applied to the prediction of construction cost.
Ye [21] established an intelligent algorithm for the construction cost estimation, which was
developed from the Particle Swarm Optimization (PSO) Guided BP Neural Network. Com-
bined with the Support Vector Machine (SVM) method, the construction cost of substations
has been successfully predicted by a PSO-based procedure in the Ref. [22]. Considering the
gray fuzzy theory, a gray fuzzy predictive model was proposed by Liu et al. [23] to calculate
the cost of an unfinished construction. The Decision Aids for Tunneling (DAT) [24] is a
computer-based tool which has also been widely used for computing the distributions of
tunnelling cost and time, considering uncertainties of the geological conditions. On the
other hand, aiming at using the official quota for the consumption quantities in complex
geological conditions, the degrees of impact of the geotechnical parameters [25,26] are
essential for the classification, indicating the application of the random forest method [27].
Concerning the application of machine learning algorithms for engineering practice, de-
velopment of a user-friendly software tool has been considered by researchers [28–30].
The software is easily used by engineers and practitioners without the need for extensive
knowledge of the underlying machine learning algorithms.

As an ensemble learning technique for classification, regression, and other problems,
random forests build a large number of decision trees during the training process [31–33].
The result of the random forest for classification (RFC) tasks is the class that the major-
ity of the trees choose [34,35]. For regression tasks (RFR), the mean or average forecast
of each individual tree is returned [36,37]. Random choice forests correct the tendency
of decision trees to overfit their training set. The potential of forecasting the fatty acids
and tocopherols content has been explored by Rajković et al. [38], by combining two ma-
chine learning methods, namely the artificial neural network (ANN) and random forest
regression (RFR) algorithms. In particular, the random forest method can be used to com-
pute the feature importance score of input datasets due to the bootstrap structure [39–41].
Gu et al. [42] carried out a random forest-based computation and found that the annual
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average daily traffic on a minor road from the roadway traffic characteristics group makes
the highest contribution to rear-end crashes. Similarly, the feature importance of different
variables has also been evaluated by the random forest procedure for fatal fall-from-heights
accidents [43], vegetation mapping in savannah regions [44] and contributions from LiDAR
and orthoimagery data to map urban objects [45].

Considering the difficulty of the classification of budget quotas in complex geological
conditions, the present study is devoted to analyzing the influences of geotechnical param-
eters on the main unit consumption in shield tunneling. The excavation consumption and
geotechnical data were collected from a shield tunneling project in China, in which different
soil and rock geological layers are involved. In order to obtain the most impactful geotech-
nical parameter in complex conditions, the random forest machine learning technique is
employed with the consumption factor as the target in this study. Referring to the opinions
of experts, four consumption factors for shield tunneling, quantity of grease, grouting,
labor and water and electricity are studied for different geological conditions. The main
purpose of our study was to find out the most impactful geological parameter and propose
a new budget quota for classification. Thus, the random forest classification algorithm is
applied and the collected data will be classified in different categories. In comparison with
the DAT method, the proposed random forest-based model is data-driven, which allows
us to take into account the full range of geotechnical parameters and their interactions in
a more comprehensive manner. It does not require specific knowledge and can be easily
implemented in engineering practice. The most influential geotechnical parameter on
the consumption of shield tunneling is obtained from the comprehensive result of four
factors by the random forest procedure. Consequently, the shield tunneling consumption in
different geological conditions is computed with the classification of the parameter, which
will provide the basis for novel quotas in this situation.

The present paper is organized in the following way. In Section 2, the background
of the shield tunneling project is briefly introduced, and the collection and ordering of
geotechnical and consumption data are also described. In order to improve the computation
accuracy and efficiency, the dimension of the datasets is reduced before model training.
Section 3 is devoted to recalling the principle formulation of the random forest algorithm, as
well as the general flowchart of this machine learning method in analysis of the construction
cost of shield tunneling in complex geological conditions. In Section 4, the constructed
random forest model is applied to calculate the importance score of considered geotechnical
parameters for four consumption factors. The accuracy of the proposed method is accessed
by comparison with the unit consumption and cost in the soil, soft rock and hard rock
conditions with those of the standard one. In the last section, some concluding points
are provided.

