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Abstract: In this paper, we find new oscillation criteria for second-order advanced functional half-
linear differential equations. Our results extend and improve recent criteria for the same equations
established previously by several authors and cover the existing classical criteria for related ordinary
differential equations. We give some examples to illustrate the significance of the obtained results.

Keywords: oscillation; second order; half-linear; advanced differential equations

MSC: 34K11; 34C10; 34K25

1. Introduction

Differential equations with deviating arguments are indispensable in simulating the
numerous processes in all areas of science. It is well known that the rate of change of a
process described by a delay differential equation depends on how the process has changed
in the past. In such a model, the prediction for the future time is logically accurate and
dependable, which leads to simultaneous descriptions of a variety of qualitative phenomena
such as periodicity, oscillation, and stability; see [1,2].

On the other hand, advanced differential equations have been derived from a variety
of practical areas where the rates of evolution depends on both the present and the future.
In order to reflect the influence of potential future factors in the decision-making process,
we must include an advanced term in the equation. For instance, population dynamics,
economic issues, or mechanical control engineering are typical fields where the dynamical
growth is affected by future factors (see [1] for details).

Oscillation has been a problem for applied researchers which was rooted from me-
chanical vibrations and have been developed widely in the sciences and engineering. The
oscillation models often contain delay or advanced terms to reflect the dependence of solu-
tions on the past or future times. There has been extensive studies of oscillations for delay
equations, see [3–16]; but studies of advanced oscillations are relatively few, see [17–20].

In this paper, we study the advanced oscillations, but focus on the half-linear case. As
an extension of the Laplace equation, the half-linear differential equations have important
applications in many areas such as non-Newtonian fluid theory, the turbulent flow of
a polytrophic gas in a porous media, and mathematical biology; see, e.g., [21–32] for
more details.

Now, we consider second-order half-linear advanced differential equations of the form(
r(t)φ(x′(t))

)′
+ p(t)φ(x(σ(t))) = 0, (1)
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where t ∈ [t0, ∞) with t0 ≥ 0 is a constant, φ(u) := |u|γ−1u, γ > 0, p is a positive
continuous function on [t0, ∞), σ is a continuous function satisfying σ(t) ≥ t for t ∈ [t0, ∞)
and limt→∞ σ(t) = ∞, and r is a positive continuous function on [t0, ∞) such that

R(t) :=
∫ t

t0

dτ

r1/γ(τ)
→ ∞ as t→ ∞. (2)

By a solution of Equation (1) we mean a non-trivial real-valued function x ∈ C1[T, ∞)
with T ∈ [t0, ∞) such that x′, r(t)φ(x′(t)) ∈ C1[T, ∞) and x(t) satisfies Equation (1) on
[T, ∞). We shall not investigate solutions that vanish in the neighbourhood of infinity. A
solution x(t) of Equation (1) is said to be oscillatory if it is neither eventually positive nor
eventually negative; otherwise, it is said to be non-oscillatory. Equation (1) is said to be
oscillatory if all its solutions are oscillatory. We first review some existing oscillation results
for differential equations that are related to Equation (1).

Fite [33] studied the oscillatory behaviour of solutions of the second-order linear
ordinary differential equation

x′′(t) + p(t)x(t) = 0, (3)

and showed that if ∫ ∞

t0

p(τ)dτ = ∞, (4)

then Equation (3) is oscillatory. Note that if Equations (2) and (4) hold, then the Sturm–
Liouville linear equation (

r(t)x′(t)
)′
+ p(t)x(t) = 0 (5)

is oscillatory by the Leighton–Wintner oscillation criterion, see [34]. Hille [35] improved
Condition (4) and proved that if

t
∫ ∞

t
p(τ)dτ ≥ β >

1
4

, (6)

then Equation (3) is oscillatory. For the case of Equation (2) and∫ ∞

t0

p(τ)dτ < ∞,

the Hille-type criterion for Equation (5) has been established and proven that if∫ t

t0

dτ

r(τ)

