
Citation: Lin, H.; Wang, C.; Yu, F.;

Sun, J.; Du, S.; Deng, Z.; Deng, Q. A

Review of Chaotic Systems Based on

Memristive Hopfield Neural

Networks. Mathematics 2023, 11, 1369.

https://doi.org/10.3390/

math11061369

Academic Editor: Daniel-Ioan

Curiac

Received: 13 February 2023

Revised: 6 March 2023

Accepted: 9 March 2023

Published: 11 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

A Review of Chaotic Systems Based on Memristive Hopfield
Neural Networks
Hairong Lin 1 , Chunhua Wang 1,* , Fei Yu 2 , Jingru Sun 1 , Sichun Du 1 , Zekun Deng 1 and Quanli Deng 1

1 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
2 School of Computer and Communication Engineering, Changsha University of Science and Technology,

Changsha 410114, China
* Correspondence: wch1227164@hnu.edu.cn

Abstract: Since the Lorenz chaotic system was discovered in 1963, the construction of chaotic systems
with complex dynamics has been a research hotspot in the field of chaos. Recently, memristive
Hopfield neural networks (MHNNs) offer great potential in the design of complex, chaotic systems
because of their special network structures, hyperbolic tangent activation function, and memory
property. Many chaotic systems based on MHNNs have been proposed and exhibit various complex
dynamical behaviors, including hyperchaos, coexisting attractors, multistability, extreme multi-
stability, multi-scroll attractors, multi-structure attractors, and initial-offset coexisting behaviors.
A comprehensive review of the MHNN-based chaotic systems has become an urgent requirement.
In this review, we first briefly introduce the basic knowledge of the Hopfiled neural network, memristor,
and chaotic dynamics. Then, different modeling methods of the MHNN-based chaotic systems are
analyzed and discussed. Concurrently, the pioneering works and some recent important papers related
to MHNN-based chaotic systems are reviewed in detail. Finally, we survey the progress of MHNN-based
chaotic systems for application in various scenarios. Some open problems and visions for the future in
this field are presented. We attempt to provide a reference and a resource for both chaos researchers and
those outside the field who hope to apply chaotic systems in a particular application.

Keywords: chaotic systems; memristor; Hopfield neural network; dynamical behavior; memristor
synapse; electromagnetic induction; image encryption

MSC: 34H10; 65P20; 34C23; 68T07

1. Introduction

Chaos theory is an important discovery of human natural science in the 20th century,
which is considered the third revolution of basic science after relativity and quantum theory.
Chaotic behavior, which is a type of dynamical behavior, was first observed in meteorology
to describe the unpredictability of weather [1]. After that, chaos phenomena are found to be
widely existent in many natural and non-natural behaviors, such as biotic population [2],
road traffic [3], and the stock market [4]. After half a century of in-depth study, chaos has
been found to be very useful and has great potential in many disciplines such as mathe-
matics [5], physics [6], chemistry [7], economics [8], information and computer sciences [9],
and so on [10,11]. Over the past decades, scholars have devoted great enthusiasm to chaos
generation, and a large number of different types of chaotic systems have been constructed.

In the early days, chaos researchers focused mainly on the design of double-scroll/wing
chaotic systems. Since Lorenz presented the first chaotic system with double-wing attrac-
tors in 1963 [1], many double-scroll/wing chaotic systems have been developed, such
as Chua’s system [12], Sprott system [13], Jerk system [14], Chen system [15], Lü sys-
tem [16], and their modified systems [17–21]. These chaotic systems have greatly promoted
the development of chaos theory. With further study on the double-scroll/wing chaotic
systems, Suykens and Vandewalle [22], in 1993, constructed the first multi-scroll chaotic
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systems by introducing a multi-piecewise-linear function into a Chua’s circuit. From
then on, the design of multi-scroll/wing chaotic systems (MS/WCSs) has greatly stimu-
lated the researchers’ interest. During this period, Yu et al. [23–26] proposed a series of
nonlinear polynomial function control methods to realize different MS/WCSs based on
double-scroll/wing chaotic systems. Afterward, the theory of MS/WCSs has been devel-
oped rapidly, and various MS/WCSs such as Lorenz-system-based MS/WCSs [27–29],
Chua’s-system -based MS/WCSs [30–32], Sprott-system-based MS/WCSs [33–35], Jerk-
system-based MS/WCSs [36–38], Chen-system-based MS/WCSs [39,40], and so on [41–47],
have been designed using function control methods. However, recent explorations seem to
indicate that it is difficult to make new progress in the design of the MS/WCSs.