2. Problem Description and Data Pre-Processing
2.1. Background of the Project

The present study is based on data and reports from the Zhijiang Road Tunneling
(ZRT) project in Hangzhou, China, as shown in Figure 1. The tunnel was excavated using a
combination of shield tunneling (mud–water balancing shield machine with inner diameter
14.5 m and outer diameter 15.03 m) and open-cut methods. The shield tunneling portion,
marked by the red point in Figure 1, spans a distance of 3.6 km and is divided into east and
west sections.
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Figure 1. The background and location of the Zhijiang Road Tunneling (ZRT) project in Hangzhou,
China.

Based on the geological engineering investigation report, the tunnel geology of the
entire west section is primarily composed of extremely soft and soft rock, where moderately
weathered argillaceous siltstone accounts for approximately 53% and moderately weathered
tuffaceous sandstone accounts for about 19%. In the east tunneling excavation section,
hard rock predominates, including moderately weathered siltstone accounting for 60% and
moderately weathered quartz sandstone accounting for 10% (Figure 2).

Figure 2. Main geological compositions of west (above) and east (below) sections of shield tunneling
excavation in ZRT project.
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2.2. Collection of Geological Data and Tunneling Consumption

The distribution of main geological conditions along the east tunneling part of ZRT
project is displayed in Figure 3. We take it as an example to explain the collection and
preparation of geological data on site of the project and of the shield operational consump-
tion. Noticing that the width of standard shield segments is 2 m, the datasets of tunneling
consumption are consequently collected per 2 m. As shown in Figure 4, the arrangement
of geological data and material consumption are in the same order of shield segments,
which is crucial for training the random forest model developed in our study.

Figure 3. Profile of main geological conditions along the east tunnel.

Figure 4. Shield segments index.

In order to improve the the generalization ability of the constructed model in the
present study, 17 geological parameters in the geological report are all taken into account.
The statistical information of geological parameters which will be analyzed in the following
machine learning model is provided in Table 1 for different geological layers. For the sake
of simplicity, the abbreviations of each geotechnical parameter are also provided in this
table, and will be used in the following part of this study. Besides, it can be found that some
specific values of the geotechnical parameters are missing, so additional pre-processing for
the missing values is needed. The objective of this paper concerns the influence of complex
geological conditions on economic factors in shield tunneling, so the feature importance of
different geological parameters should be considered. Thus, it would be better to find out
the main influence geological factors, providing a basis for the cost classification of budgets.
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Table 1. Statistical information of 17 geological parameters of different layers.

Geotechnical Parameters and Abbreviations Soil 1 Soil 2 Soil 3 Soil 4 ... Rock 9

Moisture content (W0 %) 28.98 45.24 41.87 41.59 ... -
Natural density (γ kN/m3) 19.10 17.40 17.40 17.80 ... 26.00
Specific gravity (Gs) 2.70 2.73 2.73 2.73 ... -
Void ratio (e) 0.80 1.30 1.15 1.23 ... 0.032
Saturability (Sr) 95.66 95.25 96.12 92.47 ... -
Liquid limit (WL) - 40.51 38.64 39.75 ... -
Plastic limit (WP) - 24.34 23.94 23.97 ... -
liquidity index (IL) - 16.17 14.70 15.77 ... -
plasticity index (IP) - 1.32 1.20 0.97 ... -
Bearing capacity (fak kPa) 130 65 65 100 ... 3500
Modulus of compressibility (Es MPa) 7.0 2.3 2.4 4.0 ... -
Lateral pressure coefficient (k0 MPa−1) 0.40 0.58 0.58 0.54 ... 0.25
Horizontal permeability coefficient (KH cm/s) 1.0× 103 4.0× 106 2.0× 106 2.0× 106 ... 3.0× 106

Vertical permeability coefficient (KV cm/s) 9.0× 104 3.0× 106 1.5× 106 1.5× 106 ... 2.5× 106

Cohesion (c kPa) 3.0 13.0 13.0 24.0 ... 450
Friction angle (φ ◦) 25 9.5 10 12 ... 43
Compressive strength (σ MPa) 5000 4× 10 9.4021 0.9954 ... 60.40

Similarly, the main consumption factors in the tunneling process are also recorded
per segment (2 m). In the present paper, four main consumption indicators, the amount of
grease, grouting, labor and water and electricity, are studied for the purpose of economic
classification in complex geological conditions. From this perspective, the main components
of each indicator are given in Table 2 based on the official Quota Booklet of shield tunneling
(Version 2018). The unit prices of each consumption component are also provided for the
computation of construction cost in the following part. The key influencing economic
consumptions are arranged in the order of shield segment, as those of geological data.
Moreover, the objective consumption indicators are ordered by the Yi index in order to be
implemented in the random forest program.

