
Citation: Park, C.; Park, K.R. MBDM:

Multinational Banknote Detecting

Model for Assisting Visually

Impaired People. Mathematics 2023,

11, 1392. https://doi.org/10.3390/

math11061392

Academic Editor: Jakub Nalepa

Received: 1 February 2023

Revised: 8 March 2023

Accepted: 11 March 2023

Published: 13 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

MBDM: Multinational Banknote Detecting Model for Assisting
Visually Impaired People
Chanhum Park and Kang Ryoung Park *

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu,
Seoul 04620, Republic of Korea
* Correspondence: parkgr@dongguk.edu

Abstract: With the proliferation of smartphones and advancements in deep learning technologies,
object recognition using built-in smartphone cameras has become possible. One application of this
technology is to assist visually impaired individuals through the banknote detection of multiple
national currencies. Previous studies have focused on single-national banknote detection; in contrast,
this study addressed the practical need for the detection of banknotes of any nationality. To this end,
we propose a multinational banknote detection model (MBDM) and a method for multinational ban-
knote detection based on mosaic data augmentation. The effectiveness of the MBDM is demonstrated
through evaluation on a Korean won (KRW) banknote and coin database built using a smartphone
camera, a US dollar (USD) and Euro banknote database, and a Jordanian dinar (JOD) database that is
an open database. The results show that the MBDM achieves an accuracy of 0.8396, a recall value of
0.9334, and an F1 score of 0.8840, outperforming state-of-the-art methods.

Keywords: deep learning; mosaic augmentation; multinational banknote detecting model; smartphone
camera; visually impaired people

MSC: 68T07; 68U10

1. Introduction

Smartphones equipped with deep learning technology have the ability to recognize a
variety of objects using built-in cameras, including banknotes of multiple nationalities [1,2].
Previous studies on banknote detection have mainly focused on either handcrafted feature-
based methods or deep feature-based methods. Handcrafted feature-based methods such
as speed up robust features (SURF) have achieved good results in banknote detection [1–4].
However, deep feature -based methods such as you only look once (YOLO)-v3 have been
shown to outperform handcrafted feature-based methods in varied environments, with
an F1 score of 0.9184 for YOLO-v3 compared to 0.8139 for SURF [5]. While these existing
studies have primarily focused on single-nationality banknote detection, there is a need
for a method to detect banknotes of any nationality. However, considering the practicality
aspect, banknote input through a camera is required for detection regardless of the type of
nationality. In this study, we addressed this problem and devised a multinational banknote
detection model (MBDM) and a method for multinational banknote detection based on
mosaic data augmentation. The main contributions of this study are as follows:

- This study is the first on smartphone-based multinational banknote detection.
- A novel MBDM was developed. The MBDM consists of 69 layers and has a four-step

process for feature extraction and final detection. Its feature map configuration is
particularly effective at detecting small objects such as coins.

- The detection performance of the MBDM was improved using mosaic data augmenta-
tion to increase training data.
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- The self-constructed Dongguk Multinational Banknote database version 1 (DMB v1)
and the MBDM developed in this study were made publicly available on GitHub [6]
for fair evaluation by other researchers.

The remainder of this paper is structured as follows. Section 2 reviews the related
works of single-national and multinational banknote detection. Section 3 provides a
detailed description of the proposed research method of overall procedure, mosaic data
augmentation, the architecture of the MBDM, and the mathematical fundamentals of
bounding box detection by the MBDM. Section 4 presents the experimental results with
Dongguk Korean Banknote database version 1 (DKB v1) [5] including US dollars (USD),
Euros (EUR), and Korean won (KRW), and Jordanian dinar (JOD) open database with
analysis. Finally, Section 5 summarizes the study and the main findings.

2. Related Works

Existing banknote detection studies can be broadly classified into handcrafted feature-
based methods and deep feature-based methods. In handcrafted feature-based methods,
techniques such as SURF, fast radial symmetry (FRS) transform, and principal component
analysis (PCA) are applied to banknote images for detection and recognition. The SURF
method is particularly fast and efficient at localizing and matching banknote features
compared to other handcrafted feature-based methods [1–4]. The SURF method is robust
in terms of image rotation or scaling change; however, it may mistakenly recognize the
background as a banknote. To address this issue, some studies have used FRS-based ban-
knote recognition by extracting gradients for the numerical part of the banknote [7]. Other
handcrafted feature-based methods such as PCA extract denomination types and regions
of interest (RoIs) for each denomination type to create eigen-images and then perform ban-
knote recognition based on these eigen-images [8]. There have also been studies that have
used the K-nearest neighbors (KNN) classifier [9] or decision tree classifier (DTC) [10] to
perform banknote detection on a Malaysian banknote database [11]. However, handcrafted
feature-based methods can struggle to maintain good detection or classification perfor-
mance for banknote data acquired in different environments, leading to the development
of deep feature-based methods to overcome these challenges.