∫ ∞

t
p(τ) dτ ≥ β >

1
4

, (7)

then Equation (5) is oscillatory, see, e.g., ([36], Chap. 2). These results has been extended to
the half-linear ordinary differential equation(

r(t)φ(x′(t))
)′
+ p(t)φ(x(t)) = 0, (8)

and showed that if

R(t)
(∫ ∞

t
p(τ) dτ

)1/γ

≥ β >
γ

(1 + γ)(1+γ)/γ
, (9)

then Equation (8) is oscillatory, see ([37], Section 3.1.1). Erbe [38] generalized the Hille-type
Condition (6) to the delay differential equation

x′′(t) + p(t)x(σ(t)) = 0, (10)
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where σ(t) ≤ t, and obtained if

t
∫ ∞

t

σ(τ)

τ
p(τ) dτ ≥ β >

1
4

, (11)

then Equation (10) is oscillatory. For oscillation of second-order advanced differential
equations, Kusano [39] established comparison results and showed that oscillation of
advanced differential equation(

r(t)x′(t)
)′
+ p(t)x(σ(t)) = 0, (12)

where σ(t) ≥ t, follows from the oscillation of the ordinary differential equation(
r(t)x′(t)

)′
+ p(t)x(t) = 0. (13)

Furthermore, Džurina [40] presented new comparison results and showed that the oscilla-
tion of functional advanced differential Equation (12) follows from the oscillation of the
ordinary differential equation

(
r(t)x′(t)

)′
+

(
R(σ(t))

R(t)

)α1

p(t)x(t) = 0

with α1 > 0 such that R(t)
∫ ∞

t p(τ) dτ ≥ α1 and also proved that if

R(σ(t))
R(t)

≥ λ > 1 (14)

eventually and there exists a positive integer n such that αi ≤ 1/4 for i = 1, 2, . . . , n− 1
and αn > 1/4, where αi = λαi−1 α1, i = 2, 3, . . . , n, then Equation (12) is oscillatory. The
following is a result for the oscillation of half-linear advanced differential Equation (1)
obtained in [41].

Theorem 1. Suppose there exists a constant β such that

R(t)
(∫ ∞

t
p(τ) dτ

)1/γ

≥ β >
γ

(1 + γ)(1+γ)/γ
. (15)

Then Equation (1) is oscillatory.

Since the advanced argument σ(t) is not included in the aforementioned Condi-
tion (15), this criterion is more appropriate for the ordinary differential equation(

r(t)φ(x′(t))
)′
+ p(t)φ(x(t)) = 0

and does not reveal the fact of how the oscillation depends on the advanced argument.
More specifically, if

R(t)
(∫ ∞

t
p(τ) dτ

)1/γ

≥ β with β ≤ γ

(1 + γ)(1+γ)/γ
,

then Theorem 1 fails to work.
It should be noted that the research in this paper was strongly motivated by the

contributions of [34–37,40,41]. The purpose of this paper is to modify Condition (15) to
include the role of σ(t) to obtain certain sharper conditions for the oscillation of Equation (1).
We will show that our criteria cover the existing ones for ordinary differential equations,
and give examples to show their significance. The reader is directed to papers concerning
Hille-type criteria [42–48] as well as the sources listed therein.
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2. Main Results

Without further mention, we assume that all the improper integrals involved are
convergent in the following theorems. Otherwise, we find that Equation (1) is oscillatory,
see [33]. We begin this section with two preliminary lemmas.

Lemma 1 (see [49]). Suppose x(t) is an eventually positive solution of Equation (1). Then

x′(t) > 0 and
(
r(t)φ(x′(t))

)′
< 0 (16)

eventually.