Table 2. Statistical information of 4 concerned consumption indicators.

Consumption Indicator Components Unit Price 1 Index

Grease
Tail grease 17.5 Y1
EP2 grease 25.0 Y2
Seal grease 55.0 Y3

Grouting Grouting 1.3–1.8 Y4

Labor Labor 135.0 Y5

Water & electricity Water 4.27 Y6
Electricity 0.78 Y7

1 The currency for the unit price is CNY.

2.3. Pre-Processing of the Datasets

For the purpose of determination of shield tunneling consumption in complex geologi-
cal conditions, especially for the four indicators in Table 2, the collected data will be used in
a random forest-based procedure to train the model. The accuracy of the prediction model
is significantly influenced by the quality of the input data. Before the implementation, data
pre-processing is needed for the missing and abnormal values.

As shown in Figure 5, the values of geotechnical parameters are displayed in the
arranged order of shield segment. The abbreviations for the concerned geotechnical pa-
rameters are given in Table 1. It can be seen that there are too much missing data for
8 parameters (W0, Gs, Sr, WL, WP, IP, IL and Es), which will be neglected for the following
analysis. Besides, some recorded values for tunneling consumption data could be abnormal
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due to incorrect recording or other reasons. Those abnormal values (too large or too small)
will be removed, and the missing data of σ and e will be replaced by that calculated by
the KNN algorithm (k-Nearest Neighbor) [46]. The distribution of original data (red dash
line) and that treated by the KNN algorithm (blue solid line) are plotted in Figure 6, respec-
tively. It is obviously seen that the distribution of compressive strength (σ) and void ratio
(e) are not changed, and they can be accepted for the following analysis by the random
forest procedure.

Figure 5. Missing values of all 17 geotechnical parameters arranged in the order of shield segment.

Figure 6. Distribution of original data and that treated by the KNN algorithm of compressive strength
(σ) (left subfigure) and void ratio (e) (right subfigure).
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Moreover, in the random forest program, the performance of the random forest model
will get worse if the degree of correlation between involved geotechnical parameters is
greater. In order to improve the accuracy of the random forest procedure, the collected
geological data also need to be analyzed for the correlation coefficient. Consequently, the
correlation matrix is used to display the correlation coefficients among all the geological
parameters, before being implemented in the program. The heat map (Figure 7), also known
as the correlation coefficient map, can visually judge the magnitude of the correlation
between variables based on the color of different squares on the heat map. The correlation
coefficient can be calculated directly by the following formulation:

ρ =
Cov(X1, X2)√

DX1, DX2
=

E(X1X2)− E(X1) · E(X2)√
DX1, DX2

(1)

where Cov denotes the covariance and E is the mathematical expectation. By the use of
the heat map, the involved geotechnical features with high correlation can be screened out
to prevent overfitting in the random forest model. As shown in Figure 7, the correlation
coefficients of nine different geotechnical variables (after the remove of missing data) are
displayed in the form of a heat map by different colors. Notice that the abbreviations for
the parameters have already been provided in Table 1.

Figure 7. Correlation matrix heat map of nine geological parameters.

It is clear from Figure 7 that any of the nine features recovered exhibit a high degree of
association. The nine datasets will again be shrunk in dimension to avoid features with
strong correlations that would have a significant impact on the obtained prediction. It is
demonstrated that there is a strong correlation between the cohesion and bearing capacity
(0.86), natural density and friction angle (0.95), and horizontal and vertical permeability
coefficients (1.00). Consequently, we only need to reserve one of the mentioned pair of
geotechnical parameters. In practice, the natural density and bearing capacity are important
geological parameters according to experts and need to be reserved. By reserving the verti-
cal permeability coefficient, nine parameters are reduced to six for the variable importance
analysis by random forest. Figure 8 displays the final data preparation after reductions from
17 to 6 geotechnical input parameters for the model training. Each of the input data contains
1979 sets.
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Figure 8. Final six geotechnical features in random forest model by dimension reduction.

3. Methodology

Random forests is an ensemble learning method for classification, regression and
other tasks that operates by constructing a multitude of decision trees at the training
time. The class that the majority of the trees chose is the output of the random forest for
classification tasks. The mean or average prediction of each individual tree is returned for
regression tasks. The tendency of decision trees to overfit their training set is corrected
by random decision forests. By randomly sampling the sample data, multiple different
decision trees are formed, and then the results are combined to obtain the prediction results
of the random forest. The variable importance in the objective tunneling consumption
indicators will be calculated by the constructed model in this paper. Thus, this section is
devoted to the basic principle of the random forest model and the algorithm applied to
this study.