Deep convolutional neural networks (DCNNs) have shown better performance in
detection and classification compared to handcrafted feature-based methods. There
are several types of DCNNs that have been applied to banknote detection includ-
ing MobileNet, AlexNet, Faster R-CNN, YOLO-v3, and self-designed CNN models.
MobileNet [12] is useful for applications with low hardware requirements because it has
a small number of parameters and requires minimal computation compared to other
compared DCNNs with many layers, for example, GoogleNet or visual geometry group
(VGG)-16. However, Faster R-CNN requires high-performance hardware such as a
graphics processing unit (GPU) owing to its large number of layers, making it difficult
to use on wearable devices with lower performance. As a result, there has been a study
that achieved good performance by applying MobileNet to banknote detection on a
wearable device [13]. AlexNet [14], which has a structure similar to LeNet and consists
of eight layers including five convolution layers and three fully connected layers, can
perform training using two GPUs in parallel. There has been a study that used this
CNN network for deep feature extraction and then classified banknote objects in images
using a support vector machine (SVM) and histogram of oriented gradients (HOG) [15].
Faster R-CNN [16] has also been applied to banknote detection and is known for its
excellent detection performance in DCNNs [5]. It obtains feature maps through feature
extraction using a CNN such as VGG [17] or a residual network (ResNet) [18] and then
uses these feature maps as an input for the region proposal network (RPN) and classifier,
which are trained to perform banknote detection. The detection boxes produced by the
detection result are filtered for false positives (FPs) through three postprocessing steps.
Banknote FPs are removed based on the width-to-height ratio of the detection boxes,
and FPs are eliminated if they do not fall within the appropriate range based on the
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size range of coins and bills. Finally, when there are multiple detection boxes within
an image for a single object, only the detection box with the highest score is consid-
ered a true positive (TP), and FPs are eliminated to improve detection performance [5].
YOLO-v3 [19,20] has also been applied in some studies. YOLO-v2 [21] used VGG-16
for feature extraction; however, to create a faster model, Darknet-19 was developed
and used in YOLO-v2 [21]. YOLO-v3 improves upon YOLO-v2 by using Darknet-53,
which has more layers than Darknet-19. The YOLO-v3 method performs better in object
detection, particularly for small objects, and is able to achieve real-time detection owing
to its improved processing speed. It has been used for banknote detection on India’s
banknote dataset and Iraq’s banknote dataset with good speed and performance. In
addition, there has been a study on detection and classification using a shallow CNN
network with Euro and Mexican banknotes [22], where Euro and Mexican banknotes
were trained and tested separately. While these deep feature-based studies have focused
on banknotes, there are almost no existing studies on small objects such as coins. While
deep feature-based methods have generally shown better detection performance than
handcrafted feature-based methods, most existing studies in this field have only focused
on single-national banknote detection. There are no existing studies on multinational
banknote detection, regardless of the nationality of the banknote. However, it is practical
to be able to detect banknotes of any nationality when using a smartphone camera. To
address this problem, we propose a method for multinational banknote detection using
the MBDM and mosaic data augmentation.

Although they are not related to banknote detection, the authors proposed the method
of motion prediction for beating heart surgery with a gated recursive unit (GRU) [23], an
improved stereo matching algorithm on the basis of joint similarity measures and adaptive
weights [24], reconstructing dynamic soft-tissue using a stereo endoscope on the basis of a
single-layer network [25], and endoscope image mosaic on the basis of pyramid oriented
fast and rotated brief (ORB) [26]. Table 1 compares the strengths and weaknesses of the
previous studies and the proposed method, dividing them into single-nationality banknote
databases and multinationality banknote databases.

Table 1. Comparisons of proposed and previous studies on banknote detection.

Category Methods Advantages Disadvantages

Single-national
banknote detection

Handcrafted
feature-based

SURF-based [1–4], FRS
transform [7], PCA [8],

KNN + DTC [11]

- High-performance devices are
not required because of the small
amount of computation

- Applicable to wearable devices or
mobile devices

Detection performance is
poor in images with

complex backgrounds,
and limited scale

invariance performance

Deep feature-based

MobileNet [13], AlexNet,
SVM, and HOG [15],

Faster R-CNN + three step
postprocessing [5],
YOLO-v3 + data

augmentation [19,20],
Shallow CNN [22]

- High detection performance in
datasets with complex backgrounds

- Applicable to wearable devices
with the development of shallow
deep CNN

Did not perform
multinational banknote

detection of
various nationalities

Multinational
banknote detection Deep feature-based MBDM

(proposed method)

In a multinational banknote
environment acquired from various

conditions and backgrounds, not only
bills but also small-sized coins are

detected with high accuracy

Higher computational cost
than MobileNet,

YOLO-based methods

3. Materials and Methods
3.1. Overall Procedure of Proposed Method

Figure 1 illustrates the overall process of the proposed banknote detection method.
The first step is to preprocess the training images to improve the training performance.
This is performed using mosaic data augmentation (described in detail in Section 3.2).
After preprocessing, the training data are applied to the MBDM for training. When a
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testing image is input to the trained MBDM, the MBDM outputs the location, type, and
classification probability of multinational banknotes.
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3.2. Mosaic Data Augmentation