Lemma 2. Suppose x(t) is a positive solution of Equation (1). Let β0 = 0. Suppose there exist
n ∈ N and βi > 0, i = 1, 2, . . . , n such that

R(t)

(∫ ∞

t

(
R(σ(τ))

R(τ)

)γβi−1

p(τ) dτ

)1/γ

≥ βi (17)

eventually, then (
x(t)

Rβi (t)

)′
≥ 0 (18)

eventually.

Proof. We show this by induction. Since x′(t) > 0 eventually, from Equation (1) we have
that for large t,

r(t)
(

x′(t)
)γ ≥

∫ ∞

t
p(τ)xγ(σ(τ)) dτ ≥

∫ ∞

t
p(τ)xγ(τ) dτ ≥ xγ(t)

∫ ∞

t
p(τ) dτ.

Therefore,(
x(t)

Rβ1(t)

)′
=

1
R2β1(t)

[
Rβ1(t)x′(t)− β1

Rβ1−1(t)
r1/γ(t)

x(t)
]

=
1

r1/γ(t)Rβ1+1(t)

[
R(t)r1/γ(t)x′(t)− β1x(t)

]
≥ x(t)

r1/γ(t)Rβ1+1(t)

[
R(t)

(∫ ∞

t
p(τ) dτ

)1/γ

− β1

]
≥ 0.

Then Equation (18) holds for i = 1. Assume Equation (18) holds for i = k ∈ N, i.e.,(
x(t)

Rβk (t)

)′
≥ 0 eventually.

This together with Equation (1) shows that

r(t)
(

x′(t)
)γ ≥

∫ ∞

t
p(τ)xγ(σ(τ)) dτ ≥

∫ ∞

t

(
R(σ(τ))

R(τ)

)γβk

xγ(τ)p(τ) dτ

≥ xγ(t)
∫ ∞

t

(
R(σ(τ))

R(τ)

)γβk

p(τ) dτ.

Therefore, (
x(t)

Rβk+1(t)

)′
=

1
R2βk+1(t)

[
Rβk+1(t)x′(t)− βn

Rβk+1−1(t)
r1/γ(t)

x(t)
]
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=
1

r1/γ(t)Rβk+1+1(t)

[
R(t)r1/γ(t)x′(t)− βnx(t)

]
≥ x(t)

r1/γ(t)Rβk+1+1(t)

R(t)

(∫ ∞

t

(
R(σ(τ))

R(τ)

)γβk

p(τ) dτ

)1/γ

− βn

 ≥ 0.

This demonstrates that Equation (18) holds when i = k + 1. Therefore, Equation (18) holds
for all i = 1, . . . , n.

Theorem 2. Let β0 = 0. Suppose there exist n ∈ N and βi > 0, i = 1, 2, . . . , n such that
Equation (17) holds. If one of the following ordinary differential equations

(
r(t)φ(x′(t))

)′
+

(
R(σ(t))

R(t)

)γβi

p(t)φ(x(t)) = 0, i = 1, 2, . . . , n, (19)

is oscillatory, then Equation (1) is oscillatory.

Proof. Assume x is a non-oscillatory solution of Equation (1) on [t0, ∞). Then, without the

loss of generality let x(t) > 0 on [t0, ∞). By virtue of
(

x(t)
Rβi (t)

)′
≥ 0, we deduce that

x(σ(t)) ≥
(

R(σ(t))
R(t)

)βi

x(t).

Therefore, from Equation (1), x(t) satisfies

(
r(t)

(
x′(t)

)γ
)′

+

(
R(σ(t))

R(t)

)γβi

p(t)xγ(t) ≤ 0. (20)

Integrating Equation (20) from t to v ≥ t and letting v→ ∞ and noting that x′(t) > 0, we
obtain

x′(t) ≥
(

1
r(t)

∫ ∞

t

(
R(σ(τ))

R(τ)

)γβi

p(τ)xγ(τ) dτ

)1/γ

. (21)

Integrating Equation (21) from t0 to t, we obtain

x(t) ≥ x(t0) +
∫ t

t0

(
1

r(τ)

∫ ∞

τ

(
R(σ(τ1))

R(τ1)

)γβi

p(τ1)xγ(τ1) dτ1

)1/γ

dτ.

