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Abstract: In this paper, we deduce a predator–prey model with discrete time in the interior of R2
+

using a new discrete method to study its local dynamics and Neimark–Sacker bifurcation. Compared
with continuous models, discrete ones have many unique properties that help to understand the
changing patterns of biological populations from a completely new perspective. The existence and
stability of the three equilibria are analyzed, and the formation conditions of Neimark–Sacker bifurca-
tion around the unique positive equilibrium point are established using the center manifold theorem
and bifurcation theory. An attracting closed invariant curve appears, which corresponds to the
periodic oscillations between predators and prey over a long period of time. Finally, some numerical
simulations and their biological meanings are given to reveal the complex dynamical behavior.
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1. Introduction

Theoretical ecology aims to give reasonable explanations for the interactions among
biological populations in nature with the help of dynamical models to predict the distribu-
tion and population structure of communities. Since the pioneers Lotka [1] and Volterra [2]
constructed the famous Lotka–Volterra ecosystem model [3], the use of mathematical
models to explain complex ecological properties has been common in biology (see [4–8]).
Among them, predator–prey systems, which can explain predation relationships, have
been intensively studied and made great progress in the 1980s [9,10].

Brauer, F. and Sanchez, D. A. studied a predator–prey system with constant harvest and
storage rates. They found novel dynamical properties, such as the stability of equilibrium
points and existence of limit loops [11]. There are many predator–prey systems related
to the Allee effect and fear effect [12–14]. These articles not only give the stability of the
equilibrium point and bifurcation categories but, more importantly, describe the influence
of the Allee effect and fear effect on the final density of the population. In addition,
the dynamic predation behavior of predators in ecosystems strongly depends on functional
responses.

One of the most common functional responses in predator–prey systems is the well-
known Holling type-II response. Kuznetsov, Y.A. studied a food chain model composed of
logistic prey and Holling type II predators and superpredators and gave several types of
bifurcations with their chaotic behaviors [15]. Aziz-Alaoui, MA. and Okiye, MD. presented
a two-dimensional predator–prey food chain continuous model with a Holling type-II
response. They concluded with global stability of the coexisting interior equilibrium using
a Lyapunov function [16].

In natural predator–prey interactions, failure to protect prey is likely to cause their
extinction, which is detrimental to biodiversity. Chen, LD., Chen, LJ., Xie, XD. proposed a
Leslie–Gower predator–prey model incorporating a prey refuge, where the analysis showed
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that increasing the amount of refuge increased prey densities [17]. Therefore, models that
consider prey refuges can more accurately respond to interspecific relationships in nature
than can general models.

In the ecological community, many populations do not vary in numbers continuously.
Therefore, it is particularly important to study discrete models. A discrete model has
multiple periodic bifurcations, chaotic properties and generate periodic orbits, while a
continuous one produces only simple S-shaped curves [18,19]. Normally, the discretization
method given by Euler is used in most studies [20,21]. Since the accuracy of the Euler
method is determined by the step size, it has low accuracy and stability. However, the semi-
discrete method can achieve higher accuracy and stability with suitable choices of schemes.

In this paper, we modify a continuous predator–prey model with the prey refuge
effect using a semi-discrete method in Section 2. In Section 3, we determine the existence
and stability of three equilibria and focus on the local dynamics about the unique positive
equilibrium point. In Section 4, we study Neimark–Sacker bifurcation when bifurcation
parameter γ varies in a small neighborhood of the positive equilibrium point. In Section 5,
some numerical simulations for Neimark–Sacker bifurcation are given by phase diagrams
to verify our results. Finally, our conclusions and biological meanings are given in Section 6.

2. Preliminaries and Notation

Ghosh J., Sahoo B. and Poria S. constructed a predator–prey model with a logical
growth rate and prey refuge in the presence of additional food for predator based on the
Holling type-II functional response, which is given as follows [22]. dN

dT = rN
(

1− N
K

)
− c′(1−c)e1 NP

a+h2e2 A+h1e1 N
dP
dT = b((1−c)e1 N+e2 A)P

a+h2e2 A+h1e1 N −mP

where F(N) =
c′(1−c)e1 N

a+h2e2 A+h1e1 N is the functional response in the presence of prey refuge c and
additional food for predator A. N and P indicate the biomass of the prey and predator,
respectively. e1 and h1 represent the ability of the predator to detect prey and the handling
time of the predator per prey item, respectively. e2 and h2 denote the ability to detect
additional food and the handling time of additional food biomass, respectively. r and K,
respectively, represent the intrinsic growth rate and environmental carrying capacity of the
prey.

