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Abstract: This paper presents a study on the oscillatory behavior of solutions to fourth-order ad-
vanced differential equations involving p-Laplacian-like operator. We obtain oscillation criteria
using techniques from first and second-order delay differential equations. The results of this work
contribute to a deeper understanding of fourth-order differential equations and their connections to
various branches of mathematics and practical sciences. The findings emphasize the importance of
continued research in this area.
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1. Introduction

We take into consideration in our work the oscillatory criteria of the following fourth-
order advanced differential equation

(
a(t)|u′′′(t)|p−2u′′′(t)

)′
+ q(t)g(u(δ(t))) = 0,

a(t) > 0, a′(t) ≥ 0, q(t) ≥ 0, δ(t) ≥ t,
(1)

where the p-Laplace operator is represented by the first term with (1 < p < ∞), and with
coefficient function a ∈ C1([t0, ∞),R), t ≥ t0 > 0. Furthermore, q, δ ∈ C([t0, ∞),R) and
g ∈ C(R,R).

The oscillatory behavior of solutions for various classes of functional differential
equations was a largely investigated field of research in recent decades. Here we recall the
pioneering papers by Nehari [1] and Philos [2], and the comprehensive book of Agarwal–
Grace–O’Regan [3]. We mention the works of Grace–Lalli [4], Zhang–Agarwal–Bohner–
Li [5], Zhang–Li–Sun [6] (higher order equations), and Bartusek–Cecchi–Dosla–Marini [7],
Ali and Bazighifan [8–14], and Agarwal–Shieh–Yeh [15] (second order equations). More
related studies have been done recently, see [16–18].

Advanced differential equations include several applications in optimization, dynami-
cal systems, and simulation techniques of engineering problems, including power systems,
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control mechanisms, networking, and nanomaterials (see Hale’s book [19]). The importance
of p-Laplace equations appears in several applications in the theory of elasticity as well as
in the theory of continuum mechanics, see [20–22]. We recommend the publications of Li–
Baculikova–Dzurina–Zhang [23] for some findings on the oscillatory behavior of equations
resulting from a p-Laplace differential operator as well as the papers of Liu–Zhang–Yu [24],
and Zhang–Agarwal–Li [25].

Therefore, the purpose of this study is to supplement previous work by focusing on the
results in [4,26,27]. Using the integral averaging technique (see, for example, Xu–Xia [28]),
together with the Riccati transformation technique (see, for example, Zhang–Li–Saker [29])
and comparison method with second-order differential equations, we obtain new criteria
for the oscillation of Equation (1). We point out that when all the solutions of (1) are
oscillatory, then the equation itself is called oscillatory; otherwise (1) is said non-oscillatory.

2. Auxiliary Results—Hypotheses

In this section, we summarize significant information and supplementary results from
the literature that will be useful for the remainder of the paper. Additionally, we establish
the notation used.

The definition below pertains to the non-oscillatory behavior of a second-order dif-
ferential equation. We will utilize this definition in the technique of comparing with
second-order differential equations to prove our second theorem.

Now, we take into account the following sets:

D = {(t, s) ∈ R2 : t ≥ s ≥ t0} and D0 = {(t, s) ∈ R2 : t > s ≥ t0}.

Definition 1 ([24]). A couple of functions (H1, H2) ∈ C(D,R)× C(D,R) is said to be of class
=, if the following conditions hold:

(i) Hi(t, t) = 0 for t ≥ t0, and Hi(t, s) > 0 for (t, s) ∈ D0, with i = 1, 2;
(ii) there exist η, ϑ ∈ C1([t0, ∞), (0, ∞)) and (h1, h2) ∈ C(D,R)× C(D,R) such that:

∂

∂s
H1(t, s) +

η′(s)
η(s)

H1(t, s) = h1(t, s)H(p−1)/p
1 (t, s), (2)

∂

∂s
H2(t, s) +

ϑ′(s)
ϑ(s)

H2(t, s) = h2(t, s)
√

H2(t, s), (3)

whenever the partial derivatives ∂Hi
∂s , i = 1, 2, are continuous and nonpositive on D0.

For further convenience, we denote:

ζ(t) =
∫ ∞

t

1
a1/(p−1)(s)

ds,

π(s) =
hp

1 (t, s)Hp−1
1 (t, s)

pp
2p−1η(s)a(s)

(θs2)
p−1 , θ ∈ (0, 1),

v(v) =
∫ ∞

t

(
k

a(ς)

∫ ∞

ς
q(s)ds

)1/(p−1)
dς.

