
Citation: Muñoz Mendoza, L.F.;

García-Torales, G.; Acosta Lúa, C.; Di

Gennaro, S.; Guillen Bonilla, J.T.

Trajectories Generation for

Unmanned Aerial Vehicles Based on

Obstacle Avoidance Located by a

Visual Sensing System. Mathematics

2023, 11, 1413. https://doi.org/

10.3390/math11061413

Academic Editor: António Lopes

Received: 30 January 2023

Revised: 8 March 2023

Accepted: 10 March 2023

Published: 15 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Trajectories Generation for Unmanned Aerial Vehicles Based on
Obstacle Avoidance Located by a Visual Sensing System
Luis Felipe Muñoz Mendoza 1 , Guillermo García-Torales 1 , Cuauhtémoc Acosta Lúa 2,3 ,
Stefano Di Gennaro 3,4 and José Trinidad Guillen Bonilla 1,*

1 Departamento de Electro–Fotónica, Centro Universitario de Ciencias Exactas e Ingenierías (C.U.C.E.I.),
Universidad de Guadalajara (U. de G.), Blvd. M. García Barragán 1421, Guadalajara 44410, Jalisco, Mexico

2 Departamento de Ciencias Tecnológicas, Centro Universitario de La Ciénega, Universidad de Guadalajara, Av.
Universidad 1115, Ocotlán 47820, Jalisco, Mexico

3 Center of Excellence DEWS, University of L’Aquila, Via Vetoio, Loc. Coppito, 67100 L’Aquila, Italy
4 Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila,

Via Vetoio, Loc. Coppito, 67100 L’Aquila, Italy
* Correspondence: trinidad.guillen@academicos.udg.mx; Tel.: +33-13-78-59-00 (ext. 27655)

Abstract: In this work, vectorial trajectories for unmanned aerial vehicles are completed based on a
new algorithm named trajectory generation based on object avoidance (TGBOA), which is presented
using a UAV camera as a visual sensor to define collision-free trajectories in scenarios with randomly
distributed objects. The location information of the objects is collected by the visual sensor and
processed in real-time. This proposal has two advantages. First, this system improves efficiency
by focusing the algorithm on object detection and drone position, thus reducing computational
complexity. Second, online trajectory references are generated and updated in real-time. To define a
collision-free trajectory and avoid a collision between the UAV and the detected object, a reference is
generated and shown by the vector, symmetrical, and parametric equations. Such vectors are used as
a reference in a PI-like controller based on the Newton–Euler mathematical model. Experimentally,
the TGBOA algorithm is corroborated by developing three experiments where the F-450 quadcopter,
MATLAB® 2022ª, PI-like controller, and Wi-Fi communication are applied. The TGBOA algorithm and
the PI-like controller show functionality because the controller always follows the vector generated
due to the obstacle avoidance.

Keywords: TGBOA; UAV; trajectory generation; obstacle avoidance; Newton–Euler model; PI-like
controller

MSC: 68T45; 93C95

1. Introduction

The study of unmanned aerial vehicles (UAVs) has grown in recent decades due to
their features and the large field of applications that have been found in agronomy, surveil-
lance, and tracking, among others [1,2]. Researchers’ work on new methods for creating
autonomous navigation on systems are focused on three stages, mainly the following [3]:
obtaining information about the environment using different sensors and methodolo-
gies; [4,5] processing data to obtain a reference trajectory using a localization, mapping, or
optimization algorithm [6,7]; and implementing flight controllers to keep the drone altitude
and track the signal reference [8–10]. The first depends on a great variety of sensors such
as cameras, light detection and ranging (LiDAR), or inertial measurement units (IMU).
The second stage uses algorithms for object detection, and collision avoidance, as well as
route optimization to find the best trajectory. The third stage consists of developing the
flight controller, which is focused on approaching the reference to the position and posture
desired for the UAV by means of a mathematical model and some control technique.

Mathematics 2023, 11, 1413. https://doi.org/10.3390/math11061413 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061413
https://doi.org/10.3390/math11061413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2247-9967
https://orcid.org/0000-0002-3556-6480
https://orcid.org/0000-0002-7398-2629
https://orcid.org/0000-0003-0041-3932
https://doi.org/10.3390/math11061413
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061413?type=check_update&version=1

Mathematics 2023, 11, 1413 2 of 25

One way to obtain the reference is based on generating a vector, whose origin point is
the position where the UAV starts its route, and the endpoint is the target to be reached,
as shown in reference [11]: here, a vector is generated to move the UAV among separate
trees by means of a photometric technique. However, various factors influence the drone
path, such as changes in the environment and collisions; therefore, it becomes necessary
to implement methods for obstacle detection and avoidance while the UAV trajectory is
updated [5]. For this case, two methods are considered: manual and automatic. In the first,
an operator sends the signal from a remote control to enable a flight mode [12,13]. In the
second, a trajectory generator algorithm and a flight controller are combined [14,15]. The
generator can be executed from the UAV or with a remote workstation.

To solve the trajectory generation problem, two main methods are considered: offline
and online [16]. In the offline method, an algorithm analyzes and calculates a trajectory
using a pre-load scenario that consists of a static image or model of the place with constrains
already known by the system before the UAV take-off and calculates a trajectory for the
controller. The environment must not change, since if it does (if some object appears), the
technique loses its functionality due to the existence of a high possibility of a collision
between the UAV and the object. On the other hand, the online method uses an algorithm
based on a dynamic analysis of its sensors, detecting the object’s movement to generate a
customized trajectory [17,18]. Both methods are applicable; however, each method has its
advantages and disadvantages. For example, the offline method is effective if the scenario
is static because the UAV trajectory is calculated before its movement, but for a changing
scenario, this method should not be considered because the collision between the UAV and
an object is very possible. If the scenario is changing because of an object’s movement or
the UAV movement, the trajectory creation online is recommended [19] because the UAV
trajectory is updated based on the scenario analysis. The algorithm’s effectiveness, however,
depends on the complexity of the data and the execution time. The literature has proposed
different methods and devices to counter these drawbacks. Some works report waypoints
with the GPS, as in [20], where a strategic route planning for a multi-UAV routing problem
is shown, using a multi-step plan which includes automated definition for GNSS based on
a georeferenced three-dimensional domain model, derivation of obstacle-free candidate
routes, assignment of waypoints, and definition of time-stamped trajectories for all UAVs.
Their aim is to ensure that the designed trajectories are reliable with the given positioning
accuracy using propagated covariance as a metric. On the other hand, the authors of [21]
improve the computationally fast trajectory generation algorithm using linear interpolation,
which gives a fast calculation response, numerical simulation results are shown, and a
nonlinear flight controller is also designed to track the generated trajectories. In addition,
different works use artificial intelligence and optimization methods to obtain the best path
in predetermined scenarios, as in [22], where a vision-based controller for a quadcopter
is presented, to enable tracking of a moving target by a neural network which obtains
image features.

For online trajectory cases, the most complex situation occurs when both the UAV
and the objects are moving at the same time. Here, the algorithm must develop dynamic
trajectories at a high speed according to the data analysis. To solve the problems mentioned
above, several authors have proposed different methodologies. For example, in [23], the
authors use a convolutional neural network to recognize images, path planning, and its
implementation on an FPGA. In reference [24], the authors use the so-called simultaneous
localization and mapping (SLAM) algorithm that allows the map building or updating of
an unknown environment while tracking the drone location. A route planner is developed
by updating itself as it explores various areas of the surrounding environment. Such meth-
ods can be functional in unknown scenarios but not dynamic. The processing tasks are
hard to process due to the constant updating of the map. In [19], the authors propose a
direct visual serving system for UAVs, using an onboard high-speed monocular camera
with an integrated GPU. This technology is characterized by environment recognition
through artificial vision and by sending signals to the controller, which reduces latency.

Mathematics 2023, 11, 1413 3 of 25

However, the equipment used for this technique is expensive and requires prior knowledge
or estimation of the objects in its spatial environment. In [25], a vision-guided autonomous
flight system for quadrotor navigation is presented. Using a real-time obstacle avoidance
technique based on optical flow, the frontal obstacles can be detected and guide the quadro-
tor with a proper direction. Nevertheless, optical flow is difficult to achieve in the real-time
performance on the low-cost hardware. On the other hand, implementing the generated
trajectories is carried out by flight controllers that allow the drone to move into space by
manipulating the speed of its rotors. The flight control system is the fundamental aspect
of the quadrotor, becoming an important platform for UAV research and development,
as in [25], where different control techniques are reported. Furthermore, Newton–Euler,
Euler–Lagrange, or quaternions [26–31] are examples of mathematical models applied in
controllers whose aim is to follow the reference by reducing the tracking error by adjusting
the UAV posture and its rotational and translational movement.

Finally, Table 1 shows a comparation between some of the related work mentioned above.

Table 1. Comparation between different UAV trajectories’ generation methods.

Relevant Aspect Disadvantage

[19]

High image sampling rates to improve
the environment recognition. The

position control signals are transmitted to
the flight controller directly.

Expensive hardware and requires prior
knowledge or estimation of the objects in

its spatial environment.

[23]
Convolutional neural networks used to

possible path recognition. ARM and
FPGA implementation.

Large amount of computational resources
used for CNN. Three vision sensors

needed.

[24]
Monocular-inertial SLAM in the loop of

navigation in a previously unknown
environment.

Updating environment requires a lot of
time and computer resources. Dynamic

scenarios are not considered.

[25]

Path planning and real-time obstacle
avoidance techniques. Frontal static

obstacles can be detected and guide the
quadrotor with a proper direction.

The presence of moving obstacles is not
considered. Optical flow is not sufficient
to achieve the real-time performance on

the low-cost hardware.

In this article, a solution with low computational resources is presented for obstacle
detection and avoidance, trajectory generation, and autonomous drone navigation using
only a camera and without specialized high-performance hardware. It focuses on imple-
menting a novel algorithm called trajectory generation based on object avoidance (TGBOA),
which works in a real-time analysis through video frames taken from the camera placed
on the UAV and communication with a workstation. Furthermore, a PI-like controller is
developed and simulated, using as a reference the vector generated by the TGBOA algo-
rithm. The Newton–Euler mathematical model is considered by the controller to represent
the equations of the rigid body of the drone.

2. Materials and Methods
2.1. Materials

Figure 1 shows the proposed system for trajectory generation based on a video analysis
and the evasion of localized objects through a vision system. The required material consists
of a model OV5647 camera (Raspberry PI REES52, Taiwan) that works as a sensor with
a Raspberry Pi 4B (Raspberry Pi Foundation, Raspberry Pi Foundation Maurice Wilkes
Building St. John’s Innovation Park Cambridge, UK) responsible for transmitting the video,
a model F-450 quadcopter (INVENTO, India) (shown in Figure 2), a flight controller card
(Pixhawk 3 (Bombay Electronics, Mumbai, India)) installed, and a laptop as a workstation.
The camera technical features are M12 × 0.5 lenses, a 5MPixels sensor, a resolution of
640 × 480 pixels, 90 frames/s, and a size of 2.5 cm × 2.5 cm × 2.6 cm. The Raspberry
features are a 1.5 GHz quad-core 64-bit ARM Cortex processor, 2 GB of LPDDR4 SDRAM,
and Dual-band 802.11 ac wireless networking. The drone has four brushless direct current

Mathematics 2023, 11, 1413 4 of 25

motors (BLDC) and a 3DR-PIXHAWK controller card. The features of the laptop are 8Gb
RAM and Intel i7 CPU. Finally, the software used is MATLAB® 2022a executing on the
Windows 11 Operative System.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 25

with a Raspberry Pi 4B (Raspberry Pi Foundation, Raspberry Pi Foundation Maurice

Wilkes Building St. John's Innovation Park Cambridge, UK) responsible for transmitting

the video, a model F−450 quadcopter (INVENTO, India) (shown in Figure 2), a flight con-

troller card (Pixhawk 3 (Bombay Electronics, Mumbai, India)) installed, and a laptop as a

workstation. The camera technical features are M12 × 0.5 lenses, a 5MPixels sensor, a res-

olution of 640 × 480 pixels, 90 frames/s, and a size of 2.5 cm × 2.5 cm × 2.6 cm. The Rasp-

berry features are a 1.5 GHz quad−core 64−bit ARM Cortex processor, 2 GB of LPDDR4

SDRAM, and Dual−band 802.11 ac wireless networking. The drone has four brushless di-

rect current motors (BLDC) and a 3DR−PIXHAWK controller card. The features of the

laptop are 8Gb RAM and Intel i7 CPU. Finally, the software used is MATLAB® 2022a ex-

ecuting on the Windows 11 Operative System.