Renewed research interest in the design of chaotic systems was generated when a
physical nonlinear memristor device was first manufactured in 2008 by Hewlett-Packard
Lab [48]. Memristor is a nonlinear element that has many special properties, including
programmability, nonlinearity, and memory function [49,50]. Due to the special nonlin-
earity and memory effect, memristors are often used to construct memristive chaotic
systems [51,52]. It is found that memristive chaotic systems have the ability to generate
complex dynamical behaviors, especially coexisting behaviors [53] and multistability [54].
Furthermore, the memristive chaotic systems have some advantages in solving dynamic
equations [55,56]. Therefore, many scholars have developed a great interest in designing
memristive chaotic systems in the past decade. In this endeavor, there are three major
efforts: (1) constructing memristive chaotic circuits by using the memristors to replace the
resistors of the existing chaotic circuits, such as memristor-based Chua’s circuit [57,58],
memristor-based Jerk circuit [59–62], and so on [63–65]; (2) constructing memristive chaotic
systems by introducing memristors into the existing chaotic systems, such as memristor-
based double-scroll/wing chaotic systems [66–69], memristor-based multi-scroll/wing
chaotic systems [70–78], and so on [79,80]; (3) constructing memristive chaotic systems
based on different memristor models, such memristive chaotic systems [81–87], memristive
hyperchaotic systems [88–95], and so on [96–98]. Consequently, the memristive chaotic
systems have made extraordinary development, which greatly enriches chaos theory.

In recent years, memristive Hopfield neural networks (MHNNs) with complex, chaotic
dynamics have attracted much attention from scholars in the chaos field. The Hopfield
neural network presented in 1984 is a brain-like neural network [99], which can exhibit
abundant dynamical behaviors, especially chaos [100–106]. Thanks to the inherent mem-
ory effect and charge flux relationship, the memristor can be applied in Hopfield neural
networks to emulate biological neural synapses or to describe electromagnetic induction
effects [107–110]. As a result, a large number of MHNNs have been proposed based on
these strategies. It is found that the MHNNs can exhibit complex, chaotic dynamics due to
the introduction of the memristors. For example, in 2014, Li et al. [111] constructed the first
hyperchaotic MHNN. In 2016, Pham et al. [112] presented the first MHNN with hidden
attractors. In 2017, Bao et al. [113] proposed the first MHNN with coexisting attractors.
In 2018, Hu et al. [114] presented the first MHNN with hidden coexisting attractors. In 2020,
Lin et al. [115] constructed the first MHNN with coexisting infinite attractors. In the same
year, Zhang et al. [116] designed the first MHNN with initial-offset behaviors and multi-
scroll attractors. In 2022, Lin et al. [117] presented the first MHNN with multi-structure
attractors. At the same time, due to their complex dynamics, the MHNNs have wide appli-
cations in information encryption and communication security [118–120], especially in the
medical image encryption field [121]. Numerous works show that MHNN-based medical
encryption schemes have much higher security [122,123]. Therefore, the design of chaotic
systems based on MHNNs is becoming a new research hotspot. So far, there have been
many important achievements in MHNN-based chaotic systems. However, from the whole
research process, the study of the MHNN has just started, and more MHNN-based chaotic
systems are still to be explored and discovered. Therefore, a detailed review is needed for
the existing chaotic MHNNs. This review aims to address this shortcoming. Compared
with the review [108], this review has three advantages: (1) MHNNs are divided into more
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types in terms of different functions and positions of memristors in neural networks than
just functions; (2) Some important, relevant research results in the last two years have been
added; (3) Some of the open questions raised earlier are partially answered in this article.

The rest of this article is organized as follows. In Section 2, some basic knowledge,
including HNN, memristor, and chaotic dynamics, is introduced. In Section 3, different
modeling methods of the MHNNs are analyzed, and related works are reviewed in detail.
MHNN-based application and future work are presented in Section 4. Finally, in Section 5,
conclusions are drawn.

2. Introduction of Basic Knowledge

This section first briefly introduces the original model of the Hopfield neural network,
then describes the basic concepts and properties of the memristor, and finally gives the
basic definitions and classification of the chaotic dynamics.