Our goal here, as stated in the introduction, is to supplement findings in [4,26,27].
Therefore, we discuss in detail all these findings.

We point out that Li–Baculikova–Dzurina–Zhang [23], applied the Riccati transfor-
mation along with the integral averaging method, and concentrated on the way how the
following equations oscillate(

a(t)
∣∣z′′′(t)∣∣p−2z′′′(t)

)′
+

j

∑
i=1

qi(t)|u(δi(t))|p−2u(δi(t)) = 0, 1 < p < ∞.
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In Park–Moaaz–Bazighifan [30], the Riccati method leads to important and sufficient
conditions for the oscillation of

(
a(t)

∣∣∣u(ω−1)(t)
∣∣∣p−2

u(ω−1)(t)
)′

+ q(t)g(u(δ(t))) = 0, ω even,∫ ∞
t

ds
a1/(p−1)(s) = ∞.

In Zhang–Agarwal–Bohner–Li [5] and C. Zhang–Li–Sun–Thandapani [6], the method
of comparison was applied along with first order equations in order to establish that all the
solutions u of 

((
u(ω−1)(t)

)β
)′

+ q(t)uα(δ(t)) = 0,∫ ∞
t

ds
a1/(p−1)(s) < ∞,

(4)

are oscillating or that lim
t→∞

u(t) = 0 holds whenever δ(t) ≤ t, α ≤ β (with α, β being ratios

of odd positive integers), and ω is even.
For the special case when β = α, Zhang–Li–Saker [29] obtained several results illus-

trating the findings on the asymptotic behavior of (4), with ω = 4. Agarwal–Grace [26] and
Agarwal–Grace–O’Regan [27] considered the canonical even-order nonlinear advanced
differential equation ((

u(ω−1)(t)
)β
)′

+ q(t)uβ(δ(t)) = 0, (5)

using Riccati transformation method, where they provided several oscillatory results for (5)
where δ(t) ≥ t, ω is even and β is the ratio of odd non-negative integers.
For β = 1, Equation (5) becomes

u(ω)(t) + q(t)u(δ(t)) = 0. (6)

Now, Grace–Lalli [4] proved oscillatory theorems for (6) in the case where ω is even
and under the condition ∫ ∞

t0

q(s)δω−1(s)ds = ∞.

We point out that applying the above-mentioned theorems to

u(ω)(t) +
q0

tω
u(ρt) = 0, t ≥ 1, (7)

in the case where ω = 4 and ρ = 2, then the hypotheses in [4,26,27] on (7) lead to show that
the results in [27] improve the corresponding ones in [4]. Furthermore, the results in [26]
refine the results in [4,27].

Finally, we mention a few tools that will come in handy as the paper progresses.

Lemma 1 ([6]). Let u ∈ Cω([t0, ∞), (0, ∞)) be such that u(ω) does not change sign on [t0, ∞)
and u(ω) 6≡ 0. Assume there is t1 ≥ t0 with

u(ω−1)(t)u(ω)(t) ≤ 0, for all t ≥ t1.

If limt→∞ u(t) 6= 0, then we can find tθ ≥ t1 with

u(t) ≥ θ

(ω− 1)!
tω−1

∣∣∣u(ω−1)(t)
∣∣∣, for all θ ∈ (0, 1), t ≥ tθ .

Lemma 2 ([31]). For i = 0, 1, . . . , ω, let u(i)(t) > 0 and u(ω+1)(t) < 0. Thus, we have

u′(t)
tω

ω!
≤ u(t)

tω−1

(ω− 1)!
.
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Remark 1 ([32]). Fixing c0 > 0 and c1 ≥ 0, we have that

c1x− c0xp/(p−1) ≤ (p− 1)p−1

pp
cp

1

cp−1
0

, for all x ∈ [0,+∞).

By a solution of (1) we mean a function u ∈ C3([tu, ∞),R), tu ≥ t0, which has the
property a(t)|u′′′(t)|p−2u′′′(t) ∈ C1[tu, ∞), and satisfies (1) on [tu, ∞). We consider only
those solutions u of (1) such that sup{|u(t)| : t ≥ tu} > 0.

The following lemma encapsulates the scenarios to be examined in the demonstrations
of our results.