Figure 1. Vision system proposed for the TGBOA algorithm.

Figure 2. Quadcopter F−450.

The drone camera observes the front part where the UAV moves and generates a

video during the flight. The video is transmitted in real−time to the workstation via Wi−Fi

using the Raspberry Pi, and the transmission rate depends on the bandwidth Wi−Fi signal

[32] and the adaptor of the workstation. In this case, the connection is made by wireless

transmission at 2.4 GHz with a usable speed of 50–70 Mbps. Subsequently, the work-

station analyzes the video frames considering the following objectives: object detection on

the stage, collision−free zone calculation, and generation of free−collision trajectories for

the flight controller.

2.2. Object Detection and Assignation of Collision−Free Zones

The generated video is 90 frames/second with 640 × 480 pixels for each frame and is

sent from the UAV to the workstation. For the analysis, a frame is taken from the video,

obtaining a digital RGB image as shown in Figure 3a. The image is represented through

Figure 1. Vision system proposed for the TGBOA algorithm.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 25

with a Raspberry Pi 4B (Raspberry Pi Foundation, Raspberry Pi Foundation Maurice

Wilkes Building St. John's Innovation Park Cambridge, UK) responsible for transmitting

the video, a model F−450 quadcopter (INVENTO, India) (shown in Figure 2), a flight con-

troller card (Pixhawk 3 (Bombay Electronics, Mumbai, India)) installed, and a laptop as a

workstation. The camera technical features are M12 × 0.5 lenses, a 5MPixels sensor, a res-

olution of 640 × 480 pixels, 90 frames/s, and a size of 2.5 cm × 2.5 cm × 2.6 cm. The Rasp-

berry features are a 1.5 GHz quad−core 64−bit ARM Cortex processor, 2 GB of LPDDR4

SDRAM, and Dual−band 802.11 ac wireless networking. The drone has four brushless di-

rect current motors (BLDC) and a 3DR−PIXHAWK controller card. The features of the

laptop are 8Gb RAM and Intel i7 CPU. Finally, the software used is MATLAB® 2022a ex-

ecuting on the Windows 11 Operative System.

Figure 1. Vision system proposed for the TGBOA algorithm.

Figure 2. Quadcopter F−450.

The drone camera observes the front part where the UAV moves and generates a

video during the flight. The video is transmitted in real−time to the workstation via Wi−Fi

using the Raspberry Pi, and the transmission rate depends on the bandwidth Wi−Fi signal

[32] and the adaptor of the workstation. In this case, the connection is made by wireless

transmission at 2.4 GHz with a usable speed of 50–70 Mbps. Subsequently, the work-

station analyzes the video frames considering the following objectives: object detection on

the stage, collision−free zone calculation, and generation of free−collision trajectories for

the flight controller.

2.2. Object Detection and Assignation of Collision−Free Zones

The generated video is 90 frames/second with 640 × 480 pixels for each frame and is

sent from the UAV to the workstation. For the analysis, a frame is taken from the video,

obtaining a digital RGB image as shown in Figure 3a. The image is represented through

Figure 2. Quadcopter F-450.

The drone camera observes the front part where the UAV moves and generates a video
during the flight. The video is transmitted in real-time to the workstation via Wi-Fi using
the Raspberry Pi, and the transmission rate depends on the bandwidth Wi-Fi signal [32]
and the adaptor of the workstation. In this case, the connection is made by wireless
transmission at 2.4 GHz with a usable speed of 50–70 Mbps. Subsequently, the workstation
analyzes the video frames considering the following objectives: object detection on the
stage, collision-free zone calculation, and generation of free-collision trajectories for the
flight controller.

2.2. Object Detection and Assignation of Collision-Free Zones

The generated video is 90 frames/second with 640 × 480 pixels for each frame and is
sent from the UAV to the workstation. For the analysis, a frame is taken from the video,
obtaining a digital RGB image as shown in Figure 3a. The image is represented through
the discrete function f (m, n) where m = 1, 2, . . . , M and n = 1, 2, . . . , N are the coordinates
of the image pixels. Subsequently, the RGB image is transformed into an 8-bit gray-scale
image and converted by the Otsu algorithm into a binary image [33]. In the binary image,
the detected objects are white, and the background is marked in black, as illustrated in
Figure 3b. Finally, the size, position, and centroid are obtained for each object.

Mathematics 2023, 11, 1413 5 of 25

Figure 3. Test case: (a) RGB image obtained from vision sensor; (b) objects located using the binary
image obtained from the environment; (c) free zones marked in blue, and zones with objects marked
in red.

The next step is calculating the collision-free regions, so the image f (m, n) is divided
into thirteen regions: Rk(k = 1, 2, . . . , 13). The first region R1 has been assigned concerning
the UAV size and is in the image center, and the image resolution limits the remaining
thirteen zones, as observed in Figure 3c. If objects in the scenario are in one or more regions,
then a correlation “A” between the detected objects and the region exists, and the following
condition is true:

Rk →
{

Rk,α i f f A = 0
Rk,β i f f A 6= 0 , (1)

where Rk,α indicates the α− th collision-free region and Rk,β indicates the β− th region
with possible collision. Now, based on Equation (1), a region Rk,α is collision-free if, and
only if, the correlation area A is equal to 0. On the other hand, region Rk,β has a possible
collision if, and only if, the correlation area A is different from zero. To illustrate the above,
Figure 2b is considered, where the objects are in the regions R4, R5, R9–13 (marked as red),
and consequently, collision-free regions are R1–3 y R6–8 (marked in blue).

2.3. Trajectory Generation

Once the collision-free regions have been defined, it is possible to generate flight
trajectories for the UAV controller to avoid a collision and improve the success of missions.

Figure 4 shows the geometry for generating the trajectories of the controller. Based
on the figure mentioned above, the origin is the drone position whose coordinates are
Pc(0, 0, 0), and the endpoint of the trajectory is the center of the collision-free region. In
this case, the coordinates will be Ck(xk, yk, zk) : xk is the distance from the UAV to the
scenario, yk represents the length, and zk is the altitude. To generate the trajectory, the
vector equation is used:

→
f k =

→
Pc + ti

→
v k i ∈ Z, (2)

where
→
Pc is a vector such that

→
v k =

→
PcCk vector calculated from the UAV to the center of

the k-th region Rk,
→
f k is the collision-free trajectory, and t are instants of time. From here,

we go from a 2D problem to 3D as illustrated in Figure 4.

Mathematics 2023, 11, 1413 6 of 25
Mathematics 2023, 11, x FOR PEER REVIEW 6 of 25

Figure 4. Geometry and collision−free paths generated from object detection and definition of colli-

sion−free regions.

Taking into consideration the geometry of the problem, Equation (2) can be rewritten

as follows:

𝒇⃗ 𝒌 = (0, 0, 0) + 𝑡(𝑥𝑘, 𝑦𝑘, 𝑧𝑘), (3)

From Equation (3), the following parametric equations are obtained,

𝑥 = 𝑥𝑘𝑡
𝑦 = 𝑦𝑘𝑡
𝑧 = 𝑧𝑘𝑡

, (4)

Finally, the vector equation is represented in the form of symmetric equations,

𝑥

𝑥𝑘
=

𝑦

𝑦𝑘
=

𝑧

𝑧𝑘
, (5)

Equations (4)–(6) can be applied as a reference in flight controllers for the UAV. Fig-

ure 4 shows the graphical representation for Equations (3)–(5) (possible trajectory vectors),

𝒇⃗
𝒌
 (𝑘 = 1,2,3,6 − 8) where free regions are 𝑅𝑘 (1,2,3,6 − 8) and the objects are detected

in regions 𝑅𝑘 (4,5,9 − 13). Notice that vectors 𝒇⃗
𝒌
 (𝑘 = 1,2,3,6 − 8) are free trajectories

and the drone does not have a collision due to the object evasion.

2.4. Controller Design

In this work, a controller is designed to verify the functionality of the trajectories

generated in Section 2.3. To achieve this, the Newton–Euler mathematical model is used,

which is presented below.

2.4.1. Mathematical Model

The UAV considered in this work is based on a quadcopter shown in Figure 5, which

consists of a rigid body with four rotors. The movement of the drone is generated from

the interaction of the forces resulting from each motor, which are represented as 𝐹𝑖 =

𝑏𝜔𝑝.𝑖
2 , where b is the thrust coefficient calculated by the physical and dynamic

Figure 4. Geometry and collision-free paths generated from object detection and definition of
collision-free regions.

Taking into consideration the geometry of the problem, Equation (2) can be rewritten
as follows: →

f k = (0, 0, 0) + t(xk, yk, zk), (3)

From Equation (3), the following parametric equations are obtained,

x = xkt

y = ykt

z = zkt
, (4)

Finally, the vector equation is represented in the form of symmetric equations,

x
xk

=
y
yk

=
z
zk

, (5)

Equations (4)–(6) can be applied as a reference in flight controllers for the UAV. Figure 4
shows the graphical representation for Equations (3)–(5) (possible trajectory vectors),
→
f k (k = 1, 2, 3, 6–8) where free regions are Rk (1, 2, 3, 6–8) and the objects are detected

in regions Rk (4, 5, 9–13). Notice that vectors
→
f k (k = 1, 2, 3, 6–8) are free trajectories and

the drone does not have a collision due to the object evasion.

2.4. Controller Design

In this work, a controller is designed to verify the functionality of the trajectories
generated in Section 2.3. To achieve this, the Newton–Euler mathematical model is used,
which is presented below.

Mathematics 2023, 11, 1413 7 of 25

2.4.1. Mathematical Model

The UAV considered in this work is based on a quadcopter shown in Figure 5, which
consists of a rigid body with four rotors. The movement of the drone is generated from
the interaction of the forces resulting from each motor, which are represented as Fi = bω2

p.i,
where b is the thrust coefficient calculated by the physical and dynamic characteristics of
the propellers while ωpi, i = 1, 2, 3, 4 are the angular velocities of each motor. Propellers 1
and 3 rotate clockwise, and propellers 2 and 4 rotate counterclockwise.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 25

characteristics of the propellers while 𝜔𝑝𝑖 , 𝑖 = 1,2,3,4 are the angular velocities of each

motor. Propellers 1 and 3 rotate clockwise, and propellers 2 and 4 rotate counterclockwise.

Figure 5. Frameworks used for quadcopter orientation.