2.1. Hopfield Neural Networks

Neuroscience shows that the human brain nervous system contains tens of billions of
neurons [124]. Neurons are connected to each other by synapses, including chemical and
electrical synapses. Each synapse has an adjustable synaptic weight that characterizes the
coupling strength between the two neurons. According to these biological principles, the
original model of the Hopfield neural network was developed by Hopfield in 1984 [99].
Due to its special network structure and hyperbolic tangent function, the HNN can exhibit
abundant dynamical behaviors. The HNN with n neurons can be described by a set of
dimensionless nonlinear ordinary differential equations as follows [99]:

.
x = −x + Wtanh(x) + I (1)

where

x =



x1
x2
...

xi
...

xn


, I =



I1
I2
...
Ii
...
In


, W =



w11 w12 · · · w1j · · · w1n
w21 w22 · · · w2j · · · w2n

...
...

. . .
...

...
...

wi1 wi2 · · · wij · · · win
...

...
...

...
. . .

...
wn1 wn2 · · · wnj · · · wnn


(2)

where xi denotes the i-neuron membrane voltage, tanh(x) is the neuron activation function,
and Ii represents i-neuron external stimulate current. Furthermore, the W represents the
synaptic weight matrix, where wij represents the synaptic weight between the j-neuron
and to i-neuron. Commonly, the synaptic weight is a resistive synaptic weight that can
be achieved by a resistor. Over the past decades, many improved models have been
constructed based on the original HNN model, such as HNNs with different active func-
tions [125], HNNs with time delay [126], fractional HNNs [127,128], discrete HNNs [129],
and so on [130,131].

2.2. Memristor

In the year 1971, Chua proposed the concept of memristor based on the symmetry
theory of circuit variables [132]. The memristor is a memory resistor, which describes
the relationship between charge and flux. Later on, the memristor concept is extended to
include any two-terminal device with a pinched hysteresis loop that always passes through the
origin in the voltage-current plane when triggered by a periodic voltage or current signal [50].
In 2008, Hewlett-Packard Lab manufactured the first physical memristor device [48], which
opened up a new research field related to memristors. With the development of memristors,
many key memristor theories have been built. According to the memristor theories [49,50],
a common ideal flux-controlled memristor model can be written by{

i = W(ϕ)v
.
ϕ = v

(3)
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where v, i are the input voltage and output current, respectively. W(ϕ) is a continuous func-
tion of ϕ, called the memductance, and ϕ is the flux. For example, in [53], W(ϕ) = m + nϕ2,
where m and n are constant parameters. Moreover, a generic memristor is defined by{

i = W(ϕ)v
.
ϕ = f (ϕ, v)

(4)

where W(ϕ) is the memductance, ϕ is the memristor state variable, and f (ϕ, v) is called
the state equation, which is a Lipschitz function. For instance, in [115], W(ϕ) = ϕ and
f (ϕ,v) = sin(ϕ) + v.

In recent years, memristors have been widely investigated and applied in various
fields [133–135]. Among them, the memristor is often used to construct memristive neural
networks due to its bionic characteristics [136–138]. On the one hand, the memristor can be
used to describe electromagnetic induction effects in biological nervous systems because of
its characteristic of magnetic flux [139,140]. On the other hand, the memristor can be used
to emulate neural synapses in nervous systems [141,142].

2.3. Chaotic Dynamics

Chaotic behavior is a type of special dynamical behavior that has many unique proper-
ties, such as initial state sensitivity, unpredictability, ergodicity, and topological mixing [1–4].
Over the past few decades, many methods have been proposed to study chaotic dynamics,
such as equilibrium point stability, bifurcation diagrams, Lyapunov exponents, phase
portraits, Poincare maps, basins of attraction, and so on. In order to better reveal dynamical
behavior in chaotic systems, chaotic dynamics with different characteristics are classified
and studied. From the perspective of Lyapunov exponents, chaotic dynamics can be divided
into chaos, transient chaos, and hyperchaos. Usually, a dynamical behavior with at least one
positive Lyapunov exponent on infinite time is considered chaos [12–15]. Transient chaos is
a dynamical behavior that the existence of chaos is on finite time [143]. Hyperchaos [88–90],
which is more complicated than chaos and transient chaos, is defined as chaos with two or
more positive Lyapunov exponents. From the perspective of equilibrium point stability, the
chaotic dynamics include self-excited attractors and hidden attractors [144]. If an attractor’s
basin of attraction does not intersect with any open neighborhood of the system equilibria,
it is referred to as a hidden attractor. Otherwise, it is referred to as a self-excited attractor.
From the perspective of attractor structure, chaotic dynamics contain single-scroll/wing
attractors and multi-scroll/wing attractors [23–26]. The multi-scroll/wing attractors have
multiple single-scroll/wing chaos trajectories. Generally, multi-scroll/wing attractors are
more complex compared to single-scroll/wing attractors. From the perspective of stability,
chaotic dynamics contain coexisting attractors [53], multistability [62], and extreme mul-
tistability [58]. The complex dynamical phenomenon of coexisting attractors consists of
two distinct types of chaotic behaviors in two different initial conditions. Multistability
refers to the simultaneous existence of three or more dynamical behaviors in distinct initial
conditions. Multistability implies that a rich variety of stable states exists in chaotic systems,
which mirrors the qualities of complex systems. There are two special types of systems
with multistability: extreme multistability systems and megastable systems [145]. Extreme
multistability is the term for the phenomenon in which infinitely many coexisting attrac-
tors. Additionally, the phenomenon of the coexistence of infinite attractors with the same
topology structures and different positions is called initial-offset coexisting behaviors [146].

