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Abstract: Graph neural networks (GNNs) have garnered significant attention for their ability to
effectively process graph-related data. Most existing methods assume that the input graph is noise-
free; however, this assumption is frequently violated in real-world scenarios, resulting in impaired
graph representations. To address this issue, we start from the essence of graph structure learning,
considering edge discovery and removal, reweighting of existing edges, and differentiability of
the graph structure. We introduce virtual nodes and consider connections with virtual nodes to
generate optimized graph structures, and subsequently utilize Gumbel-Softmax to reweight edges and
achieve differentiability of the Graph Structure Learning (VN-GSL for abbreviation). We conducted
a thorough evaluation of our method on a range of benchmark datasets under both clean and
adversarial circumstances. The results of our experiments demonstrate that our approach exhibits
superiority in terms of both performance and efficiency. Our implementation will be made available
to the public.

Keywords: graph neural networks; graph representation learning; deep learning
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1. Introduction

Graph-structured data, in which nodes are inter-connected by a relational structure, are
commonly encountered in a variety of domains including natural sciences (e.g., chemistry
molecules) [1–3], social systems [4,5], finance [6], and so forth. Graph neural networks
(GNNs) have demonstrated their effectiveness in leveraging such data dependencies in
a range of applications. However, most GNNs rely on the observed graph as input,
assuming it perfectly represents the accurate and complete relationships between nodes. In
reality, many real-world graphs are noisy or incomplete due to data collection errors [7].
For example, transportation networks such as road networks or flight networks may not
accurately represent all possible routes or connections between nodes due to missing or
incomplete data. Similarly, economic networks such as supply chain networks or financial
networks may not accurately depict all relationships between nodes due to market changes
or other factors.

These issues pose a significant challenge to the application of GNNs to real-world
scenarios, particularly in risk-critical situations, and motivate the study of graph structure
learning (GSL). Graph structure learning (GSL) involves inferring optimal graph structures
and representations from data that are generated by or correlated with the graph. One
approach to GSL involves using similarity functions, such as Gaussian kernels [8], cosine
similarity measurement [7], edge attention reweighting [9], and multilayer perceptron [10],
to determine the confidence of edges based on the similarity between nodes. Another
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approach to GSL involves optimizing the adjacency matrix, and has introduced techniques
such as learning a discrete probability distribution [11], neural approaches [12,13], Bayesian
inference [14], and direct learning [15] to address the increased difficulties in optimiza-
tion. These methods generally consider the initial graph structure and sparsity, feature
smoothness, and low ranking in their blending goals, aiming to learn more efficient graph
structures and representations for downstream tasks. However, several challenges have
been identified in this field, including:

• Discovering new connections and removing redundant connections: One of the main
goals of graph structure learning is to identify important connections in the graph
and eliminate unnecessary or redundant connections. This can be challenging, as it
requires the ability to distinguish between relevant and irrelevant connections based
on the available data and the desired properties of the graph.

• Recalculating weights: Another challenge in graph structure learning is the need to
recalculate the weights of the edges in the graph. For example, to reflect the changing
importance or strength of connections, or to incorporate additional information about
the edges into the graph.

• Differentiability of discrete graph structures: The other challenge in graph structure
learning is the differentiability of discrete graph structures, which can make it difficult
to apply gradient-based optimization methods. This is especially relevant for node-
level tasks, where the latent graph may potentially connect a large number of instance
nodes. To enable end-to-end differentiable optimization for these discrete structures,
innovative solutions are required.

To address these problems, in this work, we present a method for robust graph struc-
ture learning by augmenting the original adjacency matrix with virtual nodes construction
and learning the optimized structure that model the connections between the original
and virtual nodes. The refined adjacency matrix is then obtained by recalculating the
weights of edges in the augmented adjacency matrix using the Gumbel-Softmax function
and optimized through gradient descent. Our method is evaluated on both clean and
attacked datasets and demonstrates strong performance on the benchmark dataset without
significantly increasing resource consumption. In addition, our method outperforms other
methods on attacked datasets, highlighting its robustness. In general, our contributions
can be summarized as follows:

• Motivated by the challenges of edge discovery and removal, weight recalculation,
and the differentiability of graph structures, we present a novel method for graph struc-
ture learning to discover new connections, edge weight recalculation, and redundant
edge eliminating.

• We demonstrate the effectiveness of our approach on the benchmark dataset, showing
performance improvement (up to 3.4% compared to the state-of-the-art on the Cora)
without significantly increasing resource consumption.

• We further demonstrate the robustness of our approach through evaluations on
datasets under attack conditions, where it consistently outperforms other methods.

The remainder of this paper is structured as follows. In Section 2, we review relevant
works in the field. Our proposed approach is detailed in Section 3, and experimental results
are presented in Section 4. Finally, we discuss future directions and conclude the work in
Section 5.

2. Related Works
2.1. Graph Neural Networks

Graph neural networks (GNNs) are a type of deep learning model that operates on
graphs and are used to analyze and understand graph-structured data. GNNs can be
divided into two main categories: spectral-based and spatial-based methods. Spectral
GNNs utilize techniques from spectral graph theory to define convolution operations
in the frequency domain. Examples of spectral GNNs include the method proposed by
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Bruna et al. [16], which maps the graph to the spectral domain using the discrete Fourier
transform and defines graph convolution operations accordingly, as well as ChebNet [17],
which employs Chebyshev polynomials to approximate spectral graph convolution op-
erations. Spatial GNNs, on the other hand, define convolution operations directly on the
graph through the aggregation of neighbor node features. Representative models of this
category, including GCN [17], which can be considered a simplified version of frequency
domain methods. GraphSAGE [18], which further integrates sampling strategies. Graph
Attention Networks (GATs) [19,20], in particular, utilize the attention mechanism to assign
different weights to neighbors based on their node features in the graph. A comprehensive
survey of GNNs can be found in [21].