For the mathematical model, two frameworks are considered: the one that remains

fixed with respect to the Earth that we will call 𝐸𝐸(𝑂𝐸 , 𝜖𝐸1, 𝜖𝐸2, 𝜖𝐸3) and the frame of ref-

erence of the drone located at its center of mass 𝐸𝐷(𝑂𝐷, 𝜖𝐷1, 𝜖𝐷2, 𝜖𝐷3). The absolute position

of the UAV in terms of 𝐸𝐸 is expressed by 𝜌 = (𝑥, 𝑦, 𝑧)𝑇 and its attitude is described by

Euler angles Θ = (𝑥, 𝑦, 𝑧)𝑇 : roll (𝜙) rotates on the x−axis, pitch (𝜃) works around the

y−axis, and the z−turn is called yaw (𝜓). All angles exist in the range (−𝜋/2 , 𝜋/2). This

allows the drone to have six degrees of freedom, according to the framework 𝐸𝐷, three to

translation 𝑣𝐷 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)
𝑇
 and three to rotation Ω = (𝜔1, 𝜔2, 𝜔3)

𝑇, which are linear and

angular velocities, respectively.

To continue with the Newton–Euler model, the dynamics of the rigid body are ob-

tained by the forces applied to the center of mass of the quadcopter, and the equation of

motion for the quadcopter can be described by means of Figure 4 and the translation dy-

namics, expressed in the following system of equations.
 𝜌̇ = 𝑣𝐷

𝑣̇𝐷 =
1

𝑚
𝑅𝐷𝐸𝐹𝑝𝑟𝑜𝑝 −

1

𝑚
𝐹𝑔𝑟𝑎𝑣

Θ̇ = 𝑅̇𝐷𝐸𝑆𝜔

𝐽Ω̇ = −𝑆𝜔𝐽Ω + 𝜏𝑝𝑟𝑜𝑝 − 𝜏𝑔𝑦𝑟𝑜

(6)

where 𝑚 is the quadcopter mass, 𝐽 = 𝑑𝑖𝑎𝑔(𝐼𝑥 , 𝐼𝑦, 𝐼𝑧) is the inertia matrix of the quadcop-

ter expressed in 𝐸𝐸, and 𝐹𝑝𝑟𝑜𝑝 and 𝜏𝑝𝑟𝑜𝑝 are forces and moments produced by the pro-

pellers. Moreover, 𝐹𝑔𝑟𝑎𝑣 are forces and moments applied to the body of the helicopter,

consisting of its own weight, and 𝜏𝑔𝑦𝑟𝑜 is defined as the gyroscopic effects resulting from

helix rotations. The forces and torques due to the external disturbances are here assumed

to be negligible.

In Equation (6), 𝑆𝜔 is the antisymmetric matrix defined as:

Figure 5. Frameworks used for quadcopter orientation.

For the mathematical model, two frameworks are considered: the one that remains
fixed with respect to the Earth that we will call EE(OE, εE1, εE2, εE3) and the frame of
reference of the drone located at its center of mass ED(OD, εD1, εD2, εD3). The absolute
position of the UAV in terms of EE is expressed by ρ = (x, y, z)T and its attitude is described
by Euler angles Θ = (x, y, z)T : roll (φ) rotates on the x-axis, pitch (θ) works around the
y-axis, and the z-turn is called yaw (ψ). All angles exist in the range (−π/2 , π/2). This
allows the drone to have six degrees of freedom, according to the framework ED, three
to translation vD =

(
vx, vy, vz

)T and three to rotation Ω = (ω1, ω2, ω3)
T , which are linear

and angular velocities, respectively.
To continue with the Newton–Euler model, the dynamics of the rigid body are obtained

by the forces applied to the center of mass of the quadcopter, and the equation of motion
for the quadcopter can be described by means of Figure 4 and the translation dynamics,
expressed in the following system of equations.

.
ρ = vD

.
vD = 1

m RDEFprop − 1
m Fgrav

.
Θ =

.
RDESω

J
.

Ω = −Sω JΩ + τprop − τgyro

(6)

where m is the quadcopter mass, J = diag
(

Ix, Iy, Iz
)

is the inertia matrix of the quadcopter
expressed in EE, and Fprop and τprop are forces and moments produced by the propellers.
Moreover, Fgrav are forces and moments applied to the body of the helicopter, consisting of

Mathematics 2023, 11, 1413 8 of 25

its own weight, and τgyro is defined as the gyroscopic effects resulting from helix rotations.
The forces and torques due to the external disturbances are here assumed to be negligible.

In Equation (6), Sω is the antisymmetric matrix defined as:

Sω =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

, (7)

Equation (7) in known as the dyadic representation of Ω.
Matrix RDE describes the spatial orientation of the drone framework ED to the Earth

framework EE. The sequence Rz,ψRy,θ Rx,φ is used [34], and it is obtained by applying the
product of three rotation matrices for each axis, so that

Rx,φ =

1 0 0
0 cφ sφ

0 −sφ cφ

; Ry,θ =

cθ 0 −sθ

0 1 0
sθ 0 cθ

; Rz,ψ =

 cψ sψ 0
−sψ cψ 0

0 0 1



RDE = Rz,ψRy,θ Rx,φ =

cθcψ sφsθcψ − cφsψ cφsθcψ + sψsφ

cθsψ cφcψ + sφsθsψ cφsθsψ − cψsφ

−sθ sφcθ cφcθ

, (8)

with cγ = cos(γ) and sγ = sin(γ). γ = φ, θ, ψ.
The dynamics of angular velocities are expressed in matrix form:

.
RDE =

1 sφtgθ cφtgθ

0 cφ −sφ

0 sφscθ cφscθ

, (9)

with tgγ = tan(γ) and scγ = sec (γ). Moreover, using small angles, Equation (9) reduces
to an identity matrix I3x3. This assumption is justified by the fact that the movements of the
quadcopter are slow and soft [35].

Furthermore, the input forces and moments are the torque applied to the roll angle τ1,
produced by the forces of the motors F4 and F2, respectively; the torque applied to pitch τ3
is produced by the forces F1 and F3, respectively; due to Newton’s third law, the propellers
produce a yawing torque τ2 on the body of the quadrotor, in the opposite direction of the
propeller rotation. The helices’ drag produces a torque in the angle of rotation in the body
of the quadcopter and is represented by c. The distance between the quadcopter’s center of
mass and rotor shaft is represented by l. All these variables are defined as:

Fprop =

 0
0

ΣFi


Fgrav =

 0
0

mg


τprop =

τ1
τ3
τ2

 =

 l(F4 − F2)
l(F1 − F3)

c(−F1 + F2 − F3 + F4)

 =

lu3
lu2
u4

.

(10)

Next, to the dynamic model described in (6), it is possible to include the gyroscopic
term τgyro, caused by the combination of the rotations of the airframe and the four rotors,
i.e., due to the fact that the pair of rotors 1–3 rotate in the opposite direction of the pair
2–4 [36]:

τgyro = ∑4
i=1(−1)i IRωRSε3, (11)

Mathematics 2023, 11, 1413 9 of 25

where ε3 = (0 0 1)T is the vector along the axis z in EE, JR is the moment of inertia of the
propeller with respect to its axis of rotation, and ωR = ωR,1 − ωR,2 + ωR,3 − ωR,4 is the
so-called relative rotor speed.

Finally, using Equations (6) and (10) and under the small angle assumption, the
quadcopter model is

..
x = 1

m
(
cφsθcψ + sφsψ

)
u1

..
y = 1

m
(
cφsθsφ − sφcψ

)
u1

..
z = −g + 1

m cφcθu1
..
φ =

(
Jy−Jz

Jx

) .
θ

.
ψ− JR

Jx

.
θωR + l

Jx
u3

..
θ =

(
Jz−Jx

Jy

) .
φ

.
ψ + JR

Jy

.
φωR + l

Jy
u2

..
ψ =

(
Jx−Jy

Jz

) .
φ

.
θ + 1

Jz
u4

(12)

where the control variable is ui, i = 1, 2, 3, 4 are defined as in (10), and the parameter
values used in (12) are shown in Table 2.

Table 2. Coefficients and variables of the quadcopter.

Parameter Variable Value

Mass m 1.3 kg
Frame length l 0.233 m

Inertia
Jx
Jy
Jz

8.825 × 10−3 kg m2

8.825 × 10−3 kg m2

14.39 × 10−3 kg m2

Propeller inertia JR 104 × 10−6 kg m 2

Gravity g 9.81 m/s2

Thrust b 52.5 × 10−6

Drag c 1.15 × 10−6 N s2 rad−2

Subsequently, the control problem consists of ensuring the convergence of the set
of variables X = (x, y, z, ψ) to references Xre f =

(
xre f , yre f , zre f , ψre f

)
. To achieve this,

control subsystems composed of the rotational and translational dynamics of the system are
considered, which relate the control inputs ui with spatial coordinates (x, y, z) by means of
Euler angles (φ, θ, ψ). The following coordinate change is considered: φ = φ1,

.
φ1 = φ2;

θ = θ1,
.
θ1 = θ2; ψ = ψ1,

.
ψ1 = ψ2 and the system of Equation (12) became:

.
x1 = x2

x2 = 1
m
(
cφ1 sθ1 cψ1 + sφ1 sψ1

)
u1

.
y1 = y2

y2 = 1
m
(
cφ1 sθ1 sψ1 − sφ1 cψ1

)
u1

.
z1 = z2
..
z = −g + 1

m cφ1 cθ1 u1
.

φ1 = φ2
.
φ2 =

(
Jy−Jz

Jx

)
θ2ψ2 − JR

Jx
θ2ωR + l

Jx
u3

.
θ1 = θ2
.
θ2 =

(
Jz−Jx

Jy

)
φ2ψ2 +

JR
Jy

φ2ωR + l
Jy

u2
.
ψ1 = ψ2
.
ψ2 =

(
Jx−Jy

Jz

)
φ2θ2 +

1
Jz

u4

(13)

Mathematics 2023, 11, 1413 10 of 25

Therefore, the following four subsystems shall be considered: the altitude subsystem
S1, the latitudinal subsystem S2, the longitudinal subsystem S3, and the yaw S4, and then
the set of Equation (13) becomes:

S1 =


.
z1 = z2
.
z2 = −g + 1

m cφ1 cθ1 u1

S2 =



.
x1 = x2
.
x2 = 1

m (cφ1 sθ1 cψ1 + sφ1 sψ1)u1
.
θ1 = θ2
.
θ2 =

(
Jz−Jx

Jy

)
φ2ψ2 +

JR
Jy

φ2ωR + l
Jy

u3

S3 =



.
y1 = y2
.
y2 = 1

m (cφ1 sθ1 sψ1 − sφ1 cψ1)u1
.
φ1 = φ2
.
φ2 =

(
Jy−Jz

Jx

)
θ2ψ2 − JR

Jx
θ2ωR + l

Jx
u2

S4 =


.
ψ1 = ψ2
.
ψ2 =

(
Jx−Jy

Jz

)
φ2θ2 +

1
Jz

u4

(14)

Following this, each of the subsystems is described.

2.4.2. Altitude Control

As mentioned, in order to verify the applicability of the references for the UAV flight
controller, an altitude control is proposed in this section. The altitude control subsystem S1
is defined by the following:

.
z1 = z2.
z2 = −g + 1

m cφ1 cθ1 u1
(15)

Since the aim is to keep the UAV at a constant altitude according to the desired
reference zre f , with z2,re f =

.
z1,re f , then the tracking error and its dynamics are set for

altitude control via the following:

ez1 = z1 − z1,re f.
ez1 = z2 −

.
z1,re f

(16)

For virtual control gains k are used such that

− kz1 ez1 − k0z1 Iez1 = z2,d −
.
z1,re f

where an integrative term is added in ez1 , in such a way that,
.
Iez1 = ez1 , and therefore,

z2,d =
.
z1,re f − kz

1ez1 − k0z1 Iez1 ,
(17)

The derivative of (17) with respect to time will be:

.
z2,d =

..
z1,re f − kz1

.
ez1 − k0z1

.
Iez1

.
z2,d =

..
z1,re f − kz1

(
z2 −

.
z1,re f

)
− k0z1 ez1 ,

(18)

Now, the tracking error ez2 is obtained by the following:

ez2 = z2 − z2d;

Mathematics 2023, 11, 1413 11 of 25

and its dynamics results are

.
ez2 = −g +

1
m

cφ1cθ1u1 −
.
z2,d , (19)

then, the control input of altitude u1 proposed is

u1 =
m

cφ1cθ1

(.
z2,d + g− kz2 ez2 − k0z2 Iez2

)
, (20)

with cφ 6= 0, cθ 6= 0.
Considering [37], the closed-dynamics considering (17) and (20) become(.