As shown in Figure 1, the proposed method uses mosaic data augmentation to effi-
ciently train the banknote dataset. Mosaic data augmentation is a type of Bag of Freebies
(BoF) data augmentation technique, which was introduced in YOLO-v4 [27] to improve
the accuracy of detection by modifying the training method or increasing the training cost
of models trained in an offline environment. The advantage of BoF is that it increases
the variability of input images and makes the detection model more robust to various
images. Because mosaic data augmentation uses banknote data from various nationalities,
it is particularly useful for datasets with different classes; it was shown to be effective in
this study. As shown in Figure 2a, mosaic data augmentation combines four images from
four different classes (dollar, Euro, Korean won, and Jordanian dinar) into one image. The
mosaic data augmentation was performed based on the image size of the banknote dataset,
and as shown in the right image of Figure 2a, four class images were randomly placed
in four zones, with annotations adjusted according to their positions. Four individual
annotations are applied to one mosaic data-augmented image, with four class annotations
stored in one image. The use of mosaic data augmentation allows for a mini batch size of
four. While using mosaic data augmentation, a clear impact of applying the mini batch was
observed. In the case of the mosaic data augmentation introduced in YOLO-v4, only four
images were introduced. In this study, by contrast, we used a mini batch size of two to
compare the effect of using two images and a mini batch size of six to compare the effect of
using six, as illustrated in Figure 2b,c.

3.3. Architecture of MBDM

The preprocessed data are fed to the MBDM, a CNN model, for training. The MBDM
architecture is based on and improves upon the YOLO-v3 model. It begins with a 3 × 3
(stride = 1) convolution layer and a 3 × 3/2 (stride = 2) convolution layer. It then uses a
series of 1 × 1 (stride = 1) convolution, 3 × 3 (stride = 1) convolution, and residual layers,
which creates a set, followed by a 3 × 3/2 (stride = 2) convolution layer for downsampling.
After the downsampling, the set becomes 8 and convolution is performed. This is repeated
3 times, and at the end of each set, 3 × 3/2 (stride = 2) convolution is applied and down-
sampling is performed. The eight sets of convolution layers are divided into three parts:
the front box set, the middle box set, and the last box set. Training is then completed by
applying average pooling, a fully connected layer, and an independent logistic classifier
to the output obtained after passing through the set four times. The MBDM consists of a
total of 69 convolution layers. Figure 3 provides a visual representation of the structure of
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the MBDM. The lower part of the figure shows the first prediction proceeding after feature
extraction. The green boxed part is the 1 × 1 convolution layer, the yellow boxed part is
the upsampling part, and the purple boxed part is the concatenation part. After the first
prediction, 1 × 1 convolution is performed and upsampling is performed, followed by
concatenation using the features from the front box set. The second prediction is then made,
following the same process as the first, with the second concatenation part concatenating
with the features of the middle box set. The third prediction is followed by the fourth
prediction, which is made by concatenating with the features of the last box set.
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Figure 2. Mosaic data augmentation of banknote dataset: (a) is an example of applying four images of
mosaic data augmentation, and (b,c) are examples of applying six images and two images of mosaic
data augmentation, respectively.

Four prediction feature maps are generated in this method, each with dimensions
of 13 × 13, 26 × 26, 52 × 52, and 104 × 104 as shown in Figure 4. These feature maps are
input into a fully convolutional network (FCN) consisting of 1 × 1 and 3 × 3 convolution
layers, and the output channel is increased to 512. The feature map is then upsampled
twice and concatenated with the feature map at the next higher resolution. This process
is repeated to obtain feature maps at four scales. The number of output channels in
the feature map at each scale is determined using a formula that takes into account the
anchor box value (3), the bounding box offset value (4), the objectness score (1), and
the number of classes. For example, the numbers of 1 × 1 convolution layers for the
feature map at each scale would be: box number × (bounding box offset + objectness
score + class number) = 3 × (4 + 1 + 26) = 93. The feature maps at each scale will
have dimensions of 104 × 104 (×93), 52 × 52 (×93), 26 × 26 (×93), and 13 × 13 (×93).
Prediction is performed at larger scales as the feature vector size decreases and at smaller
scales as the feature vector size increases. Table 2 shows the detailed structure of the MBDM.
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Table 2. Architecture of MBDM.