3.1. Principle Technique of Random Forest

Decision Trees is a non-parametric supervised learning method. The goal is to create a
model that predicts the value of a target variable by learning simple decision rules inferred
from the data features. A tree can be seen as a piecewise constant approximation. Given
a training set X = {X1, X2, . . . , Xn} with responses Y = {Y1, Y2, . . . , Yn}, a decision tree
recursively partitions the feature space such that the samples with the same labels or similar
target values are grouped together.

Let the data at node m be represented by Qm with nm samples. For each candidate
split θ = (j, tm) consisting of a feature j and threshold tm, partition the data into Ql

m(θ) and
Qr

m(θ) subsets:

Ql
m(θ) = {(x, y) | xj ≤ tm}

Qr
m(θ) = Qm\Ql

m(θ)
(2)

The quality of a candidate split of node m is then computed using an impurity function
or loss function H, the choice of which depends on the task being solved

G(Qm, θ) =
nl

m
nm

H(Ql
m(θ)) +

nr
m

nm
H(Qr

m(θ)) (3)
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Select the parameters that minimises the impurity

θ∗ = argminθG(Qm, θ) (4)

Recurse for subsets Ql
m(θ

∗) and Qr
m(θ

∗) until the maximum allowable depth is reached
nm < minsamples or nm = 1.

If a target is a classification outcome taking on values 0, 1, . . . , K − 1, for node m, let

pmk =
1

nm
∑

y∈Qm

I(y = k) (5)

be the proportion of class k observations in node m. Two common measures of impurity
are the Gini index:

H(Qm) = ∑
k

pmk(1− pmk) (6)

and log loss or Entropy:
H(Qm) = −∑

k
pmk log(pmk) (7)

The Random Forest algorithm [33] is a classification algorithm composed of multiple
decision trees, with each tree producing a category that contributes to the final output
category. It is built using the bagging method and categorical regression trees and has been
successfully used in various disciplines (see Figure 9). Random forests consist of different
decision trees that are independent of each other. When a sample is inputted, each tree
in the forest will make a decision and vote to determine the best category. Typically,

√
p

features are used in each split for classification problems with p features. However, each
problem requires tuning to identify the best values for these parameters.

Figure 9. Expansion of Random Forest structure.
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Each dataset is used to construct the largest decision tree possible without any ad-
ditional processing. Then, the information gain is determined using the entropy or Gini
index in the randomly selected feature factors. After computing each accuracy information,
the candidate feature factor with the highest information gain (entropy or Gini) among
them is divided. These stages are iteratively repeated until the entropy or Gini becomes
smaller than the predetermined value, resulting in the development of a random forest
algorithm with n decision trees. The training data for feature identification is then classified
using the established random forest model, and the decision trees in the forest vote to
determine the best classification prediction.

The random forest approach can be utilized to order the relevance of variables in
a classification or regression task in a natural way. During training, the error is tracked
and averaged over the forest. The contribution (Gini) can be computed using the Gini
index. After training, the jth feature values are permuted among the training data, and
the error is computed once again on this perturbed dataset to determine the jth feature’s
relevance. By averaging the difference between before and after the permutation over all
trees, the importance score for the jth feature is calculated. The score is standardized using
the standard deviation of these differences.

We take the Gini index as a measure to show the calculation of variable importance.
Considering n categories, the weight of the k-th category can be computed from Equation (6).
For feature j, the change value of feature j at node m (VIjm) is obtained as:

VIjm = GIm −GIl −GIr (8)

where GIm is the Gini index before branch; GIl and GIr is the new Gini index after the node
m. The normalized value of the contribution of feature j is the importance score of feature j,
which is calculated as follows:

VI′j =
VIMj

∑c
i=1 VIMi

(9)

The detailed derivation of variable importance can be found in the Ref. [42].
Actually, the random forest model is used to rank the importance of variables (geotech-

nical parameters) (Equation (9)) by a classification problem in the present paper meaning,
that the most impactful geotechnical parameter can be selected for the quota of budget of
shield tunneling in complex geological conditions.

3.2. Application of the Random Forest-Based Method in Analysis of Tunneling Consumption in
Complex Geological Conditions

The considered economic factors (consumption of grease, grouting, labor and water
and electricity) in shield tunneling project will be analyzed by the random forest-based
model. The contributions of geological parameters (feature importance) are expected to
be calculated, so that the proof for classification in complex geological conditions will be
provided based on the random forest result.