To simplify the parameters, we denote x = e1h1
a N, y = c′e1

ar P, α = h2
h1

, ξ = e2h1 A
a ,

β = b
h1r , δ = m

r , and t = rT. Subsequently, the simplified model is given by [22]: dx
dt = x

(
1− x

γ

)
− (1−c)xy

1+αξ+x
dy
dt = β((1−c)x+ξ)y

1+αξ+x − δy
(1)

Based on the model (1) already constructed by Ghosh J., Sahoo B. and Poria S. and
the significant work given by Gladkov, S.O. who demonstrated a method for obtaining
any dynamic equations describing various biological systems, including considering the
heterogeneous distribution of populations [23], we used the semi-discrete method [24,25]
for model (1) modification.

We divide the continuous time t into small parts (i.e., t ∈ [n , n + 1) , n ∈ N+) and
integrate over the unit time period.∫ n+1

n

1
x(t)

dx(t) =
∫ n+1

n

[
x(t)

(
1− x(t)

γ

)
− (1− c)x(t)y(t)

1 + αξ + x(t)

]
dt

ln xn+1 − ln xn = xn

(
1− xn

γ

)
− (1− c)xnyn

1 + αξ + xn
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Using the same discrete method in the second equation, we obtained the following
discrete-time system:  xn+1 = xne1− xn

γ −
(1−c)yn

1+αξ+xn

yn+1 = yne
β(1−c)xn+ξ

1+αξ+xn −δ
(2)

3. Existence and Stability of Equilibria

Initially, the existence and stability of the equilibrium points of system (2) are analyzed.
By calculating system (2), clearly, trivial and boundary equilibria E1 = (0, 0), E2 = (γ, 0) are
obtained. In the following research, we focus on studying the local dynamics around the unique
positive equilibrium point E3 = (x∗, y∗) =

(
δ+(αδ−β)ξ
β(1−c)−δ

,
(

1+αξ+x∗
1−c

)(
1− x∗

γ

) )
.

The Jacobi matrix of the linear system of (2) at any equilibrium point (x, y) can be
obtained as

J(x, y) =


(

1 + x
(
− 1

γ + (1−c)y
(1+αξ+x)2

))
e
(

1− x
γ−

(1−c)y
1+αξ+x

)
− (1−c)x

1+αξ+x e
(

1− x
γ−

(1−c)y
1+αξ+x

)
((1−c)(1+αξ)−ξ)βy

(1+αξ+x)2 e
(
((1−c)x+ξ)β

1+αξ+x −δ
)

e
(
((1−c)x+ξ)β

1+αξ+x −δ
)


Now, we give some dynamical properties about three equilibria.

Theorem 1. The following results hold for system (2):

(i) The trivial equilibrium E1 is a saddle point if and only if βξ
1+αξ < δ, and it is a source if and

only if βξ
1+αξ > δ.

(ii) The boundary equilibrium E2 is a sink if and only if β((1−c)γ+ξ)
1+αξ+γ < δ, it is a saddle point

if and only if β((1−c)γ+ξ)
1+αξ+γ > δ, and transcritical bifurcation occurs at E2 if and only if

β((1−c)γ+ξ)
1+αξ+γ = δ.

Proof. (i) First, the Jacobian matrix of (2) at point E1 = (0, 0) is given by:

J(E1) =

(
e 0

0 e
βξ

1+αξ−δ

)

Then, eigenvalues of J(E1) are λ1 = e > 1 and λ2 = e
βξ

1+αξ−δ. Therefore, E1 is a saddle
point if and only if βξ

1+αξ < δ, and it is a source if and only if βξ
1+αξ > δ.