Next, we define a sequence {ωm(t)}m∈N0
by

ω0(t) = x(t)

ωm+1(t) = x(t0) +
∫ t

t0

(
1

r(τ)
∫ ∞

τ

(
R(σ(τ1))

R(τ1)

)γβi

p(τ1)ω
γ
m(τ1) dτ1

)1/γ

dτ, m ∈ N0.

It is easy to check by induction that {ωm(t)} is a well-defined decreasing sequence
satisfying

x(t0) ≤ ωm(t) ≤ x(t) for t ≥ t0 and m ∈ N0.

Thus, there exists a function ω on [t0, ∞) such that

lim
m→∞

ωm(t) = ω(t) and x(t0) ≤ ωm(t) ≤ x(t).
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By Lebesgue’s dominated convergence theorem, it follows that

ω(t) = x(t0) +
∫ t

t0

(
1

r(τ)

∫ ∞

τ

(
R(σ(τ1))

R(τ1)

)γβi

p(τ1)ω
γ(τ1) dτ1

)1/γ

dτ. (22)

Differentiating Equation (22) twice, we conclude that ω is a positive solution of
Equation (19). This contradicts the assumption that Equation (19) is oscillatory and hence
completes the proof.

Theorem 3. Let β0 = 0. Suppose there exist n ∈ N and βi > 0, i = 1, 2, . . . , n such that
Equation (17) holds with

βn >
γ

(1 + γ)(1+γ)/γ
. (23)

Then Equation (1) is oscillatory.

Proof. Without the loss of generality we assume that n ∈ N is the least number such
that Equation (23) holds. Otherwise, we must replace it by the smallest one satisfying
Equation (23). Then from Equations (17) and (23), we have

R(t)

(∫ ∞

t

(
R(σ(t))

R(t)

)γβn−1

p(τ) dτ

)1/γ

≥ βn ∈
(

γ

(1 + γ)(1+γ)/γ
, ∞

)
.

Applying Theorem 1 with p(t) replaced by
(

R(σ(t))
R(t)

)γβi

p(t) to Equation (19), we see

that Equation (19) is oscillatory with i = n. Therefore, by Theorem 2, Equation (1) is
oscillatory.

Remark 1. Theorem 3 not only improves but also extends the result in Theorem 1. In particular, if
Equation (23) holds with n ≥ 2 and

0 < βi ≤
γ

(1 + γ)(1+γ)/γ
, i = 1, 2, . . . , n− 1 and βn >

γ

(1 + γ)(1+γ)/γ
,

then we know that Equation (1) is oscillatory by Theorem 3, but Theorem 1 fails to apply.

Example 1. Consider second-order half-linear advanced differential equations(
γγ

(1 + γ)1+γ

φ(x′(t))
t

)′
+

δ

tγ+2 φ(x(ηt)) = 0, (24)

where δ > 0 and η ≥ 1. Now

∫ ∞

t0

dτ

r1/γ(τ)
=

(1 + γ)1+1/γ

γ

∫ ∞

t0

τ1/γ dτ = ∞
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and for n ∈ N,

R(t)

(∫ ∞

t

(
R(σ(τ))

R(τ)

)γβi−1

p(τ) dτ

)1/γ

≥ δ1/γ(1 + γ)1/γ
(

t1+1/γ − t1+1/γ
0

)∫ ∞

t

(
η1+1/γ −

(
t0

τ

)1+1/γ
)γβi−1

dτ

τγ+2

1/γ

= δ1/γηβi−1(1+1/γ)(1 + γ)1/γt1+1/γ

(∫ ∞

t

dτ

τγ+2

)1/γ

(1− ◦(1)),

as t → ∞. Therefore, Condition (17) is satisfied for a large t provided there exist βi > 0, i =
1, 2, . . . , n such that

δ1/γηβi−1(1+1/γ)(1 + γ)1/γt1+1/γ

(∫ ∞

t

dτ

τγ+2

)1/γ

= δ1/γηβi−1(1+1/γ) > βi, i = 1, 2, . . . , n.