Lemma 3 ([29]). Let u ∈ C3([tu, ∞),R) be an (eventually) non-negative and non-zero solution of
Equation (1). Thus, one could get the below cases:

(S1) u(t) > 0, u′(t) > 0, u′′(t) > 0, u′′′(t) > 0, u(4)(t) < 0,
(S2) u(t) > 0, u′(t) > 0, u′′(t) < 0, u′′′(t) > 0, u(4)(t) < 0,
(S3) u(t) > 0, u′′(t) > 0, u′′′(t) < 0,

for t ≥ t1, where t1 ≥ t0 is large enough.

We are now able to present the specific hypotheses based on the facts of (1):

(H1) ζ(t) < ∞,

(H2) There exist a constant k such that g(x)
|x|p−2x

≥ k > 0, for x 6= 0,

(H3) There exist (H1, H2) ∈ = and θ ∈ (0, 1) such that we have:

lim sup
t→∞

1
H1(t, t1)

∫ t

t1

(H1(t, s)kη(s)q(s)− π(s))ds = ∞, (8)

lim sup
t→∞

1
H2(t, t1)

∫ t

t1

(
H2(t, s)ϑ(s)v(s)−

ϑ(s)h2
2(t, s)
4

)
ds = ∞, (9)

(H4) Let π̃(s) := (p−1)p

pp
1

a1/(p−1)(s)ζ(s)
. There exists θ1 ∈ (0, 1) such that we have

lim sup
t→∞

∫ t

t1

(
kq(s)

(
θ1δ2(s)

2

)p−1

ζ p−1(δ(s))− π̃(s)

)
ds = ∞. (10)

3. Main Results

The first result of the paper introduces a theorem that employs the integral averaging
technique to apply Philos-type oscillation criteria to Equation (1).

Theorem 1. If (H1)–(H4) hold, then every solution u ∈ C3([tu, ∞),R) of (1) is either oscillatory
or satisfies lim

t→∞
u(t) = 0.

Proof. Arguing by contradiction, we suppose that u ∈ C3([tu, ∞),R) is a positive solution
of (1). So, we assume that u(t) and u(δ(t)) are positive for all t ≥ t1 large enough.

Now, we distinguish the following three cases (see Lemma 3):
Case 1. If (S1) holds, then by Lemma 1, we have

u′(t) ≥ θ

2
t2u′′′(t), for all θ ∈ (0, 1), t large enough. (11)

Putting

ϕ(t) := η(t)

(
a(t)(u′′′(t))p−1

up−1(t)

)
(with η given as in (H3)), (12)
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we note that ϕ(t) > 0 for t ≥ t1 and we have

ϕ′(t) = η′(t)
a(t)(u′′′(t))p−1

up−1(t)
+ η(t)

(
a(t)(u′′′(t))p−1

)′
up−1(t)

−(p− 1)η(t)
up−2(t)u′(t)a(t)(u′′′(t))p−1

u2(p−1)(t)
.

By (11) and (12), we deduce that

ϕ′(t)

≤ η′(t)
η(t)

ϕ(t) + η(t)

(
a(t)(u′′′(t))p−1

)′
up−1(t)

− (p− 1)η(t)
θ

2
t2 a(t)(u′′′(t))p

up(t)

≤ η′(t)
η(t)

ϕ(t) + η(t)

(
a(t)(u′′′(t))p−1

)′
up−1(t)

− (p− 1)θt2

2[η(t)a(t)]
1

p−1
ϕ(t)

p
p−1 . (13)

The equation in (1), and (13) give

ϕ′(t) ≤ η′(t)
η(t)

ϕ(t)− kη(t)
q(t)up−1(δ(t))

up−1(t)
− (p− 1)θt2

2[η(t)a(t)]
1

p−1
ϕ(t)

p
p−1 .

Since u′(t) > 0 and δ(t) ≥ t, we get

ϕ′(t) ≤ η′(t)
η(t)

ϕ(t)− kη(t)q(t)− (p− 1)θt2

2[η(t)a(t)]
1

p−1
ϕ(t)

p
p−1 . (14)

Next, we multiply both sides of (14) by H1(t, s), then we integrate each side over the
interval [t1, t], So, we have∫ t

t1

H1(t, s)kη(s)q(s)ds

≤ ϕ(t1)H1(t, t1) +
∫ t

t1

(
∂

∂s
H1(t, s) +

η′(s)
η(s)

H1(t, s)
)

ϕ(s)ds

−
∫ t

t1

(p− 1)θs2

2[η(s)a(s)]
1

p−1
ϕ(s)

p
p−1 H1(t, s)ds.