Layer Number Number of Iterations Layer Type Number of Filters Filter Size Output

0 Input_layers 0 0
1 Conv. 32 3 × 3 512 × 512
2 Conv. 64 3 × 3/2 256 × 256

3
×1

Conv. 32 1 × 1
4 Conv. 64 3 × 3
5 Residual 256 × 256

6 Conv. 128 3 × 3/2 128 × 128

7
×2

Conv. 64 1 × 1
8 Conv. 128 3 × 3
9 Residual 128 × 128

10 Conv. 256 3 × 3/2 64 × 64

11
×8

Conv. 128 1 × 1
12 Conv. 256 3 × 3
13 Residual 64 × 64

14 Conv. 512 3 × 3/2 32×32

15
×8

Conv. 256 1 × 1
16 Conv. 512 3 × 3
17 Residual 32 × 32

18 Conv. 1024 3 × 3/2 16 × 16

19
×8

Conv. 512 1 × 1
20 Conv. 1024 3 × 3
21 Residual 16 × 16

22 Conv. 2048 3 × 3/2 8 × 8

23
×4

Conv. 1024 1 × 1
24 Conv. 2048 3 × 3
25 Residual 8 × 8

26 Average pooling Global
27 Connected 1000
28 Independent logistic classifier

3.4. Mathematical Fundamentals of Bounding Box Detection by MBDM

In training, bounding boxes are defined using vx, vy, vw, and vh (vx and vy represent
the x- and y-coordinates of the bounding box in the grid, and vw and vh represent the width
and height of the bounding box, respectively). The method for determining bounding
boxes from YOLO is used and the location coordinates of the bounding box are predicted
relative to the grid cell using this method. Further, tx, ty, tw, and th represent the x- and
y-coordinates and the width and height, respectively, and these location coordinates indicate
the predicted bounding box. cx and cy represent the offset from the top left corner of the
grid cell, and pw and ph represent the width and height in anchor dimensions. σ() of
Equations (1) and (2) is a logistic activation function such as sigmoid function [21]. The
bounding box is predicted using tx, ty, tw, th and cx, cy pw, ph, which are calculated using
the following formula.

vx= σ(tx ) + cx (1)

vy= σ
(
ty ) + cy (2)

vw= pwetw (3)

vh= pheth (4)
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4. Experiment Results and Analysis
4.1. Experimental Database and Setup

In this study, we used the Dongguk Korean Banknote database version 1 (DKB v1) [5]
and Jordanian dinar (JOD) open database. We also used an integrated multinational
banknote database, which included images of USD, EUR, and KRW captured using the
Samsung Galaxy Note10 camera [28]. The DKB v1 consists of eight classes of KRW ban-
knotes, including denominations of 10, 50, 100, 500, 1000, 5000, 10,000, and 50,000 as well
as coins and bills. It includes a total of 6400 images, with 800 images per class and has a
resolution of 1920 × 1080 pixels. The JOD database, which includes both coins and bills,
consists of nine classes in denominations of 1 Qirsh 5, 10 Piastres 1/4, 1/2, 1, 5, 1, and
20 Dinars, and has image resolution of 3264 × 2448 pixels. The acquired USD database
includes six classes of 1, 5, 10, 20, 50, and 100 dollar bills, with a total of 120 images,
20 images per class, and an image resolution of 1920 × 1080 pixels. The EUR database
consists of five classes of 5, 10, 20, 50, and 100 Euro bills, with a total of 100 images
(20 images per class) and an image resolution of 1920 × 1080 pixels. However, the input
images of all four datasets for the MBDM in Figure 1 are resized to 1024 × 1024 pixels via
bilinear interpolation. Therefore, the minimum resolution is 1024 × 1024 pixels to apply
our method. Data augmentation was applied to the USD and EUR databases because of
their small number of training data. To mimic real-world conditions, the banknote images
in all of the databases were acquired at various angles, with folds, and varying contrasts. A
detailed description of the experimental databases is provided in Table 3, and examples of
database images are presented in Figure 5.

Table 3. Detailed description of database.

Type of Banknote Denomination Number of Images Training Testing

USD

1 Dollar 660 330 330
5 Dollar 670 335 335

10 Dollar 660 330 330
20 Dollar 670 335 335
50 Dollar 660 330 330

100 Dollar 680 340 340

EUR

5 Euro 800 400 400
10 Euro 800 400 400
20 Euro 800 400 400
50 Euro 800 400 400

100 Euro 800 400 400

KRW

10 Won 800 400 400
50 Won 800 400 400

100 Won 800 400 400
500 Won 800 400 400

1000 Won 820 410 410
5000 Won 820 410 410

10,000 Won 820 410 410
50,000 Won 820 410 410

JOD

1 piastres 700 350 350
5 piastres 900 450 450

10 piastres 240 120 120
0.25 dinar 580 290 290
0.5 dinar 480 240 240
1 dinar 1460 730 730
5 dinar 580 290 290

10 dinar 700 350 350
20 dinar 900 450 450

Total 21,020 10,510 10,510
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We trained and tested our algorithm on a desktop computer equipped with Intel®

Core™ i7-950 CPU@3.07GHz, 20 Gigabytes (GB) memory, and NVIDIA GeForce GTX1070
graphics with 1920 compute unified device architecture (CUDA) cores [29]. The algorithm
was implemented using PyTorch [30] in Python [31] and utilized CUDA (Version 10.0) [32]
with CUDA deep neural network library (CUDNN) (version 7.1.4) [33].