(ii) Secondly, the Jacobian matrix of (2) at point E2 = (γ, 0) is given by:

J(E2) =

 0 − (1−c)γ
1+αξ+γ

0 e
β((1−c)γ+ξ)

1+αξ+γ −δ


Then, eigenvalues of E2 = (γ, 0) are λ1 = 0 < 1 and λ2 = e

β((1−c)γ+ξ)
1+αξ+γ −δ. Therefore, E2

is a sink if and only if β((1−c)γ+ξ)
1+αξ+γ < δ, it is a saddle point if and only if β((1−c)γ+ξ)

1+αξ+γ > δ,

and transcritical bifurcation occurs at E2 if and only if β((1−c)γ+ξ)
1+αξ+γ = δ.

Next, we study the dynamics of system (2) at its unique positive internal equilibrium
point E3 = (x∗, y∗) =

(
δ+(αδ−β)ξ
β(1−c)−δ

,
(

1+αξ+x∗
1−c

)(
1− x∗

γ

) )
.

Theorem 2. The following results hold for system (2):
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(i) The positive equilibrium E3 is a sink if
4 + 2x∗

γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 > 0

c < 1− ξ
1+αξ

x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 < 0

(ii) The positive equilibrium E3 is a saddle point if c < 1− ξ
1+αξ

4 + 2x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 < 0

(iii) The positive equilibrium E3 is a source if
4 + 2x∗

γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 > 0

c < 1− ξ
1+αξ

x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 > 0

(iv) Transcritical bifurcation occurs at E3 if c = 1− ξ
1+αξ

−2 < x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
< 0

(v) Flip bifurcation occurs at E3 if 4 + 2x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 = 0

−4 < x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
< −2

(vi) Neimark–Sacker bifurcation occurs at E3 if
x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 = 0

−4 < x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
< 0

Proof. The Jacobian matrix J(x∗, y∗) of system (2) is given by:

J(x∗, y∗) =

 x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ 1 − (1−c)x∗

1+αξ+x∗
((1−c)(1+αξ)−ξ)βy∗

(1+αξ+x∗)2 1


The characteristic polynomial of J(x∗, y∗) is given by:

P(λ) = λ2 −
(

2 +
x∗

γ

(
γ− x∗

1 + αξ + x∗
− 1
))

λ +
x∗

γ

(
γ− x∗

1 + αξ + x∗
− 1
)
+

β(1− c)((1− c)(1 + αξ)− ξ)x∗y∗

(1 + αξ + x∗)3 + 1

Then, eigenvalues of J(x∗, y∗) are

λ1 =
1 + M +

√
(1−M)2 + 4BC

2
, λ2 =

1 + M−
√
(1−M)2 + 4BC

2
,

where M = 1 + x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)

and BC = − β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 .
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(i) E3 is a sink with the eigenvalues |λ1| < 1 and |λ2| < 1, which is equivalent to BC < 0,
2M− BC + 2 > 0, and 1−M + BC > 0.

(ii) E3 is a saddle point with the eigenvalues |λ1| < 1 and |λ2| > 1 (|λ1| > 1 and |λ2| < 1),
which is equivalent to BC < 0 and 2M− BC + 2 < 0.

(iii) E3 is a source with the eigenvalues |λ1| > 1 and |λ2| > 1, which is equivalent to
2M− BC + 2 > 0, BC < 0, and 1−M + BC < 0.

(iv) Transcritical bifurcation occurs with the eigenvalues λ1 = 1, |λ2| < 1 or λ2 = 1,
|λ1| < 1, which is equivalent to BC = 0 and |M| < 1.

(v) Flip bifurcation occurs with the eigenvalues λ1 = −1, |λ2| < 1 or λ2 = −1, |λ1| < 1,
which is equivalent to 2M− BC + 2 = 0 and |M + 2| < 1.

(vi) Neimark–Sacker bifurcation occurs with the eigenvalues λ1λ2 = 1 and |λ1 + λ2| < 2,
which is equivalent to M− BC = 1 and |M + 1| < 2.

In practical biological applications, we can artificially control whether the system ends
up being stable or unstable based on inequalities of the variables given in Theorems 1 and 2,
which means that the biomass of predators and prey can be regulated. Therefore, this is
significant for predicting future biomass trends of populations and for taking conservation
measures in advance for endangered species to maintain biodiversity.