3. Memristive Hopfield Neural Networks

In this section, the MHNNs are divided into four categories according to the different
functions and positions of memristors in neural networks. The modeling mechanism of each
category is analyzed, and existing MHNN-based chaotic systems are reviewed and introduced.

3.1. Using Memristors to Emulate Neural Synapses

In the traditional HNN model (1), the synaptic weight wij is a resistive synaptic
weight that is realized by using resistors to emulate neural synapses. Compared with
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resistors, memristors have many synapse-like properties, including nanoscale, nonlinearity,
adjustability, and nonvolatility, which make them more suitable for emulating neural
synapses. Therefore, when using the memristors to simulate the neural synapses in the
traditional HNN model, the memristive HNN model can be constructed [108]. That is to say
that when the resistive synaptic weight wij is replaced with the memristive synaptic weight
W(ϕ), the MHNN is modeled. Due to the introduction of the memristive synaptic weight,
the MHNN model is closer to the biological nervous system. As a result, the MHNN can
generate more complex dynamical behaviors. Generally, the biological nervous system
has two types of neural synapses, namely self-connection autapses and coupling synapses.
For the HNN model, there are two types of synaptic weights, namely self-connection
synaptic weights wij (i = j) and coupling synaptic weights wij (i 6= j). Therefore, according
to different types of memristor synapses, the MHNN can be divided into two categories:
memristor-autapse-based MHNN and memristor-synapse-based MHNN.

Category 1: Memristor-autapse-based MHNNs

The models of the memristor-autapse-based MHNNs can be constructed by replacing
resistive self-connection synaptic weights with memristive self-connection synaptic weights.
Taking n = 3 as an example, the connection topology for the memristor-autapse-based
MHNN with a memristor autapse is shown in Figure 1. As shown in Figure 1, we replace
resistive self-connection synaptic weight w22 with the memristive self-connection synaptic
weight W(ϕ), and then the original HNN model has an additional differential equation
about ϕ. Thus, its mathematical model can be described in a dimensionless form as{ .

x = −x + Wtanh(x) + I
.
ϕ = f (ϕ, vi)

(5)

where

x =

 x1
x2
x3

, I =

 I1
I2
I3

, W =

 w11 w12 w13
w21 W(ϕ) w23
w31 w32 w33

 (6)

where xi is the membrane potential of the i-neuron, and tanh(xi) represents the neuron
activity function.
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Figure 1. Connection topology of a memristor-autapse-based MHNN.

Over the past years, many different MHNNs with memristor autapses have been
constructed, and various chaotic dynamical behaviors have been revealed. For example,
Ref. [147] proposed an MHNN model with three neurons by using hyperbolic-type memris-
tor autapses to replace resistor autapses. The authors found that the MHNN can generate
abundant dynamical behaviors, including chaos, coexisting attractors, and the Feigenbaum
tree. Ref. [148] constructed an MHNN with two neurons by introducing a linear memristor
autapse, and bursting firing and chaos were observed. Initial offset coexisting behaviors
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and multi-double-scroll attractors have been reported in an MHNN with a multi-piecewise
quadratic nonlinearity memristor autapse [116]. Concurrently, some similar MHNNs with
multi-scroll chaotic attractors have been reported in [149,150]. By considering memristive
self-connection synaptic weight, an MHNN with one neuron has been proposed [151].
Numerical analysis and experimental results show that the MHNN with one neuron can
generate multiple firing behaviors like coexisting periodic and chaotic spiking, chaotic
bursting, and periodic bursting. Moreover, hidden extreme multistability has been found
in a one-neuron-based MHNN with cosine memristor autapse [152]. Infinitely many coex-
isting hidden attractors have been reported in a two-neuron-based MHNN with a modified
hyperbolic-type memristor autapse [153]. In particular, recently, Ref. [154] proposed an
MHNN with two memristor autapses. The authors found that the MHNN can exhibit
complex initial-offset plane coexisting behaviors. Additionally, the MHNN with multiple
memristor autapses has also been investigated [155]. The research results show that with
the increase of memristor autapses, the MHNN can generate different dynamical behaviors
like exciting neurodynamics or inhibiting neurodynamics.