4.2. Training of Proposed Method

For this study, as described in Table 3, a total of 21,020 images were divided into
training and testing sets of 10,510 images, and two-fold cross-validation was performed.

This implies that in the first fold, 10,510 images were used for training and the remain-
ing 10,510 images were used for testing. In the second fold, these two sets were exchanged
for training and testing. The final performance was determined by taking average accuracy
across the two-fold experiments. In addition, we selected 1000 images of each nationality
from the training set to use as a validation dataset, totaling 4000 images. The parameters
used for training in this study included a base learning rate of 0.001, batch size of 1, gamma
of 0.1, weight decay of 0.0005, and 150 epochs. An adaptive moment estimation (Adam)
optimizer was also used. Figure 6a,b show training loss and accuracy, as well as the val-
idation loss and accuracy, for the first and second folds of the MBDM, respectively. As
shown in these figures, the training loss and accuracy values converge as the number of
epochs increases, indicating that the MBDM has been adequately trained on the training
data. In addition, the convergence of the validation loss and accuracy values as the number
of epochs increases suggests that the MBDM is not overfitted to the training data.
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4.3. Testing of Proposed Method
4.3.1. Evaluation Metric

To measure the testing performance, we calculated true positive (TP), false positive
(FP), and false negative (FN) values based on the intersection over union (IoU) value
between the detection box and the ground-truth box obtained through the proposed
MBDM. We then used the obtained TP, FP, and FN values to calculate precision, recall, and
F1 score using the equations below, and evaluated the testing performance accordingly. In
Equations (5)–(7), #TP, #FP, and #FN represent the number of TP, FP, and FN, respectively [34].

Precision =
#TP

#TP + #FP
(5)

Recall =
#TP

#TP + #FN
(6)

F1 score =
2·precision·recall
precision + recall

(7)
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4.3.2. Ablation Studies

We conducted ablation studies to compare three methods. The first method involved
using Retinex filtering [35] before applying the MBDM to the input image, while the
second method involved using grouped convolution [36] in the MBDM. The third method
involved using mosaic data argumentation for MBDM training. As shown in Table 4, both
precision and recall performances were lower when Retinex filtering was applied compared
to when it was not applied. Grouped convolution was applied to improve the speed and
performance of the operation; however, Table 5 shows that performance was higher when it
was not used. Table 6 shows that mosaic augmentation with four images resulted in higher
accuracy compared to two or six images and also showed higher accuracy compared to
the case with no mosaic augmentation. Although the authors showed that applying four
images in the existing method [27] was effective for mosaic augmentation, they did not
perform the ablation studies to select the optimal number of mosaic images. Furthermore,
they used ImageNet (ILSVRC 2012 val) and MS COCO (test-dev 2017) datasets, which have
different image characteristics from our experimental datasets of USD, EUR, KRW, and
JOD banknotes. Therefore, we performed the ablation studies to select the optimal number
of mosaic images as shown in Table 6 and found that four images for mosaic augmentation
has the highest accuracies.

Table 4. Performance comparisons with or without Retinex filtering.

Method Precision Recall F1 Score

With Retinex 0.8053 0.8737 0.8381
Without Retinex (proposed method) 0.8396 0.9334 0.8840

Table 5. Performance comparisons with or without grouped convolution.

Method Precision Recall F1 Score

With grouped convolution 0.8294 0.9255 0.8748
Without grouped convolution

(proposed method) 0.8396 0.9334 0.8840

Table 6. Performance comparisons with or without mosaic augmentation, and with mosaic augmen-
tation according to the various number of images.

Method Precision Recall F1 Score

Without mosaic augmentation 0.8242 0.9263 0.8723

With mosaic
augmentation

using

two images 0.8173 0.9097 0.8610
four images 0.8396 0.9334 0.8840
six images 0.8166 0.8885 0.8510

As shown in Figure 3 and Table 2, the proposed MBDM consists of three box sets.
We added one more box set with the same configuration to create the MBDM (deeper
layers), resulting in a model with deeper layers (85 layers). We compared the performance
of the MBDM (normal layers) and the MBDM (deeper layers) in Table 7. When mosaic
augmentation is not used, the MBDM (deeper layers) exhibited lower precision performance
but higher recall performance compared to the MBDM (normal layers). However, in terms
of final F1 score, the MBDM (deeper layers) performed better. When we applied the
same mosaic augmentation with four images, the MBDM (normal layers) showed higher
accuracy, and the MBDM (normal layers) with mosaic augmentation using four images
showed the highest performance in all cases.
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Table 7. Performance comparisons according to MBDM (normal layers) and MBDM (deeper layers)
with or without mosaic augmentation.