Using (2) (that is, the first equation of Definition 1 (ii)), we deduce that∫ t

t1

H1(t, s)kη(s)q(s)ds

≤ ϕ(t1)H1(t, t1) +
∫ t

t1

h1(t, s)H(p−1)/p
1 (t, s)ϕ(s)ds

−
∫ t

t1

(p− 1)θs2

2[η(s)a(s)]
1

p−1
ϕ(s)

p
p−1 H1(t, s)ds. (15)

If we apply the inequality given in Remark 1 for

c0 =
(p− 1)θs2

2[η(s)a(s)]
1

p−1 H1(t, s)
,

c1 = h1(t, s)H(p−1)/p
1 (t, s),

x = ϕ(s),
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we obtain that

h1(t, s)H(p−1)/p
1 (t, s)ϕ(s)− (p− 1)θs2

2[η(s)a(s)]
1

p−1
ϕ(s)

p
p−1 H1(t, s)

≤
hp

1 (t, s)Hp−1
1 (t, s)

pp
2p−1η(s)a(s)

(θs2)
p−1 ,

⇒ 1
H1(t, t1)

∫ t

t1

(H1(t, s)kη(s)q(s)− π(s))ds ≤ ϕ(t1),

a contradiction to (8).
Case 2. If (S2) holds, for t ≥ t1, we have

ψ(t) := ϑ(t)
u′(t)
u(t)

> 0 (with ϑ given as in (H3)),

⇒ ψ′(t) =
ϑ′(t)
ϑ(t)

ψ(t) + ϑ(t)
u′′(t)
u(t)

− 1
ϑ(t)

ψ(t)2 (by differentiation). (16)

If we integrate the equation in (1) over the interval [t, m] and use u′(t) > 0, then

a(m)
(
u′′′(m)

)p−1 − a(t)
(
u′′′(t)

)p−1
= −

∫ m

t
q(s)g(u(δ(s)))ds.

Since u′(t) > 0 and δ(t) ≥ t, we obtain that

a(m)
(
u′′′(m)

)p−1 − a(t)
(
u′′′(t)

)p−1 ≤ −kup−1(t)
∫ m

t
q(s)ds (by (H2))

⇒ a(t)
(
u′′′(t)

)p−1 ≥ kup−1(t)
∫ ∞

t
q(s)ds (passing to the limit as m→ ∞),

⇒ u′′′(t) ≥ u(t)
(

k
a(t)

∫ ∞

t
q(s)ds

)1/(p−1)
.

Now, we integrate over the interval [t, ∞), so that we have

u′′(t) + u(t)
∫ ∞

t

(
k

a(ς)

∫ ∞

ς
q(s)ds

)1/(p−1)
dς ≤ 0,

(recall that u′′(t) < 0 and u′′′(t) > 0),

⇒ ψ′(t) ≤ ϑ′(t)
ϑ(t)

ψ(t)− ϑ(t)v(v)− 1
ϑ(t)

ψ(t)2. (17)

Next, we multiply both sides of (17) (with v = s) by H2(t, s), then we integrate each
side over the interval [t1, t], So, we have∫ t

t1

H2(t, s)ϑ(s)v(s)ds

≤ ψ(t1)H2(t, t1) +
∫ t

t1

(
∂

∂s
H2(t, s) +

ϑ′(s)
ϑ(s)

H2(t, s)
)

ψ(s)ds

−
∫ t

t1

1
ϑ(s)

H2(t, s)ψ2(s)ds.

Using (3) (that is, the second equation of Definition 1 (ii)), we deduce that
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∫ t

t1

H2(t, s)ϑ(s)v(s)ds

≤ ψ(t1)H2(t, t1) +
∫ t

t1

h2(t, s)
√

H2(t, s)ψ(s)ds

−
∫ t

t1

1
ϑ(s)

H2(t, s)ψ2(s)ds

≤ ψ(t1)H2(t, t1) +
∫ t

t1

ϑ(s)h2
2(t, s)
4

ds

⇒ 1
H2(t, t1)

∫ t

t1

(
H2(t, s)ϑ(s)v(s)−

ϑ(s)h2
2(t, s)
4

)
ds ≤ ψ(t1),

a contradiction to (9).
Case 3. If (S3) holds and lim

t→∞
u(t) 6= 0, then since a(t)|u′′′(t)|p−2u′′′(t) is nonincreasing by

(1), we have
a1/(p−1)(s)u′′′(s) ≤ a1/(p−1)(t)u′′′(t), s ≥ t ≥ t1.