In order to avoid repetition, only the calculation and analysis of grease will be detailed
provided here for example. As mentioned in the previous section, the original collected data
of consumption of grease is firstly pre-processed to replace the abnormal and empty values,
and transformed into the form that random forest model can recognize. Besides, concerning
the geotechnical parameters in the tunneling area, 17 features from the geological report
are reduced to 6 for dimension reduction (see Figure 8). The grease consumption is set
as the target of random forest model (Yk), in which k denotes the index of input datasets
corresponding to the label of shield segment. There are 1979 sets of input data for the
concerned geotechnical parameters.

Next, considering the complex geological conditions, 6 geotechnical parameters are
selected for the features to be implemented in the random forest model as natural density Xk

1,
void ratio Xk

2, bearing capacity Xk
3, lateral pressure coefficient Xk

4, vertical permeability
coefficient Xk

5 and compressive strength Xk
6. Consequently, the variable importance of

grease will be computed by implementing the random forest model with the prepared
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input datasets. Besides, the model parameters, such as number of classifiers, random state
and minimum numbers of samples leaf and split, also need to be provided for training.
Then the trained tree for each classifier and the prediction for unseen sample will be put out
after training process, which is predicted by taking the majority vote for classification. Thus,
the variable importance for consumption of grease can also be obtained from this procedure.

In practice, we can modify the structure of random forest model by taking different
values of model parameters (criterion, number of classifiers, minimum number pf samples
leaf and minimum number of samples split), so as to obtain the best prediction accuracy.
Due to the complexity of geological conditions, this sensitivity comparison is necessary.
Besides, the error between the predicted value and the target value need to be evaluated by
an accuracy index function. In this study, the Gini (6) and Entropy index (7) are chosen to
estimate the accuracy.

The above procedure will repeated for other tunneling consumption factors by re-
placing the target set Y, in order to obtain the variable importance for all the concerned
geotechnical features. Generally considering the obtained results by random forest model,
we will try to find out the most influential geotechnical parameters on all the consumption
factors. For the sake of simplicity in engineering, normally one geotechnical parameter
is adopted for classification in the quota of construction budget in complex geological
conditions. Then, referred to the Geotechnical Engineering Survey Code (China), all the
tunneling consumption will be calculated for the chosen parameter based on the classifica-
tion rules. The unit shield tunneling cost can be consequently computed by multiplied by
the corresponding unit price. By comparison with the existing cost quota, the accuracy of
obtained results by the proposed random forest-based procedure will be accessed, and the
influence of geotechnical parameters on the shield tunneling cost will also be discussed in
the following section. The full flowchart of intelligent analysis on shield tunneling cost in
complex geological conditions is illustrated in Figure 10.

Figure 10. Flowchart of analysis on main consumption factors of shield tunneling in complex
geological conditions by random forest algorithm.

4. Predictions of Construction Cost of Shield Tunneling in Complex
Geological Conditions

In this section, the constructed Random Forest procedure will be applied to predict the
construction cost of shield tunneling in complex geological conditions, in which the dataset
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for training the random forest model is collected from the ZRT project. In Section 4.1, the
feature importance of geotechnical parameters are firstly calculated by the proposed model
for each of the considered consumption factors. Then, the unit cost for shield tunneling is
predicted by multiplying the price, and compared with the standard cost defined by the
official quota to access the obtained result in Section 4.2. In order to validate the accuracy,
no additional parameter is introduced for model training.

4.1. Feature Importance of Geotechnical Parameters for Consumption Factors

The training dataset for random forest method is crucial to its prediction accuracy.
Consequently, the pre-processing described in the previous section is necessary for the
dataset before analysis. 6 parameters of different geological layers are taken into account
in variable importance analysis for main consumption factors (greases, grouting, labor,
electricity and water) in this subsection.

The strategy of the data preparation are arranged as follows. The reduced input
dataset contains 6 geotechnical parameters: natural density, void ratio, bearing capacity,
lateral pressure coefficient, vertical permeability coefficient and compressive strength.
The objective parameter is set as the concerned factors, and they will be analyzed one by
one in the established random forest model. Arranged in the order of the shield segment
index, 1979 sets containing above 6 parameters in different geological conditions are derived
as the dataset of the model. Among them, 1485 (75%) sets are used as the training set of
random forest model, and 494 (25%) sets will be predicted by the trained model (test set)
and compared to the true values, aiming at validating the prediction accuracy.