Category 2: Memristor-synapse-based MHNNs

The model of the memristor-synapse-based MHNNs can be constructed by replacing
resistive coupling synaptic weights with memristive coupling synaptic weights. Taking
n = 3 as an example, the connection topology for the memristor-synapse-based MHNN
with a memristor synapse is shown in Figure 2. As shown in Figure 2, we replace a resistive
coupling synaptic weight w12 with a memristive coupling synaptic weight W(ϕ), and
then the original HNN model has an additional differential equation about ϕ. Thus, its
mathematical model can be described in a dimensionless form as{ .

x = −x + Wtanh(x) + I
.
ϕ = f (ϕ, vj)

(7)

where

x =

 x1
x2
x3

, I =

 I1
I2
I3

, W =

 w11 w12 w13
W(ϕ) w22 w23

w31 w32 w33

 (8)
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In recent years, various MHNNs with memristor synapses have been reported. Dy-
namical analysis and numerical simulation showed that MHNNs could generate complex,
chaotic dynamical behaviors. For instance, Ref. [111] proposed an MHNN with three
neurons by using a memristive coupling synaptic weight to substitute a resistive coupling
synaptic weight. The proposed MHNN can generate hyperchaotic behavior. Hidden at-
tractors have been revealed in a three-neuron-based MHNN with a quadratic memristor
synapse [112]. Based on a hyperbolic-type memristor synapse, Ref. [113] found that the
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MHNN with three neurons can generate coexisting asymmetric attractors. Particularly,
Ref. [156] has shown that the MHNN with an improved hyperbolic-type memristor synapse
can exhibit chimera state, synchronization, and oscillation death. Infinitely many coex-
isting attractors have been observed in a four-neuron-based MHNN with a multi-stable
memristor synapse [115]. In [157], a fraction-order MHNN with a hyperbolic-type mem-
ristor synapse is proposed. Research results show that the fraction-order MHNN can
generate complex dynamical transition, evolving from periodic to chaotic and finally to
coexisting attractors. Complete synchronization and anti-phase synchronization have been
investigated in two coupled MHNNs with a hyperbolic-type memristor synapse [158].
Considering the influence of synaptic cross-talk in the MHNN with three neurons, multi-
stability, asymmetry attractors, and anti-monotonicity have been observed in an MHNN
with a novel hyperbolic-type memristor synapse [159]. The complex phenomenon of multi-
scroll attractors has been found in two different MHNNs [122,160]. The multi-structure
attractors have been reported in a four-neuron-based MHNN with different memristor
synapses [117]. Initial-offset coexisting behaviors have been revealed in some MHNNs
with memristor synapses [161,162]. Furthermore, Ref. [163] designed an MHNN with two
generalized multi-stable memristor synapses. The authors found that the MHNN with two
memristor synapses can generate chaos and coexisting asymmetric attractors. Such com-
plex dynamical behaviors have been demonstrated on a DSP platform. Similarly, Ref. [164]
designed an MHNN with a hyperbolic-type memristor autapse and a hyperbolic-type
memristor synapse, which can generate grid multi-scroll attractors. The MHNN with three
hyperbolic-type memristor synapses has been investigated in Ref. [165]. Recently, locally
active memristors have attracted much attention in the construction of MHNNs due to
their synapse-like local activity. Ref. [166] presented an MHNN with three neurons by
replacing a coupling synapse with a tristable locally active memristor. It is found that the
MHNN can generate complex bursting oscillation and multistability. Ref. [167] proposed a
fractional-order MHNN with a locally active memristor synapse. Research results show
that the fractional-order MHNN can exhibit the dynamical behavior of the coexistence of
multiple attractors. In addition, multi-scroll chaotic attractors have also been observed in
an MHNN with a local active memristor synapse [168].