Now, we multiply both sides by [a1/(p−1)(s)]−1, then we integrate each side over the
interval [t, m]. Thus, we get

u′′(u) ≤ u′′(t) + a1/(p−1)(t)u′′′(t)
∫ m

t
a−1/(p−1)(s)ds,

⇒ 0 ≤ u′′(t) + a1/(p−1)(t)u′′′(t)ζ(t) (letting m→ ∞),

⇒ −a1/(p−1)(t)u′′′(t)ζ(t)
u′′(t)

≤ 1, (18)

⇒
(

u′′(t)
ζ(t)

)′
≥ 0. (19)

For t ≥ t1, we have

φ(t) =
a(t)|u′′′(t)|p−2u′′′(t)

(u′′(t))p−1 < 0, (20)

⇒ φ′(t) =

(
a(t)|u′′′(t)|p−2u′′′(t)

)′
(u′′(t))p−1 − (p− 1)a(t)|u′′′(t)|p

(u′′(t))p .

Using the equation in (1), then (18) gives

φ′(t) ≤ −kq(t)up−1(δ(t))

(u′′(t))p−1 − (p− 1)(−φ)p/(p−1)(t)
a1/(p−1)(t)

.

Now, Lemma 1 leads to

u(t) ≥ θ1

2
t2u′′(t). (21)

Using (19) we get ζ(δ(v))
ζ(v) ≤

u′′(δ(v))
u′′(v) . Then, we obtain that

φ′(t) =
−kq(t)up−1(δ(t))

(u′′(δ(t)))p−1
(u′′(δ(t)))p−1

(u′′(t))p−1 − (p− 1)(−φ)p/(p−1)(t)
a1/(p−1)(t)

,

⇒ φ′(t) ≤ −kq(t)
(

θ1δ2(t)
2

)p−1(
ζ(δ(t))

ζ(t)

)p−1
− (p− 1)(−φ)p/(p−1)(t)

a1/(p−1)(t)
. (22)
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From (18) and (20), we deduce that

− φ(t)ζ p−1(t) ≤ 1. (23)

Now, we multiply both sides of (22) (with v = s) by ζ p−1(s), then we integrate over
the interval [t1, t]. So, we obtain that

ζ p−1(t)φ(t)− ζ p−1(t1)φ(t1) + (p− 1)
∫ t

t1

a−1/(p−1)(s)ζ p−2(s)φ(s)ds

≤ −
∫ t

t1

kq(s)
(

θ1δ2(s)
2

)p−1

ζ p−1(δ(s))ds

− (p− 1)
∫ t

t1

(−φ)p/(p−1)(s)
a1/(p−1)(s)

ζ p−1(s)ds.

It follows that

∫ t

t1

kq(s)
(

θ1δ2(s)
2

)p−1

ζ p−1(δ(s))ds

≤ ζ p−1(t1)φ(t1)− ζ p−1(t)φ(t) +
∫ t

t1

(p− 1)a−1/(p−1)(s)ζ p−2(s)(−φ)(s)ds

− (p− 1)
∫ t

t1

(−φ)p/(p−1)(s)
a1/(p−1)(s)

ζ p−1(s)ds.

If we apply the inequality given in Remark 1 for

c0 =
ζ p−1(s)

a1/(p−1)(s)
,

c1 = a−1/(p−1)(s)ζ p−2(s),

x = −φ(s),

we obtain that

(p− 1)a−1/(p−1)(s)ζ p−2(s)(−φ)(s)− (−φ)p/(p−1)(s)
a1/(p−1)(s)

ζ p−1(s)

≤ (p− 1)p

pp
1

a1/(p−1)(s)ζ(s)
,

which leads to

∫ t

t1

(
kq(s)

(
θ1δ2(s)

2

)p−1

ζ p−1(δ(s))− π̃(s)

)
ds

≤ ζ p−1(t1)φ(t1) + 1, (by (23)).

So, we have a contradiction to (10).
Therefore, we conclude that u ∈ C3([tu, ∞),R) can not be a positive solution. So, every

solution u ∈ C3([tu, ∞),R) of (1) is oscillatory or lim
t→∞

u(t) = 0 is satisfied.