Iez1.
ez,1

)
= Az,1

(
Iez1

ez,1

)
, Az,1 =

(
0 1
−k0z1 −kz1

)
(.

Iez2.
ez,2

)
= Az,2

(
Iez2

ez,2

)
, Az,2 =

(
0 1
−k0z2 −kz2

) (21)

where the integral gains k0z1 , k0z2 and proportional gains kz1 , kz2 are fixed so that the error
dynamics are exponentially stable.

2.4.3. Longitudinal Motion Control

In this subsection, making use of the subsystem S2 and applying the technique of
virtual control, longitudinal motion is studied, which is described by the following system
of equations.

.
x1 = x2
.
x2 = 1

m (cφ1 sθ1 cψ1 + sφ1 sψ1)u1
.
θ1 = θ2
.
θ2 =

(
Jz−Jx

Jy

)
φ2ψ2 +

JR
Jy

φ2ωR + l
Jy

u3

(22)

The tracking error ex1 = x1 − x1,re f is considered, and the dynamics of error results:

.
ex1 = x2 −

.
x1,re f . (23)

To eliminate disturbances, an integrative term
.
Iex1 = ex1 is added to the controller,

and the virtual control is proposed,

x2,d =
.
x1,re f − kx1 ex1 − k0x1 Iex1 . (24)

Differentiation x2,d with respect to the time,

.
x2,d =

..
x1,re f − kx1

.
ex1 − k0x1

.
Iex1

.
x2,d =

..
x1,re f − kx1

(
x2 −

.
x1,re f

)
− k0x1 ex1.

(25)

The error is ex2 = x2 − x2d and its dynamics results are:

.
ex2 =

.
x2 −

.
x2,d

.
ex2 = 1

m
(
cφ1 sθ1 cψ1 + sφ1 sψ1

)
u1 −

.
x2,d;

(26)

for stabilization of ex2 , the value for sθ1 can be fixed by solving (26) as follows:

sθ1,d =
m

cφ1 cψ1 u1

(
.
x2,d −

1
m

sφ1 sψ1 u1 − kx2 ex2 − k0x2 Iex2

)
. (27)

Mathematics 2023, 11, 1413 12 of 25

To impose the reference, θ is considered the tracking error eθ1 = sθ1 − sθ1,d and
its derivative .

eθ1 =
.
sθ1 −

.
sθ1,d

.
eθ1 = cθ1 θ2 −

.
sθ1,d ,

(28)

For virtual control, θ2,d is used

−kθ1 eθ1 − k0θ1 Ieθ1 = cθ1 θ2,d −
.
sθ1,d ;

θ2,d = 1
cθ

(.
sθ1,d − kθ1 eθ1 − k0θ1 Ieθ1

)
,

(29)

Defining eθ2

eθ2 = θ2 − θ2,d;
.
eθ2 =

.
θ2 −

.
θ2,d,

(30)

the dynamics of the error results

.
eθ2 =

Jz − Jx

Jy
φ2ψ2 +

JR
Jy

φ2ωR +
l
Jy

u3 −
.
θ2,d, (31)

and finally, the control input u3 is obtained as

u3 =
Jy

d

(
.
θ2,d − kθ2 eθ2 − k0θ2 Ieθ2 −

Jz − Jx

Jy
φ2ψ2 −

JR
Jy

φ2ωR

)
, (32)

2.4.4. Lateral Movement Control

A lateral movement controller is designed in this section and its operation is along
the y-axis and the UAV. Using a procedure similar to that described in Section 2.4.2, the
subsystem S3 is used:

.
y1 = y2
.
y2 = 1

m (cφ1 sθ1 sψ1 − sφ1 cψ1)u1
.
φ1 = φ2
.
φ2 =

(
Jy−Jz

Jx

)
θ2ψ2 − JR

Jx
θ2ωR + l

Jx
u2

(33)

the tracking error and dynamic error are defined by,

ey1 = y− y1,re f
.
ey1 = y2 −

.
y1,re f ,

(34)

adding an integrative term to the controller
.
Iey1 = ey1 , the virtual control for y2,d is obtained

−ky1 ey1 − k0y1 Iey1 = y2,d −
.
y1,re f

y2,d =
.
y1,re f − ky1 ey1 − k0y1 Iey1 ,

(35)

differentiation with respect to the time of Equation (35) yields

.
y2,d =

..
y1,re f − ky1

.
ey1 − k0y1

.
Iey1

.
y2,d =

..
y1,re f − ky1

(
y2 −

.
y1,re f

)
− k0y1 ey1.

(36)

Mathematics 2023, 11, 1413 13 of 25

Subsequently, the tracking ey2 = y2 − y2,d is defined, and the dynamic is as follows:

.
ey2 =

.
y2 −

.
y2,d;

.
ey2 = 1

m
(
cφ1 sθ1 sψ1 − sφ1 cψ1

)
u1 −

.
y2,d.

(37)

Now, it clears sφ1 to obtain

−ky2 ey2 − k0y2 Iey2 = 1
m cφ1 sθ1 sψ1 u1 − 1

m sφ1 cψ1 u1 −
.
y2,d

sφ1,d = m
cψ1 u1

(
1
m cφ1 sθ1 sψ1 u1 −

.
y2,d + ky2 ey2 + k0y2 Iey2

)
.

(38)

Considering the angular error eφ1 = sφ1 − sφ1,d , its dynamics can be expressed as

.
eφ1 =

.
sφ1 −

.
sφ1,d

.
eφ1 = cφ1 φ2 −

.
sφ1,d .

(39)

On the other hand, for virtual control, φ2,d is used

−kφ1 eφ1 − k0φ1 Ieφ1 = cφ1 φ2,d −
.
sφ1,d

φ2,d = 1
cφ

(.
sφ1,d − kφ1 eφ1 − k0φ1 Ieφ1

)
.

(40)

Furthermore, with eφ2 = φ2 − φ2,d, the dynamic is defined by

.
eφ2 =

.
φ2 −

.
φ2,d. (41)

Now, using (33) in (41), the angular velocity error dynamic is expressed as

.
eφ2 =

Jy − Jz

Jx
θ2ψ2 −

JR
Jx

θ2ωR +
l
Jx

u2 −
.
φ2,d. (42)

Finally, the control input u2 proposed is

u2 = Jx
l

(.
eφ2 −

Jy−Jz
Jx

θ2ψ2 +
JR
Jx

θ2ωR +
.
φ2,d

)
;

u2 = Jx
l

(.
φ2,d − kφ2 eφ2 − k0φ2 Ieφ2 −

Jy−Jz
Jx

θ2ψ2 +
JR
Jx

θ2ωR

)
.

(43)

2.4.5. Yaw Motion Control

For rotation control, the subsystem S4 is considered

.
ψ1 = ψ2;
.
ψ2 =

(
Jx−Jy

Jz

)
φ2θ2 +

1
Jz

u4,
(44)

where the error system is eψ1 = ψ1 − ψ1,re f , and its dynamic results are

.
eψ1 = ψ2 −

.
ψ1,re f . (45)

Defining the virtual control as in the previous sections, ψ2,d is:

ψ2,d =
.
ψ1,re f − kψ1eψ1 − k0ψ1 Ieψ1 . (46)

The differentiation of (46) with respect to time is obtained as

.
ψ2,d =

..
ψ1,re f − kψ1

.
eψ1 − k0ψ1

.
Ieψ1 . (47)

Mathematics 2023, 11, 1413 14 of 25

Finally, with the error eψ2 = ψ2 − ψ2,d , its dynamic is defined as

.
eψ2 =

.
ψ2 −

.
ψ2,d

.
eψ2 =

(
Jx−Jy

Jz

)
φ2θ2 +

1
Jz

u4 −
.
ψ2,d,

(48)

then the controller input u4 is defined by

u4 = Jz

(
.
ψ2,d − kψ2 eψ2 − k0ψ2 Ieψ2 −

(
Jx − Jy

Jz

)
φ2θ2

)
. (49)

As in Section 2.4.2., the exponential stability can be inferred from the yaw error
dynamics, i.e.: (.

Ieψ1.
eψ1

)
= Aψ,1

(
Ieψ1

eψ,1

)
, Aψ,1 =

(
0 1
−k0ψ1 −kψ1

)
(.

Ieψ2.
eψ,2

)
= Aψ,2

(
Ieψ2

eψ,2

)
, Aψ,2 =

(
0 1
−k0ψ2 −kψ2

) (50)

where the integral gains k0ψ1 , k0ψ2 and proportional gains kψ1 , kψ2 are fixed so that the error
dynamics are exponentially stable.

3. Results

Three experiments are documented to show the functionality of our proposal. For each
case, the collision-free trajectories are calculated with one frame by the TGBOA algorithm
in real-time. Subsequently, a trajectory is selected and employed as a reference for the
PI-like controller. MATLAB 2022a is used for the controller simulation because of its
compatibility with other platforms and its wide variety of tools and different uses in the
industry, allowing the use of the algorithm in later works.

3.1. Experiment 1

Figure 6a shows the video frame transmitted from the UAV to the workstation used
for the first experiment. In the digital image, thirteen regions are defined as R1–13, and
objects are detected in regions R1 and R9–13 whose centers are marked in red. Consequently,
collision-free regions are detected from region R2 to region R8 (centers are marked in blue).
Subsequently, using the procedure described in Section 2.3, the collision-free trajectories
between the object and UAV are calculated. The time required for the TGBOA algorithm is
26 ms in this frame. These trajectories are expressed using their vector equations, as seen in

Table 3. Then, the trajectory
→
f 7 is selected, and it is marked in blue. Figure 6b illustrates

the reference vector for the controller described in Section 2.4.
On the other hand, the simulation controller results are shown by a graphic in Figure 7:

Figure 7a is the result for the position control, including horizontal, frontal, and altitude
control; Figure 7b presents the results for the attitude control; Figure 7c shows the control
input signal controller; and finally Figure 7d shows a 3D representation of the simulation.
In each case, the generated reference is taken and discretized at five points, starting from
the origin of the center of the selected free zone determined by the video analysis (see
Figure 6a). The interval between each reference point is 5 s. Based on Figure 7, at all points,
the PI-like controller reaches its stability in 4 s, and then 25 s is the total time required to
complete the reference vector.

Mathematics 2023, 11, 1413 15 of 25

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 25

(
𝐼𝑒𝜓2
̇

𝑒̇𝜓,2
) = 𝐴𝜓,2 (

𝐼𝑒𝜓2
𝑒𝜓,2

) , 𝐴𝜓,2 = (
0 1

−𝑘0𝜓2 −𝑘𝜓2
)

where the integral gains 𝑘0𝜓1 , 𝑘0𝜓2 and proportional gains 𝑘𝜓1 , 𝑘𝜓2 are fixed so that the

error dynamics are exponentially stable.

3. Results

Three experiments are documented to show the functionality of our proposal. For

each case, the collision−free trajectories are calculated with one frame by the TGBOA al-

gorithm in real−time. Subsequently, a trajectory is selected and employed as a reference

for the PI−like controller. MATLAB 2022a is used for the controller simulation because of

its compatibility with other platforms and its wide variety of tools and different uses in

the industry, allowing the use of the algorithm in later works.