2.2. Graph Structure Learning

Graph structure learning is a research area that aims to learn more effective graph
structures and representations for downstream tasks. A number of methods have been
proposed to sparsify large input graphs, including techniques that remove connections and
edges based on topological information such as node degree distribution [22], the distance
between pairs of nodes [23], the size of all cuts [24], and spectral properties [25,26]. Other
approaches, such as edge reweighting methods GAT [19] and GLCN [9], use the attention
mechanism or similarity of node features to weight existing edges in the graph. However,
these methods may not fully capture the rich information provided by both node features
and topology, and they may be prone to be affected by noisy data when the edges are
sparse. NeuralSparse [27] attempts to learn robust graph representations by selecting a
fixed number of edges for each node, but this fixed k-neighborhood assumption may limit
the learning ability of the method and result in poor generalization performance. Non-Local
GNN [28] and LDS [11] are other approaches that aim to enhance model expressiveness,
but they may suffer from computational inefficiency or a large number of parameters,
respectively. Overall, these methods of incorporating multiple sources of information tend
to rely on practical experience rather than theoretical analysis to obtain optimized graph
structures. In contrast to previous methods, our approach takes a holistic approach by
considering the simultaneous optimization of node features and graph structure, which
is achieved through the integration of edge discovery and removal, reweighting of edge
weights, and differentiability of the graph structure in an iterative process. This enables the
proposed model to extract inherent structures from perturbed graphs under both clean and
various attack conditions.

3. The Proposed Approach

In this study, we investigate the application of graph convolution to a graph G = (V , E),
where V is the set of vertices and E is the set of edges. The graph is represented using its
adjacency matrix A ∈ Rn×n, where the (i, j)th position of A is aij and its input feature matrix
X = {x1, · · · , xn} ∈ Rn×d, where d is the dimensionality of the features. The graph can thus
be represented as G = (A, X). The degree matrix is denoted as D = diag(d1, d2, . . . , dn),
where di = ∑j aij is the degree of vertex i.

In this work, we focus on the problem of semi-supervised node classification in the
context of graph structure learning. Following the typical setting, only a subset of vertices
VL = {v1, v2, · · · , vm} are associated with corresponding labels YL = {y1, y2, · · · , ym},
where yi denotes the label of vi. Given the partial labels YL and the graph G = (A, X),
the goal of the graph structure and representation learning for semi-supervised node
classification is to learn a function fΘ : VL → YL that maps vertices to labels and the GNN
parameter Θ, while also learning the optimized adjacency matrix Ã. The optimization
objective can be expressed as:

min
(Θ,Ã)

LGNN(Θ, Ã, X,YL)

= ∑
vi∈VL

`( fΘ(Ã, X)i, yi)
(1)
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where `(·) is the loss function that measures the difference between the prediction and ground-
truth labels. fΘ(Ã, X)i is the prediction label of node vi, where Θ is the GNN parameter.

We subsequently elaborate on the VN-GSL, the proposed model. As depicted in
Figure 1, the VN-GSL is comprised of three components. The first component involves
the utilization of virtual nodes to identify new connections within the graph structure.
The second component pertains to the recalculation of weights for existing nodes in the
graph. The final component involves the elimination of redundant or low-weight edges as
inferred from the preceding steps. The following sections provide a detailed examination
of these components.

Perturbed graph Augmented graph Reweighed graph Optimized graph

Original edge

Discovering
Connections Weights

Recalculating
Eliminating
Connections

Perturbed edge

Discovered edge

High-weight edge

Low-weight edge

Edge to virtual nodes

Ground-truth node with label 1 Virtual node for dicovering edges

Virtual node for reweighting edgesGround-truth node with label 2

Figure 1. The conceptual illustration of the VN-GSL proposed.

3.1. Discovering Connections

To avoid the resulting exponential number of possible substructures, in this study,
we augment the original graph G = (V , E) with p virtual nodes, generating two new
adjacency matrices: B ∈ Rn×p and D ∈ Rp×n that represent the connectivity between the n
original nodes and the p virtual nodes, and the reverse connectivity between the virtual
nodes and the original nodes, respectively. In addition, we also introduce an adjacency
matrix C ∈ Rp×p that represents the connectivity between the virtual nodes themselves.
The new graph is then represented as G ′ = (A, B, C, D, X), where A ∈ Rn×n is the original
adjacency matrix and X = {x1, · · · , xn} ∈ Rn×d is the input feature matrix, with d being
the dimensionality of the features.

Lemma 1. The product BCD represents the increased connectivity (weights) of the original nodes
in the graph G through the p virtual nodes.

Proof. Matrix B ∈ Rn×p represents the connectivity weights between the vertices {v1, v2, . . . , vn}
in the original graph G and the virtual nodes {u1, u2, . . . , up}. The connectivity weight from
vi to uj is given by bij, which represents the element at the (i, j)th position in B. Matrix C is
the adjacency matrix of the virtual nodes, with vertices ordered as u1, u2, . . . , up. The (i, j)th
element of the matrix product BC is denoted by (BC)ij:

(BC)ij = bi1c1j + bi2c2j + · · ·+ bipcpj (2)

This element can be calculated as the sum of the products of the elements of B and
C, with the element at the (i, k)th position (k ≤ p) in B and the element at the (k, j)th
position in C being multiplied for all possible intermediate vertices uk. This includes the
connectivity weights from vi to uk as well as the edge from uk to uj (connections between
the p virtual nodes). By summing the products of these elements according to the rules of
matrix multiplication, we can obtain the desired result, which is the connectivity weights
from each vertex in G to the p virtual nodes.
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Similarly, we can find that for matrices B, C and D we have:

(BCD)ij =
p

∑
k=1

p

∑
l=1

bikckldl j

= bi1c11d1j + bi2c21d1j + · · ·+ bipcppdpj

(3)

where bik (k ≤ p) represents the connectivity between the vertex vi and the virtual vertex uk,
including both the connectivity from vi to an intermediate virtual vertex uk and the connec-
tivity from uk to another intermediate virtual vertex ul . Similarly, dl j (l ≤ p) represents the
connectivity between the virtual vertex ul and the vertex vj. By the principle of matrix mul-
tiplication, when we sum these products over all possible intermediate vertices, we obtain
the desired result. This completes the proof that the matrix product BCD represents the
connectivity (weights) of the original nodes in the graph G through the p virtual nodes.

We then propose our approach for discovering new connections and eliminating
unnecessary connections in the graph, which is based on the aforementioned concept of
matrix multiplication to extend the reachability of nodes in the graph. Specifically, we
introduce virtual nodes into the original graph and learn three matrices: B, which maps the
original nodes to the virtual nodes, C, which captures the interactions between the virtual
nodes, and D, which maps the virtual nodes back to the original nodes.

Based on the above analysis, we can utilize three trainable matrices, B, C, and D, to
discover new weights and assign negative values to existing weights to alter the weight
of the original graph. The number of parameters in this training strategy is significantly
smaller than the number of parameters in the original adjacency matrix (n× n). The new
adjacency matrix can be constructed by this method using the original adjacency matrix as
a prior and adding new edges or modifying the weight of the original adjacency matrix
based on this foundation.

Adis = BCD (4)

where Adis is the newly discovered weight and connection. In this way, we can effectively
discover new connections in the graph and eliminate unnecessary connections. By learning
these matrices, we are able to reduce the complexity of the optimization process, while still
capturing the rich structural information present in the original graph.

While this process introduces a large number of edges connecting all instance nodes,
which can range from thousands to millions, presents challenges in terms of maintaining
accuracy and scalability. In order to facilitate end-to-end differentiable optimization of
discrete structures, we propose reducing the search space for the addition of edges. Previ-
ous studies [29,30] have addressed the problem of integrating the recalculation of discrete
graph weights with the estimation of gradients through the utilization of various forms
of relaxation of discrete distributions. This enables differentiability through the reparam-
eterization trick, facilitating the backpropagation of gradients. Among these techniques,
the Gumbel-Softmax trick [31,32] has been widely employed as a means of generating
differentiable graph structures and improving training stability in the context of discrete
optimization problems.

a?ij =
exp

((
log aij + εj

)
/τ
)

∑w∈Ni
exp

((
log aij + εw

)
/τ
) (5)

where Gumbel distribution is introduced with noise s ∼ Uniform(0, 1) distribution, param-
eterized by ε = − log(− log(s)) and temperature hyperparameter τ. Here, Ni represents
the set of non-zero weight neighboring nodes of node i. When the value of τ is small,
the Gumbel distribution approximates a discrete distribution, resulting in a sparse graph
structure. As τ increases, the resulting distribution becomes increasingly similar to a
uniform distribution.
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Following the gumbel_softmax operation, we introduce the mask operation to further
reduce the search space. The mask operation with threshold λ, for matrix P, where the
(i, j)th position is pij, is defined as follows:

mask(λ; pij) =

{
pij if pij > λ

0 otherwise
(6)

We transform Equation (5) into the following form with hyperparameter λ1:

Adis = mask(λ1; gumbel_softmax(BCD)) (7)

where τ = 1, λ1 will be adjusted as a hyperparameter in the following experiments.

3.2. Weights Recalculating and Differentiable of Graph Structures

In this section, we present our approach for adjusting the weights of edges. Building
upon the trick mentioned in Lemma 1, we introduce three new trainable matrices, E ∈ Rn×p,
F ∈ Rp×p, and G ∈ Rp×n, with the goal of recalculating weights rather than adding new
edges. The new graph is then represented as G ′ = (A, B, C, D, E, F, G, X). To this end, we
also introduce a new mask A operation on matrix P, where the (i, j)th position of A is aij
and the (i, j)th position of P is pij, for the purpose of masking out irrelevant edges. This
operation is defined as follows:

maskA(pij) =

{
pij if aij 6= 0
0 otherwise

(8)

The matrix for recalculating weights can be expressed as follows:

Arec = maskA(EFG) (9)

In this section, maskA allows us to adjust the weights of edges in the graph without
adding new edges and ignore irrelevant edges in the graph in this section. The matrices E,
F, and G are trainable, which means that they can be optimized during the training process.
This allows us to fine-tune the weights of the edges in the graph to better fit the data and
improve the performance of our model.

By combining Equations (7) and (9) and using the original adjacency matrix as a prior,
along with the previously mentioned gumbel_softmax, we can obtain a new, optimized
adjacency matrix S that incorporates newly discovered connections and reweights the
edges accordingly:

S = gumbel_softmax(A + Adis + Arec)

= gumbel_softmax(A+

mask(λ1; gumbel_softmax(BCD))

+ maskA(EFG))

(10)

where A denotes the original adjacency matrix. In our approach, we utilize the Gumbel-
Softmax function to achieve a smooth blend between A and the learned matrices B, C, D,
E, F, and G. The use of the gumbel_softmax function allows us to incorporate additional
information about the edges into the graph structure while maintaining its differentia-
bility. This enables the application of gradient-based optimization methods for learning
the graph structure. Furthermore, the incorporation of probability sampling within this
strategy introduces a degree of stochasticity, which has been shown to enhance the model’s
generalization abilities with respect to unseen data. This is a notable advantage of our
approach, as it allows us to effectively learn the relationships between the nodes in the
graph and make predictions about the graph structure.
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3.3. Eliminating Connections