Method Precision Recall F1 Score

Without mosaic augmentation MBDM (deeper layers) 0.8150 0.9424 0.8741
MBDM (normal layers) 0.8242 0.9263 0.8723

With mosaic augmentation
(four images)

MBDM (deeper layers) 0.8359 0.9255 0.8784
MBDM (normal layers) 0.8396 0.9334 0.8840

4.3.3. Comparisons with the State-of-the-Art Methods

In this subsection, we compare the performance of the proposed method with
state-of-the-art methods. We compared our method with deep feature-based methods
such as the MobileNet-based banknote detection method [13], the Faster R-CNN-based
banknote detection method [5], the YOLO v3-based banknote detection method [19,20],
and the YOLO v2 [21] method. As shown in Table 8, the proposed method outperformed
the state-of-the-art methods in the multinational banknote database. MobileNet [13]
exhibited the worst performance, while Faster R-CNN performed better than YOLO v2.
In terms of precision, Faster R-CNN achieved a slightly higher score than YOLO v3;
however, in terms of recall, YOLO v3 performed better. In terms of the final performance
metric, the F1 score, YOLO v3 exhibited the highest results. Tables 9 and 10 compare
the performance of the state-of-the-art methods and the proposed method for USD
and EUR. As described in Section 4.1, the USD and EUR databases contain only bills;
therefore, we only compare the detection accuracy for bills. As shown in Tables 9 and 10,
the proposed method showed higher performance than the state-of-the-art methods.
Finally, Tables 11 and 12 compare the performance of the state-of-the art methods and
the proposed method for KRW and JOD. As described in Section 4.1, the KRW and JOD
database contain both coins and bills, so we compare the detection accuracy of coins and
bills, respectively. As shown in Tables 11 and 12, the proposed method showed higher
performance than the state-of-the-art methods. Upon comparing Tables 9 and 10 with
Tables 11 and 12, it is evident that the accuracy of the proposed method is relatively
higher in the USD and EUR databases than in the KRW and JOD databases. This is
because the KRW and JOD databases contain coin data, which have a smaller size and
more light reflection on the metal surface, leading to lower detection accuracy compared
to bills, which have a larger size and relatively less light reflection. Figures 7–11 compare
the results of Tables 8–12 according to the IoU threshold; evidently, the proposed method
showed higher detection accuracy than the state-of-the-art methods.
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Table 8. Performance comparisons of the proposed method and the state-of-the-art methods with
multinational banknote database.

Methods Precision Recall F1 Score

Faster R-CNN [5]
Coin 0.7576 0.8210 0.7880
Bill 0.8410 0.9114 0.8748

Coin and bill 0.7993 0.8662 0.8314

YOLO v3 [19,20]
Coin 0.7351 0.8272 0.7783
Bill 0.8629 0.9710 0.9137

Coin and bill 0.7990 0.8991 0.8460

MobileNet [13]
Coin 0.7472 0.7911 0.7685
Bill 0.8376 0.8867 0.8614

Coin and bill 0.7924 0.8389 0.8150

YOLO v2 [21]
Coin 0.7371 0.7906 0.7630
Bill 0.8653 0.9282 0.8956

Coin and bill 0.8012 0.8594 0.8293

YOLO v4 [27]
Coin 0.7763 0.8657 0.8186
Bill 0.8713 0.9715 0.9187

Coin and bill 0.8238 0.9186 0.8686

YOLO v5 [37]
Coin 0.7771 0.8608 0.8168
Bill 0.8731 0.9672 0.9178

Coin and bill 0.8251 0.914 0.8673

MBDM
(proposed method)

Coin 0.7747 0.8707 0.8200
Bill 0.8737 0.9819 0.9246

Coin and bill 0.8396 0.9334 0.8840

Table 9. Performance comparisons of the proposed method and the state-of-the-art methods with USD.

Methods Precision Recall F1 Score

Faster R-CNN [5] 0.8465 0.9173 0.8805
YOLO v3 [19,20] 0.8752 0.9848 0.9268
MobileNet [13] 0.8196 0.8676 0.8429
YOLO v2 [21] 0.8752 0.9388 0.9059
YOLO v4 [27] 0.8804 0.9745 0.9251
YOLO v5 [37] 0.8795 0.9815 0.9277

MBDM (proposed method) 0.8861 0.9957 0.9377
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Table 10. Performance comparisons of the proposed method and the state-of-the-art methods with EUR.

Methods Precision Recall F1 Score

Faster R-CNN [5] 0.8472 0.9181 0.8812
YOLO v3 [19,20] 0.8739 0.9834 0.9254
MobileNet [13] 0.8486 0.8983 0.8727
YOLO v2 [21] 0.8747 0.9383 0.9054
YOLO v4 [27] 0.8756 0.9839 0.9266
YOLO v5 [37] 0.8841 0.9785 0.9289

MBDM (proposed method) 0.8855 0.9952 0.9372

Table 11. Performance comparisons of the proposed method and the state-of-the-art methods with KRW.