3.1. Experiment 1

Figure 6a shows the video frame transmitted from the UAV to the workstation used

for the first experiment. In the digital image, thirteen regions are defined as 𝑅1−13, and

objects are detected in regions 𝑅1 and 𝑅9−13 whose centers are marked in red. Conse-

quently, collision−free regions are detected from region 𝑅2 to region 𝑅8 (centers are

marked in blue). Subsequently, using the procedure described in Section 2.3, the colli-

sion−free trajectories between the object and UAV are calculated. The time required for

the TGBOA algorithm is 26 ms in this frame. These trajectories are expressed using their

vector equations, as seen in Table 3. Then, the trajectory 𝒇⃗ 𝟕 is selected, and it is marked

in blue. Figure 6b illustrates the reference vector for the controller described in Section 2.4.

(a) (b)

Figure 6. First experiment. (a) Frame acquired from the UAV video transmitted to the workstation,

which is divided into regions: free regions marked in blue and collision regions marked in red; (b)

graphical representation of vector reference 𝒇⃗ 𝟕 is selected for the controller, the reference origi-

nates from the drone and its endpoint is the central coordinates of the region 𝑅7.

Table 3. Collision−free trajectories generated by object detection for frame shown in Figure 6a.

Region Vector Equation Parametric Equations Symmetric Equations

𝑅𝑘 𝒇⃗ 𝒌 = (0,0,0) + 𝑡(𝑥, 𝑦𝑘, 𝑧𝑘) (m)

𝑥 = 𝑥𝑘𝑡
𝑦 = 𝑦𝑘𝑡
𝑧 = 𝑧𝑘𝑡

 (m)
𝑥

𝑥𝑘
=

𝑦

𝑦𝑘
=
𝑧

𝑧𝑘
 (m)

𝑅2 𝒇⃗ 𝟐 = (0,0,0) + 𝑡(10,−2.4 , 0.613)

𝑥2 = 10𝑡
𝑦2 = −2.4𝑡
𝑧2 = 1.613𝑡

𝑥2
10

=
𝑦2
−2.4

=
𝑧2

0.613

Figure 6. First experiment. (a) Frame acquired from the UAV video transmitted to the workstation,
which is divided into regions: free regions marked in blue and collision regions marked in red;

(b) graphical representation of vector reference
→
f 7 is selected for the controller, the reference originates

from the drone and its endpoint is the central coordinates of the region R7.

Table 3. Collision-free trajectories generated by object detection for frame shown in Figure 6a.

Region Vector Equation Parametric Equations Symmetric Equations

Rk
→
f k = (0, 0, 0) + t(x, yk, zk) (m)

x = xkt
y = ykt
z = zkt

(m)
x
xk

=
y
yk

= z
zk

(m)

R2
→
f 2 = (0, 0, 0) + t(10,−2.4 , 0.613)

x2 = 10t
y2 = −2.4t
z2 = 1.613t

x2
10 =

y2
−2.4 = z2

0.613

R3
→
f 3 = (0, 0, 0) + t(10,−2.4 , 1.838)

x3 = 10t
y3 = −2.4t
z3 = 1.838t

x3
10 =

y3
−2.4 = z3

1.838

R4
→
f 4 = (0, 0, 0) + t(10,−0.8 , 1.838)

x4 = 10t
y4 = −0.8t
z4 = 1.838t

x4
10 =

y4
−0.8 = z4

1.838

R5
→
f 5 = (0, 0, 0) + t(10, 0.8 , 1.838)

x5 = 10t
y5 = 0.8t

z5 = 1.838t

x5
10 =

y5
0.8 = z5

1.838

R6
→
f 6 = (0, 0, 0) + t(10, 2.4 , 1.838)

x6 = 10t
y6 = 2.4t

z6 = 1.838t

x6
10 =

y6
2.4 = z6

1.838

R7 *
→
f 7 = (0, 0, 0) + t(10, 2.4 , 0.613)

x7 = 10t
y7 = 2.4t

z7 = 0.613t

x7
10 =

y7
2.4 = z7

0.613

* The vector
→
f 7 is marked in blue because this vector is used as a reference in the UAV controller.

Mathematics 2023, 11, 1413 16 of 25

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 25

𝑅3 𝒇⃗ 𝟑 = (0,0,0) + 𝑡(10,−2.4 , 1.838)

𝑥3 = 10𝑡
𝑦3 = −2.4𝑡
𝑧3 = 1.838𝑡

𝑥3
10

=
𝑦3
−2.4

=
𝑧3

1.838

𝑅4 𝒇⃗ 𝟒 = (0,0,0) + 𝑡(10,−0.8 , 1.838)

𝑥4 = 10𝑡
𝑦4 = −0.8𝑡
𝑧4 = 1.838𝑡

𝑥4
10

=
𝑦4
−0.8

=
𝑧4

1.838

𝑅5 𝒇⃗ 𝟓 = (0,0,0) + 𝑡(10, 0.8 , 1.838)

𝑥5 = 10𝑡
𝑦5 = 0.8𝑡
𝑧5 = 1.838𝑡

𝑥5
10

=
𝑦5
0.8

=
𝑧5

1.838

𝑅6 𝒇⃗ 𝟔 = (0,0,0) + 𝑡(10, 2.4 , 1.838)

𝑥6 = 10𝑡
𝑦6 = 2.4𝑡
𝑧6 = 1.838𝑡

𝑥6
10

=
𝑦6
2.4

=
𝑧6

1.838

𝑅7 * 𝒇⃗ 𝟕 = (0,0,0) + 𝑡(10, 2.4 , 0.613)

𝑥7 = 10𝑡
𝑦7 = 2.4𝑡
𝑧7 = 0.613𝑡

𝑥7
10

=
𝑦7
2.4

=
𝑧7

0.613

* The vector 𝒇⃗ 𝟕 is marked in blue because this vector is used as a reference in the UAV controller.

On the other hand, the simulation controller results are shown by a graphic in Figure

7: Figure 7a is the result for the position control, including horizontal, frontal, and altitude

control; Figure 7b presents the results for the attitude control; Figure 7c shows the control

input signal controller; and finally Figure 7d shows a 3D representation of the simulation.

In each case, the generated reference is taken and discretized at five points, starting from

the origin of the center of the selected free zone determined by the video analysis (see

Figure 6a). The interval between each reference point is 5 s. Based on Figure 7, at all points,

the PI−like controller reaches its stability in 4 s, and then 25 s is the total time required to

complete the reference vector.

(a) (b)

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 25

(c)

(d)

Figure 7. Experimental numerical results obtained when the vector 𝒇⃗ 𝟕 is used as a reference: (a)

motion control; (b) attitude control; (c) control inputs; (d) 3D simulation.

3.2. Experiment 2

For this case, the video frame acquired from the UAV camera is shown in Figure 8a.

As observed, there are six regions (𝑅2, 𝑅9−13) with detected objects whose centers are

marked with red dots, and the free regions found are 𝑅1, 𝑅3−8 (center marked with a blue

dot). Using the UAV position coordinates and the central coordinates of the collision−free

regions, trajectories are generated and represented through vector, parametric, and sym-

metric equations. These equations can be seen in Table 4. Next, the vector 𝒇⃗ 𝟏 is used as a

reference for the UAV controller, and its graph is displayed in Figure 8b. In this case, the

TGBOA algorithm displays the trajectory in 21 ms. On the other hand, Figure 9 shows the

results obtained for the second experiment when the vector 𝒇⃗ 𝟏 is applied as a reference

in the controller.

(a) (b)

Figure 8. Second experiment. (a) Frame used during the second experiment: objects located in re-

gions 𝑅2, 𝑅9−13. Such regions are identified in red and collision−free regions 𝑅1, 𝑅3−8 are marked

with a blue color; (b) graphical representation of vector reference 𝒇⃗ 𝟏: the reference starts from the

drone and its endpoint is the central coordinates of the region 𝑅1.

Figure 7. Experimental numerical results obtained when the vector
→
f 7 is used as a reference:

(a) motion control; (b) attitude control; (c) control inputs; (d) 3D simulation.

3.2. Experiment 2

For this case, the video frame acquired from the UAV camera is shown in Figure 8a.
As observed, there are six regions (R2, R9–13) with detected objects whose centers are
marked with red dots, and the free regions found are R1, R3–8 (center marked with a blue
dot). Using the UAV position coordinates and the central coordinates of the collision-
free regions, trajectories are generated and represented through vector, parametric, and

symmetric equations. These equations can be seen in Table 4. Next, the vector
→
f 1 is used as

a reference for the UAV controller, and its graph is displayed in Figure 8b. In this case, the
TGBOA algorithm displays the trajectory in 21 ms. On the other hand, Figure 9 shows the

results obtained for the second experiment when the vector
→
f 1 is applied as a reference in

the controller.

Mathematics 2023, 11, 1413 17 of 25

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 25

(c)

(d)

Figure 7. Experimental numerical results obtained when the vector 𝒇⃗ 𝟕 is used as a reference: (a)

motion control; (b) attitude control; (c) control inputs; (d) 3D simulation.

3.2. Experiment 2

For this case, the video frame acquired from the UAV camera is shown in Figure 8a.

As observed, there are six regions (𝑅2, 𝑅9−13) with detected objects whose centers are

marked with red dots, and the free regions found are 𝑅1, 𝑅3−8 (center marked with a blue

dot). Using the UAV position coordinates and the central coordinates of the collision−free

regions, trajectories are generated and represented through vector, parametric, and sym-

metric equations. These equations can be seen in Table 4. Next, the vector 𝒇⃗ 𝟏 is used as a

reference for the UAV controller, and its graph is displayed in Figure 8b. In this case, the

TGBOA algorithm displays the trajectory in 21 ms. On the other hand, Figure 9 shows the

results obtained for the second experiment when the vector 𝒇⃗ 𝟏 is applied as a reference

in the controller.

(a) (b)

Figure 8. Second experiment. (a) Frame used during the second experiment: objects located in re-

gions 𝑅2, 𝑅9−13. Such regions are identified in red and collision−free regions 𝑅1, 𝑅3−8 are marked

with a blue color; (b) graphical representation of vector reference 𝒇⃗ 𝟏: the reference starts from the

drone and its endpoint is the central coordinates of the region 𝑅1.

Figure 8. Second experiment. (a) Frame used during the second experiment: objects located in
regions R2, R9–13 Such regions are identified in red and collision−free regions R1, R3–8 are marked

with a blue color; (b) graphical representation of vector reference
→
f 1: the reference starts from the

drone and its endpoint is the central coordinates of the region R1.

Table 4. Collision-free trajectories generated by the TGBOA algorithm using the frame shown in
Figure 8a.

Region Vector Equation Parametric
Equations

Symmetric
Equations

Rk

→
f k = (0, 0, 0) +
t(x, yk, zk) (m)

x = xkt
y = ykt
z = zkt

(m)
x
xk

=
y
yk

= z
zk

(m)

R1
*
→
f 1 =

(0, 0, 0) + t(10, 0 , 0)
x1 = 10t
y1 = 0t
z1 = 0t

x1
10 =

y1
0 = z1

0

R3

→
f 3 = (0, 0, 0) +

t(10,−2.4 , 1.838)
x3 = 10t

y3 = −2.4t
z3 = 1.838t

x3
10 =

y3
−2.4 = z3

1.838

R4

→
f 4 = (0, 0, 0) +

t(10,−0.8 , 1.838)
x4 = 10t

y4 = −0.8t
z4 = 1.838t

x4
10 =

y4
−0.8 = z4

1.838

R5

→
f 5 = (0, 0, 0) +

t(10, 0.8 , 1.838)
x5 = 10t
y5 = 0.8t

z5 = 1.838t

x5
10 =

y5
0.8 = z5

1.838

R6

→
f 6 = (0, 0, 0) +

t(10, 2.4 , 1.838)
x6 = 10t
y6 = 2.4t

z6 = 1.838t

x6
10 =

y6
2.4 = z6

1.838

R7

→
f 7 = (0, 0, 0) +

t(10, 2.4 , 0.613)
x7 = 10t
y7 = 2.4t

z7 = 0.613t

x7
10 =

y7
2.4 = z7

0.613

R8

→
f 8 = (0, 0, 0) +

t(10, 2.4 ,−0..613)
x8 = 10t
y8 = 2.4t

z8 = 0.613t

x8
10 =

y8
2.4 = z8

0.613

* The vector
→
f 1 is marked in blue due to this vector being used as a reference in the UAV controller.