To delete connections, we simply apply a masking operation to the one mentioned
mask in Section 3.1, and introduce a new thresholded λ2. This operation is zero out of
the low-weight edges in the matrix S learned in the previous section (we consider the
low-weight edges in the learned S matrix to be insignificant or redundant). This allows us
to obtain our final, optimized matrix Ã:

Ã = mask(λ2; S)

= mask(λ2; gumbel_softmax(A+

mask(λ1; gumbel_softmax(BCD))

+ maskA(EFG)))

(11)

where λ2 will be adjusted as a hyperparameter in the following experience. In this section,
we present a method for eliminating connections in the graph in order to reduce complexity
and improve performance. To accomplish this, we introduce the thresholded masking
operation, mask with thresholded λ2, which sets the weights of low-valued edges in
the matrix S to zero. This allows us to selectively remove edges that are deemed to be
insignificant or redundant based on their weight.

By combining the mask operation, we obtain the final, optimized matrix Ã. This
matrix is expected to be more efficient and effective than the original matrix due to the
removal of unnecessary connections.

It is worth noting that the threshold λ2 is a hyperparameter that can be adjusted to
achieve different levels of connection pruning. A higher value for λ2 will result in the
elimination of more connections, but it may also lead to the loss of important information.
Thus, finding an optimal value for λ2 may require experimentation.

3.4. Proposed Method

Finally, the predicted labels of the l-layer model can be iteratively obtained through
the following process:

X(l) =

σ(mask(λ2; gumbel_softmax(A+

mask(λ1; gumbel_softmax(B(l)C(l)D(l)))

+ maskA(E(l)F(l)G(l))))X(l−1)W(l))

(12)

where X(0) = X and W(l), B(l), C(l), D(l), E(l), F(l) and G(l) represent the trainable pa-
rameters and corresponding trainable parameters of the l-th layer, respectively. σ is the
non-linear function (e.g., ReLU). The computation procedure for the model is outlined
in Algorithm 1. The predicted label distribution and cross-entropy loss can be expressed
as follows:

Z = softmax(X(l))

L = − ∑
i∈VL

c

∑
p=1
Y[i,p] log Z[i, p]

(13)

where X(l) are then transformed into a label distribution through softmax normalization.
Z[i, p] denotes the output of the i-th node corresponding to the p-th class, and Y[i,p] denotes
the label of the i-th node corresponding to the p-th class. It is worth noting that our model
does not require additional loss functions to guide the optimization of the graph structure.
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Algorithm 1: VN-GSL
Input: Number of layers l, input feature X, adjacency matrix A, learning rate η.
Output: Label prediction Z, trainable parameters B(j), C(j), D(j), E(j), F(j), G(j),

W(j).
1 X(0) ← X
2 for j = 1 to l do
3 Randomly initialize W(j)

4 Randomly initialize B(j), C(j), D(j), E(j), F(j), G(j)

5 end
6 while Stopping condition is not met do
7 for j = 1 to l do
8 X(j) =
9 σ(mask(λ2; gumbel_softmax(A + mask(λ1; gumbel_softmax(

10 B(j)C(j)D(j)))

11 +maskA(E(j)F(j)G(j))))X(j−1)W(j))

12 end
13 Z = softmax(X(l))
14 for j = 1 to l do
15 W(j) ← W(j) − η ∂L

∂W(j)

16 B(j) ← B(j) − η ∂L
∂B(j)

17 C(j) ← C(j) − η ∂L
∂C(j)

18 D(j) ← D(j) − η ∂L
∂D(j)

19 E(j) ← E(j) − η ∂L
∂E(j)

20 F(j) ← F(j) − η ∂L
∂F(j)

21 G(j) ← G(j) − η ∂L
∂G(j)

22 end
23 end

4. Experiments

In this study, we conduct evaluations to demonstrate the efficacy of the proposed
VN-GSL. Our objective is to address the following questions: Q1: How does VN-GSL
perform in terms of learning graph structures under a semi-supervised setting? Q2: How
robust is VN-GSL to adversarial graph structures? Q3: How do hyperparameters impact
the performance of VN-GSL? Q4: What specific graph structures does VN-GSL learn?

4.1. Experimental Setup
4.1.1. Datasets

To evaluate the performance of our proposed model, we conducted experiments
on five publicly available graph datasets, with the details of these datasets provided
in Table 1. We adopted a semi-supervised node classification paradigm in which we
partitioned the training, validation, and test sets, and only 20 nodes per label category were
selected for training. This approach effectively mitigated the impact of overfitting on the
evaluation outcomes.

• Wikipedia networks [33]. The Chameleon and Squirrel graphs were initially in-
troduced as a way to examine the structure and organization of web pages within
Wikipedia. These graphs consist of web pages represented as nodes and hyperlinks be-
tween pages represented as edges. Pei et al. [34] subsequently developed classification
labels for the web pages in these graphs based on the average monthly traffic for each
page. These labels are divided into five categories, with higher traffic corresponding
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to higher categories. These graphs are still widely used in the field of network analysis
and have been the focus of numerous studies in recent years.

• Citation networks [35]. In the field of graph network analysis, citation networks such
as Cora, Citeseer, and Pubmed are commonly utilized datasets. These networks consist
of papers represented as nodes, with citation relationships serving as connections
between the nodes. Each paper in these networks either cites at least one other
paper or is cited by other papers. In the context of semi-supervised classification,
the titles or summaries of the papers are used as attribute information for known
nodes. The goal of this task is to utilize the reference relationships between nodes,
which are represented as a graph, to classify each node.