3.2. Using Memristor to Describe Electromagnetic Induction

The traditional HNN model does not consider the influence of electromagnetic in-
duction. In fact, numerous physical and biological experiments show that the biological
nervous systems are often affected by the electromagnetic field generated by internal mem-
brane voltages difference and external electromagnetic radiation [107,108]. According to
the physical law of electromagnetic induction, the distribution and density of magnetic
flux across the membrane can be changed when a neuron is exposed to an electromagnetic
field. Consequently, the electrical activities of the biological nervous system can be changed
due to the electromagnetic field. To consider the effects of the electromagnetic field on
the dynamics of the nervous system, the flux-controlled memristor is introduced into the
traditional HNN model to describe the electromagnetic induction current. When the effect
of an electromagnetic field on a neuron is considered as magnetic flux across the membrane of
the neuron, the coupling between magnetic flux and membrane potential can be described by
using a voltage-controlled memristor [109,110]. Consequently, the nervous systems under an
electromagnetic field can be modeled by adding a magnetic induction current in the traditional
HNN model. That is to say that an MHNN model can be constructed by considering the effect
of an electromagnetic field. Usually, according to different types of electromagnetic fields, the
MHNNs can be divided into another two categories: MHNNs under external electromagnetic
radiation and MHNNs under an internal electromagnetic field.

Category 3: MHNNs under external electromagnetic radiation

When considering neurons are exposed to external electromagnetic radiation, an electro-
magnetic induction current can be described by a flux-controlled memristor [107,108]. Thus,
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the model of the MHNNs under external electromagnetic radiation can be constructed.
Taking n = 3 as an example, the connection topology of an MHNN under external elec-
tromagnetic radiation is given in Figure 3. The mathematical model of the MHNN under
electromagnetic radiation can be written as{ .

x = −x + Wtanh(x) + IM + I
.
ϕ = f (ϕ, xi)

(9)

where
IM = ρW(ϕ)xi (10)
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Here the W represents the synaptic weight matrix, and IM represents the electromagnetic
induction current caused by external electromagnetic radiation. The parameter ρ represents
the coupling strength between membrane potential and magnetic flux. W(ϕ) is the memcon-
ductance of the flux-controlled memristor, and xi is the membrane potential of the neuron
under electromagnetic radiation. In this case, xi is the membrane potential x3 of the 3-neuron.

Based on this model, the influence of external electromagnetic radiation on chaotic
dynamical behaviors in neural networks can be analyzed. For example, complex dynamical
behaviors, including coexisting chaos and transient chaos, have been revealed in a three-
neuron-based MHNN under external electromagnetic radiation [114]. The effects of external
electromagnetic radiation distribution on the chaotic dynamical behaviors of a neural
network with n neurons are investigated in an MHNN [169]. The authors found that
with the increasing number of neurons under external electromagnetic radiation, the
dynamical behavior of the MHNN gradually changes from period to chaos, then to transient
chaos, and finally to hyperchaos. Hidden extreme multistability with hyperchaos and
transient chaos is discussed in a three-neuron-based HNN under external electromagnetic
radiation [170]. Multi-scroll attractors [171] and multi-style attractors [172] have been
reported in MHNNs under external electromagnetic radiation. Furthermore, Ref. [123]
proposed a ring MHNN under external electromagnetic radiation. It is found that the
ring MHNN can generate complex hyperchaotic behavior. Additionally, Ref. [173] found
that an MHNN under external electromagnetic radiation can exhibit multistable dynamics,
including periodic attractors, quasi-periodic attractors, transient chaotic attractors, and
hidden chaotic attractors. Additionally, an MHNN with different external stimuli, including
electromagnetic radiation and multi-level logic pulse, has been studied in Ref. [174]. The
research results demonstrated that the MHNN with multiple external stimuli could generate
complex coexisting attractors and multi-scroll attractors.

Category 4: MHNNs under internal electromagnetic field

When possessing a potential difference between two neurons, an internal electro-
magnetic induction current appears in the neural network, which can be described by a
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flux-controlled memristor synapse [107,108]. Thus, the model of the MHNN under an
internal electromagnetic field can be constructed. Taking n = 3 as an example, a structure
diagram of a three-neuron-based MHNN under an internal electromagnetic field is given in
Figure 4. As shown in Figure 4, an induced current is sensed by the internal electromagnetic
field caused by potential difference (x2 − x3) between two neurons in the HNN, which
can be characterized by an electromagnetic induction current IM following through a flux-
controlled memristor synapse. Therefore, an MHNN under an internal electromagnetic
field is established, which is mathematically described as{ .