4. Neimark–Sacker Bifurcation at (x0, y0)

Bifurcation is a phenomenon in nonlinear dynamical systems where a small pertur-
bation of a parameter can cause a sudden qualitative change in its dynamic behavior.
From bifurcations, several consequences can be obtained, such as the emergence of periodic
probits and limit cycles. In this section, we study the Neimark–Sacker bifurcation at (x0, y0).

To simplify the system for ease of study, we assume that the parameter A = 0, which
means that zero additional food biomass and only the influence of prey refuge c on the
model is considered. Then, system (2) turns into system (3): xn+1 = xne1− xn

γ −
(1−c)yn

1+αξ+xn

yn+1 = yne
β(1−c)xn+ξ

1+αξ+xn −δ
(3)

Its positive equilibrium (x∗, y∗) turns into (x0, y0) =
(

δ
β(1−c)−δ

, 1+x0
1−c

(
1− x0

γ

))
.

In this section, we discuss how system (3) undergoes Neimark–Sacker bifurcation
around its positive equilibrium (x0, y0) when γ is chosen as a bifurcation parameter.
The necessary conditions for Neimark–Sacker bifurcation to occur are given by the follow-
ing curve:

S =

{
(c, β, δ) ∈ R3

+ : γ = γ∗ =
δ + β(1− c) + δ(β(1− c)− δ)

(β(1− c)− δ)2 + (β(1− c)− δ)
, |D| < 2

}
(4)

where

D =
x∗

γ

(
γ− x∗

1 + x∗
− 1
)
+ 2.

4.1. Existence Condition of Neimark–Sacker Bifurcation at (x0, y0)

The Jacobian matrix J(x0, y0) of system (3) is given by:

J(x0, y0) =

(1 + δ
β(1−c)

)(
1− δ

γ(β(1−c)−δ)

)
− δ

β
γ(β(1−c)−δ)

γ(1−c) 1


The characteristic polynomial of J(x0, y0) is given by:
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Q(λ) = λ2 −
((

1+
δ

β(1− c)

)(
1− δ

γ(β(1− c)− δ)

)
+1
)

λ +

(
1+

δ

β(1− c)

)(
1− δ

γ(β(1− c)− δ)

)
− δ(γ(β(1− c)− δ)− δ)

βγ(c− 1)

For the emergence of Neimark–Sacker bifurcation around positive equilibrium (x0, y0)
of system (3), two roots of Q(λ) must be complex conjugates with a unit modulus. Therefore,
it is easy to obtain the bifurcation parameter γ∗ = δ+β(1−c)+δ(β(1−c)−δ)

(β(1−c)−δ)2+(β(1−c)−δ)
.

Consider parameter γ with a small perturbation ε, i.e., γ = γ∗ + ε, where |ε|�1 and
γ∗ = δ+β(1−c)+δ(β(1−c)−δ)

(β(1−c)−δ)2+(β(1−c)−δ)
, then system (3) becomes

 xn+1 = xne1− xn
γ∗+ε

− (1−c)yn
1+xn

yn+1 = yne
β(1−c)xn

1+xn −δ
(5)

The characteristic equation of J
(

δ
β(1−c)−δ

, 1+x0
1−c

(
1− x0

γ∗+ε

))
is given by:

λ2 + p(ε)λ + q(ε) = 0 ,

where

p(ε) =
(

1 +
δ

k + δ

)(
1− δ

(γ∗ + ε)k

)
+ 1

q(ε) =
(

1 +
δ

k + δ

)(
1− δ

(γ∗ + ε)k

)
− δ((γ∗ + ε)k− δ)

β(c− 1)(γ∗ + ε)

k = β(1− c)− δ.

The roots of characteristic equation of J
(

δ
β(1−c)−δ

, 1+x0
1−c

(
1− x0

γ∗+ε

))
are

λ1 =
p(ε) + i

√
4q(ε)− p(ε)2

2
, λ2 =

p(ε)− i
√

4q(ε)− p(ε)2

2

Additionally,

|λ1,2| =
√

q(ε) ,
d|λ1,2|

dε
|ε=0 =

δk(k + 1)2

(k + δ)(k + 2δ + δk)
> 0

We require that, when ε = 0, p(0) 6= 0, 1, i.e., δk
(k+δ)(k+2δ+δk) 6= 1, 2. Therefore,

λn
1,2 6= 1, n = 1, 2, 3, 4.