Mathematics 2023, 11, 1413 18 of 25

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 25

Table 4. Collision−free trajectories generated by the TGBOA algorithm using the frame shown in

Figure 8a.

Region Vector Equation Parametric Equations Symmetric Equations

𝑅𝑘 𝒇⃗ 𝒌 = (0,0,0) + 𝑡(𝑥, 𝑦𝑘, 𝑧𝑘) (m)

𝑥 = 𝑥𝑘𝑡
𝑦 = 𝑦𝑘𝑡
𝑧 = 𝑧𝑘𝑡

 (m)
𝑥

𝑥𝑘
=

𝑦

𝑦𝑘
=
𝑧

𝑧𝑘
 (m)

𝑅1 * 𝒇⃗ 𝟏 = (0,0,0) + 𝑡(10, 0 , 0)

𝑥1 = 10𝑡
𝑦1 = 0𝑡
𝑧1 = 0𝑡

𝑥1
10

=
𝑦1
0
=
𝑧1
0

𝑅3 𝒇⃗ 𝟑 = (0,0,0) + 𝑡(10,−2.4 , 1.838)

𝑥3 = 10𝑡
𝑦3 = −2.4𝑡
𝑧3 = 1.838𝑡

𝑥3
10

=
𝑦3
−2.4

=
𝑧3

1.838

𝑅4 𝒇⃗ 𝟒 = (0,0,0) + 𝑡(10,−0.8 , 1.838)

𝑥4 = 10𝑡
𝑦4 = −0.8𝑡
𝑧4 = 1.838𝑡

𝑥4
10

=
𝑦4
−0.8

=
𝑧4

1.838

𝑅5 𝒇⃗ 𝟓 = (0,0,0) + 𝑡(10, 0.8 , 1.838)

𝑥5 = 10𝑡
𝑦5 = 0.8𝑡
𝑧5 = 1.838𝑡

𝑥5
10

=
𝑦5
0.8

=
𝑧5

1.838

𝑅6 𝒇⃗ 𝟔 = (0,0,0) + 𝑡(10, 2.4 , 1.838)

𝑥6 = 10𝑡
𝑦6 = 2.4𝑡
𝑧6 = 1.838𝑡

𝑥6
10

=
𝑦6
2.4

=
𝑧6

1.838

𝑅7 𝒇⃗ 𝟕 = (0,0,0) + 𝑡(10, 2.4 , 0.613)

𝑥7 = 10𝑡
𝑦7 = 2.4𝑡
𝑧7 = 0.613𝑡

𝑥7
10

=
𝑦7
2.4

=
𝑧7

0.613

𝑅8 𝒇⃗ 𝟖 = (0,0,0)+ 𝑡(10, 2.4 , −0. .613)

𝑥8 = 10𝑡
𝑦8 = 2.4𝑡
𝑧8 = 0.613𝑡

𝑥8
10

=
𝑦8
2.4

=
𝑧8

0.613

* The vector 𝒇⃗ 𝟏 is marked in blue due to this vector being used as a reference in the UAV controller.

For this experiment, five points are taken from the chosen trajectory with a duration

of five seconds between them. Each reference point is reached in 4 s as observed in Figure

9a. The longitudinal movement retains the same behavior as in Experiment 1, while the

lateral movement remains constant as the UAV follows a line forward. In addition, the

altitude is maintained until the final point is reached. Again, the last point stabilizes after

24 s.

(a)

(b)

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 25

(c)

(d)

Figure 9. Results obtained when the vector 𝒇⃗ 𝟏 is used as a reference: (a) motion control; (b) attitude

control; (c) control inputs; (d) 3D simulation.

3.3. Experiment 3

This experiment uses the same methodology as the first by moving objects and taking

a new frame for the TGBOA algorithm, detecting the position, finding collision−free

zones, and generating the optimal trajectory. In Figure 10a, we can see the video frame for

Experiment 3, where the objects are in the regions 𝑅1 and 𝑅8 with the centers marked in

red. Therefore, the collision−free regions are 𝑅2−7 and 𝑅9−13, whose centers are marked

in blue. Following the procedure described in Section 2.3, the possible trajectories for the

UAV are calculated, and each trajectory is represented through a vector, parametric, and

symmetric equation. Such equations are observable in Table 5. The references are obtained

in 28 ms by the TGBOA algorithm. Subsequently, the trajectory 𝒇⃗ 𝟏𝟐 is used as a reference

in the controller (see Figure 10b), and then the numerical results can be seen in Figure 11.

(a) (b)

Figure 10. Third experiment. (a) Frame used in the third experiment: the object is in the regions

𝑅2−7, and 𝑅9−13 identified with a red circle and 𝑅1collision−free regions and are identified 𝑅8with

a blue circle; (b) graphical representation of vector reference 𝒇⃗ 𝟏𝟐.

Figure 9. Results obtained when the vector
→
f 1 is used as a reference: (a) motion control; (b) attitude

control; (c) control inputs; (d) 3D simulation.

For this experiment, five points are taken from the chosen trajectory with a duration of
five seconds between them. Each reference point is reached in 4 s as observed in Figure 9a.
The longitudinal movement retains the same behavior as in Experiment 1, while the lateral
movement remains constant as the UAV follows a line forward. In addition, the altitude is
maintained until the final point is reached. Again, the last point stabilizes after 24 s.

3.3. Experiment 3

This experiment uses the same methodology as the first by moving objects and taking
a new frame for the TGBOA algorithm, detecting the position, finding collision-free zones,
and generating the optimal trajectory. In Figure 10a, we can see the video frame for
Experiment 3, where the objects are in the regions R1 and R8 with the centers marked in
red. Therefore, the collision-free regions are R2–7 and R9–13, whose centers are marked in
blue. Following the procedure described in Section 2.3, the possible trajectories for the
UAV are calculated, and each trajectory is represented through a vector, parametric, and
symmetric equation. Such equations are observable in Table 5. The references are obtained

in 28 ms by the TGBOA algorithm. Subsequently, the trajectory
→
f 12 is used as a reference

in the controller (see Figure 10b), and then the numerical results can be seen in Figure 11.

Mathematics 2023, 11, 1413 19 of 25

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 25

(c)

(d)

Figure 9. Results obtained when the vector 𝒇⃗ 𝟏 is used as a reference: (a) motion control; (b) attitude

control; (c) control inputs; (d) 3D simulation.

3.3. Experiment 3

This experiment uses the same methodology as the first by moving objects and taking

a new frame for the TGBOA algorithm, detecting the position, finding collision−free

zones, and generating the optimal trajectory. In Figure 10a, we can see the video frame for

Experiment 3, where the objects are in the regions 𝑅1 and 𝑅8 with the centers marked in

red. Therefore, the collision−free regions are 𝑅2−7 and 𝑅9−13, whose centers are marked

in blue. Following the procedure described in Section 2.3, the possible trajectories for the

UAV are calculated, and each trajectory is represented through a vector, parametric, and

symmetric equation. Such equations are observable in Table 5. The references are obtained

in 28 ms by the TGBOA algorithm. Subsequently, the trajectory 𝒇⃗ 𝟏𝟐 is used as a reference

in the controller (see Figure 10b), and then the numerical results can be seen in Figure 11.

(a) (b)

Figure 10. Third experiment. (a) Frame used in the third experiment: the object is in the regions

𝑅2−7, and 𝑅9−13 identified with a red circle and 𝑅1collision−free regions and are identified 𝑅8with

a blue circle; (b) graphical representation of vector reference 𝒇⃗ 𝟏𝟐.

Figure 10. Third experiment. (a) Frame used in the third experiment: the object is in the regions R2–7,
and R9–13 identified with a red circle and R1 collision−free regions and are identified R8 with a blue

circle; (b) graphical representation of vector reference
→
f 12.

Table 5. Collision-free trajectories generated by the TGBOA algorithm using the frame shown in
Figure 10a.

Region Vector Equation Parametric
Equations

Symmetric
Equations

Rk

→
f k = (0, 0, 0) +
t(x, yk, zk) (m)

x = xkt
y = ykt
z = zkt

(m)
x
xk

=
y
yk

= z
zk

(m)

R2

→
f 2 = (0, 0, 0) +

t(10,−2.4 , 0.613)
x2 = 10t

y2 = −2.4t
z2 = 0.613t

x2
10 =

y2
−2.4 = z2

0.613

R3

→
f 3 = (0, 0, 0) +

t(10,−2.4 , 1.838)
x3 = 10t

y3 = −2.4t
z3 = 1.838t

x3
10 =

y3
−2.4 = z3

1.838

R4

→
f 4 = (0, 0, 0) +

t(10,−0.8 , 1.838)
x4 = 10t

y4 = −0.8t
z4 = 1.838t

x4
10 =

y4
−0.8 = z4

1.838

R5

→
f 5 = (0, 0, 0) +

t(10, 0.8 , 1.838)
x5 = 10t
y5 = 0.8t

z5 = 1.838t

x5
10 =

y5
0.8 = z5

1.838

R6

→
f 6 = (0, 0, 0) +

t(10, 2.4 , 1.838)
x6 = 10t
y6 = 2.4t

z6 = 1.838t

x6
10 =

y6
2.4 = z6

1.838

R7

→
f 7 = (0, 0, 0) +

t(10, 2.4 , 0.613)
x7 = 10t
y7 = 2.4t

z7 = 0.613t

x7
10 =

y7
2.4 = z7

0.613

R9

→
f 9 = (0, 0, 0) +

t(10 , 2.4,−1.838)
x9 = 10t
y9 = 2.4t

z9 = −1.838t

x9
10 =

y9
2.4 = z9

−1.838

Mathematics 2023, 11, 1413 20 of 25

Table 5. Cont.

Region Vector Equation Parametric
Equations

Symmetric
Equations

R10

→
f 10 = (0, 0, 0) +

t(10, 0.8,−1.838)
x10 = 10t
y10 = 0.8t

z10 = −1.838t

x10
10 =

y10
0.8 = z10

−1.838

R11

→
f 11 = (0, 0, 0) +

t(10,−0.8,−1.838)
x = 10t

y2 = −0.8t
z11 = −1.838t

x11
10 =

y12
−0.8 = z12

−1.838

R12
*
→
f 12 = (0, 0, 0) +

t(10,−2.4,−1.838)
x12 = 10t

y12 = −2.4t
z12 = −1.838

x12
10 =

y12
−2.4 = z12

−1.838

R13

→
f 13 = (0, 0, 0) +

t(10,−2.4,−0.613)
x13 = 10t

y13 = −2.4t
z13 = −0.613t

x13
10 =

y13
−2.4 = z13

−0.613

* The vector
→
f 12 is marked in blue due to this vector being used as a reference in the UAV controller.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 25

(a)

(b)

(c)

(d)

Figure 11. Results obtained by the third experiment when the vector 𝒇⃗ 𝟏𝟐 is used as a reference: (a)

motion control; (b) attitude control; (c) control inputs; (d) 3D simulation.

Figure 11. Results obtained by the third experiment when the vector
→
f 12 is used as a reference:

(a) motion control; (b) attitude control; (c) control inputs; (d) 3D simulation.