Hence, we may choose
βi < δ1/γηβi−1(1+1/γ), i = 1, 2, . . . , n. (25)

1. For δ = γ = 0.4 and η = 1.6, we have γ/(1 + γ)(1+γ)/γ = 0.1232 , and with Equation (25)
we choose

β1 = 0.10118;

β2 = 0.11951;

β3 = 0.12317;

β4 = 0.12391.

So, βi ≤ γ/(1 + γ)(1+γ)/γ, i = 1, 2, 3 and β4 > γ/(1 + γ)(1+γ)/γ. Then, by Theorem 3,
Equation (24) is oscillatory.

2. For δ = 0.2, γ = 1, and η = 1.7, we have γ/(1 + γ)(1+γ)/γ = 0.25 and

β1 = 0.19999;

β2 = 0.24728;

β3 = 0.26001.

So, βi ≤ γ/(1 + γ)(1+γ)/γ, i = 1, 2 and β3 > γ/(1 + γ)(1+γ)/γ. Then, by Theorem 3,
Equation (24) is oscillatory.

3. For δ = 0.13, γ = 1.4, and η = 1.9, we have γ/(1 + γ)(1+γ)/γ = 0.31213 and

β1 = 0.23285;

β2 = 0.30086;

β3 = 0.32423.

So, βi ≤ γ/(1 + γ)(1+γ)/γ, i = 1, 2 and β3 > γ/(1 + γ)(1+γ)/γ. Then, by Theorem 3,
Equation (24) is oscillatory. Obviously, Theorem 1 fails to apply to these equations.

3. Discussion and Conclusions

In this paper, our results extend and improve related contributions to the second-order
differential equations with deviating arguments and cover the existing classical criteria for
ordinary differential equations in the literature; see the following details
Theorems 2 and 3 are for the cases σ(t) ≥ t and γ > 0.

(I) When γ = 1, Equation (1) becomes the advanced differential Equation (12).
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(i) The results in Theorem 2 improve those given in [39] due to:

• The oscillation of Equation (13) implies oscillation of Equation (12) (see
[39]);

• The oscillation of Equation (19) implies oscillation of Equation (12)
(Theorem 2);

• The oscillation of Equation (13) implies oscillation of Equation (19)
since (

R(σ(t))
R(t)

)βi

≥ 1, i = 1, 2, . . . , n

and using Sturm’s comparison theorem.

(ii) If Equation (14) holds, βi in Theorem 3 reduces to αi of the results of [40].

(II) If σ(t) ≡ t, Equation (1) becomes the ordinary half-linear Equation (8), which includes
the linear case Equation (5) (γ = 1) and Equation (3) (γ = 1, r(t) ≡ 1). Now we show
that Theorem 3 covers the existing results for the above equations as seen in Section 1.
Let σ(t) ≡ t. We note that all βi in Equation (17) can be chosen to be the same. This
can be denoted by β.

(i) In general, γ > 0 and r(t) > 0, Equation (17) clearly reduces to Equation (9).
Thus, Theorem 3 guarantees the oscillation of Equation (8).

(ii) When γ = 1 and r(t) > 0, Equation (17) clearly reduces to Equation (7). Thus,
Theorem 3 guarantees the oscillation of Equation (5).

(iii) When γ = 1 and r(t) ≡ 1, Equation (17) reduces to

(t− t0)
∫ ∞

t
p(τ) dτ ≥ β > 0.

Note that
∫ ∞

t p(τ) dτ is convergent. It is equivalent to

t
∫ ∞

t
p(τ) dτ ≥ β∗, for some β∗ > 0.

Thus, Theorem 3 guarantees the oscillation of Equation (3).
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