The next finding of the work is a theorem that establishes oscillation criteria to Equation (1).
For this purpose, we apply the technique of comparison with second-order differential equations.
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The new hypothesis is as follows:
(H5) For every θ, θ1 ∈ (0, 1), the equations:(

2p−1a(t)

(θt2)
p−1

∣∣u′(t)∣∣p−2u′(t)

)′
+ kq(t)up−1(t) = 0, (24)

u′′(t) + u(t)
∫ ∞

t

(
1

a(ς)

∫ ∞

ς
q(s)ds

)1/(p−1)
dς = 0, (25)

(
a(t)

∣∣u′(t)∣∣p−2u′(t)
)′

+ up−1(t)kq(t)
(

ζ(δ(t))
ζ(t)

)p−1( θ1

2
δ2(t)

)p−1
= 0 (26)

are oscillatory.

Theorem 2. If (H1), (H2) and (H5) hold, then every solution u ∈ C3([tu, ∞),R) of (1) is
oscillatory or lim

t→∞
u(t) = 0 is satisfied.

Proof. Arguing by contradiction, we suppose that u ∈ C3([tu, ∞),R) is a positive solution
of (1). So, we assume that u(t) and u(δ(t)) are positive for all t ≥ t1 large enough.

Now, we distinguish the following three cases (see Lemma 3):
Case 1. If (S1) holds, then using the same arguments as in the proof of Theorem 1 (Case 1),
we get that the inequality (14) is true. Putting η(t) = k = 1, from (14) we deduce that

ϕ′(t) +
(p− 1)θt2

2a
1

(p−1) (t)
ϕ(t)

p
p−1 + q(t) ≤ 0, for all θ ∈ (0, 1),

⇒ (24) is non-oscillatory,

a contradiction to hypothesis (H5).
Case 2. If (S2) holds, then proceeding with a similar statement as in the proof of Theorem 1
(Case 2), we get that the inequality (17) is true. From (17), with ϑ(t) = k = 1, we deduce that

ψ′(t) + ψ2(t) + v(s)ς ≤ 0

⇒ (25) is non-oscillatory,

a contradiction to hypothesis (H5).
Case 3. If (S3) holds and lim

t→∞
u(t) 6= 0, then proceeding with a similar statement as in the

proof of Theorem 1 (Case 3), we get that the inequality (22) is true. So, we have

φ′(t) +
β(−φ)p/(p−1)(t)

a1/(p−1)(t)
+ kq(t)

(
θ1δ2(t)

2

)p−1(
ζ(δ(t))

ζ(t)

)p−1
≤ 0

⇒ (26) is non-oscillatory,

a contradiction to hypothesis (H5). We conclude that u ∈ C3([tu, ∞),R) can not be a
positive solution. It follows that every solution u ∈ C3([tu, ∞),R) of (1) is either oscillatory
or satisfies lim

t→∞
u(t) = 0.

It is worth mentioning that the existence and regularity of the solution in Theorem 1
and Theorem 2 have been proven by Philos in [2].

Next, we provide a simple illustrative example.

Example 1. Consider the fourth order equation given as

(
etu′′′(t)

)′
+

1
16

et+ 1
2 u(t + 1) = 0, t ≥ 1, (27)
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that is, we put p = 2, a(t) = et, q(t) = et+ 1
2 /16 and δ(t) = t + 1 in (1). Furthermore, we

choose η(s) = ϑ(s) = 1 for all s ∈ [t0, ∞), and (H1, H2) ∈ = with

H1(v, s) = H2(v, s) = (v− s)2.

The above equation satisfies all the hypotheses of Theorem 1. So, we conclude that every
solution u ∈ C3([tu, ∞),R) of (27) is either oscillatory or satisfies lim

t→∞
u(t) = 0.

Since δ(t) = t + 1 > t, we observe that theorems in [5,6] do not work for Equation (27).

Finally, we note that if we continue along this path, we can obtain oscillatory results
for a fourth order equation of the type:

(
a(t)|u′′′(t)|p1−2u′′′(t)

)′
+ ∑

j
i=1 qi(t)|u(δi(t))|p2−2u(δi(t)) = 0, j ≥ 1,

t ≥ t0, δi(t) ≤ t, 1 < p2 ≤ p1 < ∞.

Remark 2. There is an interesting open problem concerning the above equation:

• Is it possible to have similar results in the case p2 > p1?

4. Conclusions

In conclusion, this study aimed at investigating the oscillatory properties of solutions to
fourth-order differential equations with a p-Laplacian. The findings of this paper contribute
to the understanding of the asymptotic and oscillatory behavior of such equations and
provide new oscillation criteria through the use of comparison methods with first and
second-order differential equations. This work highlights the relevance of the theory of
fourth-order differential equations to various fields of mathematics and practical sciences,
emphasizing the importance of continued research in this area.
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