Mathematics 2023, 11, 1413 21 of 25

For the last experiment presented in this paper, the trajectory pointing towards zone
number 12 is used, and the simulation controller results are shown in Figure 11, where
the dotted line represents the reference, and the line represents the numerical results. It
is observed that the PI-like controller is stable since it reaches each point of the trajectory
in approximately 4 s and it is maintained until the next point, reaching the center of the
collision-free zone in 25 s.

3.4. Object Avoidance

With the results obtained in the three experiments (Section 3.1–Section 3.3), the behav-
ior graph of object avoidance is shown in Figure 12.

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 25

3.4. Object Avoidance

With the results obtained in the three experiments (Sections 3.1–3.3), the behavior

graph of object avoidance is shown in Figure 12.

Figure 12. Trajectory generated by TGBOA algorithm results of three experiments and their use in

the PI−like controller.

Analyzing Figure 12 reveals the UAV travels in an initial charged trajectory in the

controller, until an object is detected with the vision sensing system using the TGBOA

algorithm to create the new trajectory. Then, the new trajectory is added to the PI−like

controller. Note that the new trajectory 𝒇⃗ 𝟕 (Experiment 1) evades the object located dur-

ing the flight, as observed in Figure 6. This new trajectory 𝒇⃗ 𝟕 is followed until the visual

sensing systems detect other objects in the UAV trajectory, and as a consequence, the

TGBOA algorithm creates a new trajectory again 𝒇⃗ 𝟏(Experiment 2), and then is added to

the PI−like controller, updating the UAV with the new objects in the scenario. The 𝒇⃗ 𝟏

makes the drone to evade in accordance with the new values added to the algorithm. No-

tice that the UAV follows the 𝒇⃗ 𝟏 until the vision sensing system detects objects in the

scenario, and then it is necessary to create a new trajectory with the TGBOA algorithm; in

this case, the trajectory vector 𝒇⃗ 𝟏𝟐 (Experiment 3) is created. Please refer to Figure 11 and

Table 5. As in the other cases, 𝒇⃗ 𝟏𝟐 allows the drone to evade objects thanks to a change in

the direction or trajectory.

Therefore, considering the results shown in Figure 12, the TGBOA algorithm creates

new trajectories in real−time using the evading of objects. These are detected with the vis-

ual sensing system. The trajectory vectors are then added to the controller, and with this

new information the drone moves to a new position.

4. Discussion

In this work, a vision system was applied for object detection to generate real−time

trajectories for drones and was probed as references in a newly designed PI−like control-

ler. A new algorithm called trajectory generation based on object avoidance (TGBOA) was

reported. In the TGBOA algorithm, the trajectories were created based on object evasion

and using the drone position and the central coordinates of collision−free regions. Its

mathematical representation was calculated and shown on vectors, parametric, and sym-

metric equations. In each experiment, one vector was selected and used as a reference in

the PI−like controller (see Section 2.4) by a simulation software. The numerical results

Figure 12. Trajectory generated by TGBOA algorithm results of three experiments and their use in
the PI-like controller.

Analyzing Figure 12 reveals the UAV travels in an initial charged trajectory in the
controller, until an object is detected with the vision sensing system using the TGBOA
algorithm to create the new trajectory. Then, the new trajectory is added to the PI-like

controller. Note that the new trajectory
→
f 7 (Experiment 1) evades the object located during

the flight, as observed in Figure 6. This new trajectory
→
f 7 is followed until the visual

sensing systems detect other objects in the UAV trajectory, and as a consequence, the

TGBOA algorithm creates a new trajectory again
→
f 1(Experiment 2), and then is added to

the PI-like controller, updating the UAV with the new objects in the scenario. The
→
f 1 makes

the drone to evade in accordance with the new values added to the algorithm. Notice that

the UAV follows the
→
f 1 until the vision sensing system detects objects in the scenario, and

then it is necessary to create a new trajectory with the TGBOA algorithm; in this case, the

trajectory vector
→
f 12 (Experiment 3) is created. Please refer to Figure 11 and Table 5. As in

the other cases,
→
f 12 allows the drone to evade objects thanks to a change in the direction or

trajectory.
Therefore, considering the results shown in Figure 12, the TGBOA algorithm creates

new trajectories in real-time using the evading of objects. These are detected with the visual
sensing system. The trajectory vectors are then added to the controller, and with this new
information the drone moves to a new position.

4. Discussion

In this work, a vision system was applied for object detection to generate real-time
trajectories for drones and was probed as references in a newly designed PI-like controller.

Mathematics 2023, 11, 1413 22 of 25

A new algorithm called trajectory generation based on object avoidance (TGBOA) was
reported. In the TGBOA algorithm, the trajectories were created based on object evasion
and using the drone position and the central coordinates of collision-free regions. Its math-
ematical representation was calculated and shown on vectors, parametric, and symmetric
equations. In each experiment, one vector was selected and used as a reference in the
PI-like controller (see Section 2.4) by a simulation software. The numerical results obtained
verify the operation of our proposal since the drone always reached the reference generated
by the TGBOA algorithm. Based on the results, the following points can be highlighted:

1. The new trajectory generation based on object avoidance (TGBOA) algorithm is
proposed to generate real-time trajectories for drones. The TGBOA algorithm is based
on evading detected objects using a vision sensing system.

2. The TGBOA algorithm is experimentally checked since the trajectory vectors were
generated from a video analysis. Then, they are applied as references in the designated
PI-like controller.

3. Our new proposal generates new trajectories in real-time for drone controllers, taking into
consideration changing scenarios because of its movement or random natural scenarios.

4. The TGBOA algorithm is more efficient in the creation of new drones’ trajectories.
5. The TGBOA algorithm is easy to implement because it is based on the detection of

objects in a changing scenario, and it is not based on the optic flow concept [35].
As a consequence, the number of computational operations and the mathematical
complexity are reduced.

6. With the objects evading model from the TGBOA algorithm, the drone can be more
autonomous when it travels from an initial point fA to a final point fB, even though
this is a changing scenario.

7. The TGBOA algorithm can be implemented in specialized development boards.

However, due to the applied software, the data transmission, and the controller, time
limitations take place in the execution such as:

1. For each frame, the TGBOA algorithm creates a new trajectory in 30 ms.
2. Including the transmission time between the UAV and the workstation, the total time

to produce and update a trajectory is up to 390 ms, due to the delay in the Wi-Fi
network. Then, the data transmission time is 360 ms.

3. Experimentally, the execution time is long since the drone’s controller requires up to
25 s to reach the center of the chosen free-collision zone.

4. The total execution time is experimentally 25.360 s.
5. MATLAB 2022a is used due to its compatibility with other platforms and its wide

variety of tools and different uses in the industry, allowing the use of the algorithm in
future projects.

Comparing our trajectory generation proposal (TGBOA algorithm) with those reported
in the references, the TGBOA algorithm is functional for random and dynamic scenarios,
is based on object evasion, operates in real-time, and can work online. However, in the
reported techniques, the surrounding environment cannot change, the controller references
must be preloaded, and the trajectory works offline. Based on the above, the TGBOA
algorithm offers advantages compared to the previously described techniques, due to how
it operates in changing and random situations.

Comparing the TGBOA algorithm with the proposals reported in the references [7,19,24,25],
the TGBOA algorithm reduces complexity because our work is based on the detection of
moving objects, while the indicated references are based on the calculation of optical flow,
which is calculated through the frequency components of the image or optimization algo-
rithms. Table 6 shows the comparison between the TGBOA algorithm and the references
where the trajectory of the drone is determined by applying the optical flow technique.

Mathematics 2023, 11, 1413 23 of 25

Table 6. Comparison between related work and TGBOA algorithm.

Relevant Aspect Our Proposal

[19]

High image sampling and position
control signal rate. Expensive hardware

and requires prior knowledge or
estimation of the objects in its spatial

environment.

Only needs a vision sensor, and
online trajectory references are

generated and updated in real-time.

[23]

Large amount of computational resources
used for CNN. Three vision sensors

needed. High performance boards used
to improve the performance.

Improves efficiency by focusing the
algorithm on object detection and

drone position, thus reducing
computational complexity.

[24]
Updating environment requires a lot of
time and computer resources. Dynamic

scenarios are not considered.

Focuses on the position of moving
objects and dynamic scenarios

without relying on full scenario or
feature extraction.

[25]

The optical flow constructed from the
image sequence makes it difficult to

achieve the real-time performance on the
low-cost hardware. The presence of
moving obstacles is not considered.

Easy to implement because it is based
on the detection of objects in a

changing scenario and not based on
the optic flow concept with Fourier

transform [38].

Based on Tables 3–5 and Figures 5–12, the TGBOA algorithm works correctly in
the generation of trajectories in real-time only if the vision system is correctly applied
in the evasion of objects. However, the runtime is high due to the software used in
our experiments. Therefore, our future work has the following directions: the first is to
reduce the execution time using electronic development cards, the second is to improve the
transmission data rate, and the third is to apply the TGBOA algorithm when the UAV will
move through random and changing scenarios.

5. Conclusions

The new algorithm called trajectory generation based on object avoidance (TGBOA)
is capable of flight planning in real-time from object detection by a vision sensor and
with low computational resources by processing a video transmitted from a UAV to a
workstation. The algorithm can generate collision-free trajectories that can be used as a
reference in the UAV controller to avoid objects during the flight. However, the optimal
trajectory will depend on the detected objects, UAV positions, and the endpoint. Thirteen
regions were defined in the image for the video analysis. This number can be increased
to have more trajectories generated in different directions; however, as a consequence,
the execution time increases due to the number of computational operations required.
This problem can be solved by programming the TGBOA algorithm on electronic cards
with greater computational power and using different platforms dedicated to robotic
systems. A PI-like controller was developed for a quadcopter position and yaw control.
The dynamics of the UAV have been divided into four subsystems with a control input and
an output variable each. Using the references obtained from the TGBOA algorithm, the
flight controller led to satisfactory results in the experiments, due to where the objects were
located and evaded in different areas and choosing the appropriate trajectory for each case.
The numerical simulations of the proposed controllers have been implemented using the
mathematical software MATLAB 2022a, and the results show a good performance of the
proposed control law, reaching the proposed references in 4 s. Future work will concern the
implementation of the algorithm and different controllers using other simulation platforms
and development boards.

Author Contributions: Conceptualization, J.T.G.B., C.A.L., S.D.G. and G.G.-T.; methodology, J.T.G.B.,
C.A.L. and S.D.G.; software, L.F.M.M.; validation, L.F.M.M., C.A.L. and J.T.G.B.; formal analysis,
J.T.G.B. and C.A.L.; investigation, L.F.M.M. and J.T.G.B.; resources, J.T.G.B. and C.A.L.; data cura-
tion, L.F.M.M.; writing—original draft preparation, L.F.M.M.; writing—review and editing, J.T.G.B.,

Mathematics 2023, 11, 1413 24 of 25

C.A.L., S.D.G. and G.G.-T.; methodology, J.T.G.B., C.A.L., S.D.G. and G.G.-T.; visualization, L.F.M.M.;
supervision, G.G.-T., J.T.G.B. and C.A.L.; project administration, J.T.G.B. and C.A.L.; funding acqui-
sition, L.F.M.M., J.T.G.B. and C.A.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Mexico’s National Council of Science and Technology (CONA-
CyT) and the University of Guadalajara for the support granted. Luis Felipe Muñoz Mendoza also
thanks CONACyT for the scholarship.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alzahrani, B.; Oubbati, O.S.; Barnawi, A.; Atiquzzaman, M.; Alghazzawi, D. UAV assistance paradigm: State-of-the-art in

applications and challenges. J. Netw. Comput. Appl. 2020, 166, 102706. [CrossRef]
2. Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349.