Table 1. Description of datasets.

Dataset Nodes Edges Classes Features Train/Val/Test Nodes Split Ratio(%) Homophily

Cora 2708 5429 7 1433 140/500/1000 5.2/18.5/36.9 0.83
Citeseer 3327 4732 6 3703 120/500/1000 3.6/15.0/30.1 0.71
Pubmed 19,717 44,338 3 500 60/500/1000 0.3/2.5/5.1 0.79

Chameleon 2277 31,421 5 2325 100/500/1000 4.4/21.9/43.9 0.25
Squirrel 5201 198,493 5 2089 100/500/1000 1.9/9.6/19.2 0.22

4.1.2. Tasks and Baselines

In the semi-supervised node classification task, our goal is to classify papers into their
respective categories or fields based on their citation relationships and content information.
To evaluate the performance of our method, we compare it with state-of-the-art models
and benchmark baselines specified in [19,20,36,37], including IDGL [7], GEN [38], LDS [11],
Pro-GNN [15], SGC [39], APPNP [40], ChebNet [17], GCN [36], GAT [19], GATv2 [20],
GraphSAGE [18], and Geom-GCN [34].

4.1.3. Implementation and Hyperparameters

In this study, we conducted experiments on a Linux server that was equipped with
an NVIDIA TITAN RTX GPU and two Intel Xeon E5-2683 CPUs. The experiments were
conducted using the PyTorch deep learning library version 1.7.1 and Python version
3.8.3. To improve the performance of the model, we performed a grid search over a
range of hyperparameters, which included the number of layers, λ1, λ2, the learning rate,
and various criteria for early stopping, optimization, dropout, and training epochs. These
hyperparameters were carefully selected and varied in order to optimize the model’s
performance. Specifically, we explored the number of layers in the range of 1 to 8, searched
for the p parameter in the range of 1 to 10, and tuned the dropout parameter from 0.2 to 0.8.

The model with the highest validation accuracy was selected for testing, and the
detailed parameter settings can be found in Table A2. Throughout all of our experiments,
we utilized the PyTorch Geometric library [41] to implement SGC, GCN, GAT, APPNP,
and GraphSAGE. For the remaining baselines (ChebNet, LDS, Pro-GNN, Geom-GCN, etc.),
we employed the source code provided by the authors and carefully fine-tuned it according
to the settings in the original papers in order to achieve optimal performance. Our aim
was to comprehensively evaluate the proposed model and compare it against various
state-of-the-art approaches in the field.

4.2. Performance on Real-World Datasets (Q1)

The results presented in Table 2 evince that graph structure learning methods exhibit
superior performance compared to those that rely on the original graph structure, partic-
ularly on homogeneous graphs with high homogeneity ratios such as the Cora, Citeseer,
and Pubmed datasets. Notably, the VN-GSL method demonstrates the highest mean ac-
curacy on these datasets, indicating that our approach effectively optimizes the original
graph structure using ground-truth labels. This can be attributed to the model’s ability
to discover new edges and prune redundant ones, as well as recompute edge weights in
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the original graph structure. However, on heterogeneous graphs with lower homogeneity
ratios such as the Chameleon and Squirrel datasets, the VN-GSL method performs com-
petitively, but is not the top performer. This may be due to our method’s lack of explicit
design to capture relationships between nodes that are further apart, and nodes with high
structural and semantic similarity in heterogeneous graphs may be more distant from
each other. As such, our method did not achieve optimal performance on the Chameleon
dataset, and its advantage over other models on the Squirrel dataset is relatively minor.
In reality, heterophilic graphs differ significantly from homogeneous graphs, and our future
work needs to focus on addressing graph structure learning problems specifically in the
context of heterogeneous graphs. Overall, these results demonstrate the potential of the
VN-GSL method as a strong choice for graph-based machine learning tasks, particularly on
homogeneous graphs with high homogeneity ratios.

Table 2. Performance comparison of graph neural network models on multiple datasets (mean
accuracy (%) ± stdev).

Cora Chameleon Pubmed Citeseer Squirrel

#Nodes |V| 2708 2277 19,717 3327 5201
Hom. ratio 0.83 0.25 0.79 0.71 0.22
#Classes |Y| 7 5 3 6 5
#Edges |E | 5429 31,421 44,338 4732 198,493

SGC [39] 81.47± 0.54 49.50± 0.96 79.10± 2.21 69.57± 0.76 34.95± 1.52
GCN [17] 81.36± 0.43 48.52± 0.87 74.62± 0.70 68.91± 0.76 34.51± 1.43
GAT [19] 83.16± 0.47 46.70± 1.54 79.32± 0.64 69.72± 0.76 27.42± 2.83
APPNP [40] 83.39± 0.63 46.43± 0.66 80.32± 0.44 69.59± 0.62 33.82± 1.40
GraphSAGE [18] 80.35± 0.58 44.19± 1.90 73.69± 2.06 70.09± 0.90 28.69± 2.12
ChebNet [17] 81.95± 0.70 37.35± 0.70 78.54± 1.06 68.22± 0.91 21.42± 1.96
GATv2 [20] 83.34± 0.47 47.58± 1.14 79.51± 0.50 69.84± 0.68 27.98± 1.91
Geom-GCN [34] 64.03± 0.42 35.97± 0.52 77.26± 0.66 63.83± 0.92 25.85± 0.86

IDGL [7] 84.14± 1.00 40.03± 0.84 82.60± 0.84 70.33± 0.68 26.69± 1.46
GEN [38] 83.32± 0.56 50.70± 0.96 81.12± 1.01 71.42± 0.70 30.79± 2.74
Pro-GNN [15] 81.02± 1.06 50.57± 0.72 78.18± 0.94 68.00± 0.95 33.72± 2.50
LDS [11] 82.65± 1.35 49.78± 1.20 78.44± 1.96 70.48± 1.19 30.40± 0.54

VN-GSL 84.68± 0.49 49.99± 0.91 82.79± 0.68 71.55± 0.45 35.28± 1.19

To further examine the efficacy of our proposed model, we applied t-SNE dimension-
ality reduction to the output of the final layer and obtained the result depicted in Figure 2.
This visualization reveals the presence of distinct clusters in the projected 3D space, with the
number of clusters corresponding to the number of labeled categories in each dataset. This
correspondence indicates the discriminative ability of our model. These findings suggest
that our method is effective in learning discriminant and distinct node features.