The direct use of original data may result in accuracy issues caused by the dominance
of large dimension values, as the input and output data of the model have different units
and can fluctuate substantially in value. As the model training process uses gradient
descent optimization, the difference in dimensions can slow down the rate at which model
parameters are updated in each iteration. To prevent these issues, we normalize the input
and output data during the preprocessing step and scale them linearly to the interval
of [0, 1] using Equation (10). This normalization and scaling procedure ensures that the
model is not affected by differences in data dimensions.

x∗ =
x− xmin

xmax − xmin
(10)

where x denotes the original input and output data values, xmin and xmax are the minimum
and maximum values, and x∗ is the objective normalized value that can be employed in
the proposed model.

The suggested random forest model has been trained using the aforementioned stages,
taking various model parameters into consideration (criterion, number of estimators,
minimum samples leaf and split). The ideal answer can be found by comparing the forecast
accuracy with various structures. Different numbers of estimators (50, 100, 400, 700, 1000)
with 1, 5, 10, 15, 20 minimum samples leaves and 2, 4, 10, 12, 16 minimum samples splits
have been attempted.

Inspired by Santos et al. [47], we have plotted the six geological parameters and the
quantity of material consumption in the same order of shield segment in Figures 11 and 12.
To avoid repetition, we will only discuss tail grease (red curve in Figure 11) and grouting
(purple curve in Figure 12). The values of the geological parameters have been normalized
using Equation (10). It is observed that the different geological conditions in the excavation
area can be reflected by the variation of geological parameters, and there is a correlation
with material consumption. However, the most important geological feature and exact
relation cannot be directly seen and need to be analyzed using the constructed random
forest model.
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Figure 11. Collected geological parameters and tail grease in the order of shield segment.

Figure 12. Collected geological parameters and grouting in the order of shield segment.

For the sake of clarity, the final value of the best score at the end of the training
process and calculation efficiency of different random forest structures are illustrated in
Figure 13 (the criterion Gini is always chosen by the program instead of Entropy). It can
be concluded in Figure 13a that except for 400 and 700, the final value of the best score
does not have remarkable changes with the variation of the number of estimators, where
it takes the maximum value with 50. Besides, as shown in Figure 13b,c, the values of
accuracy levels are all acceptable for different numbers of the minimum samples leaf and
samples split. Consequently, considering the best performance, the random forest model
with 50 estimators with one minimum samples leaves and two samples splits was adopted
for the training and prediction steps. The final accuracy level (best score) of the test data
is 0.9403.

With the above set of model parameters, the importance of each geotechnical feature
is firstly calculated in the random forest model for the consumption factor grease (tail
grease, EP2 grease and seal grease). The obtained results are shown in Figure 14, with
the vertical axis being the geotechnical features and the horizontal axis being the mag-
nitude of corresponding importance. It can be seen from the three subfigures that the
compressive strength (σ) of material has the most important impact on the prediction of
all the three types of greases. More precisely, the strength parameter exhibits obviously
the greatest importance than other geotechnical parameters for consumption of tail grease
(first subfigure of Figure 14), where the correlation is more than 48%. While for seal grease
(third subfigures), the most significant geotechnical parameter is also the strength, the
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difference with the second parameter is not that much greater than that in the first one (the
following important feature is a void ratio). Notice for the EP2 grease, for the strength in
the second impactful geotechnical feature, the difference with the first one (fak) is not great.
Consequently, the strength can be concluded as the most impactful geotechnical parameter
on the consumption of greases in general. The accuracy levels for Figure 14 are 0.9413,
0.9357 and 0.9608, respectively.

(a) Different number of estimators (b) Different number of minimum samples leaf

(c) Different number of minimum samples split

Figure 13. Comparison of the best score with different random forest structures.

Figure 14. Variable importance for tail grease, EP2 grease and seal grease by random forest model in
shield tunneling.
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Figures 15–18 display the geotechnical feature importance for the consumption of
grouting, labor and electricity and water in shield tunneling, respectively. Similar to
the variable importance analysis of grease, the most impactful geotechnical parameter
for the consumption of grouting and labor is also the strength of material, obviously
(see Figures 16 and 18). The accuracy levels are 0.893, 0.7333, 0.9317 and 0.9252, respectively.