x = −x + Wtanh(x) + IM + I
.
ϕ = f (ϕ, (xi − xj))

(11)

where
IM = ρW(ϕ)(xi − xj) (12)

where ρ represents coupling strength between memristor and neuron, W(ϕ) is a memduc-
tance function, (xi − xj) is the potential difference between two neurons.
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MHNNs under internal electromagnetic fields have been reported in recent years.
For example, Ref. [175] proposed a two-neuron-based MHNN by considering an internal
electromagnetic induction current. It is found that the MHNN can produce coexisting
multi-stable patterns such as spiral chaotic patterns with different dynamic amplitudes,
periodic patterns with different periodicities, and stable resting patterns with different
positions. Similarly, considering an internal induced current described by a non-ideal
memristor synapse, Ref. [176] designed a bi-neuron MHNN with coexisting attractors. The
MHNN with different numbers of internal electromagnetic induction currents has been
investigated in Ref. [177]. The authors found that when using hyperbolic-type memristors
to link different neurons, the MHNN can generate different dynamical behaviors, including
periodic and chaotic bubbles, initial-related multistable patterns, and riddled basins of
attraction. Utilizing a hyperbolic-type memristor and a quadratic nonlinear memristor
to simulate the effects of internal electromagnetic induction and external electromagnetic
radiation, a three-neuron-based MHNN with coexisting behaviors has been reported in
Ref. [178]. The generation mechanism of chaos has been researched in a ring fraction-
order MHNN with an internal electromagnetic induction current [179]. Moreover, the
fractional-order MHNN with three internal electromagnetic induction currents has been
reported in Ref. [180]. It is found that the fractional-order MHNN can exhibit complex
coexisting behaviors. Initial-offset coexisting hyperchaotic attractors have been observed
in a coupled MHNN with an induced current [121]. Ref. [181] proposed an MHNN with
time delay by using a memristor synapse to emulate the electromagnetically induced
current. The complex dynamical behaviors, including coexisting chaos, periodic limit
cycles, and stable point attractors, have been revealed in a two-neuron-based MHNN
with an internal electromagnetic induction current [182]. Additionally, hyperchaotic multi-
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structure attractors have been reported in a memristor-couple asymmetric MHNN with an
internal electromagnetic induction current caused by membrane potential difference [118].

To facilitate readers’ reading, we summarize different dynamical behaviors in the
MHNNs, as shown in Table 1. As can be seen, many complex dynamical behaviors have
been revealed from the MHNNs, especially coexisting attractors, hidden attractors, multi-
scroll attractors, multistability, extreme multistability, and initial-offset coexisting behaviors.
Furthermore, some unfrequent dynamical behaviors, such as the Feigenbaum tree, chimera
state, and multi-structure attractors, have also been reported in the MHNNs.

Table 1. Various dynamical behaviors in the MHNNs.

Dynamical Behaviors References

Transient chaos [114,169,173]

Hyperchaos [111,118,123,169]

Feigenbaum tree [147]

Coexisting attractors [113,147,157,163,174,176,178,180,182]

Bursting firing [148,151,166]

Chimera state [156]

Hidden attractors [112,152,153,170,173]

Synchronization [156,158]

Multi-scroll attractors [116,120,122,149,150,160,164,168,171,172,174,183]

Multi-structure attractors [117,118]

Multistability [124,151,155,159,166,167,173,175,177]

Extreme multistability [115,116,121,152–154,161,162,170]

Hidden extreme multistability [152,153,170]

Initial-offset coexisting behaviors [116,121,154,161,162]