(a) Cora (b) Citeseer (c) Pubmed (d) Chameleon (e) Squirrel

Figure 2. We applied our model to several datasets and obtained t-SNE visualization. The class label
assigned by the ground truth is represented by the outline color, while the class label predicted by
the model is represented by the fill color.
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In addition to assessing the effectiveness of our proposed model, we also conducted
a comprehensive analysis of resource utilization, specifically focusing on memory con-
sumption and execution time. As outlined in the appendix and summarized in Table 3, our
approach did not incur a significant increase in computational overhead or memory usage
by utilizing a virtual node construction technique that involves several low-rank matrix
multiplications. In contrast, we avoided using resource-intensive mechanisms such as the
multi-head attention employed in GAT [19] for graph reweighting. A detailed discussion
of these findings can be found in Appendix B.3.

Table 3. Runtime and memory consumption on GCN, GAT, and VN-GSL.

Dataset & GNN Runtime per Epoch (s) Memory (MB)
Max Min Avg Max Min Avg

Cora & GCN 0.00858 0.00346 0.00378 79.19 73.74 74.58
Cora & GAT 0.8921 0.7249 0.7547 7182.91 6419.65 6975.23
Cora & VN-GSL 0.2068 0.04687 0.05264 591.04 521.38 534.09

Citeseer & GCN 0.00915 0.00336 0.00382 162.07 121.36 140.88
Citeseer & GAT 1.00643 0.97289 0.99052 10, 691.56 10, 112.74 10, 348.13
Citeseer & VN-GSL 0.15716 0.19862 0.18187 975.99 867.24 908.05

4.3. Performance on Robustness Analysis (Q2)

To evaluate the robustness of our model under various levels of structural noise,
we conducted experiments following the methodology outlined in [42]. Specifically, we
simulated different levels of attack strength by adding, flipping, and removing edges from
local, community [43], and global viewpoints. The structural noise was generated using
ratios ranging from 0.05 to 0.8 in increments of 0.05 for each type of noise. We compared the
performance of our method to several benchmark graph neural network (GNN) models:
GCN [36], FastGCN [44], GraphSAGE [18], Pro-GNN [15], and GraphSAGE [18]. Additional
information on the experimental setup can be found in [42]. The hyperparameter settings
used in these experiments are detailed and available in Table A2. To reduce variance, we
conducted the same experiment six times with fixed random seeds.

We conducted comprehensive evaluations and comparisons, as shown in Figure 3,
which demonstrated the high competitiveness of our method based on the experimental
results. In the add and flip experiments, our method showed its ability to process redun-
dant edges and recalculate weights, resulting in the most consistent performance. In the
delete experiment, our method generally performed well due to its ability to predict new
edges. In most cases, our method performed optimally, exhibiting stability against struc-
tural attacks. However, the local delete experiment showed only moderate performance,
which may be due to the lack of implemented sampling strategies and improved aggre-
gate functions. These issues can be addressed in future work. In summary, our method
demonstrated strong stability and robustness against structural disturbance attacks.
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Figure 3. Overall performance of various models under various levels of structural noise. (a–c) depict
global noise, (d–f) depict community noise, while (g–i) depict local noise. On the Cora dataset, we
randomly delete, flip, or add edges to the original graph to create a corrupted graph and evaluate
its performance. We set the ratio of modified edges to simulate attack intensities ranging from 0.05
to 0.8.

4.4. Performance on Corrupted Data and Ablation Studies (Q3)

In this study, we examine the effect of our model’s weights recalculating, connections
discovering, and connections eliminating on performance on the Cora dataset, using a
structural noise value of 0.5 and the local removal settings from our previous experiment
(Section 4.3). We also report the classification accuracy of nodes under various hyperpa-
rameter configurations, and the results are presented in Table 4. A more comprehensive
analysis and experimental outcomes can be found in Appendix B.4 and Table A4.

Table 4. Node classification mean accuracy (%) ± stdev for different components (we utilize a
two-layer VN-GSL model, where the graph learned by the first layer is denoted as (1) and the graph
learned by the second layer is denoted as (2)).