On the contrary, concerning the consumption of grouting, the most important geotech-
nical parameter is obtained as the void ratio (e) of the material, instead of the strength
(Figure 15), which is in second place. The corresponding importance is 0.27. It is reasonable
that the grouting quantity is related to the void ratio of the material from the point of
view of geomechanics, because large porosity will lead to more backfill grouting in shield
tunneling. As a result, the strength of soil or rock is not the most important feature for all
the considered consumption factors. In order to find a single geotechnical parameter for the
classification of the quota of budget in complex geological conditions, more computation
of the total cost is needed to verify the selected feature, verifying if it can be used as the
classification index in general. This will be provided in the next subsection.

Figure 15. Variable importance for grouting quantity by random forest model in shield tunneling.

Figure 16. Variable importance for labor by random forest model in shield tunneling.
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Figure 17. Variable importance for water consumption by random forest model in shield tunneling.

Figure 18. Variable importance for electricity consumption by random forest model in shield tunneling.

In addition, for the purposes of evaluation of the prediction by random forest model,
the confusion matrix for each target consumption factor was also carried out. The confusion
matrix displays predictions that are both correct and incorrect, and the results are evaluated
in light of the actual values. The confusion matrix can show how the random forest
classification model gets confused while making predictions. The four values in the matrix
are True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN),
respectively. Thus, the accuracy levels for each target can be calculated as:

AC =
TP + TN

TP + FP + FN + TN
. (11)

In Figure 19, the number of correct predictions and the number of incorrect predictions
for tail grease are displayed in two subfigures (left: training set; right: test set), respectively.
Consequently, the accuracy levels for calculating the variable importance can also be
obtained by Equation (11). It is seen that the obtained results by the proposed model
are reliable. In order to avoid repetition, the confusion matrix for other factors is not
illustrated here.
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Figure 19. Confusion matrix for the consumption of tail grease (left: training set; right: test set).

4.2. Quota of Budget for Shield Tunneling in Complex Geological Conditions Based on the Random
Forest Results

In this part, we aim at establishing a quota budget for shield tunneling in complex
geological conditions based on the random forest results obtained in the previous subsec-
tion. From the above computation, the compressive strength (σ) is the most important
feature for the consumption of grease, labor and electricity and water, while it is the second
influencing geotechnical parameter for grouting (the most impactful parameter is the void
ratio). For the sake of simplicity in engineering, it is supposed to consider only one geotech-
nical parameter to produce the classification in the quota of budgets in complex conditions.
As a result, we assume that all the considered economic factors can be classified by the
compressive strength index. We will also verify the prediction accuracy by comparing the
total cost computed by the constructed model with that defined by the available quota.

Inspired by the classification standard for the engineering rock mass and code for
geotechnical engineering investigation of China, let us introduce the following classification
based on the compressive strength of geomaterials, as shown in Table 3. Consequently, we
propose a classification with three categories (hard rock, soft rock and soil) by identifying
the compressive strength, and continue the analysis.

Table 3. Classification of engineering geomaterials by compressive strength.

Type Compressive Strength (MPa)

Soil ≤1
Soft rock ≤30
Hard rock ≥30

The collected data of the concerned consumption in shield tunneling have been re-
classified by the compressive strength as in Table 3, so all the consumption data for grease,
grouting, labor and electricity and water are recounted in the above three categories.
The obtained average values for each category with respect to tunneling consumption are
displayed in Table 4. The standard value defined by the available official quota is also
provided in the same table for comparison (per meter). In general, the considered consump-
tion quantities exhibit an obvious positive correlation with the compressive strength of
geomaterial. It can be seen that the consumption per meter in shield tunneling is increasing
from soil to hard rock, also for the grouting quantity.
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Table 4. Comparison of main consumption and cost in different geological conditions with the
standard values.

Factor Quota Soil Soft Rock Hard Rock

Tail grease
81.90

70.50
118%

84.99
136%

145.88
399%EP2 grease 14.18 14.16 70.79

Seal grease 12.72 12.58 110.46
Grouting 1.3–1.8 1.49 1.60 2.12
Labor 51.73 51.34 99% 61.90 120% 106.24 205%
Water 78.93 176.74 223% 227.92 289% 334.65 424%
Electricity 10,800 7449.25 69% 9565 89% 25,885 239%

Total cost 72,153 68,039 94% 72,996 101% 99,719 138%
Only the concerned consumption (part of the main materials and labor) have been listed in this Table, other
materials and machine-teams which remain the same have not been listed, but included in the total cost.