The transversal condition at (x0, y0) is given by

d|λ1|2

dε
|ε=0 =

(
λ1

dλ2

dε
+ λ2

dλ1

dε

)
|ε=0

= − δ2m2

2k
1

γ∗3
+

δ(mβ(c− 1)(m + 2)− 2k)
2kβ(c− 1)

1
γ∗2
− δ2m2

2k2
1

γ∗
+

δ2m2

2k
,

where m = k+2δ
k+δ .

If d|λ1|2
dε |ε=0 6= 0, then Neimark–Sacker bifurcation will occur at (x0, y0).
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4.2. The Direction of Neimark–Sacker Bifurcation at (x0, y0)

We consider the translations xn = xn − x0, yn = yn − y0 for shifting (x0, y0) to the
origin. Through calculating, we obtain xn+1 = (xn + x0)e

1− (xn+x0)
γ∗+ε

− (1−c)(yn+y0)
1+(xn+x0) − x0

yn+1 = (yn + y0)e
β(1−c)(xn+x0)

1+(xn+x0)
−δ
− y0

(6)

Expanding (6) up to the third order at the origin using a Taylor series, we obtain(
xn+1
yn+1

)
=

(
a11 a12
b11 b12

)(
xn
yn

)
+

(
f (xn, yn)
g(xn, yn)

)
, (7)

where
f (xn, yn)= a13xn

3 + a14xn
2 + a15xn yn + a16xn

2yn + a17xn yn
2 + a18yn

2 + a19yn
3 + O

(
(|xn|+|yn|)3

)
g(xn, yn)=b13xn

3 + b14xn
2 + b15xn yn + b16xn

2yn + O
(
(|xn|+ |yn|)3

)
a1 = y0(c−1)

(x0+1)2 , a2 = y0(c−1)
(x0+1)3 , a3 = y0(c−1)

(x0+1)4 , b1 = x0(1−c)
(x0+1)2 , b2 = x0(1−c)

(x0+1)3 , b3 = x0(1−c)
(x0+1)4 ,

a11 =
(

1 + δ
k+δ

)(
1− δ

k(γ∗+ε)

)
, a12 = − δ

β , b11 = (γ∗+ε)k−δ
(γ∗+ε)(1−c) , b12 = 1,

a13 = 1
2

(
1

(γ∗+ε)
+ a1

)2
+ a2 − x0

((
1

(γ∗+ε)
+a1

)(
1
6

(
1

(γ∗+ε)
+ a1

)2
+ 1

2 a2

)
+a3+

1
2 a2

(
1

(γ∗+ε)
+a1

))
a14 =− 1

(γ∗+ε)
−a1+x0

(
1
2

(
1

(γ∗+ε)
+ a1

)2
+a2

)
, a15 = −x0

(
a1
y0
+ c−1

x0+1

(
1

(γ∗+ε)
+ a1

))
+ c−1

x0+1 ,

a16 = − a1
y0
− c−1

x0+1

(
1

(γ∗+ε)
+a1

)
+ x0

(
a2
y0
+ a1

2y0

(
1

(γ∗+ε)
+ a1

)
+ a3(c−1)

2 +
(

a1
2y0

+ c−1
3(x0+1)

(
1

(γ∗+ε)
+a1

)
− c−1

x0+1

(
1
6

(
1

(γ∗+ε)
+ a1

)2
+ 1

2 a2

))(
1

(γ∗+ε)
+ a1

))
,

a17 = a1(c−1)
2y0

− x0

(
a2(c−1)

2y0
+ c−1

x0+1

(
a1

2y0
+ c−1

3(x0+1)

(
1

(γ∗+ε)
+ a1

)
+ a1(c−1)

6y0

(
1

(γ∗+ε)
+ a1

)))
,

a18 = x0(c−1)2

2(x0+1)2 , a19 = x0(c−1)3

6(x0+1)3 ,

b13 =−y0

(
β
(

b3+
a2
y0

)
+ β2

2

(
b1+

c−1
x0+1

)(
b2 +

a1
y0

)
+β

(
β2

6

(
b1+

c−1
x0+1

)2
+ β

2

(
b2+

a1
y0

))(
b1+

c−1
x0+1

))
,

b14 = y0

(
β2

2

(
b1 +

c−1
x0+1

)2
+ β

(
b2 +

a1
y0

))
, b15 = −β

(
b1 +

c−1
x0+1

)
,

b16 = β2

2

(
b1 +

c−1
x0+1

)2
+ β

(
b2 +

a1
y0

)
Next, by using the center manifold theorem and normal form theories, the direction of

Neimark–Sacker bifurcation at (x0, y0) is given.