Model Components

Models Reweight Add Edges Mask Edges Acc τ λ1 λ2 p Init
Edges

Added
Edges

Masked
Edges

Final
Edges

VN-GSL

× × × 76.47± 0.54 × × × 7 8814 0 0 8814

X × × 77.94± 0.36 1 × × 7 8814 0 0 8814

X X × 77.44± 0.39 1 0.5 × 7 8814 284 (1)
279 (2) 0 9098 (1)

9093 (2)

X X × 78.48± 0.41 1 0.7 × 7 8814 139 (1)
138 (2) 0 8953 (1)

8952 (2)

X X × 79.01± 0.35 1 0.85 × 7 8814 58 (1)
59 (2) 0 8872 (1)

8873 (2)

X X X 79.03± 0.41 1 0.85 0.01 7 8814 58 (1)
56 (2)

171 (1)
165 (2)

8701 (1)
8705 (2)

X X X 79.19± 0.34 1 0.85 0.02 7 8814 58 (1)
56 (2)

223 (1)
227 (2)

8649 (1)
8643 (2)

X X X 78.36± 0.36 1 0.85 0.03 7 8814 58 (1)
56 (2)

314 (1)
309 (2)

8558 (1)
8561 (2)
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Based on the results presented in Table 4, it can be observed that the weights recalculat-
ing, connections discovering, and connections eliminating components of our model have
a significant effect on the model’s performance on the corrupted Cora dataset. The model
exhibits improved mean accuracy compared to a model without any of these components,
achieving 79.03% mean accuracy versus 76.47%. Furthermore, the results suggest that an
increase in the value of the hyperparameter λ1 for connections discovery leads to improved
performance, with the highest mean accuracy achieved at a value of λ1 = 0.85. On the
other hand, a lower value of λ2 for connections eliminating results in better performance,
with the highest mean accuracy achieved at λ2 = 0.01 to λ2 = 0.02.

Our findings indicate that weight recalculation has a significant impact on model
performance, suggesting that the original graph weights are suboptimal. Additionally, we
observed that augmenting connections to a certain extent can improve model performance,
demonstrating the efficacy of our approach in identifying relevant connections. However,
as previously noted in [45], the presence of certain detrimental nodes can significantly im-
pair model performance. In our experiments, a reduction in λ1 values and the concomitant
incorporation of a large number of edges resulted in a decline in model performance. Identi-
fying and eliminating these harmful nodes is a focus of future work. We also observed that,
to an extent, pruning low-weight connections can enhance model performance. However,
excessively pruning connections via an increase in λ2 values can be detrimental to model
performance, consistent with experience and as evidenced by our results. In summary,
the weight recalculation and connection discovery and pruning components of our model
resulted in improved performance on the corrupted Cora dataset, with the optimal settings
for the hyperparameters are task-dependent.

4.5. Visualization (Q4)

To investigate the graph structures learned by VN-GSL, a subgraph consisting of two
classes of nodes from the Cora dataset is selected and the edge weights of the original
graph and the graph inferred by our proposed method are visualized. As illustrated in
Figure 4, the utilization of the original graph as a prior resulted in the learned graph
structure exhibiting minimal deviation from the original graph. However, our method
recalculated the edge weights and effectively retained within-class edges while reducing
the number of inter-class edges, and decreasing the weight of numerous inter-class edges.
Based on our analysis, it can be inferred that our proposed method has the capability of
enhancing connections between nodes of the same class, while diminishing connections
between nodes of different classes, thus improving the quality of the graph topology to a
certain extent.

(a) Original (b) VN-GSL

Figure 4. The adjacency matrix heatmap (with two categories of 60 nodes each extracted from the
Cora dataset) (a) the original graph with self-loops on the Cora dataset, and (b) the graph learned
by our method on the Cora dataset. The darker blocks represent a greater edge weight between the
two nodes.
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5. Conclusions

We introduce a novel approach to graph structure learning that effectively addresses
the challenge of impaired graph representations due to noise in real-world scenarios.
Our method incorporates edge discovery and removal, reweighting of existing edges,
and graph structure derivability, as well as virtual node introduction for optimized graph
structure generation. Extensive evaluations on diverse benchmark datasets, including clean
and adversarial conditions, demonstrate the superior performance and efficiency of our
approach. Our experiments reveal that our approach demonstrates notable efficacy in the
areas of reweighting graph structures and eliminating redundant connections. However,
we observed limitations in discovering new connections, which is a significant challenge
in graph structure learning. This underscores the need for further investigation and
optimization in this area as a future direction for our work.
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Appendix A. Notations

The symbols commonly used in this paper are listed in Table A1.

Table A1. Frequently used notations.

Notation Description

G = (A, X) The original graph.

G ′ = (A, B, C,
D, E, F, G, X) The extended graph with virtual nodes.

A The original adjacency matrix.

S The sketched adjacency matrix.

Ã The learned adjacency matrix.

Adis
Adjacency matrix of

newly discovered connection.

Arec
Adjacency matrix of

recalculating weights.

https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
http://snap.stanford.edu/data/article-datasets.html
http://snap.stanford.edu/data/chameleon-2008.html
http://snap.stanford.edu/data/squirrel-financial.html
http://snap.stanford.edu/data/squirrel-financial.html
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Appendix B. More on Experiments

Appendix B.1. Hyperparameter

Table A2 presents the hyperparameters used for model selection. The table includes the
number of layers, dropout rate, patience for early stopping, learning rate, optimizer, and the
number of epochs for each dataset. The results indicate that the hyperparameter settings varied
across the datasets. The Cora and Pubmed datasets utilized three layers and learning rates
of 1× 10−2 and 5× 10−2, respectively. The Citeseer and Squirrel datasets employed higher
numbers of layers and lower learning rates of 2× 10−2 and 2× 10−2, respectively. The dropout
rate ranged from 0.5 to 0.6, with the Citeseer and Pubmed datasets using the same dropout rate
of 0.5. The patience for early stopping ranged from 1000 to 2000 epochs, with the Chameleon
and Squirrel datasets using the highest value. The optimizers used were Adam and SGD.

Appendix B.2. p Sizes

Tables A3 present the results of node classification on two datasets, Cora and Chameleon,
for different parameter values. The mean accuracy and standard deviation are reported for
each combination of parameter values. In Table A3, the parameter p is varied. The highest
mean accuracy on both datasets is achieved for p = 7 on Cora and p = 4 on Chameleon.
For other values of p, the mean accuracy is generally lower, with a few exceptions where
the mean accuracy is similar to the highest mean accuracy. This suggests that the optimal
model performance is achieved when the model is neither under-fitting nor over-fitting
the data. In contrast, when the mean accuracy is significantly lower, the model may be
suffering from either under-fitting or over-fitting.