To elaborate, for soft rock and soil, the differences of main consumption are not as
great as that between soft rock and hard rock. Consequently, the construction cost of
shield tunneling is much more expensive, which is consistent with the actual situation.
This proves the rationality of the classification for the quota from the side. Comparing
with the standard values, the obtained results in soil are slightly smaller, while those in
soft rock are close to the standard quantities. Concerning the consumption of hard rock,
all the tunneling consumption is obviously greater than the standard value, even greater
than two times. Consequently, for the tunneling project in complex geological conditions,
the total budget cannot be calculated accurately by the present standard quota. It must be
pointed out that only the concerned varying consumption has been listed in Table 4, other
materials and machine-teams which remain the same have been not listed, but included in
the total cost.

The total cost of the tunneling project per meter is provided in Figure 20. The cost
for each factor can be calculated by the use of the values in Table 4, and the total cost can
be obtained by accumulating the components. It is seen that the total cost in tunneling
also has an evident positive correlation with the compressive strength, increasing from
soil to hard rock. Although the most impactful geotechnical feature for grouting is not the
strength (because the most impactful geotechnical parameter is a void ratio), the strength
can still be used for defining the new quota of budgets in complex geological conditions.
The total cost for soft rock is close to the original budget of the shield tunneling project,
while that for soil is 6% lower than the standard cost. What is more, the total cost for hard
rock is 38% higher than the standard cost, which cannot be ignored in complex conditions.
This is the most important remark of this study, that the compressive strength can be
chosen as the classification index, and the proposed categories in Table 3 are an effective
reference scheme.

Figure 20. Comparison of unit cost of standard quota and by random forest algorithm for different
geological conditions (Currency: CNY).
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It must be pointed out by recent research that the random forest model can have
limited extrapolation ability, and it may not perform well when applied to data that fall
outside the range of the training set [48,49]. However, the main objective of our study
was to determine the most influential geological parameter for material consumption in
shield tunneling. In this context, the random forest algorithm is suitable for determining
feature importance. Besides, increasing the size of datasets can help random forest models
capture more patterns in the data, which we have done in our study by collecting geolog-
ical parameters from soft soil to hard rock. Additionally, we have carefully selected the
hyperparameters of the random forest model to optimize its performance and improve its
ability, as explained in the previous section. These efforts have helped us to mitigate the
limitation of extrapolation in the random forest model to a certain extent. Moreover, due to
the limitation of data sources, the constructed model was trained with the data collected
from a single project, which may lead to inaccuracy if applied to other projects with varying
geometric parameters. This needs to be improved in further research by collecting more
data from different projects.

On the other hand, according to recent studies on Bayesian neural networks [50,51],
the strong spatial variability of soil properties can affect the accuracy of deterministic
data-driven models. Thus, deterministic data-driven models may incur large errors and
its prediction results cannot be evaluated. Advanced developments need to be taken into
account in incorporating uncertainty to enhance the robustness of the proposed model, such
as exploring the possibility of incorporating probabilistic models or stochastic techniques to
account for the inherent variability and uncertainty of soil properties. This could potentially
improve the reliability and accuracy of our model in predicting the material consumption
in shield tunneling under various geological conditions.

5. Conclusions

In this study, we have proposed a random forest-based machine learning procedure
to analyze the construction cost of shield tunneling in complex geological conditions.
We identified the unit consumption of grease, grouting, labor, and water and electricity
as the main factors affecting construction cost, based on engineering practice and expert
opinions. To improve the accuracy of the model, we replenished empty and abnormal
values in the input datasets and reduced its dimensionality from 17 to 6 using KNN and
correlation analysis.

The proposed machine learning model was applied to the ZRT shield tunneling project
and found that the compressive strength of geomaterial was the most influential geotech-
nical parameter for grease, labor, water, and electricity consumption. The consumption
of grouting was mostly impacted by the void ratio, with compressive strength in second
place. Based on these findings, we calculated and classified the unit consumption and
cost of the ZRT tunneling project for three geological categories: soil, soft rock, and hard
rock. Comparison with the standard value given by the official quota revealed that the unit
cost of shield tunneling in soil was slightly lower (6%) than the standard cost, while that
in soft rock was very close to the standard value. However, the cost in hard rock regions
was significantly greater (38%) and cannot be ignored in budgeting. Thus, we recommend
using the compressive strength as the classification index for shield tunneling in complex
geological conditions.

In the outlook, collecting more data from different projects with varying tunnel diame-
ters is an essential task in the future to improve the generalizability of the proposed model.
Another interesting topic is to take into account advanced developments in incorporating
uncertainty to enhance the robustness of the proposed model.
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