Ψ = −Re

(
(1− 2λ1)λ

2
2

1− λ1
θ11θ20

)
− 1

2
|θ11|2 − |θ02|2 + Re(λ2θ21)

where the parameters θ02, θ11, θ20 and θ21 are determined by coefficients in (7).

Theorem 3. If Ψ 6= 0, then the unique positive equilibrium point (x0, y0) of system (3) undergoes
Neimark–Sacker bifurcation when the bifurcation parameter γ varies in a small neighborhood of
γ∗ = δ+β(1−c)+δ(β(1−c)−δ)

(β(1−c)−δ)2+(β(1−c)−δ)
. Additionally, if Ψ < 0, then the curve generates attraction near the

equilibrium point for ε > 0. Furthermore, if Ψ > 0, then the curve generates repulsion near the
equilibrium point for ε < 0.

Proof. Now, let

η =
p(0)

2
, τ =

√
4q(0)− p(0)2

2
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The invertible matrix T is given by

T =

(
a12 0

η − a11 −τ

)
Using the following translation(

xn
yn

)
=

(
a12 0

η − a11 −τ

)(
un
vn

)
Then, (7) turns into(

un+1
vn+1

)
=

(
η −τ
τ η

)(
un
vn

)
+

(
P(un, vn)
Q(un, vn)

)
where

P(un, vn) = l11u3
n + l12u2

n + l13unvn + l14u2
nvn + l15unv2

n + l16v2
n + l17v3

n + O
(
(|un|+ |vn|)3

)
Q(un, vn) = l21u3

n + l22u2
n + l23unvn + l24u2

nvn + l25unv2
n + l26v2

n + l27v3
n + O

(
(|un|+ |vn|)3

)
l11 = a2

12a13 + a12a16(η − a11) + a17(η − a11)
2 + a19(η−a11)

3

a12
,

l12 = a12a14 + a15(η − a11) +
a18(η−a11)

2

a12
, l13 = −a15τ − 2a18τ(η−a11)

a12
,

l14 = −a12a16τ − 2a17τ − 3a19τ(η−a11)
2

a12
, l15 = a17τ2 + 3a19τ2(η−a11)

a12
,

l16 = a18τ2

a12
, l17 = − a19τ3

a12
,

l21 = 1
τ

(
a2

12a13(η−a11)+a12a16(η−a11)
2+a17(η−a11)

3+ a19(η−a11)
4

a12
−b13a3

12−b16a2
12(η−a11)

)
,

l22 = 1
τ

(
a12a14(η − a11) + a15(η − a11)

2 + a18(η−a11)
3

a12
− b14a2

12 − b15a12(η − a11)

)
,

l23 = −a15(η − a11)− 2a18(η−a11)
a12

+ b15a12 ,

l24 = −a12a16(η − a11)− 2a17(η − a11)− 3a19(η−a11)
3

a12
+ b16a2

12 ,

l25 = a17τ(η − a11) +
3a19τ(η−a11)

2

a12
, l26 = a18τ(η−a11)

a12
, l27 = − a19τ2(η−a11)

a12

According to the normal form theories related to bifurcation analysis, we require the
following quantity at (u, v, ε) = (0, 0, 0):

Ψ = −Re

(
(1− 2λ1)λ

2
2

1− λ1
θ11θ20

)
− 1

2
|θ11|2 − |θ02|2 + Re(λ2θ21)

where
θ20 = 1

8 (Puu − Pvv + 2Quv + i(Quu −Qvv − 2Puv))

θ11 = 1
4 (Puu + Pvv + i(Quu + Qvv))

θ02 = 1
8 (Puu − Pvv + 2Quv + i(Quu −Qvv + 2Puv))

θ21 = 1
16 (Puuu + Puvv + Quuv + Qvvv + i(Quuu + Quvv − Puuv − Pvvv))