Methods Precision Recall F1 Score

Faster R-CNN [5]
Coin 0.7600 0.8236 0.7905
Bill 0.8356 0.9055 0.8691

Coin and bill 0.7978 0.8646 0.8298

YOLO v3 [19,20]
Coin 0.7258 0.8167 0.7686
Bill 0.8520 0.9587 0.9022

Coin and bill 0.7889 0.8877 0.8354

MobileNet [13]
Coin 0.7392 0.7826 0.7603
Bill 0.8286 0.8772 0.8522

Coin and bill 0.7839 0.8299 0.8062

YOLO v2 [21]
Coin 0.7262 0.7789 0.7516
Bill 0.8524 0.9143 0.8823

Coin and bill 0.7893 0.8466 0.8169

YOLO v4 [27]
Coin 0.7573 0.8632 0.8068
Bill 0.8489 0.9676 0.9043

Coin and bill 0.8031 0.9154 0.8556

YOLO v5 [37]
Coin 0.7625 0.8496 0.8037
Bill 0.8563 0.9542 0.9026

Coin and bill 0.8094 0.9019 0.8532

MBDM
(proposed method)

Coin 0.7681 0.8632 0.8129
Bill 0.8661 0.9734 0.9166

Coin and bill 0.8171 0.9183 0.8647

4.3.4. Analysis

We compared the experimental results of this study to demonstrate successful de-
tections and cases wherein detection errors occurred. As shown in Figure 12, out of the
six detection results, the three examples corresponding to Figure 12a are USD 5, EUR 10,
and EUR 100, which represent successful object detection and classification. In particular,
Figure 12a shows that these bills were properly detected despite the complex backgrounds,
various sizes, and in-plane rotation. The three examples corresponding to Figure 12b are
KRW 50, USD 50, and JOD 10, which are cases where a detection error occurred. In the
case of KRW 50, the coin is smaller than other banknote objects, and especially smaller
than other coins, so it was incorrectly detected as a different coin class during the detection
process. In the case of USD 50, a detection error occurred because of the complicated
background, whereas in the case of JOD 10, a detection error occurred owing to the folded
state of the bill.
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Table 12. Performance comparisons of the proposed method and the state-of-the-art methods with JOD.

Methods Precision Recall F1 Score

Faster R-CNN [5]
Coin 0.7552 0.8184 0.7855
Bill 0.8349 0.9048 0.8684

Coin and bill 0.7951 0.8616 0.8270

YOLO v3 [19,20]
Coin 0.7228 0.8134 0.7654
Bill 0.8485 0.9548 0.8985

Coin and bill 0.7857 0.8841 0.8320

MobileNet [13]
Coin 0.7334 0.7765 0.7543
Bill 0.8221 0.8703 0.8455

Coin and bill 0.7777 0.8234 0.7999

YOLO v2 [21]
Coin 0.7334 0.7765 0.7543
Bill 0.8491 0.9108 0.8789

Coin and bill 0.7862 0.8433 0.8138

YOLO v4 [27]
Coin 0.7496 0.8405 0.7925
Bill 0.8410 0.9429 0.8890

Coin and bill 0.7953 0.8917 0.8407

YOLO v5 [37]
Coin 0.7274 0.8425 0.7807
Bill 0.8150 0.9439 0.8747

Coin and bill 0.7712 0.8932 0.8277

MBDM
(proposed method)

Coin 0.7651 0.8598 0.8097
Bill 0.8627 0.9696 0.9131

Coin and bill 0.8139 0.9147 0.8614
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In the next experiment, we extracted the gradient class activation map (GradCAM) [38]
from each layer of the proposed MBDM, and the results are shown in Figure 13. Grad-
CAM images can visually indicate the importance of extracted features by displaying
important features in a color close to red and unimportant features in a color close to
blue in the extracted feature map [38]. We obtained GradCAM from conv_8, conv_12,
conv_16, conv_20, and conv_24 of the feature extractor in Table 2, using a JOD 20 bill,
KRW 1000 bill, JOD 5 coin, and EUR 100 bill as input. As shown in Figure 13, it was
confirmed that highly activated important features are well detected in the banknote and
coin regions in the feature map obtained from conv_24 of the MBDM. This confirms that
the proposed MBDM extracts important features that can effectively detect banknotes.
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In the next experiment, we performed a t-test [39] and measured Cohen’s d-value [40]
between F1 scores for the proposed MBDM and the second-best method in Table 8 for
statistical testing. These tests were conducted for the F1 scores of the coin, bill, and
coin and bill databases, respectively. A Cohen’s d-value around 0.2 represents a small
effect size, 0.5 means a medium effect size, and 0.8 means a large effect size. As shown
in Figure 14a, we measured the p-values of the second-best method and the proposed
method for the coin database in Table 8. The p-value of the result was 0.022, which
implies a 95% confidence level, and Cohen’s d-value was 4.858 (large effect size). As
shown in Figure 14b, we measured the p-values of the second-best method and the
proposed method for the bill database in Table 8. The p-value of the result was 0.017,
which means a 95% confidence level, and Cohen’s d-value was 5.295 (large effect size).
As shown in Figure 14c, we measured the p-values of the second-best method and the
proposed method for the coin and bill database in Table 8. The p-value of the result was
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0.019, which means a 95% confidence level, and Cohen’s d-value was 5.031 (large effect
size). These results confirm that there is a significant difference between the F1 scores of
the proposed method and the second-best method in Table 8.
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4.3.5. Comparisons of Inference Time and Model Complexity