4. Application and Future Works

Due to flexible network structure and abundant dynamical behaviors, traditional
HNNs have been widely applied in various fields, such as associative memory [101], infor-
mation protection [102], process optimization [103], and so on [129,130]. Compared with
traditional HNN models, the MHNNs have some advantages in terms of chip area, comput-
ing speed, and complex dynamical behaviors, which makes them have wider application
ranges. For example, Ref. [184] designed a reconfigurable MHNN circuit that can realize
associative memory quickly. An efficient combinatorial optimization method has been
presented by weight annealing in MHNN [185]. Due to their complex, chaotic dynamical
behaviors, the MHNNs can be used to generate random numbers with high randomness.
Thus, it is very suitable for information protection and image encryption. For example,
Ref. [116] proposed an image encryption scheme based on an MHNN with initial-offset
coexisting behaviors. The encryption results show that the proposed encryption scheme
has excellent security due to the high randomness of the MHNN. Ref. [186] designed a
pseudo-random number generator by using an MHNN with complex, chaotic attractors.
At the same time, some image encryption schemes have been presented and verified based
on various MHNNs, such as the MHNNs with multi-scroll attractors [150,168,184], the
MHNNs with multi-style attractors [172], and the fractional-order MHNN with coexisting
attractors [180]. Furthermore, Refs. [118,167] designed color image cryptosystems based
on an MHNN with hyperchaotic multi-structure attractors and an MHNN with coexisting
multiple attractors, respectively. Additionally, Ref. [183] proposed an audio encryption
scheme based on a fractional-order multi-scroll MHNN. Recently, due to their character-
istics of artificial intelligence and complex dynamical behaviors, MHNNs have attracted
much attention in the field of medical image encryption. For instance, Ref. [121] designed a
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biomedical image encryption scheme based on an MHNN with brain-like initial-boosted
hyperchaos. Experimental evaluations showed that the designed medical image cryp-
tosystem has some advantages in the keyspace, information entropy, and key sensitivity.
Similarly, some other medical image encryption schemes have also been reported based on
different MHNNs, such as ring MHNN with hyperchaos [123], MHNN with multi-scroll
attractors [122], and MHNN with multi-structure attractors [117]. Moreover, to ensure
the information security of the medical data transmitted through the Internet of Things,
Ref. [120] proposed a medical data encryption method based on a multi-scroll MHNN.

As reviewed above, the MHNNs with complex, chaotic behaviors have greatly stimu-
lated researchers’ interest, and many valuable research results have been reported to date.
In particular, some work has answered the questions raised earlier in the review [108]. For
example, different from the previous special structure, the MHNNs with ring structure
have been proposed in [123,165]. To construct a reliable neural network model, internal
electromagnetic induction has been considered in some recent research [175–182]. However,
several important questions still remain to be answered. There are at least four aspects that
can be further explored. First, it is well known that the nervous system is composed of
a large number of neurons. However, the existing MHNN models only consider several
neurons, such as two-neuron-based MHNNs [148], three-neuron-based MHNNs [156], and
four-neuron-based MHNNs [150]. So, the MHNN with more neurons needs to be further de-
veloped and investigated. Second, the biological nervous system has many neural autapses
and synapses. So far, the current MHNNs mainly consider a few memristor autapses and
memristor synapses, like one-memristor-based MHNNs [162] and two-memristor-based
MHNNs [154]. Undoubtedly, the MHNN with multiple memristor autapses and memristor
synapses needs to be further designed and researched. Third, the biological nervous system
is very sensitive to external stimuli such as electromagnetic radiation, electric field, light,
temperature, noise, and so on. At present, other factors are rarely considered in the existing
MHNNs besides electromagnetic radiation. Therefore, to model a reliable and realistic neural
network model, different external stimuli and internal factors should be added to MHNN
models. Fourth, from the viewpoint of chaos-based application, the MHNNs have the features
of high dimensional equations, artificial intelligence [187–189], and complex dynamical behav-
iors [190], which makes them more suitable for application in medical image encryption, video
encryption, and pseudo-random number generators. Therefore, MHNN-based applications
in information protection can be further discussed in the future. Additionally, most of the
current MHNNs are based on the memristor mathematical model. In our opinion, the real
nano-memristor is essential if the memristor-based chaotic systems and neural networks are
to be applied in practical engineering [191,192]. Undoubtedly, it is a new research direction to
construct MHNNs with complex, chaotic dynamics using nano-memristor.

5. Conclusions

In this review, several significant results on MHNN-based chaotic systems are in-
troduced for readers in the field of chaos. First, the basic knowledge of Hopfield neural
networks, memristors, and chaotic dynamics is illustrated. Then according to the different
functions of the memristors in MHNNs, we divide MHNNs into four different models,
namely, the MHNNs with memristor autapses, the MHNNs with memristor synapses, the
MHNNs under electromagnetic radiation, and the MHNNs with electromagnetic induction.
The modeling mechanism, modeling method, and pioneering works of each type are intro-
duced. Concurrently, we reviewed some recent important papers related to those types.
Finally, potential applications of the MHNNs within different areas, especially information
encryption, are also introduced, and future work has been discussed. This discussion
could be helpful for further investigation of MHNN-based chaotic systems. Although some
MHNN-based chaotic systems and their chaotic dynamics have been reported, it is still in
the infant stage and needs to be further researched. We hope that this review can provide a
good reference for researchers who want to investigate such chaotic systems deeply.
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