Puuu = 6l11 , Puu = 2l12 , Puv = l13 , Puuv = 2l14 , Puvv = 2l15 , Pvv = 2l16 , Pvvv = 6l17 ,
Quuu = 6l21 , Quu = 2l22 , Quv = l23 , Quuv = 2l24 , Quvv = 2l25 , Qvv = 2l26 ,

Qvvv = 6l27

5. Numerical Simulation

In this section, numerical simulations are presented to verify the theories given above.
Since our model is difference equations, and the iterative expressions are already given,
there is no need to create novel calculations, such as interpolation methods in the case
of differential equations. We assume that (β, c, δ) = (0.2, 0.3, 0.08) and γ ∈ (3.3, 3.7),
then system (3) undergoes Neimark–Sacker bifurcation around its positive equilibrium
(x0, y0) = (1.3333333, 2.0759193) when γ passes through the critical value γ∗ = 3.2345912.
At (β, c, δ, ε) = (0.2, 0.3, 0.08, 3.2345912), the eigenvalues of system (3) are λ1 = 0.9893238+
0.1457338i and λ2 = 0.9893238− 0.1457338i with |λ1| = |λ2| = 1.
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From Figure 1, it can be seen that the model has a limit loop at (x0, y0) as γ changes,
which means that the biomass of predators and prey will eventually form a cycle. From
Figure 2, it is clear that, when γ is chosen as the bifurcation parameter, (x0, y0) of system (3)
is locally focused when γ < γ∗. Furthermore, when γ > γ∗, there exist attracting closed
invariant curves.

We assume that the parameters β and δ are constant during the increasing of γ, which
means that the growth rate of prey and the death rate of predators are unchangeable.
Since γ is proportional to the refuge parameter c (4), it is clear that, with the improvement
of refuge ability, the quantitative relationship between predator and prey changes from
constant to regular periodic.

Figure 1. Invariant circles in response to the relationship between predator and prey biomass from
the Neimark–Sacker bifurcation with (x0, y0) = (1.3333333, 2.0759193) and bifurcation parameter γ

varying from 3.3846 to 3.6246.
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Figure 2. Phase diagrams of system (3) with parameters (β, c, δ) = (0.2, 0.3, 0.08) and (x0, y0) =

(1.3333333, 2.0759193) and with different values of γ.
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6. Conclusions

Our work deals with the study of the local dynamical properties of a predator–prey
system with discrete time (2) and Neimark–Sacker bifurcation associated with the pe-
riodic solution of system (3) improved by system (2). We proved that system (2) has
three equilibria, and we provided their dynamical properties. Particularly, we focused
on the stability and bifurcation situations of its unique positive equilibrium (x∗, y∗) =(

δ+(αδ−β)ξ
β(1−c)−δ

,
(

1+αξ+x∗
1−c

)(
1− x∗

γ

) )
and presented a specific form of resolution and proof.

In addition, we proved that system (3) undergoes Neimark–Sacker bifurcation
around its interior fixed point (x0, y0) when the bifurcation curve is given as S ={
(c, β, δ)∈R3

+ : γ = γ∗ = δ+β(1−c)+δ(β(1−c)−δ)

(β(1−c)−δ)2+(β(1−c)−δ)
, |D| < 2

}
, where D = x∗

γ

(
γ−x∗
1+x∗ − 1

)
+2.

In order to verify the theoretical discussion, we also provided a numerical simulation at
(x0, y0) when the parameter is varied in a small neighborhood of γ = γ∗. When γ > γ∗,
there exist attracting closed invariant curves from the positive equilibrium, which indicates
that predators and prey can coexist under the periodic oscillations for an extended period
of time.

In biology, with the improvement of refuge ability c, the quantitative relationship
between predator and prey changes from constant to regular periodic, which means that
slight growth of the refuge ability c destroys the original balance and better explains
population attributes in nature. It appears that prey refuges not only ensure that prey do
not become extinct but also promote interactions with predators and enhance population
activity on a periodic scale. Therefore, we can precisely change the biological density
of predators and prey to achieve the desired goal by regulating the number of refuge
parameters c in relation to other variables according to one’s needs.

In subsequent work, other parameters can be considered for bifurcation studies to
obtain conclusions of different biological significance. Alternatively, other discrete methods
can be used to improve the model.
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