Appendix B.3. Efficiency

Table 3 compares the efficiency of three graph neural network models (GCN, GAT,
and VN-GSL) on two datasets (Cora and Citeseer). The table reports three measures of
efficiency: runtime per epoch, maximum memory usage, and minimum memory usage.
The runtime per epoch is expressed in seconds and the memory usage is expressed in
megabytes. The table also reports the average values for each measure of efficiency. The re-
sults show that the VN-GSL model demonstrates a lower runtime per epoch and lower
memory usage than the GAT models on both datasets. Furthermore, the table reveals
that the GCN model exhibits the lowest runtime per epoch and the lowest memory usage
on both datasets. These findings suggest that the VN-GSL model is more efficient than
the GAT model and comparable to the GCN model in terms of computational cost and
memory consumption.

Table A2. Hyper-parameters used for model selection.

Layers τ p Size Dropout Patience lr Optimizer Epochs λ1 λ2

Cora 2 1 7 0.55 1500 1× 10−2 Adam 3000 0.98 0.01
Citeseer 4 1 5 0.5 1000 2× 10−2 Adam 2500 0.95 0.01
Pubmed 2 1 3 0.5 1000 5× 10−2 Adam 3000 0.98 0.005
Chameleon 2 1 4 0.6 2000 1× 10−2 SGD 2000 0.95 0.01
Squirrel 3 1 4 0.5 1500 2× 10−2 Adam 2500 0.95 0.005

Table A3. Node classification mean accuracy (%) ± stdev for different p sizes.

Dataset
p Size

p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

Cora 84.13± 0.31 84.12± 0.43 84.31± 0.62 84.49± 0.52 84.68± 0.51 84.62± 0.39 84.41± 0.56 84.49± 0.63
Chameleon 49.74± 0.63 49.99± 0.91 49.36± 1.51 49.54± 0.91 49.62± 0.79 49.51± 0.64 49.69± 0.97 49.25± 1.52
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Table A4. Node classification mean accuracy (%) ± stdev for different components (we utilize a
two-layer VN-GSL model, where the graph learned by the first layer is denoted as (1) and the graph
learned by the second layer is denoted as (2)).

Model Components

Models Reweight Add Edges Mask Edges Acc τ λ1 λ2 p Init
Edges

Added
Edges

Masked
Edges

Final
Edges

VN-GSL

× × × 76.47± 0.54 × × × 7 8814 0 0 8814

X × × 77.94± 0.36 1 × × 7 8814 0 0 8814

X X × 77.44± 0.39 1 0.5 × 7 8814 284 (1)
279 (2) 0 9098 (1)

9093 (2)

X X × 78.48± 0.41 1 0.7 × 7 8814 139 (1)
138 (2) 0 8953 (1)

8952 (2)

X X × 78.61± 0.38 1 0.8 × 7 8814 81 (1)
85 (2) 0 8895 (1)

8899 (2)

X X × 79.01± 0.35 1 0.85 × 7 8814 58 (1)
59 (2) 0 8872 (1)

8873 (2)

X X × 78.52± 0.39 1 0.9 × 7 8814 30 (1)
28 (2) 0 8844 (1)

8842 (2)

X X × 77.94± 0.36 1 1 × 7 8814 0 0 8814

X X X 79.03± 0.41 1 0.85 0.01 7 8814 58 (1)
56 (2)

171 (1)
165 (2)

8701 (1)
8705 (2)

X X X 79.06± 0.45 1 0.85 0.015 7 8814 58 (1)
56 (2)

198 (1)
201 (2)

8674 (1)
8669 (2)

X X X 79.19± 0.34 1 0.85 0.02 7 8814 58 (1)
56 (2)

223 (1)
227 (2)

8649 (1)
8643 (2)

X X X 79.06± 0.45 1 0.85 0.025 7 8814 58 (1)
56 (2)

244 (1)
247 (2)

8628 (1)
8623 (2)

X X X 78.36± 0.36 1 0.85 0.03 7 8814 58 (1)
56 (2)

314 (1)
309 (2)

8558 (1)
8561 (2)

X X X 77.06± 0.55 1 0.85 0.05 7 8814 58 (1)
56 (2)

719 (1)
727 (2)

8153 (1)
8143 (2)

Appendix B.4. More on Q3

The data presented in Table A4 suggests that the implementation of weight recalcula-
tion, connection discovery, and connection elimination components in our model yields a
significant improvement in performance on the corrupted Cora dataset. The model demon-
strates an increase in mean accuracy, attaining 79.19% as opposed to the mean accuracy
of 76.47% observed in a model without these components. Additionally, the results imply
that an increase in the value of the hyperparameter λ1 for connection discovery results in
improved performance, with the highest mean accuracy achieved at λ1 = 0.85. In contrast,
a lower value of λ2 for connection elimination leads to better performance.

Furthermore, our findings suggest that augmenting connections to a certain extent
can enhance the model’s performance, which supports the effectiveness of our approach
in identifying relevant connections. Our experiments indicate that a reduction in λ1
values and the concomitant incorporation of a large number of edges lead to a decline
in performance. Additionally, our results suggest that pruning low-weight connections
can enhance the model’s performance to a certain extent. However, excessively pruning
connections through an increase in λ2 values can negatively impact performance, as is
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evident in our results. In summary, the implementation of weight recalculation, connection
discovery, and elimination components in our model improves the performance on the
corrupted Cora dataset. The optimal settings for the hyperparameters are task-dependent
and require further investigation.
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