This subsection compares the inference time, processing speed, number of model
parameters, GPU memory requirements, and the number of floating-point operations per
second (#FLOPs) of the proposed method (MBDM) with state-of-the-art methods. The
performance metrics were measured on both a desktop computer (described in Section 4.1)
and a Jetson TX2 embedded system (shown in Figure 15). Jetson TX2 uses a NVIDIA
PascalTM-family GPU and has 256 CUDA cores, 8 GB of memory shared between the
central processing unit (CPU) and GPU, and 59.7 GB/s of memory bandwidth, and a
power consumption of less than 7.5 W [41]. The MBDM was tested for inference time
and processing speed on both a desktop computer and the Jetson TX2 embedded system.
The results, shown in Table 13, indicate that the inference time per image was 11.32 ms
on the desktop computer and 57.32 ms on the Jetson TX2. This translates to a processing
speed of 88.34 frames per second (fps) (1000/11.32) on the desktop computer and 17.45 fps
(1000/57.32) on the Jetson TX2. These results demonstrate that the proposed method can
be operated on both desktop computers and embedded systems with limited computing
resources. However, as shown in Table 13, the MBDM has a slower processing speed
than other models but a faster processing speed than Faster R-CNN. In terms of model
parameters, GPU memory requirements, and the number of floating-point operations
per second (#FLOPs), as shown in Table 14, the MBDM has more parameters than other
models and requires less GPU memory than Faster R-CNN and YOLO v4. In addition,
it requires less FLOPs than Faster R-CNN. Nevertheless, the proposed method exhibits
higher detection accuracy than other methods, as shown in Tables 8–12 and Figures 7–11.
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Table 13. Comparisons of inference time and processing speed by proposed method and the state-of-
the-art methods.

Environment Inference Time per One
Image (Unit: ms)

Processing Speed
(Unit: frames/s)

Desktop

Faster R-CNN [5] 12.52 79.87
YOLO v3 [19,20] 9.81 101.94
MobileNet [13] 7.59 131.75
YOLO v2 [21] 10.38 96.34
YOLO v4 [27] 10.11 98.91
YOLO v5 [37] 9.96 100.4

MBDM (proposed method) 11.32 88.34

Jetson embedded system

Faster R-CNN [5] 63.25 15.81
YOLO v3 [19,20] 48.79 20.50
MobileNet [13] 31.62 31.63
YOLO v2 [21] 51.45 19.44
YOLO v4 [27] 49.82 20.07
YOLO v5 [37] 48.88 20.46

MBDM (proposed method) 57.32 17.45

Table 14. Comparisons of number of parameters, GPU memory requirement, and #FLOPs.

Method # Parameters (×106)
GPU Memory Requirement

(Unit: Gbyte) #FLOPs (×109)

Faster R-CNN [5] 65.2563 4.138 2.1592
YOLO v3 [19,20] 63.3524 2.285 1.7420
MobileNet [13] 13.1526 1.159 0.7492
YOLO v2 [21] 53.0006 2.293 1.6549
YOLO v4 [27] 64.1748 2.315 1.7951
YOLO v5 [37] 56.1049 1.951 1.5832

MBDM (proposed method) 68.2594 2.312 1.8472

5. Conclusions

In this study, a novel method for detecting banknotes using smartphone images taken
under various conditions with various banknote types and complex backgrounds was
developed. The proposed method, called the MBDM, was trained using mosaic data
augmentation and tested on several databases including DKB v1, a KRW database built
for this research, a JOD database (open database), and a multinational banknote database
comprising USD and EUR images captured with a Samsung Galaxy Note 10 camera. The
results showed that the MBDM outperformed state-of-the-art methods in terms of detection
accuracy. The visualization of GradCAM images confirmed that the MBDM adequately
extracted important features for accurate detection. Statistical analysis using t-test and
Cohen’s d-value also revealed that the proposed method exhibited significantly higher
accuracy than the second-best method.

We consider that the execution of our algorithm, database storage, and model training
can be performed via cloud computing. However, we also consider a scenario where our
algorithm works on an embedded system in a mobile phone. Therefore, we compared
the inference time and processing speed of our proposed method and the state-of-the-art
methods on a desktop computer and a Jetson embedded system as shown in Table 13, and
compared the number of parameters, GPU memory requirement, and #FLOPs as shown
in Table 14. These results show that our algorithm can work on an embedded system
with limited computing power and memory. However, the detection performance was not
always satisfactory, especially for small coins such as KRW 50 or in the case of complicated
backgrounds or folded banknotes.
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To address these issues, future research will focus on methods for maintaining spatial
features to improve detection performance for small objects and for handling complicated
backgrounds and folded banknotes. In addition, efforts will be made to reduce the pro-
cessing time, number of parameters, memory usage, and #FLOPs of the MBDM while
maintaining its accuracy.
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