[CrossRef]
3. Woo, J.W.; An, J.-Y.; Cho, M.G.; Kim, C.-J. Integration of path planning, trajectory generation and trajectory tracking control for

aircraft mission autonomy. Aerosp. Sci. Technol. 2021, 118, 107014. [CrossRef]
4. Ahmed, F.; Jenihhin, M. A Survey on UAV Computing Platforms: A Hardware Reliability Perspective. Sensors 2022, 22, 6286.

[CrossRef]
5. Ahmed, F.; Mohanta, J.C.; Keshari, A.; Yadav, P.S. Recent Advances in Unmanned Aerial Vehicles: A Review. Arab. J. Sci. Eng.

2022, 47, 7963–7984. [CrossRef] [PubMed]
6. Gupta, A.; Fernando, X. Simultaneous Localization and Mapping (SLAM) and Data Fusion in Unmanned Aerial Vehicles: Recent

Advances and Challenges. Drones 2022, 6, 85. [CrossRef]
7. Chen, Y.; Yu, J.; Mei, Y.; Zhang, S.; Ai, X.; Jia, Z. Trajectory optimization of multiple quad-rotor UAVs in collaborative assembling

task. Chin. J. Aeronaut. 2016, 29, 184–201. [CrossRef]
8. Li, L.; Sun, L.; Jin, J. Survey of advances in control algorithms of quadrotor unmanned aerial vehicle. In Proceedings of the 2015

IEEE 16th International Conference on Communication Technology (ICCT), Hangzhou, China, 18–21 August 2015; pp. 107–111.
[CrossRef]

9. Li, Y.; Song, S. A survey of control algorithms for Quadrotor Unmanned Helicopter. In Proceedings of the 2012 IEEE Fifth
International Conference on Advanced Computational Intelligence (ICACI), Nanjing, China, 18–20 October 2012; pp. 365–369.
[CrossRef]

10. Antonio-Toledo, M.E.; Sanchez, E.N.; Alanis, A.Y. Neural Inverse Optimal Control Applied to Quadrotor UAV. In Proceedings of
the 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Guadalajara, Mexico, 7–9 November 2018;
pp. 1–8. [CrossRef]

11. Guillén-Bonilla, J.T.; García, C.C.V.; Di Gennaro, S.; Morales, M.E.S.; Lúa, C.A. Vision-Based Nonlinear Control of Quadrotors
Using the Photogrammetric Technique. Math. Probl. Eng. 2020, 2020, 5146291. [CrossRef]

12. Rahman, Y.A.A.; Hajibeigy, M.T.; Al-Obaidi, A.S.M.; Cheah, K.H. Design and Fabrication of Small Vertical-Take-Off-Landing
Unmanned Aerial Vehicle. MATEC Web Conf. 2018, 152, 02023. [CrossRef]

13. Gupta, N.; Chauhan, R.; Chadha, S. Unmanned Aerial Vehicle (UAV) for Parcel Delivery. Int. J. Eng. Res. Technol. 2020, 13,
2824–2830. [CrossRef]

14. Yang, H.; Lee, Y.; Jeon, S.; Lee, D. Multi-rotor drone tutorial: Systems, mechanics, control and state estimation. Intell. Serv. Robot.
2017, 10, 79–93. [CrossRef]

15. Eslamiat, H.; Li, Y.; Wang, N.; Sanyal, A.K.; Qiu, Q. Autonomous Waypoint Planning, Optimal Trajectory Generation and
Nonlinear Tracking Control for Multi-rotor UAVs. In Proceedings of the 2019 18th European Control Conference (ECC), Naples,
Italy, 25–28 June 2019. [CrossRef]

16. Shiller, Z. Off-Line and On-Line Trajectory Planning. In Motion and Operation Planning of Robotic Systems. Mechanisms and Machine
Science; Springer: Cham, Switzerland, 2015; Volume 29, pp. 29–62.

17. Muñoz, J.; López, B.; Quevedo, F.; Monje, C.A.; Garrido, S.; Moreno, L.E. Multi UAV Coverage Path Planning in Urban
Environments. Sensors 2021, 21, 7365. [CrossRef]

18. Youn, W.; Ko, H.; Choi, H.S.; Choi, I.H.; Baek, J.-H.; Myung, H. Collision-free Autonomous Navigation of A Small UAV Using
Low-cost Sensors in GPS-denied Environments. Int. J. Control Autom. Syst. 2021, 19, 953–968. [CrossRef]

19. Chuang, H.-M.; He, D.; Namiki, A. Autonomous Target Tracking of UAV Using High-Speed Visual Feedback. Appl. Sci. 2019,
9, 4552. [CrossRef]

20. Causa, F.; Fasano, G. Multiple UAVs trajectory generation and waypoint assignment in urban environment based on DOP maps.
Aerosp. Sci. Technol. 2021, 110, 106507. [CrossRef]

http://doi.org/10.1016/j.jnca.2020.102706
http://doi.org/10.3390/info10110349
http://doi.org/10.1016/j.ast.2021.107014
http://doi.org/10.3390/s22166286
http://doi.org/10.1007/s13369-022-06738-0
http://www.ncbi.nlm.nih.gov/pubmed/35492958
http://doi.org/10.3390/drones6040085
http://doi.org/10.1016/j.cja.2015.12.008
http://doi.org/10.1109/icct.2015.7399803
http://doi.org/10.1109/icaci.2012.6463187
http://doi.org/10.1109/la-cci.2018.8625204
http://doi.org/10.1155/2020/5146291
http://doi.org/10.1051/matecconf/201815202023
http://doi.org/10.37624/IJERT/13.10.2020.2824-2830
http://doi.org/10.1007/s11370-017-0224-y
http://doi.org/10.23919/ecc.2019.8795855
http://doi.org/10.3390/s21217365
http://doi.org/10.1007/s12555-019-0797-7
http://doi.org/10.3390/app9214552
http://doi.org/10.1016/j.ast.2021.106507

Mathematics 2023, 11, 1413 25 of 25

21. Farid, G.; Mo, H.; Zahoor, M.I.; Liwei, Q. Computationally efficient algorithm to generate a waypoints-based trajectory for a
quadrotor UAV. In Proceedings of the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018;
pp. 4414–4419. [CrossRef]

22. Shirzadeh, M.; Asl, H.J.; Amirkhani, A.; Jalali, A.A. Vision-based control of a quadrotor utilizing artificial neural networks for
tracking of moving targets. Eng. Appl. Artif. Intell. 2017, 58, 34–48. [CrossRef]

23. Zhilenkov, A.A.; Epifantsev, I.R. The use of convolution artificial neural networks for drones autonomous trajectory planning. In
Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),
Moscow, Russia, 29 January–1 February 2018; pp. 1044–1047. [CrossRef]

24. Alzugaray, I.; Teixeira, L.; Chli, M. Short-term UAV path-planning with monocular-inertial SLAM in the loop. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA 2017), Singapore, 29 May–3 June 2017; pp. 2739–2746.
[CrossRef]

25. Lin, H.-Y.; Peng, X.-Z. Autonomous Quadrotor Navigation with Vision Based Obstacle Avoidance and Path Planning. IEEE Access
2021, 9, 102450–102459. [CrossRef]

26. Mo, H.; Farid, G. Nonlinear and Adaptive Intelligent Control Techniques for Quadrotor UAV–A Survey. Asian J. Control. 2018, 21,
989–1008. [CrossRef]

27. Leon, J.A.R.; Lua, C.A.; Morales, M.E.S.; Di Gennaro, S.; Guzman, A.N. Altitude and attitude non linear controller applied to a
quadrotor with a slung load. In Proceedings of the IEEE International Autumn Meeting on Power, Electronics and Computing
(ROPEC), Ixtapa, Mexico, 13–15 November 2019; pp. 1–6. [CrossRef]

28. Raiesdana, S. Control of quadrotor trajectory tracking with sliding mode control optimized by neural networks. Proc. Inst. Mech.
Eng. Part I: J. Syst. Control. Eng. 2020, 234, 1101–1119. [CrossRef]

29. Wu, W.; Jin, X.; Tang, Y. Vision-based trajectory tracking control of quadrotors using super twisting sliding mode control.
Cyber-Phys. Syst. 2020, 6, 207–230. [CrossRef]

30. Shankaran, V.P.; Azid, S.I.; Mehta, U.; Fagiolini, A. Improved Performance in Quadrotor Trajectory Tracking Using MIMO PIλ-D
Control. IEEE Access 2022, 10, 110646–110660. [CrossRef]

31. Kumar, R.; Bhargavapuri, M.; Deshpande, A.M.; Sridhar, S.; Cohen, K.; Kumar, M. Quaternion Feedback Based Autonomous
Control of a Quadcopter UAV with Thrust Vectoring Rotors. In Proceedings of the American Control Conference (ACC), Denver,
CO, USA, 1–3 July 2020. [CrossRef]

32. Benhadhria, S.; Mansouri, M.; Benkhlifa, A.; Gharbi, I.; Jlili, N. VAGADRONE: Intelligent and Fully Automatic Drone Based on
Raspberry Pi and Android. Appl. Sci. 2021, 11, 3153. [CrossRef]

33. Xing, H.; Zhu, L.; Chen, B.; Liu, C.; Niu, J.; Li, X.; Feng, Y.; Fang, W. A comparative study of threshold selection methods for
change detection from very high-resolution remote sensing images. Earth Sci. Informatics 2022, 15, 369–381. [CrossRef]

34. Hughes, P.C. Spacecraft Attitude Dynamics; Dover Publications, Inc.: Mineola, NY, USA, 1986.
35. Nagaty, A.; Saeedi, S.; Thibault, C.; Seto, M.; Li, H. Control and Navigation Framework for Quadrotor Helicopters. J. Intell. Robot.

Syst. 2012, 70, 1–12. [CrossRef]
36. Tayebi, A.; McGilvray, S. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control. Syst. Technol. 2006, 14, 562–571.

[CrossRef]
37. Guzman, A.N.; Di Gennaro, S.; Dominguez, J.R.; Lua, C.A.; Loukianov, A.G.; Castillo-Toledo, B. Enhanced Discrete-Time

Modeling via Variational Integrators and Digital Controller Design for Ground Vehicles. IEEE Trans. Ind. Electron. 2016, 63,
6375–6385. [CrossRef]

38. Cheng, H.-W.; Chen, T.-L.; Tien, C.-H. Motion Estimation by Hybrid Optical Flow Technology for UAV Landing in an Unvisited
Area. Sensors 2019, 19, 1380. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ccdc.2018.8407894
http://doi.org/10.1016/j.engappai.2016.10.016
http://doi.org/10.1109/eiconrus.2018.8317268
http://doi.org/10.1109/icra.2017.7989319
http://doi.org/10.1109/ACCESS.2021.3097945
http://doi.org/10.1002/asjc.1758
http://doi.org/10.1109/ropec48299.2019.9057082
http://doi.org/10.1177/0959651820932716
http://doi.org/10.1080/23335777.2020.1727960
http://doi.org/10.1109/ACCESS.2022.3214810
http://doi.org/10.23919/acc45564.2020.9147794
http://doi.org/10.3390/app11073153
http://doi.org/10.1007/s12145-021-00734-y
http://doi.org/10.1007/s10846-012-9789-z
http://doi.org/10.1109/TCST.2006.872519
http://doi.org/10.1109/TIE.2016.2578841
http://doi.org/10.3390/s19061380

	Introduction
	Materials and Methods
	Materials
	Object Detection and Assignation of Collision-Free Zones
	Trajectory Generation
	Controller Design
	Mathematical Model
	Altitude Control
	Longitudinal Motion Control
	Lateral Movement Control
	Yaw Motion Control

	Results
	Experiment 1
	Experiment 2
	Experiment 3
	Object Avoidance

	Discussion
	Conclusions
	References

